
Jason Dobies &
Joshua Wood

Kubernetes
Operators
Automating the Container Orchestration Platform

Sponsored by

Launch your Developer Sandbox
for Red Hat OpenShift today

red.ht/sandb0x

https://developers.redhat.com/developer-sandbox?sc_cid=7013a000003SVaHAAW

Praise for Kubernetes Operators

“Kubernetes has emerged as the world’s most powerful container orchestration platform,
but its true power is hidden behind an extensible API and automation framework that

will redefine how future platforms are built and operated; this book is the missing manual.”
—Kelsey Hightower, Technologist, Google Cloud

“The Kubernetes Operators book by Jason and Josh is something that should not be
missing on your (digital) bookshelf, if you’re serious about Kubernetes. It’s hands-on,

covers the why and the how, and enables you to successfully apply the operator pattern in
your environment. I’d consider this book the perfect followup to Programming Kubernetes.”

—Michael Hausenblas, Amazon Web Services

“This book is essential for anyone looking to adopt the Operator Paradigm for their
critical workloads. It provides a comprehensive overview of design principles,

implementation paths and traps, and utilization of the existing ecosystem.”
—Anish Asthana, Software Engineer, Red Hat

“Working with Jason over the past several years, I have always wanted a dump of what’s in
his head, and now I have it! Josh and Jason have created an essential guide for anyone

creating operators, and it will be a significant advantage for us as we look to mature our
operator into the Auto Pilot phase with the goal of becoming a true ‘Kubernetes

Application Reliability Engineering’ function for our customers.”
—Dave Meurer, Technical Global Alliances, Synopsys, Inc.

“Another brilliant publication by Josh and Jason that provides market-leading data
for Kubernetes Operators.”

—Joe Gomes, Global Alliances, Synopsys, Inc.

Jason Dobies and Joshua Wood

Kubernetes Operators
Automating the Container

Orchestration Platform

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04805-3

[LSI]

Kubernetes Operators
by Jason Dobies and Joshua Wood

Copyright © 2020 Red Hat, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins
Development Editor: Virginia Wilson
Production Editor: Deborah Baker
Copyeditor: Rachel Head
Proofreader: Sonia Saruba

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

March 2020: First Edition

Revision History for the First Edition
2020-01-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492048046 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Kubernetes Operators, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Red Hat, Inc. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492048046
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

To my kids, Leanne and Austin, know that it is never easy to have to tell you “No, daddy
has to work.” Realize that all of it—the meetings, the trips, the book—all of it is for you
two. I have your backs in whatever the future holds for you, and I can’t wait to see the

awesome things you two do.
—Jason

To Shayna.
—Joshua

Table of Contents

Preface. xiii

1. Operators Teach Kubernetes New Tricks. 1
How Kubernetes Works 1
Example: Stateless Web Server 3
Stateful Is Hard 4
Operators Are Software SREs 4
How Operators Work 5

Kubernetes CRs 6
How Operators Are Made 6
Example: The etcd Operator 6

The Case of the Missing Member 7
Who Are Operators For? 7

Operator Adoption 8
Let’s Get Going! 8

2. Running Operators. 9
Setting Up an Operator Lab 9

Cluster Version Requirements 9
Authorization Requirements 10
Standard Tools and Techniques 11
Suggested Cluster Configurations 11
Checking Your Cluster Version 12

Running a Simple Operator 13
A Common Starting Point 13
Fetching the etcd Operator Manifests 14
CRs: Custom API Endpoints 14
Who Am I: Defining an Operator Service Account 15

vii

Deploying the etcd Operator 17
Declaring an etcd Cluster 18
Exercising etcd 19
Scaling the etcd Cluster 20
Failure and Automated Recovery 21
Upgrading etcd Clusters 22
Cleaning Up 24

Summary 25

3. Operators at the Kubernetes Interface. 27
Standard Scaling: The ReplicaSet Resource 27
Custom Resources 28

CR or ConfigMap? 28
Custom Controllers 29
Operator Scopes 29

Namespace Scope 29
Cluster-Scoped Operators 30

Authorization 30
Service Accounts 30
Roles 31
RoleBindings 31
ClusterRoles and ClusterRoleBindings 31

Summary 32

4. The Operator Framework. 33
Operator Framework Origins 33
Operator Maturity Model 34
Operator SDK 34

Installing the Operator SDK Tool 35
Operator Lifecycle Manager 35
Operator Metering 36
Summary 37

5. Sample Application: Visitors Site. 39
Application Overview 39
Installation with Manifests 41

Deploying MySQL 41
Backend 43
Frontend 45

Deploying the Manifests 47
Accessing the Visitors Site 47
Cleaning Up 47

viii | Table of Contents

Summary 48

6. Adapter Operators. 49
Helm Operator 51

Building the Operator 51
Fleshing Out the CRD 55
Reviewing Operator Permissions 55
Running the Helm Operator 55

Ansible Operator 56
Building the Operator 56
Fleshing Out the CRD 58
Reviewing Operator Permissions 58
Running the Ansible Operator 58

Testing an Operator 59
Summary 60
Resources 60

7. Operators in Go with the Operator SDK. 61
Initializing the Operator 62
Operator Scope 62
Custom Resource Definitions 64

Defining the Go Types 65
The CRD Manifest 66

Operator Permissions 66
Controller 67

The Reconcile Function 69
Operator Writing Tips 70

Retrieving the Resource 70
Child Resource Creation 71
Child Resource Deletion 74
Child Resource Naming 75
Idempotency 75
Operator Impact 76

Running an Operator Locally 77
Visitors Site Example 78
Summary 79
Resources 79

8. Operator Lifecycle Manager. 81
OLM Custom Resources 81

ClusterServiceVersion 82
CatalogSource 82

Table of Contents | ix

Subscription 83
InstallPlan 83
OperatorGroup 83

Installing OLM 84
Using OLM 86

Exploring the Operator 90
Deleting the Operator 91

OLM Bundle Metadata Files 92
Custom Resource Definitions 92
Cluster Service Version File 93
Package Manifest File 93

Writing a Cluster Service Version File 93
Generating a File Skeleton 93
Metadata 95
Owned CRDs 96
Required CRDs 99
Install Modes 100
Versioning and Updating 100

Writing a Package Manifest File 101
Running Locally 102

Prerequisites 102
Building the OLM Bundle 105
Installing the Operator Through OLM 107
Testing the Running Operator 109

Visitors Site Operator Example 109
Summary 109
Resources 109

9. Operator Philosophy. 111
SRE for Every Application 111
Toil Not, Neither Spin 112

Automatable: Work Your Computer Would Like 112
Running in Place: Work of No Enduring Value 112
Growing Pains: Work That Expands with the System 113

Operators: Kubernetes Application Reliability Engineering 113
Managing Application State 114
Golden Signals Sent to Software 114

Seven Habits of Highly Successful Operators 116
Summary 117

10. Getting Involved. 119
Feature Requests and Reporting Bugs 119

x | Table of Contents

Contributing 120
Sharing Operators 121
Summary 121

A. Running an Operator as a Deployment Inside a Cluster. 123

B. Custom Resource Validation. 125

C. Role-Based Access Control (RBAC). 127

Index. 131

Table of Contents | xi

Preface

Kubernetes is a popular container orchestrator. It harnesses many computers together
into one large computing resource and establishes a means of addressing that
resource through the Kubernetes application programming interface (API). Kuber‐
netes is open source software with origins at Google, developed over the last five
years by a large group of collaborators under the auspices of the Cloud Native Com‐
puting Foundation (CNCF).

An Operator extends Kubernetes to automate the management of the entire lifecycle
of a particular application. Operators serve as a packaging mechanism for distribut‐
ing applications on Kubernetes, and they monitor, maintain, recover, and upgrade the
software they deploy.

Who This Book Is For
If you’ve deployed applications on a Kubernetes cluster, you’ll be familiar with some
of the challenges and aspirations that forged the Operator pattern. If you’ve main‐
tained foundation services like databases and filesystems in their own ghetto outside
your orchestrated clusters, and you yearn to bring them into the neighborhood, this
guide to Kubernetes Operators is for you.

What You Will Learn
This book explains what an Operator is and how Operators extend the Kubernetes
API. It shows how to deploy and use existing Operators, and how to create and dis‐
tribute Operators for your applications using the Red Hat Operator Framework. We
relate good practices for designing, building, and distributing Operators, and we
explain the thinking that animates Operators with Site Reliability Engineering (SRE)
principles.

After describing Operators and their concepts in the first chapter, we’ll suggest ways
to get access to a Kubernetes cluster where you can do the exercises in the rest of the

xiii

https://www.cncf.io/
https://www.cncf.io/
https://github.com/operator-framework

book. With a cluster running, you’ll deploy an Operator and observe its behavior
when its application fails, scales, or gets upgraded to a new version.

Later, we will explore the Operator SDK and show you how to use it to build an
Operator to naturalize an example application as a first-class Kubernetes citizen. With
that practical foundation in place, we will discuss the SRE ideas from which Opera‐
tors derive and the goals they share: reducing operations effort and cost, increasing
service reliability, and spurring innovation by freeing teams from repetitive mainte‐
nance work.

Operator Framework and SDK
The Operator pattern emerged at CoreOS as a way to automate increasingly complex
applications on Kubernetes clusters, including managing Kubernetes itself and the
etcd key-value store at its heart. Work on Operators continued through an acquisition
by Red Hat, leading to the 2018 release of the open source Operator Framework and
SDK. The examples in this book use the Red Hat Operator SDK and the distribution
mechanisms that join it in the Operator Framework.

Other Operator Tools
A community has grown up around Operators, with more than a hundred Operators
for an array of applications from many vendors and projects available in Red Hat’s
distribution channels alone. Several other Operator construction tools exist. We won’t
discuss them in detail, but after you read this book you’ll be able to compare any of
them with the Operator SDK and Framework. Other open source tools available for
building Operators include Kopf for Python, Kubebuilder from the Kubernetes
project, and the Java Operator SDK.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface

https://coreos.com
https://github.com/coreos/etcd
https://oreil.ly/JCL-S
https://oreil.ly/8zdbj
https://oreil.ly/yXhVg

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kubernetes-operators-book/.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Kubernetes Operators by
Jason Dobies and Joshua Wood (O’Reilly). Copyright 2020 Red Hat, Inc.,
978-1-492-04805-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/kubernetes-operators-book/
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/Kubernetes_Operators.

Email bookquestions@oreilly.com to comment or ask technical questions.

For more about our books, courses, and conferences, see http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We’d like to thank Red Hat and the OpenShift Advocacy team there for their support,
in particular the steadfast and all-trades assistance of Ryan Jarvinen. We also thank
the many people who reviewed, checked, suggested, and otherwise gave their time to
make this work more coherent and complete, among them Anish Asthana, Evan Cor‐
dell, Michael Gasch, Michael Hausenblas, Shawn Hurley, and Jess Males.

xvi | Preface

http://oreilly.com
http://oreilly.com
https://oreil.ly/Kubernetes_Operators
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Operators Teach Kubernetes New Tricks

An Operator is a way to package, run, and maintain a Kubernetes application. A
Kubernetes application is not only deployed on Kubernetes, it is designed to use and
to operate in concert with Kubernetes facilities and tools.

An Operator builds on Kubernetes abstractions to automate the entire lifecycle of the
software it manages. Because they extend Kubernetes, Operators provide application-
specific automation in terms familiar to a large and growing community. For applica‐
tion programmers, Operators make it easier to deploy and run the foundation
services on which their apps depend. For infrastructure engineers and vendors, Oper‐
ators provide a consistent way to distribute software on Kubernetes clusters and
reduce support burdens by identifying and correcting application problems before
the pager beeps.

Before we begin to describe how Operators do these jobs, let’s define a few Kuber‐
netes terms to provide context and a shared language to describe Operator concepts
and components.

How Kubernetes Works
Kubernetes automates the lifecycle of a stateless application, such as a static web
server. Without state, any instances of an application are interchangeable. This simple
web server retrieves files and sends them on to a visitor’s browser. Because the server
is not tracking state or storing input or data of any kind, when one server instance
fails, Kubernetes can replace it with another. Kubernetes refers to these instances,
each a copy of an application running on the cluster, as replicas.

A Kubernetes cluster is a collection of computers, called nodes. All cluster work runs
on one, some, or all of a cluster’s nodes. The basic unit of work, and of replication, is

1

the pod. A pod is a group of one or more Linux containers with common resources
like networking, storage, and access to shared memory.

The Kubernetes pod documentation is a good starting point for
more information about the pod abstraction.

At a high level, a Kubernetes cluster can be divided into two planes. The control plane
is, in simple terms, Kubernetes itself. A collection of pods comprises the control plane
and implements the Kubernetes application programming interface (API) and cluster
orchestration logic.

The application plane, or data plane, is everything else. It is the group of nodes where
application pods run. One or more nodes are usually dedicated to running applica‐
tions, while one or more nodes are often sequestered to run only control plane pods.
As with application pods, multiple replicas of control plane components can run on
multiple controller nodes to provide redundancy.

The controllers of the control plane implement control loops that repeatedly compare
the desired state of the cluster to its actual state. When the two diverge, a controller
takes action to make them match. Operators extend this behavior. The schematic in
Figure 1-1 shows the major control plane components, with worker nodes running
application workloads.

While a strict division between the control and application planes is a convenient
mental model and a common way to deploy a Kubernetes cluster to segregate work‐
loads, the control plane components are a collection of pods running on nodes, like
any other application. In small clusters, control plane components are often sharing
the same node or two with application workloads.

The conceptual model of a cordoned control plane isn’t quite so tidy, either. The kube
let agent running on every node is part of the control plane, for example. Likewise, an
Operator is a type of controller, usually thought of as a control plane component.
Operators can blur this distinct border between planes, however. Treating the control
and application planes as isolated domains is a helpful simplifying abstraction, not an
absolute truth.

2 | Chapter 1: Operators Teach Kubernetes New Tricks

https://oreil.ly/ziz5q

Figure 1-1. Kubernetes control plane and worker nodes

Example: Stateless Web Server
Since you haven’t set up a cluster yet, the examples in this chapter are more like ter‐
minal excerpt “screenshots” that show what basic interactions between Kubernetes
and an application look like. You are not expected to execute these commands as you
are those throughout the rest of the book. In this first example, Kubernetes manages a
relatively simple application and no Operators are involved.

Consider a cluster running a single replica of a stateless, static web server:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE

staticweb-69ccd6d6c-9mr8l 1/1 Running 0 23s

After declaring there should be three replicas, the cluster’s actual state differs from
the desired state, and Kubernetes starts two new instances of the web server to recon‐
cile the two, scaling the web server deployment:

Example: Stateless Web Server | 3

$ kubectl scale deployment staticweb --replicas=3
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
staticweb-69ccd6d6c-4tdhk 1/1 Running 0 6s
staticweb-69ccd6d6c-9mr8l 1/1 Running 0 100s
staticweb-69ccd6d6c-m9qc7 1/1 Running 0 6s

Deleting one of the web server pods triggers work in the control plane to restore the
desired state of three replicas. Kubernetes starts a new pod to replace the deleted one.
In this excerpt, the replacement pod shows a STATUS of ContainerCreating:

$ kubectl delete pod staticweb-69ccd6d6c-9mr8l
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
staticweb-69ccd6d6c-4tdhk 1/1 Running 0 2m8s
staticweb-69ccd6d6c-bk27p 0/1 ContainerCreating 0 14s
staticweb-69ccd6d6c-m9qc7 1/1 Running 0 2m8s

This static site’s web server is interchangeable with any other replica, or with a new
pod that replaces one of the replicas. It doesn’t store data or maintain state in any way.
Kubernetes doesn’t need to make any special arrangements to replace a failed pod, or
to scale the application by adding or removing replicas of the server.

Stateful Is Hard
Most applications have state. They also have particulars of startup, component inter‐
dependence, and configuration. They often have their own notion of what “cluster”
means. They need to reliably store critical and sometimes voluminous data. Those are
just three of the dimensions in which real-world applications must maintain state. It
would be ideal to manage these applications with uniform mechanisms while auto‐
mating their complex storage, networking, and cluster connection requirements.

Kubernetes cannot know all about every stateful, complex, clustered application while
also remaining general, adaptable, and simple. It aims instead to provide a set of flexi‐
ble abstractions, covering the basic application concepts of scheduling, replication,
and failover automation, while providing a clean extension mechanism for more
advanced or application-specific operations. Kubernetes, on its own, does not and
should not know the configuration values for, say, a PostgreSQL database cluster, with
its arranged memberships and stateful, persistent storage.

Operators Are Software SREs
Site Reliability Engineering (SRE) is a set of patterns and principles for running large
systems. Originating at Google, SRE has had a pronounced influence on industry
practice. Practitioners must interpret and apply SRE philosophy to particular circum‐
stances, but a key tenet is automating systems administration by writing software to

4 | Chapter 1: Operators Teach Kubernetes New Tricks

run your software. Teams freed from rote maintenance work have more time to cre‐
ate new features, fix bugs, and generally improve their products.

An Operator is like an automated Site Reliability Engineer for its application. It enco‐
des in software the skills of an expert administrator. An Operator can manage a clus‐
ter of database servers, for example. It knows the details of configuring and managing
its application, and it can install a database cluster of a declared software version and
number of members. An Operator continues to monitor its application as it runs, and
can back up data, recover from failures, and upgrade the application over time, auto‐
matically. Cluster users employ kubectl and other standard tools to work with Oper‐
ators and the applications they manage, because Operators extend Kubernetes.

How Operators Work
Operators work by extending the Kubernetes control plane and API. In its simplest
form, an Operator adds an endpoint to the Kubernetes API, called a custom resource
(CR), along with a control plane component that monitors and maintains resources
of the new type. This Operator can then take action based on the resource’s state. This
is illustrated in Figure 1-2.

Figure 1-2. Operators are custom controllers watching a custom resource

How Operators Work | 5

Kubernetes CRs
CRs are the API extension mechanism in Kubernetes. A custom resource definition
(CRD) defines a CR; it’s analogous to a schema for the CR data. Unlike members of
the official API, a given CRD doesn’t exist on every Kubernetes cluster. CRDs extend
the API of the particular cluster where they are defined. CRs provide endpoints for
reading and writing structured data. A cluster user can interact with CRs with
kubectl or another Kubernetes client, just like any other API resource.

How Operators Are Made
Kubernetes compares a set of resources to reality; that is, the running state of the
cluster. It takes actions to make reality match the desired state described by those
resources. Operators extend that pattern to specific applications on specific clusters.
An Operator is a custom Kubernetes controller watching a CR type and taking
application-specific actions to make reality match the spec in that resource.

Making an Operator means creating a CRD and providing a program that runs in a
loop watching CRs of that kind. What the Operator does in response to changes in
the CR is specific to the application the Operator manages. The actions an Operator
performs can include almost anything: scaling a complex app, application version
upgrades, or even managing kernel modules for nodes in a computational cluster
with specialized hardware.

Example: The etcd Operator
etcd is a distributed key-value store. In other words, it’s a kind of lightweight database
cluster. An etcd cluster usually requires a knowledgeable administrator to manage it.
An etcd administrator must know how to:

• Join a new node to an etcd cluster, including configuring its endpoints, making
connections to persistent storage, and making existing members aware of it.

• Back up the etcd cluster data and configuration.
• Upgrade the etcd cluster to new etcd versions.

The etcd Operator knows how to perform those tasks. An Operator knows about its
application’s internal state, and takes regular action to align that state with the desired
state expressed in the specification of one or more custom resources.

As in the previous example, the shell excerpts that follow are illustrative, and you
won’t be able to execute them without prior setup. You’ll do that setup and run an
Operator in Chapter 2.

6 | Chapter 1: Operators Teach Kubernetes New Tricks

The Case of the Missing Member
Since the etcd Operator understands etcd’s state, it can recover from an etcd cluster
member’s failure in the same way Kubernetes replaced the deleted stateless web server
pod in our earlier example. Assume there is a three-member etcd cluster managed by
the etcd Operator. The Operator itself and the etcd cluster members run as pods:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-operator-6f44498865-lv7b9 1/1 Running 0 1h
example-etcd-cluster-cpnwr62qgl 1/1 Running 0 1h
example-etcd-cluster-fff78tmpxr 1/1 Running 0 1h
example-etcd-cluster-lrlk7xwb2k 1/1 Running 0 1h

Deleting an etcd pod triggers a reconciliation, and the etcd Operator knows how to
recover to the desired state of three replicas—something Kubernetes can’t do alone.
But unlike with the blank-slate restart of a stateless web server, the Operator has to
arrange the new etcd pod’s cluster membership, configuring it for the existing end‐
points and establishing it with the remaining etcd members:

$ kubectl delete pod example-etcd-cluster-cpnwr62qgl
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-operator-6f44498865-lv7b9 1/1 Running 0 1h
example-etcd-cluster-fff78tmpxr 1/1 Running 0 1h
example-etcd-cluster-lrlk7xwb2k 1/1 Running 0 1h
example-etcd-cluster-r6cb8g2qqw 0/1 PodInitializing 0 4s

The replacement pod is in the PodInitializing state.

The etcd API remains available to clients as the Operator repairs the etcd cluster. In
Chapter 2, you’ll deploy the etcd Operator and put it through its paces while using
the etcd API to read and write data. For now, it’s worth remembering that adding a
member to a running etcd cluster isn’t as simple as just running a new etcd pod, and
the etcd Operator hides that complexity and automatically heals the etcd cluster.

Who Are Operators For?
The Operator pattern arose in response to infrastructure engineers and developers
wanting to extend Kubernetes to provide features specific to their sites and software.
Operators make it easier for cluster administrators to enable, and developers to use,
foundation software pieces like databases and storage systems with less management
overhead. If the “killernewdb” database server that’s perfect for your application’s
backend has an Operator to manage it, you can deploy killernewdb without needing
to become an expert killernewdb DBA.

Application developers build Operators to manage the applications they are deliver‐
ing, simplifying the deployment and management experience on their customers’

Who Are Operators For? | 7

Kubernetes clusters. Infrastructure engineers create Operators to control deployed
services and systems.

Operator Adoption
A wide variety of developers and companies have adopted the Operator pattern, and
there are already many Operators available that make it easier to use key services as
components of your applications. CrunchyData has developed an Operator that man‐
ages PostgreSQL database clusters. There are popular Operators for MongoDB and
Redis. Rook manages Ceph storage on Kubernetes clusters, while other Operators
provide on-cluster management of external storage services like Amazon S3.

Moreover, Kubernetes-based distributions like Red Hat’s OpenShift use Operators to
build features atop a Kubernetes core, keeping the OpenShift web console available
and up to date, for example. On the user side, OpenShift has added mechanisms for
point-and-click Operator installation and use in the web console, and for Operator
developers to hook into the OperatorHub.io, discussed in Chapter 8 and Chapter 10.

Let’s Get Going!
Operators need a Kubernetes cluster to run on. In the next chapter we’ll show you a
few different ways to get access to a cluster, whether it’s a local virtual Kubernetes on
your laptop, a complete installation on some number of nodes, or an external service.
Once you have admin access to a Kubernetes cluster, you will deploy the etcd Opera‐
tor and see how it manages an etcd cluster on your behalf.

8 | Chapter 1: Operators Teach Kubernetes New Tricks

https://operatorhub.io

CHAPTER 2

Running Operators

In the first section of this chapter we outline the requirements for running the exam‐
ples in this book, and offer advice on how to establish access to a Kubernetes cluster
that satisfies those requirements. In the second section, you’ll use that cluster to
investigate what Operators do by installing and using one.

By the end, you’ll have a Kubernetes cluster to use as an Operator test bed, and you’ll
know how to deploy an existing Operator on it from a set of manifests. You’ll also
have seen an Operator managing its application’s specific internal state in the face of
changes and failures, informing your understanding of the Operator architecture and
build tools presented in succeeding chapters.

Setting Up an Operator Lab
To build, test, and run Operators in the following chapters, you’ll need cluster-
admin access to a cluster running Kubernetes version v1.11.0 or later. If you’ve already
met these requirements, you can skip ahead to the next section. In this section we
offer general advice to readers who need to set up a Kubernetes cluster, or who need a
local environment for Operator development and testing.

Cluster Version Requirements
We’ve tested the examples in this book with Kubernetes releases v1.11 up to v1.16. We
will state when any feature or action we examine requires a release later than v1.11.

9

Control plane extensibility
Kubernetes version 1.2 introduced the API extension mechanism known as the CRD
in elemental form as the third party resource (TPR). Since then, the components
Operators build on have multiplied and matured, as illustrated in Figure 2-1. CRDs
were formalized with the Kubernetes version 1.7 release.

Figure 2-1. Extensibility features per Kubernetes release

As you saw in Chapter 1, a CRD is the definition of a new, site-specific resource (or
API endpoint) in the Kubernetes API of a particular cluster. CRDs are one of two
essential building blocks for the most basic description of the Operator pattern: a cus‐
tom controller managing CRs.

Authorization Requirements
Since Operators extend Kubernetes itself, you’ll need privileged, cluster-wide access
to a Kubernetes cluster to deploy them, such as the common cluster-admin cluster
role.

Less privileged users can use the services and applications that
Operators manage—the “operands.”

While you should configure more granular Kubernetes Role-Based Access Control
(RBAC) for production scenarios, having complete control of your cluster means
you’ll be able to deploy CRDs and Operators immediately. You’ll also have the power
to declare more detailed RBAC as you develop the roles, service accounts, and bind‐
ings for your Operators and the applications they manage.

You can ask the Kubernetes API about the cluster-admin role to see if it exists on
your cluster. The following shell excerpt shows how to get a summary of the role with
the kubectl’s describe subcommand:

10 | Chapter 2: Running Operators

$ kubectl describe clusterrole cluster-admin
Name: cluster-admin
Labels: kubernetes.io/bootstrapping=rbac-defaults
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 . [] [] [*]
 [*] [] [*]

The RBAC cluster-admin ClusterRole: anything goes.

Standard Tools and Techniques
Operators aim to make the complex applications they manage first-class citizens of
the Kubernetes API. We show what that means in the following chapters’ examples.
At this stage, it means that a recent version of the command-line Kubernetes API
tool, kubectl, is the only requirement for deploying and interacting with basic Oper‐
ators on your cluster.

Readers who need to install or update kubectl should consult the current documen‐
tation.

Users of the Red Hat OpenShift Kubernetes distribution (described
below) may optionally (and interchangeably) use the oc OpenShift
API utility in place of kubectl.

Suggested Cluster Configurations
There are many ways to run a Kubernetes cluster where you can deploy Operators. As
mentioned previously, if you are already running a recent Kubernetes version, you
can skip past this advice and on to “Running a Simple Operator” on page 13. If you
aren’t, we have tested the Kubernetes packagings or distributions described in this
section enough to expect they will support the exercises in this book.

Minikube
Minikube v1.5.2 deploys Kubernetes v1.16.2. It runs a single-node Kubernetes cluster
in a virtual machine (VM) on your local system’s hypervisor. By default, Minikube
expects to use VirtualBox because of its wide availability, but with a few extra steps it
can also use your platform’s native hypervisor, like KVM on Linux, Hyper-V on Win‐
dows, or HyperKit and Hypervisor.framework on macOS. We avoid detailed installa‐
tion instructions here, because they are better left to the Minikube documentation.
We have tested the examples in this book most thoroughly with Minikube, and for
reasons of convenience and cost we are recommending that you start your Operator

Setting Up an Operator Lab | 11

https://oreil.ly/ke6KM
https://oreil.ly/ke6KM
https://oreil.ly/dBPzK
https://oreil.ly/eRZpQ

experiments with a local environment like it, CodeReady Containers (see the next
section), or with Kubernetes in Docker (kind).

Red Hat OpenShift
OpenShift is Red Hat’s distribution of Kubernetes. Anything you can do on Kuber‐
netes, you can do on OpenShift of an equivalent core version. (There are also
OpenShift-specific features built atop Kubernetes, but those are beyond the scope of
this book.) OpenShift version 4 provides a full-featured Kubernetes distribution that
is itself designed, delivered, and managed using Operators. It’s a “self-hosted” Kuber‐
netes, capable of performing in-place platform upgrades without incurring downtime
for hosted workloads. OpenShift includes Operator Lifecycle Manager, described in
Chapter 4, and a graphical interface to the Operator Catalog distribution mechanism
out of the box.

You can deploy a fully fledged OpenShift v4 cluster on Amazon Web Services (AWS),
Microsoft Azure, or Google Cloud Platform with a free trial license by visiting Red
Hat’s https://try.openshift.com.

To run OpenShift on your laptop, take a look at Minikube’s equiva‐
lent, Red Hat CodeReady Containers.

OpenShift Learning Portal
The OpenShift learning portal offers guided lessons, including access to a cluster with
all the necessary privileges for installing, deploying, and managing Operators. Scenar‐
ios are available in your web browser, making it easy to keep learning beyond the
examples in this book. An OpenShift cluster spins up for each session, and you’re
given command-line and web GUI access to it.

To check it out, visit https://learn.openshift.com and select the “Building Operators on
OpenShift” group of topics.

Checking Your Cluster Version
Verify that your cluster is running Kubernetes version v1.11 or later by running
kubectl version. This command will return one API version string for your
kubectl binary and a second version string for the cluster to which it is connecting:

12 | Chapter 2: Running Operators

https://oreil.ly/2y6PD
https://try.openshift.com
https://github.com/code-ready/crc
https://learn.openshift.com

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"16", GitVersion:"v1.16.2",
GitCommit:"c97fe5036ef3df2967d086711e6c0c405941e14b", GitTreeState:"clean",
BuildDate:"2019-10-15T19:18:23Z", GoVersion:"go1.12.10", Compiler:"gc",
Platform:"darwin/amd64"}
Server Version: version.Info{Major:"1", Minor:"16", GitVersion:"v1.16.2",
GitCommit:"c97fe5036ef3df2967d086711e6c0c405941e14b", GitTreeState:"clean",
BuildDate:"2019-10-15T19:09:08Z", GoVersion:"go1.12.10", Compiler:"gc",
Platform:"linux/amd64"}

In the preceding output, both client and server are running Kubernetes version
1.16.2. While a kubectl client up to one release behind the server should work, for
simplicity, you should make sure your client and server minor versions match. If you
have v1.11 or later, you’re ready to start experimenting with Operators.

Running a Simple Operator
Once you’ve verified that you have privileged access to a Kubernetes cluster of a com‐
patible version, you’re ready to deploy an Operator and see what Operators can do.
You’ll see the skeleton of this same procedure again later, when you deploy and test
the Operator you build. The etcd Operator’s straightforward automation of recovery
and upgrades shows the principles and goals of Kubernetes Operators in action.

A Common Starting Point
etcd is a distributed key-value store with roots at CoreOS, now under the auspices of
the Cloud Native Computing Foundation. It is the underlying data store at the core of
Kubernetes, and a key piece of several distributed applications. etcd provides reliable
storage by implementing a protocol called Raft that guarantees consensus among a
quorum of members.

The etcd Operator often serves as a kind of “Hello World” example of the value and
mechanics of the Operator pattern, and we follow that tradition here. We return to it
because the most basic use of etcd is not difficult to illustrate, but etcd cluster setup
and administration require exactly the kind of application-specific know-how you
can bake into an Operator. To use etcd, you put keys and values in, and get them back
out by name. Creating a reliable etcd cluster of the minimum three or more nodes
requires configuration of endpoints, auth, and other concerns usually left to an etcd
expert (or their collection of custom shell scripts). Keeping etcd running and upgra‐
ded over time requires continued administration. The etcd Operator knows how to
do all of this.

In the sections that follow, you’ll deploy the etcd Operator, then have it create an etcd
cluster according to your specifications. You will have the Operator recover from
failures and perform a version upgrade while the etcd API continues to service read

Running a Simple Operator | 13

https://oreil.ly/I7K1e
https://github.com/coreos/etcd
https://raft.github.io/

and write requests, showing how an Operator automates the lifecycle of a piece of
foundation software.

You can follow this example on a running OpenShift cluster
without doing any setup at the OpenShift learning portal.

Fetching the etcd Operator Manifests
This book provides an accompanying Git repository for each chapter’s example code.
Grab the chapters repo and change into Chapter 3’s examples directory, as shown
here:

$ git clone https://github.com/kubernetes-operators-book/chapters.git
$ cd chapters/ch03

CRs: Custom API Endpoints
As with nearly everything in Kubernetes, a YAML manifest describes a CRD. A CR is
a named endpoint in the Kubernetes API. A CRD named etcdclusters.etcd.data
base.coreos.com represents the new type of endpoint.

Creating a CRD
A CRD defines the types and values within an instance of a CR. This example defines
a new kind of resource, the EtcdCluster.

Use cat, less, or your preferred pager to read the file named etcd-operator-crd.yaml.
You’ll see something like the following, the YAML that specifies the EtcdCluster CRD:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 name: etcdclusters.etcd.database.coreos.com
spec:
 group: etcd.database.coreos.com
 names:
 kind: EtcdCluster
 listKind: EtcdClusterList
 plural: etcdclusters
 shortNames:
 - etcdclus
 - etcd
 singular: etcdcluster
 scope: Namespaced
 versions:
 - name: v1beta2

14 | Chapter 2: Running Operators

https://oreil.ly/j-xKh
https://github.com/kubernetes-operators-book/chapters.git

 served: true
 storage: true

The CRD defines how the Kubernetes API should reference this new resource. The
shortened nicknames that help you do a little less typing in kubectl are defined here,
too.

Create the CRD on your cluster:

$ kubectl create -f etcd-operator-crd.yaml

A quick check shows the new CRD, etcdclusters.etcd.database.coreos.com:

$ kubectl get crd
NAME CREATED AT
etcdclusters.etcd.database.coreos.com 2019-11-15T02:50:14Z

The CR’s group, version, and kind together form the fully qualified
name of a Kubernetes resource type. That canonical name must be
unique across a cluster. The CRD you created represents a resource
in the etcd.database.coreos.com group, of version v1beta2 and
kind EtcdCluster.

Who Am I: Defining an Operator Service Account
In Chapter 3 we give an overview of Kubernetes authorization and define service
accounts, roles, and other authorization concepts. For now, we just want to take a first
look at basic declarations for a service account and the capabilities that account needs
to run the etcd Operator.

The file etcd-operator-sa.yaml defines the service account:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: etcd-operator-sa

Create the service account by using kubectl create:

$ kubectl create -f etcd-operator-sa.yaml
serviceaccount/etcd-operator-sa created

If you check the list of cluster service accounts, you’ll see that it appears:

$ kubectl get serviceaccounts
NAME SECRETS AGE
builder 2 2h
default 3 2h
deployer 2 2h
etcd-operator-sa 2 3s
[...]

Running a Simple Operator | 15

The role
The role governing the service account is defined in a file named etcd-operator-
role.yaml. We’ll leave aside a detailed discussion of RBAC for later chapters and
Appendix C, but the key items are fairly visible in the role manifest. We give the role a
name that we’ll use to reference it from other places: etcd-operator-role. The
YAML goes on to list the kinds of resources the role may use, and what it can do with
them, that is, what verbs it can say:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: etcd-operator-role
rules:
- apiGroups:
 - etcd.database.coreos.com
 resources:
 - etcdclusters
 - etcdbackups
 - etcdrestores
 verbs:
 - '*'
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - endpoints
 - persistentvolumeclaims
 - events
 verbs:
 - '*'
- apiGroups:
 - apps
 resources:
 - deployments
 verbs:
 - '*'
- apiGroups:
 - ""
 resources:
 - secrets
 verbs:
 - get

As with the service account, create the role with kubectl:

$ kubectl create -f etcd-operator-role.yaml
role.rbac.authorization.k8s.io/etcd-operator-role created

16 | Chapter 2: Running Operators

Role binding
The last bit of RBAC configuration, RoleBinding, assigns the role to the service
account for the etcd Operator. It’s declared in the file etcd-operator-rolebinding.yaml:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: etcd-operator-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: etcd-operator-role
subjects:
- kind: ServiceAccount
 name: etcd-operator-sa
 namespace: default

Notice the last line. If you’re on a brand-new OpenShift cluster, like that provided by
CodeReady Containers, by default your kubectl or oc commands will run in the
namespace myproject. If you’re on a similarly unconfigured Kubernetes cluster, your
context’s default will usually be the namespace default. Wherever you are, the
namespace value in this RoleBinding must match the namespace on the cluster where
you are working.

Create the binding now:

$ kubectl create -f etcd-operator-rolebinding.yaml
rolebinding.rbac.authorization.k8s.io/etcd-operator-rolebinding created

Deploying the etcd Operator
The Operator is a custom controller running in a pod, and it watches the EtcdCluster
CR you defined earlier. The manifest file etcd-operator-deployment.yaml lays out the
Operator pod’s specification, including the container image for the Operator you’re
deploying. Notice that it does not define the spec for the etcd cluster. You’ll describe
the desired etcd cluster to the deployed etcd Operator in a CR once the Operator is
running:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 name: etcdoperator
 name: etcd-operator
spec:
 replicas: 1
 selector:
 name: etcd-operator
 template:
 name: etcd-operator

Running a Simple Operator | 17

 spec:
 containers:
 - name: etcd-operator
 image: quay.io/coreos/etcd-operator:v0.9.4
 command:
 - etcd-operator
 - --create-crd=false
 [...]
 imagePullPolicy: IfNotPresent
 serviceAccountName: etcd-operator-sa

The deployment provides labels and a name for your Operator. Some key items to
note here are the container image to run in this deployment’s pods, etcd-
operator:v0.9.4, and the service account the deployment’s resources should use to
access the cluster’s Kubernetes API. The etcd-operator deployment uses the etcd-
operator-sa service account created for it.

As usual, you can create this resource on the cluster from the manifest:

$ kubectl create -f etcd-operator-deployment.yaml
deployment.apps/etcd-operator created
$ kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
etcd-operator 1 1 1 1 19s

The etcd Operator is itself a pod running in that deployment. Here you can see it
starting up:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-operator-594fbd565f-4fm8k 0/1 ContainerCreating 0 4s

Declaring an etcd Cluster
Earlier, you created a CRD defining a new kind of resource, an EtcdCluster. Now that
you have an Operator watching EtcdCluster resources, you can declare an EtcdClus‐
ter with your desired state. To do so, provide the two spec elements the Operator rec‐
ognizes: size, the number of etcd cluster members, and the version of etcd each of
those members should run.

You can see the spec stanza in the file etcd-cluster-cr.yaml:
apiVersion: etcd.database.coreos.com/v1beta2
kind: EtcdCluster
metadata:
 name: example-etcd-cluster
spec:
 size: 3
 version: 3.1.10

18 | Chapter 2: Running Operators

This brief manifest declares a desired state of three cluster members, each running
version 3.1.10 of the etcd server. Create this etcd cluster using the familiar kubectl
syntax:

$ kubectl create -f etcd-cluster-cr.yaml
etcdcluster.etcd.database.coreos.com/example-etcd-cluster created
$ kubectl get pods -w
NAME READY STATUS RESTARTS AGE
etcd-operator-594fbd565f-4fm8k 1/1 Running 0 3m
example-etcd-cluster-95gqrthjbz 1/1 Running 2 38s
example-etcd-cluster-m9ftnsk572 1/1 Running 0 34s
example-etcd-cluster-pjqhm8d4qj 1/1 Running 0 31s

This example etcd cluster is a first-class citizen, an EtcdCluster in your cluster’s API.
Since it’s an API resource, you can get the etcd cluster spec and status directly from
Kubernetes. Try kubectl describe to report on the size, etcd version, and status of
your etcd cluster, as shown here:

$ kubectl describe etcdcluster/example-etcd-cluster
Name: example-etcd-cluster
Namespace: default
API Version: etcd.database.coreos.com/v1beta2
Kind: EtcdCluster
[...]
Spec:
 Repository: quay.io/coreos/etcd
 Size: 3
 Version: 3.1.10
Status:
 Client Port: 2379
 Conditions:
 Last Transition Time: 2019-11-15T02:52:04Z
 Reason: Cluster available
 Status: True
 Type: Available
 Current Version: 3.1.10
 Members:
 Ready:
 example-etcd-cluster-6pq7qn82g2
 example-etcd-cluster-dbwt7kr8lw
 example-etcd-cluster-t85hs2hwzb
 Phase: Running
 Service Name: example-etcd-cluster-client

Exercising etcd
You now have a running etcd cluster. The etcd Operator creates a Kubernetes service
in the etcd cluster’s namespace. A service is an endpoint where clients can obtain
access to a group of pods, even though the members of the group may change. A ser‐
vice by default has a DNS name visible in the cluster. The Operator constructs the

Running a Simple Operator | 19

https://oreil.ly/meXW_

name of the service used by clients of the etcd API by appending -client to the etcd
cluster name defined in the CR. Here, the client service is named example-etcd-
cluster-client, and it listens on the usual etcd client IP port, 2379. Kubectl can list
the services associated with the etcd cluster:

$ kubectl get services --selector etcd_cluster=example-etcd-cluster
NAME TYPE CLUSTER-IP ... PORT(S) AGE
example-etcd-cluster ClusterIP None ... 2379/TCP,2380/TCP 21h
example-etcd-cluster-client ClusterIP 10.96.46.231 ... 2379/TCP 21h

The other service created by the etcd Operator, example-etcd-
cluster, is utilized by etcd cluster members rather than etcd API
clients.

You can run the etcd client on the cluster and use it to connect to the client service
and interact with the etcd API. The following command lands you in the shell of an
etcd container:

$ kubectl run --rm -i --tty etcdctl --image quay.io/coreos/etcd \
 --restart=Never -- /bin/sh

From the etcd container’s shell, create and read a key-value pair in etcd with
etcdctl’s put and get verbs:

$ export ETCDCTL_API=3
$ export ETCDCSVC=http://example-etcd-cluster-client:2379
$ etcdctl --endpoints $ETCDCSVC put foo bar
$ etcdctl --endpoints $ETCDCSVC get foo
foo
bar

Repeat these queries or run new put and get commands in an etcdctl shell after
each of the changes you go on to make. You’ll see the continuing availability of the
etcd API service as the etcd Operator grows the cluster, replaces members, and
upgrades the version of etcd.

Scaling the etcd Cluster
You can grow the etcd cluster by changing the declared size specification. Edit etcd-
cluster-cr.yaml and change size from 3 to 4 etcd members. Apply the changes to the
EtcdCluster CR:

$ kubectl apply -f etcd-cluster-cr.yaml

Checking the running pods shows the Operator adding a new etcd member to the
etcd cluster:

20 | Chapter 2: Running Operators

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
etcd-operator-594fbd565f-4fm8k 1/1 Running 1 16m
example-etcd-cluster-95gqrthjbz 1/1 Running 2 15m
example-etcd-cluster-m9ftnsk572 1/1 Running 0 15m
example-etcd-cluster-pjqhm8d4qj 1/1 Running 0 15m
example-etcd-cluster-w5l67llqq8 0/1 Init:0/1 0 3s

You can also try kubectl edit etcdcluster/example-etcd-

cluster to drop into an editor and make a live change to the clus‐
ter size.

Failure and Automated Recovery
You saw the etcd Operator replace a failed member back in Chapter 1. Before you see
it live, it’s worth reiterating the general steps you’d have to take to handle this man‐
ually. Unlike a stateless program, no etcd pod runs in a vacuum. Usually, a human
etcd “operator” has to notice a member’s failure, execute a new copy, and provide it
with configuration so it can join the etcd cluster with the remaining members. The
etcd Operator understands etcd’s internal state and makes the recovery automatic.

Recovering from a failed etcd member

Run a quick kubectl get pods -l app=etc to get a list of the pods in your etcd
cluster. Pick one you don’t like the looks of, and tell Kubernetes to delete it:

$ kubectl delete pod example-etcd-cluster-95gqrthjbz
pod "example-etcd-cluster-95gqrthjbz" deleted

The Operator notices the difference between reality on the cluster and the desired
state, and adds an etcd member to replace the one you deleted. You can see the new
etcd cluster member in the PodInitializing state when retrieving the list of pods, as
shown here:

$ kubectl get pods -w
NAME READY STATUS RESTARTS AGE
etcd-operator-594fbd565f-4fm8k 1/1 Running 1 18m
example-etcd-cluster-m9ftnsk572 1/1 Running 0 17m
example-etcd-cluster-pjqhm8d4qj 1/1 Running 0 17m
example-etcd-cluster-r6cb8g2qqw 0/1 PodInitializing 0 31s

The -w switch tells kubectl to “watch” the list of pods and to print updates on its
standard output with every change to the list. You can stop the watch and return to
your shell prompt with Ctrl-C.

You can check the Events to see the recovery actions logged in the example-etcd-
cluster CR:

Running a Simple Operator | 21

$ kubectl describe etcdcluster/example-etcd-cluster
[...]
Events:
 Normal Replacing Dead Member 4m etcd-operator-589c65bd9f-hpkc6
 The dead member example-etcd-cluster-95gqrthjbz is being replaced
 Normal Member Removed 4m etcd-operator-589c65bd9f-hpkc6
 Existing member example-etcd-cluster-95gqrthjbz removed from the cluster
[...]

Throughout the recovery process, if you fire up the etcd client pod again, you can
make requests to the etcd cluster, including a check on its general health:

$ kubectl run --rm -i --tty etcdctl --image quay.io/coreos/etcd \
 --restart=Never -- /bin/sh
If you don't see a command prompt, try pressing enter.
$ etcdctl --endpoints http://example-etcd-cluster-client:2379 cluster-health
member 5ee0dd47065a4f55 is healthy: got healthy result ...
member 70baca4290889c4a is healthy: got healthy result ...
member 76cd6c58798a7a4b is healthy: got healthy result ...
cluster is healthy
$ exit
pod "etcdctl" deleted

The etcd Operator recovers from failures in its complex, stateful application the same
way Kubernetes automates recoveries for stateless apps. That is conceptually simple
but operationally powerful. Building on these concepts, Operators can perform more
advanced tricks, like upgrading the software they manage. Automating upgrades can
have a positive impact on security, just by making sure things stay up to date. When
an Operator performs rolling upgrades of its application while maintaining service
availability, it’s easier to keep software patched with the latest fixes.

Upgrading etcd Clusters
If you happen to be an etcd user already, you may have noticed we specified an older
version, 3.1.10. We contrived this so we could explore the etcd Operator’s upgrade
skills.

Upgrading the hard way
At this point, you have an etcd cluster running version 3.1.10. To upgrade to etcd
3.2.13, you need to perform a series of steps. Since this book is about Operators, and
not etcd administration, we’ve condensed the process presented here, leaving aside
networking and host-level concerns to outline the manual upgrade process. The steps
to follow to upgrade manually are:

1. Check the version and health of each etcd node.
2. Create a snapshot of the cluster state for disaster recovery.

22 | Chapter 2: Running Operators

3. Stop one etcd server. Replace the existing version with the v3.2.13 binary. Start
the new version.

4. Repeat for each etcd cluster member—at least two more times in a three-member
cluster.

For the gory details, see the etcd upgrade documentation.

The easy way: Let the Operator do it
With a sense of the repetitive and error-prone process of a manual upgrade, it’s easier
to see the power of encoding that etcd-specific knowledge in the etcd Operator. The
Operator can manage the etcd version, and an upgrade becomes a matter of declaring
a new desired version in an EtcdCluster resource.

Triggering etcd upgrades

Get the version of the current etcd container image by querying some etcd-cluster
pod, filtering the output to see just the version:

$ kubectl get pod example-etcd-cluster-795649v9kq \
 -o yaml | grep "image:" | uniq
image: quay.io/coreos/etcd:v3.1.10
image: busybox:1.28.0-glibc

Or, since you added an EtcdCluster resource to the Kubernetes API, you can instead
summarize the Operator’s picture of example-etcd-cluster directly by using
kubectl describe as you did earlier:

$ kubectl describe etcdcluster/example-etcd-cluster

You’ll see the cluster is running etcd version 3.1.10, as specified in the file etcd-cluster-
cr.yaml and the CR created from it.

Edit etcd-cluster-cr.yaml and change the version spec from 3.1.10 to 3.2.13.
Then apply the new spec to the resource on the cluster:

$ kubectl apply -f etcd-cluster-cr.yaml

Use the describe command again and take a look at the current and target versions,
as well as the member upgrade notices in the Events stanza:

$ kubectl describe etcdcluster/example-etcd-cluster
Name: example-etcd-cluster
Namespace: default
API Version: etcd.database.coreos.com/v1beta2
Kind: EtcdCluster
[...]
Status:
 Conditions:
 [...]

Running a Simple Operator | 23

https://oreil.ly/II9Pn

 Message: upgrading to 3.2.13
 Reason: Cluster upgrading
 Status: True
 Type: Upgrading
 Current Version: 3.1.10
 [...]
 Size: 3
 Target Version: 3.2.13
Events:
 Type Reason Age From ...
 ---- ------ --- ---- ---
 Normal Member Upgraded 3s etcd-operator-594fbd565f-4fm8k ...
 Normal Member Upgraded 5s etcd-operator-594fbd565f-4fm8k ...

Upgrade the upgrade

With some kubectl tricks, you can make the same edit directly through the Kuber‐
netes API. This time, let’s upgrade from 3.2.13 to the latest minor version of etcd
available at the time of this writing, version 3.3.12:

$ kubectl patch etcdcluster example-etcd-cluster --type='json' \
 -p '[{"op": "replace", "path": "/spec/version", "value":3.3.12}]'

Remember you can always make this change in the etcd cluster’s CR manifest and
then apply it with kubectl, as you did to trigger the first upgrade.

Consecutive kubectl describe etcdcluster/example-etcd-cluster commands
will show the transition from the old version to a target version until that becomes
the current version, at which point you’ll see Current Version: 3.3.12. The Events
section records each of those upgrades:

 Normal Member Upgraded 1m etcd-operator-594fbd565f-4fm8k
 Member example-etcd-cluster-pjqhm8d4qj upgraded from 3.1.10 to 3.2.23
 Normal Member Upgraded 27s etcd-operator-594fbd565f-4fm8k
 Member example-etcd-cluster-r6cb8g2qqw upgraded from 3.2.23 to 3.3.12

Cleaning Up
Before proceeding, it will be helpful if you remove the resources you created and
manipulated to experiment with the etcd Operator. As shown in the following shell
excerpt, you can remove resources with the manifests used to create them. First,
ensure your current working directory is ch03 inside the chapters Git repository you
cloned earlier (cd chapters/ch03):

$ kubectl delete -f etcd-operator-sa.yaml
$ kubectl delete -f etcd-operator-role.yaml
$ kubectl delete -f etcd-operator-rolebinding.yaml
$ kubectl delete -f etcd-operator-crd.yaml
$ kubectl delete -f etcd-operator-deployment.yaml
$ kubectl delete -f etcd-cluster-cr.yaml
serviceaccount "etcd-operator-sa" deleted

24 | Chapter 2: Running Operators

role.rbac.authorization.k8s.io "etcd-operator-role" deleted
rolebinding.rbac.authorization.k8s.io "etcd-operator-rolebinding" deleted
customresourcedefinition.apiextensions.k8s.io \
 "etcdclusters.etcd.database.coreos.com" deleted
deployment.apps "etcd-operator" deleted
etcdcluster.etcd.database.coreos.com "example-etcd-cluster" deleted

Summary
We use the etcd API here with the etcdctl tool for the sake of simplicity, but an
application uses etcd with the same API requests, storing, retrieving, and watching
keys and ranges. The etcd Operator automates the etcd cluster part, making reliable
key-value storage available to more applications.

Operators get considerably more complex, managing a variety of concerns, as you
would expect from application-specific extensions. Nevertheless, most Operators fol‐
low the basic pattern discernable in the etcd Operator: a CR specifies some desired
state, such as the version of an application, and a custom controller watches the
resource, maintaining the desired state on the cluster.

You now have a Kubernetes cluster for working with Operators. You’ve seen how to
deploy an Operator and triggered it to perform application-specific state reconcilia‐
tion. Next, we’ll introduce the Kubernetes API elements on which Operators build
before introducing the Operator Framework and SDK, the toolkit you’ll use to con‐
struct an Operator.

Summary | 25

CHAPTER 3

Operators at the Kubernetes Interface

Operators extend two key Kubernetes concepts: resources and controllers. The Kuber‐
netes API includes a mechanism, the CRD, for defining new resources. This chapter
examines the Kubernetes objects Operators build on to add new capabilities to a clus‐
ter. It will help you understand how Operators fit into the Kubernetes architecture
and why it is valuable to make an application a Kubernetes native.

Standard Scaling: The ReplicaSet Resource
Looking at a standard resource, the ReplicaSet, gives a sense of how resources com‐
prise the application management database at the heart of Kubernetes. Like any other
resource in the Kubernetes API, the ReplicaSet is a collection of API objects. The
ReplicaSet primarily collects pod objects forming a list of the running replicas of an
application. The specification of another object type defines the number of those rep‐
licas that should be maintained on the cluster. A third object spec points to a template
for creating new pods when there are fewer running than desired. There are more
objects collected in a ReplicaSet, but these three types define the basic state of a scala‐
ble set of pods running on the cluster. Here, we can see these three key pieces for the
staticweb ReplicaSet from Chapter 1 (the Selector, Replicas, and Pod Template
fields):

$ kubectl describe replicaset/staticweb-69ccd6d6c
Name: staticweb-69ccd6d6c
Namespace: default
Selector: pod-template-hash=69ccd6d6c,run=staticweb
Labels: pod-template-hash=69ccd6d6c
 run=staticweb
Controlled By: Deployment/staticweb
Replicas: 1 current / 1 desired
Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
Pod Template:

27

https://oreil.ly/nW3ui

 Labels: pod-template-hash=69ccd6d6c
 run=staticweb
 Containers:
 staticweb:
 Image: nginx

A standard Kubernetes control plane component, the ReplicaSet controller, manages
ReplicaSets and the pods belonging to them. The ReplicaSet controller creates Repli‐
caSets and continually monitors them. When the count of running pods doesn’t
match the desired number in the Replicas field, the ReplicaSet controller starts or
stops pods to make the actual state match the desired state.

The actions the ReplicaSet controller takes are intentionally general and application
agnostic. It starts new replicas according to the pod template, or deletes excess pods.
It does not, should not, and truly cannot know the particulars of startup and shut‐
down sequences for every application that might run on a Kubernetes cluster.

An Operator is the application-specific combination of CRs and a custom controller
that does know all the details about starting, scaling, recovering, and managing its
application. The Operator’s operand is what we call the application, service, or what‐
ever resources an Operator manages.

Custom Resources
CRs, as extensions of the Kubernetes API, contain one or more fields, like a native
resource, but are not part of a default Kubernetes deployment. CRs hold structured
data, and the API server provides a mechanism for reading and setting their fields as
you would those in a native resource, by using kubectl or another API client. Users
define a CR on a running cluster by providing a CR definition. A CRD is akin to a
schema for a CR, defining the CR’s fields and the types of values those fields contain.

CR or ConfigMap?
Kubernetes provides a standard resource, the ConfigMap, for making configuration
data available to applications. ConfigMaps seem to overlap with the possible uses for
CRs, but the two abstractions target different cases.

ConfigMaps are best at providing a configuration to a program running in a pod on
the cluster—think of an application’s config file, like httpd.conf or MySQL’s mysql.cnf.
Applications usually want to read such configuration from within their pod, as a file
or the value of an environment variable, rather than from the Kubernetes API.

Kubernetes provides CRs to represent new collections of objects in the API. CRs are
created and accessed by standard Kubernetes clients, like kubectl, and they obey
Kubernetes conventions, like the resources .spec and .status. At their most useful,

28 | Chapter 3: Operators at the Kubernetes Interface

https://oreil.ly/ba0uh

CRs are watched by custom controller code that in turn creates, updates, or deletes
other cluster objects or even arbitrary resources outside of the cluster.

Custom Controllers
CRs are entries in the Kubernetes API database. They can be created, accessed, upda‐
ted, and deleted with common kubectl commands—but a CR alone is merely a col‐
lection of data. To provide a declarative API for a specific application running on a
cluster, you also need active code that captures the processes of managing that
application.

We’ve looked at a standard Kubernetes controller, the ReplicaSet controller. To make
an Operator, providing an API for the active management of an application, you
build an instance of the Controller pattern to control your application. This custom
controller checks and maintains the application’s desired state, represented in the CR.
Every Operator has one or more custom controllers implementing its application-
specific management logic.

Operator Scopes
A Kubernetes cluster is divided into namespaces. A namespace is the boundary for
cluster object and resource names. Names must be unique within a single namespace,
but not between namespaces. This makes it easier for multiple users or teams to share
a single cluster. Resource limits and access controls can be applied per namespace. An
Operator, in turn, can be limited to a namespace, or it can maintain its operand
across an entire cluster.

For details about Kubernetes namespaces, see the Kubernetes
namespace documentation.

Namespace Scope
Usually, restricting your Operator to a single namespace makes sense and is more
flexible for clusters used by multiple teams. An Operator scoped to a namespace can
be upgraded independently of other instances, and this allows for some handy facili‐
ties. You can test upgrades in a testing namespace, for example, or serve older API or
application versions from different namespaces for compatibility.

Custom Controllers | 29

https://oreil.ly/k4Okf
https://oreil.ly/k4Okf

Cluster-Scoped Operators
There are some situations where it is desirable for an Operator to watch and manage
an application or services throughout a cluster. For example, an Operator that man‐
ages a service mesh, such as Istio, or one that issues TLS certificates for application
endpoints, like cert-manager, might be most effective when watching and acting on
cluster-wide state.

By default, the Operator SDK used in this book creates deployment and authorization
templates that limit the Operator to a single namespace. It is possible to change most
Operators to run in the cluster scope instead. Doing so requires changes in the Oper‐
ator’s manifests to specify that it should watch all namespaces in a cluster and that it
should run under the auspices of a ClusterRole and ClusterRoleBinding, rather than
the namespaced Role and RoleBinding authorization objects. In the next section we
give an overview of these concepts.

Authorization
Authorization—the power to do things on the cluster through the API—is defined in
Kubernetes by one of a few available access control systems. Role-Based Access Con‐
trol (RBAC) is the preferred and most tightly integrated of these. RBAC regulates
access to system resources according to the role a system user performs. A role is a set
of capabilities to take certain actions on particular API resources, such as create, read,
update, or delete. The capabilities described by a role are granted, or bound, to a user
by a RoleBinding.

Service Accounts
In Kubernetes, regular human user accounts aren’t managed by the cluster, and there
are no API resources depicting them. The user identifying you on the cluster comes
from some outside provider, which can be anything from a list of users in a text file to
an OpenID Connect (OIDC) provider proxying authentication through your Google
account.

See the “Users in Kubernetes” documentation for more about
Kubernetes service accounts.

Service accounts, on the other hand, are managed by Kubernetes and can be created
and manipulated through the Kubernetes API. A service account is a special type of
cluster user for authorizing programs instead of people. An Operator is a program
that uses the Kubernetes API, and most Operators should derive their access rights

30 | Chapter 3: Operators at the Kubernetes Interface

https://oreil.ly/jM5q2
https://oreil.ly/QT8tE
https://oreil.ly/WmdTq

from a service account. Creating a service account is a standard step in deploying an
Operator. The service account identifies the Operator, and the account’s role denotes
the powers granted to the Operator.

Roles
Kubernetes RBAC denies permissions by default, so a role defines granted rights. A
common “Hello World” example of a Kubernetes role looks something like this
YAML excerpt:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: pod-reader
rules:
- apiGroups: [""]
 resources: ["pods"]
 verbs: ["get", "watch", "list"]

The powers granted by this role are effective only on pods.

This list permits specific operations on the allowed resources. The verbs compris‐
ing read-only access to pods are available to accounts bound with this role.

RoleBindings
A RoleBinding ties a role to a list of one or more users. Those users are granted the
permissions defined in the role referenced in the binding. A RoleBinding can refer‐
ence only those roles in its own namespace. When deploying an Operator restricted
to a namespace, a RoleBinding binds an appropriate role to a service account identi‐
fying the Operator.

ClusterRoles and ClusterRoleBindings
As discussed earlier, most Operators are confined to a namespace. Roles and Role‐
Bindings are also restricted to a namespace. ClusterRoles and ClusterRoleBindings
are their cluster-wide equivalents. A standard, namespaced RoleBinding can refer‐
ence only roles in its namespace, or ClusterRoles defined for the entire cluster. When
a RoleBinding references a ClusterRole, the rules declared in the ClusterRole apply to
only those specified resources in the binding’s own namespace. In this way, a set of
common roles can be defined once as ClusterRoles, but reused and granted to users
in just a given namespace.

Authorization | 31

The ClusterRoleBinding grants capabilities to a user across the entire cluster, in all
namespaces. Operators charged with cluster-wide responsibilities will often tie a
ClusterRole to an Operator service account with a ClusterRoleBinding.

Summary
Operators are Kubernetes extensions. We’ve outlined the Kubernetes components
used to construct an Operator that knows how to manage the application in its
charge. Because Operators build on core Kubernetes concepts, they can make appli‐
cations meaningfully “Kubernetes native.” Aware of their environment, such applica‐
tions are able to leverage not just the existing features but the design patterns of the
platform in order to be more reliable and less needy. Because Operators politely
extend Kubernetes, they can even manage parts and procedures of the platform itself,
as seen throughout Red Hat’s OpenShift Kubernetes distribution.

32 | Chapter 3: Operators at the Kubernetes Interface

CHAPTER 4

The Operator Framework

There is inevitable complexity in developing an Operator, and in managing its distri‐
bution, deployment, and lifecycle. The Red Hat Operator Framework makes it sim‐
pler to create and distribute Operators. It makes building Operators easier with a
software development kit (SDK) that automates much of the repetitive implementa‐
tion work. The Framework also provides mechanisms for deploying and managing
Operators. Operator Lifecycle Manager (OLM) is an Operator that installs, manages,
and upgrades other Operators. Operator Metering is a metrics system that accounts
for Operators’ use of cluster resources. This chapter gives an overview of these three
key parts of the Framework to prepare you to use those tools to build and distribute
an example Operator. Along the way, you’ll install the operator-sdk command-line
tool, the primary interface to SDK features.

Operator Framework Origins
The Operator SDK builds atop the Kubernetes controller-runtime, a set of libraries
providing essential Kubernetes controller routines in the Go programming language.
As part of the Operator Framework, the SDK provides integration points for distrib‐
uting and managing Operators with OLM, and measuring them with Operator
Metering. The SDK and the entire Red Hat Operator Framework are open source
with contributors from throughout the community and other organizations, and are
in the process of being donated to the vendor-neutral Cloud Native Computing
Foundation, home to Kubernetes itself and many other related projects.

33

https://oreil.ly/AM0TP
https://oreil.ly/KoyS6
https://www.cncf.io/
https://www.cncf.io/

Operator Maturity Model
The Operator Maturity Model, depicted in Figure 4-1, sketches a way to think about
different levels of Operator functionality. You can begin with a minimum viable prod‐
uct that installs its operand, then add lifecycle management and upgrade capabilities,
iterating over time toward complete automation for your application.

Figure 4-1. Operator Maturity Model

An Operator can have humble origins and grow in sophistication over a series of
development cycles. The first phase of the model requires just enough application-
specific code to create any resources the operand requires. In other words, phase one
is the prepared, automated installation of an application.

Operator SDK
The Operator SDK is a set of tools for scaffolding, building, and preparing an Opera‐
tor for deployment. The SDK currently includes first-class support for constructing
Operators in the Go programming language, with support for other languages plan‐
ned. The SDK also offers what might be described as an adapter architecture for
Helm charts or Ansible playbooks. We’ll cover these Adapter Operators in Chapter 6.
In Chapter 7 we will show how to implement application-specific management rou‐
tines in Go to build a custom Operator with the SDK tool.

34 | Chapter 4: The Operator Framework

https://oreil.ly/IcfRf
https://oreil.ly/IYH2d
https://oreil.ly/ek6jP

Installing the Operator SDK Tool
The Operator SDK centers around a command-line tool, operator-sdk, that helps
you build Operators. The SDK imposes a standard project layout, and in return cre‐
ates skeletal Go source code for the basic Kubernetes API controller implementation
and placeholders for your application-specific handlers. From there, the SDK pro‐
vides convenience commands for building an Operator and wrapping it in a Linux
container, generating the YAML-format Kubernetes manifests needed to deploy the
Operator on Kubernetes clusters.

Binary installation

To install a binary for your operating system, download operator-sdk from the
Kubernetes SDK repository, make it executable, and move it into a directory in your
$PATH. The program is statically linked, so it’s ready to run on those platforms for
which a release is available. At the time of this writing, the project supplies builds for
macOS and Linux operating systems on the x86-64 architecture.

With any rapidly evolving project like operator-sdk, it’s a good
idea to check the project’s installation instructions for the latest
installation method.

Installing from source
To get the latest development version, or for platforms with no binary distribution,
build operator-sdk from source. We assume you have git and go installed:

$ go get -d github.com/operator-framework/operator-sdk
$ cd $GOPATH/src/github.com/operator-framework/operator-sdk
$ git checkout master
$ make tidy
$ make install

A successful build process writes the operator-sdk binary to your $GOPATH/bin
directory. Run operator-sdk version to check it is in your $PATH.

These are the two most common and least dependent ways to get the SDK tool.
Check the project’s install documentation for other options. The subsequent examples
in this book use version series 0.11.x of operator-sdk.

Operator Lifecycle Manager
Operators address the general principle that any application, on any platform, must
be acquired, deployed, and managed over time. Operators are themselves Kubernetes
applications. While an Operator manages its operand, what manages an Operator?

Operator Lifecycle Manager | 35

https://oreil.ly/TTnC6
https://oreil.ly/TTnC6
https://oreil.ly/ZbaBT
https://oreil.ly/fAC1b

Operator Lifecycle Manager takes the Operator pattern one level up the stack: it’s an
Operator that acquires, deploys, and manages Operators on a Kubernetes cluster. Like
an Operator for any application, OLM extends Kubernetes by way of custom resour‐
ces and custom controllers so that Operators, too, can be managed declaratively, with
Kubernetes tools, in terms of the Kubernetes API.

OLM defines a schema for Operator metadata, called the Cluster Service Version
(CSV), for describing an Operator and its dependencies. Operators with a CSV can
be listed as entries in a catalog available to OLM running on a Kubernetes cluster.
Users then subscribe to an Operator from the catalog to tell OLM to provision and
manage a desired Operator. That Operator, in turn, provisions and manages its appli‐
cation or service on the cluster.

Based on the description and parameters an Operator provides in its CSV, OLM can
manage the Operator over its lifecycle: monitoring its state, taking actions to keep it
running, coordinating among multiple instances on a cluster, and upgrading it to new
versions. The Operator, in turn, can control its application with the latest automation
features for the app’s latest versions.

Operator Metering
Operator Metering is a system for analyzing the resource usage of the Operators run‐
ning on Kubernetes clusters. Metering analyzes Kubernetes CPU, memory, and other
resource metrics to calculate costs for infrastructure services. It can also examine
application-specific metrics, such as those required to bill application users based on
usage. Metering provides a model for ops teams to map the costs of a cloud service or
a cluster resource to the application, namespace, and team consuming it. It’s a plat‐
form atop which you can build customized reporting specific to your Operator and
the application it manages, helping with three primary activities:

Budgeting
When using Operators on their clusters, teams can gain insight into how infra‐
structure resources are used, especially in autoscaled clusters or hybrid cloud
deployments, helping improve projections and allocations to avoid waste.

Billing
When you build an Operator that provides a service to paying customers,
resource usage can be tracked by billing codes or labels that reflect the internal
structure of an Operator and application to calculate accurate and itemized bills.

Metrics aggregation
Service usage and metrics can be viewed across namespaces or teams. For exam‐
ple, it can help you analyze the resources consumed by a PostgreSQL database
Operator running many database server clusters and very many databases for dif‐
ferent teams sharing a large Kubernetes cluster.

36 | Chapter 4: The Operator Framework

https://oreil.ly/SDL7q

Summary
This chapter introduced the three pillars of the Operator Framework: the Operator
SDK for building and developing Operators; Operator Lifecycle Manager for distrib‐
uting, installing, and upgrading them; and Operator Metering for measuring Opera‐
tor performance and resource consumption. Together these framework elements
support the process of making an Operator and keeping it running.

You also installed the operator-sdk tool, so you’re equipped with the primary tool
for building Operators. To get started, we’ll first introduce the example application
you will construct an Operator to manage, the Visitors Site.

Summary | 37

CHAPTER 5

Sample Application: Visitors Site

Real, production-level applications are difficult. Container-based architectures are
often made up of multiple services, each requiring their own configuration and
installation process. Maintaining these types of applications, including the individual
components and their interactions, is a time-consuming and error-prone process.
Operators are designed to reduce the difficulty in this process.

A simple, one–container “Hello World” application isn’t going to provide enough
complexity to fully demonstrate what Operators can do. To really help you under‐
stand the capabilities of Operators, we need an application that requires multiple
Kubernetes resources with configuration values that cross between them to use for
demonstration.

In this chapter we introduce the Visitors Site application, which we will use as an
example in the following chapters that cover writing Operators. We’ll take a look at
the application architecture and how to run the site, as well as the process of instal‐
ling it through traditional Kubernetes manifests. In the chapters that follow, we’ll cre‐
ate Operators to deploy this application using each of the approaches provided by the
Operator SDK (Helm, Ansible, and Go), and explore the benefits and drawbacks of
each.

Application Overview
The Visitors Site tracks information about each request to its home page. Each time
the page is refreshed, an entry is stored with details about the client, backend server,
and timestamp. The home page displays a list of the most recent visits (as shown in
Figure 5-1).

39

Figure 5-1. Visitors Site home page

While the home page itself is fairly simple, the architecture is what makes this an
interesting example for exploring Operators. The Visitors Site is a traditional, three-
tier application, consisting of:

• A web frontend, implemented in React
• A REST API, implemented in Python using the Django framework
• A database, using MySQL

As shown in Figure 5-2, each of these components is deployed as a separate container.
The flow is simple, with users interacting with the web interface, which itself makes
calls to the backend REST API. The data submitted to the REST API is persisted in a
MySQL database, which also runs as its own container.

Figure 5-2. Visitors Site architecture

Note that the database does not connect to a persistent volume and stores its data
ephemerally. While this isn’t a suitable production solution, for the purposes of this
example the important aspects are the deployments and interactions between the
containers themselves.

40 | Chapter 5: Sample Application: Visitors Site

https://reactjs.org/
https://www.python.org/
https://www.djangoproject.com/
https://www.mysql.com/

Installation with Manifests
Each component in the Visitors Site requires two Kubernetes resources:

Deployment
Contains the information needed to create the containers, including the image
name, exposed ports, and specific configuration for a single deployment.

Service
A network abstraction across all containers in a deployment. If a deployment is
scaled up beyond one container, which we will do with the backend, the service
sits in front and balances incoming requests across all of the replicas.

A third resource is used to store the authentication details for the database. The
MySQL container uses this secret when it is started, and the backend containers use it
to authenticate against the database when making requests.

Additionally, there are configuration values that must be consistent between compo‐
nents. For example, the backend needs to know the name of the database service to
connect to. When deploying applications through manifests, awareness of these rela‐
tionships is required to ensure that the values line up.

In the following manifests, the provided values will produce a working Visitors Site
deployment. Each section will highlight specific instances where user intervention
was required.

You can find all of the manifests in the book’s GitHub repository.

Deploying MySQL
The secret must be created before the database is deployed, since it is used during the
container startup:

apiVersion: v1
kind: Secret
metadata:
 name: mysql-auth
type: Opaque
stringData:
 username: visitors-user
 password: visitors-pass

When the database and backend deployments use the secret, it is referred to by
this name.

For simplicity in this example, the username and password are defaulted to test‐
ing values.

Installation with Manifests | 41

https://github.com/kubernetes-operators-book/chapters/tree/master/ch05

You can find the definition for the secret resource in the database.yaml file in this
book’s GitHub repository.

Once the secret is in place, use the following manifest to deploy a MySQL instance
into Kubernetes:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
spec:
 replicas: 1
 selector:
 matchLabels:
 app: visitors
 tier: mysql
 template:
 metadata:
 labels:
 app: visitors
 tier: mysql
 spec:
 containers:
 - name: visitors-mysql
 image: "mysql:5.7"
 imagePullPolicy: Always
 ports:
 - name: mysql
 containerPort: 3306
 protocol: TCP
 env:
 - name: MYSQL_ROOT_PASSWORD
 value: password
 - name: MYSQL_DATABASE
 value: visitors_db
 - name: MYSQL_USER
 valueFrom:
 secretKeyRef:
 name: mysql-auth
 key: username
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-auth
 key: password

The deployment name must be unique to the namespace in which it is deployed.

The deployment requires the details of the image to deploy, including its name
and hosting repository.

42 | Chapter 5: Sample Application: Visitors Site

https://oreil.ly/jZTgt

Users must be aware of each port that the image exposes, and must explicitly ref‐
erence them.

The values used to configure the containers for this specific deployment are
passed as environment variables.

The secret provides the values for the database authentication credentials.

Keep in mind the value of the container port, as well as each of the environment vari‐
ables, as other manifests use these values.

The deployment causes the creation of the MySQL container; however, it does not
provide any ingress configuration on how to access it. For that, we will need a service.
The following manifest will create a Kubernetes service that provides access to the
MySQL deployment:

apiVersion: v1
kind: Service
metadata:
 name: mysql-service
 labels:
 app: visitors
 tier: mysql
spec:
 clusterIP: None
 ports:
 - port: 3306
 selector:
 app: visitors
 tier: mysql

As with deployments, service names must be unique in a given namespace. This
will also apply to the deployment and services for the backend and frontend
components.

The service maps to a port exposed by a deployment, so this value must be the
same as in the ports section of the deployment.

Backend
Similar to the MySQL resources, the backend needs both a deployment and a service.
However, whereas the database is standalone, the configuration for the backend relies
heavily on the values set for the database. While this isn’t an unreasonable require‐
ment, it falls on the user to ensure that the values are consistent across both resour‐
ces. A single error could result in the backend not being able to communicate with
the database. Here’s the manifest to deploy the backend:

Installation with Manifests | 43

apiVersion: apps/v1
kind: Deployment
metadata:
 name: visitors-backend
spec:
 replicas: 1
 selector:
 matchLabels:
 app: visitors
 tier: backend
 template:
 metadata:
 labels:
 app: visitors
 tier: backend
 spec:
 containers:
 - name: visitors-backend
 image: "jdob/visitors-service:1.0.0"
 imagePullPolicy: Always
 ports:
 - name: visitors
 containerPort: 8000
 env:
 - name: MYSQL_DATABASE
 value: visitors_db
 - name: MYSQL_SERVICE_HOST
 value: mysql-service
 - name: MYSQL_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysql-auth
 key: username
 - name: MYSQL_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-auth
 key: password

Each deployment configuration includes the number of containers it should
spawn.

These values must be manually checked to ensure they match up with the values
set on the MySQL deployment. Otherwise, the backend will not be able to estab‐
lish a connection to the database.

This value tells the backend where to find the database and must match the name
of the MySQL service created previously.

44 | Chapter 5: Sample Application: Visitors Site

As with the database deployment, the secret provides the authentication creden‐
tials for the database.

One of the major benefits of using containerized applications is the ability they give
you to individually scale specific components. In the backend deployment shown
here, the replicas field can be modified to scale the backend. The example Opera‐
tors in the following chapters use a custom resource to expose this replica count as a
first-class configuration value of the Visitors Site custom resource. Users do not need
to manually navigate to the specific backend deployment as they do when using man‐
ifests. The Operator knows how to appropriately use the entered value.

The service manifest looks similar to the one you created for the database:

apiVersion: v1
kind: Service
metadata:
 name: visitors-backend-service
 labels:
 app: visitors
 tier: backend
spec:
 type: NodePort
 ports:
 - port: 8000
 targetPort: 8000
 nodePort: 30685
 protocol: TCP
 selector:
 app: visitors
 tier: backend

As with the database service, the port referenced in the service definition must
match up with that exposed by the deployment.

In this example, the backend is configured to run through port 30685 on the
same IP as Minikube. The frontend uses this port when making backend calls for
data. For simplicity, the frontend defaults to using this value, so it does not need
to be specified when the frontend is deployed.

Frontend
The frontend is in a similar position as the backend in the sense that it needs configu‐
ration that is consistent with the backend deployment. Once again, it falls on the user
to manually verify that these values are consistent in both locations. Here’s the mani‐
fest that creates the frontend deployment:

Installation with Manifests | 45

apiVersion: apps/v1
kind: Deployment
metadata:
 name: visitors-frontend
spec:
 replicas: 1
 selector:
 matchLabels:
 app: visitors
 tier: frontend
 template:
 metadata:
 labels:
 app: visitors
 tier: frontend
 spec:
 containers:
 - name: visitors-frontend
 image: "jdob/visitors-webui:1.0.0"
 imagePullPolicy: Always
 ports:
 - name: visitors
 containerPort: 3000
 env:
 - name: REACT_APP_TITLE
 value: "Visitors Dashboard"

To make the Visitors Site application more interesting, you can override the
home page title through an environment variable. The CR you’ll learn how to
create in the next chapters will expose it as a value of the Visitors Site, shielding
end users from having to know in which deployment to specify the value.

Similar to the MySQL and backend deployments, the following manifest creates a ser‐
vice that provides access to the frontend deployment:

apiVersion: v1
kind: Service
metadata:
 name: visitors-frontend-service
 labels:
 app: visitors
 tier: frontend
spec:
 type: NodePort
 ports:
 - port: 3000
 targetPort: 3000
 nodePort: 30686
 protocol: TCP
 selector:
 app: visitors
 tier: frontend

46 | Chapter 5: Sample Application: Visitors Site

The frontend service looks very similar to the backend service, with the notable
difference that it runs on port 30686.

Deploying the Manifests
You can run the Visitors Site for yourself using the kubectl command:

$ kubectl apply -f ch05/database.yaml
secret/mysql-auth created
deployment.apps/mysql created
service/mysql-service created

$ kubectl apply -f ch05/backend.yaml
deployment.apps/visitors-backend created
service/visitors-backend-service created

$ kubectl apply -f ch05/frontend.yaml
deployment.apps/visitors-frontend created
service/visitors-frontend-service created

Accessing the Visitors Site
Using these manifests, you can find the home page by using the IP address of the
Minikube instance and specifying port 30686 in your browser. The minikube com‐
mand provides the IP address to access:

$ minikube ip
192.168.99.100

For this Minikube instance, you can access the Visitors Site by opening a browser and
going to http://192.168.99.100:30686.

Clicking refresh a few times will populate the table on that page with details of the
internal cluster IP and the timestamp of each request, as previously shown in
Figure 5-1.

Cleaning Up
Similar to deploying the manifests, you delete the created resources using the
kubectl command:

$ kubectl delete -f ch05/frontend.yaml
deployment.apps "visitors-frontend" deleted
service "visitors-frontend-service" deleted

$ kubectl delete -f ch05/backend.yaml
deployment.apps "visitors-backend" deleted
service "visitors-backend-service" deleted

Deploying the Manifests | 47

$ kubectl delete -f ch05/database.yaml
secret "mysql-auth" deleted
deployment.apps "mysql" deleted
service "mysql-service" deleted

Summary
We will use this sample application in the following chapters to demonstrate a variety
of technologies on which you can build Operators.

In addition to the Operator implementations, keep in mind the end user experience.
In this chapter we demonstrated a manifest-based installation, requiring a number of
manual changes and internal references to be made. All of the following Operator
implementations create a custom resource definition that acts as the sole API for cre‐
ating and configuring an instance of the Visitors Site.

48 | Chapter 5: Sample Application: Visitors Site

CHAPTER 6

Adapter Operators

Consider the numerous steps it would take to write an Operator from scratch. You
would have to create CRDs to specify the interface for end users. Kubernetes control‐
lers would not only need to be written with the Operator’s domain-specific logic, but
also be correctly hooked into a running cluster to receive the proper notifications.
Roles and service accounts would need to be created to permit the Operator to func‐
tion in the capacity it needs. An Operator is run as a pod inside of a cluster, so an
image would need to be built, along with its accompanying deployment manifest.

Many projects have already invested in application deployment and configuration
technologies. The Helm project allows users to define their cluster resources in a for‐
matted text file and deploy them through the Helm command-line tools. Ansible is a
popular automation engine for creating reusable scripts for provisioning and config‐
uring a group of resources. Both projects have devoted followings of developers who
may lack the resources to migrate to using Operators for their applications.

The Operator SDK provides a solution to both these problems through its Adapter
Operators. Through the command-line tool, the SDK generates the code necessary to
run technologies such as Helm and Ansible in an Operator. This allows you to rapidly
migrate your infrastructure to an Operator model without needing to write the neces‐
sary supporting Operator code. The advantages of doing this include:

• Provides a consistent interface through CRDs, regardless of whether the underly‐
ing technology is Helm, Ansible, or Go.

• Allows the Helm and Ansible solutions to leverage the Operator deployment and
lifecycle benefits that Operator Lifecycle Manager provides (see Chapter 8 for
more information).

49

• Enables hosting of those solutions on Operator repositories like OperatorHub.io
(see Chapter 10 for more information).

In this chapter we demonstrate how to use the SDK to build and test Adapter Opera‐
tors using the Visitors Site application introduced in the previous chapter.

Custom Resource Definitions
Before we explain how to implement an Operator (in both this chapter and the next),
it’s important for you to understand the role of CRDs.

As discussed in Chapter 3, CRDs allow you to create domain-specific resources that
correspond to your application. Using the standard Kubernetes APIs, end users inter‐
act with these resources to deploy and configure applications. Operators make heavy
use of CRs and use watches on these objects to react to changes as they are made.

A CRD is the specification of what constitutes a CR. In particular, the CRD defines
the allowed configuration values and the expected output that describes the current
state of the resource.

In each of the following examples, both in this chapter and the next, a CRD is created
when a new Operator project is generated by the SDK. The SDK prompts the user for
two pieces of information about the CRD during project creation:

• The kind is the name of the CR type defined by the CRD. When creating new
instances of this resource type, this value is used as the resource’s kind field, simi‐
lar to when creating a pod or service.

• The api-version contains information about the group and version of the CRD,
which is specified when creating CRs according to that CRD schema. The value
for this argument is specified in the format <group>/<version>, with the follow‐
ing recommendations:
— The group should identify the organization that wrote and maintains the

CRD. For example, the group for the EtcdCluster CR is etcd.database.cor
eos.com.

— The version should follow the Kubernetes API versioning conventions. For
example, at the time of writing, the EtcdCluster version is v1beta2.

To recreate the EtcdCluster example, this api-version value is valid for the SDK:

--api-version=etcd.database.coreos.com/v1beta2

The kind and api-version of a CR are used when creating Operators of all types.

50 | Chapter 6: Adapter Operators

https://oreil.ly/tk1hc

Helm Operator
Helm is a package manager for Kubernetes. It makes it easier to deploy applications
with multiple components, but each deployment is still a manual process. If you’re
deploying many instances of a Helm-packaged app, it would be convenient to auto‐
mate those deployments with an Operator.

Helm’s intricacies are outside the scope of this book—you can consult the documen‐
tation for more details—but a little background will help you understand the Helm
Operator. Helm defines the Kubernetes resources that constitute an application, such
as deployments and services, in a file called a chart. Charts support configuration
variables, so you can customize application instances without needing to edit the
chart itself. These configuration values are specified in a file named values.yaml. A
Helm Operator can deploy each instance of an application with a different version of
values.yaml.

The Operator SDK generates Kubernetes controller code for a Helm Operator when it
is passed the --type=helm argument. You supply a Helm chart for your application,
and the resulting Helm Operator watches for new CRs of its given type. When it finds
one of these CRs, it constructs a Helm values.yaml file from the values defined in the
resource. The Operator then creates the application resources specified in its Helm
chart according to the settings in values.yaml. To configure another instance of the
application, you create a new CR containing appropriate values for the instance.

The SDK provides two variations on how to build Helm-based Operators:

• The project generation process builds a blank Helm chart structure within the
Operator project code.

• An existing chart is specified at Operator creation time, which the creation pro‐
cess uses to populate the generated Operator.

In the following sections we discuss each of these approaches. As a prerequisite, be
sure to install the Helm command-line tools on your machine. You can find informa‐
tion on doing this in Helm’s install documentation.

Building the Operator
The SDK’s new command creates the skeleton project files for a new Operator. These
files include all of the code necessary for a Kubernetes controller that invokes the
appropriate Helm chart to field requests for CRs. We’ll discuss these files in greater
detail later in this section.

Helm Operator | 51

https://helm.sh/
https://helm.sh/docs/
https://helm.sh/docs/
https://oreil.ly/qpZX0

Creating a new chart

To create an Operator with the skeleton for a new Helm chart, use the --type=helm
argument. The following example creates the basis of a Helm Operator for the Visi‐
tors Site application (see Chapter 5):

$ OPERATOR_NAME=visitors-helm-operator
$ operator-sdk new $OPERATOR_NAME --api-version=example.com/v1 \
 --kind=VisitorsApp --type=helm
INFO[0000] Creating new Helm operator 'visitors-helm-operator'.
INFO[0000] Created helm-charts/visitorsapp
INFO[0000] Generating RBAC rules
WARN[0000] The RBAC rules generated in deploy/role.yaml are based on
the chart's default manifest. Some rules may be missing for resources
that are only enabled with custom values, and some existing rules may
be overly broad. Double check the rules generated in deploy/role.yaml
to ensure they meet the operator's permission requirements.
INFO[0000] Created build/Dockerfile
INFO[0000] Created watches.yaml
INFO[0000] Created deploy/service_account.yaml
INFO[0000] Created deploy/role.yaml
INFO[0000] Created deploy/role_binding.yaml
INFO[0000] Created deploy/operator.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_crd.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_cr.yaml
INFO[0000] Project creation complete.

visitors-helm-operator is the name of the generated Operator. The other two argu‐
ments, --api-version and --kind, describe the CR this Operator manages. These
arguments result in the creation of a basic CRD for the new type.

The SDK creates a new directory with the same name as $OPERATOR_NAME, which con‐
tains all of the Operator’s files. There are a few files and directories to note:

deploy/
This directory contains Kubernetes template files that are used to deploy and
configure the Operator, including the CRD, the Operator deployment resource
itself, and the necessary RBAC resources for the Operator to run.

helm-charts/
This directory contains a skeleton directory structure for a Helm chart with the
same name as the CR kind. The files within are similar to those the Helm CLI
creates when it initializes a new chart, including a values.yaml file. A new chart is
added to this directory for each new CR type the Operator manages.

watches.yaml
This file maps each CR type to the specific Helm chart that is used to handle it.

At this point, everything is in place to begin to implement your chart. However, if you
already have a chart written, there is an easier approach.

52 | Chapter 6: Adapter Operators

Use an existing chart
The process for building an Operator from an existing Helm chart is similar to that
for creating an Operator with a new chart. In addition to the --type=helm argument,
there are a few additional arguments to take into consideration:

--helm-chart
Tells the SDK to initialize the Operator with an existing chart. The value can be:

• A URL to a chart archive
• The repository and name of a remote chart
• The location of a local directory

--helm-chart-repo
Specifies a remote repository URL for the chart (unless a local directory is other‐
wise specified).

--helm-chart-version
Tells the SDK to fetch a specific version of the chart. If this is omitted, the latest
available version is used.

When using the --helm-chart argument, the --api-version and --kind arguments
become optional. The api-version is defaulted to charts.helm.k8s.io/v1alpha1
and the kind name will be derived from the name of the chart. However, as the api-
version carries information about the CR creator, we recommend that you explicitly
populate these values appropriately. You can find an example Helm chart for deploy‐
ing the Visitors Site application in this book’s GitHub repository.

The following example demonstrates how to build an Operator and initialize it using
an archive of the Visitors Site Helm chart:

$ OPERATOR_NAME=visitors-helm-operator
$ wget https://github.com/kubernetes-operators-book/\
 chapters/releases/download/1.0.0/visitors-helm.tgz
$ operator-sdk new $OPERATOR_NAME --api-version=example.com/v1 \
 --kind=VisitorsApp --type=helm --helm-chart=./visitors-helm.tgz
INFO[0000] Creating new Helm operator 'visitors-helm-operator'.
INFO[0000] Created helm-charts/visitors-helm
INFO[0000] Generating RBAC rules
WARN[0000] The RBAC rules generated in deploy/role.yaml are based on
the chart's default manifest. Some rules may be missing for resources
that are only enabled with custom values, and some existing rules may
be overly broad. Double check the rules generated in deploy/role.yaml
to ensure they meet the operator's permission requirements.
INFO[0000] Created build/Dockerfile
INFO[0000] Created watches.yaml
INFO[0000] Created deploy/service_account.yaml
INFO[0000] Created deploy/role.yaml

Helm Operator | 53

https://github.com/kubernetes-operators-book/chapters/tree/master/ch06/visitors-helm

INFO[0000] Created deploy/role_binding.yaml
INFO[0000] Created deploy/operator.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_crd.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_cr.yaml
INFO[0000] Project creation complete.

Due to an issue with how the Operator SDK handles redirects, you must man‐
ually download the chart tarball and pass it as a local reference.

The preceding example generates the same files as in the case of creating an Operator
with a new Helm chart, with the notable exception that the chart files are populated
from the specified archive:

$ ls -l $OPERATOR_NAME/helm-charts/visitors-helm/templates
_helpers.tpl
auth.yaml
backend-deployment.yaml
backend-service.yaml
frontend-deployment.yaml
frontend-service.yaml
mysql-deployment.yaml
mysql-service.yaml
tests

The SDK uses the values in the chart’s values.yaml file to populate the example CR
template. For example, the Visitors Site Helm chart has the following values.yaml file:

$ cat $OPERATOR_NAME/helm-charts/visitors-helm/values.yaml
backend:
 size: 1

frontend:
 title: Helm Installed Visitors Site

The example CR generated by the SDK, found in the deploy/crds directory in the
Operator project root directory, includes these same values in its spec section:

$ cat $OPERATOR_NAME/deploy/crds/example_v1_visitorsapp_cr.yaml
apiVersion: example.com/v1
kind: VisitorsApp
metadata:
 name: example-visitorsapp
spec:
 # Default values copied from <proj_dir>/helm-charts/visitors-helm/values.yaml

 backend:
 size: 1

 frontend:
 title: Helm Installed Visitors Site

54 | Chapter 6: Adapter Operators

Before running the chart, the Operator will map the values found in the custom
resource’s spec field to the values.yaml file.

Fleshing Out the CRD
The generated CRD does not include specific details of the value input and state val‐
ues of the CR type. Appendix B describes the steps you should take to finish defining
the CR.

Reviewing Operator Permissions
The generated deployment files include the role the Operator will use to connect to
the Kubernetes API. By default, this role is extremely permissive. Appendix C talks
about how to fine-tune the role definition to limit the Operator’s permissions.

Running the Helm Operator
An Operator is delivered as a normal container image. However, during the develop‐
ment and testing cycle, it is often easier to skip the image creation process and simply
run the Operator outside of the cluster. In this section we describe those steps (see
Appendix A for information about running the Operator as a deployment inside the
cluster). Run all the commands here from within the Operator project root directory:

1. Create a local watches file. The generated watches.yaml file refers to a specific
path where the Helm chart is found. This path makes sense in the deployed
Operator scenario; the image creation process takes care of copying the chart to
the necessary location. This watches.yaml file is still required when running the
Operator outside of the cluster, so you need to manually make sure your chart
can be found at that location.
The simplest approach is to copy the existing watches.yaml file, which is located
in the root of the Operator project:

$ cp watches.yaml local-watches.yaml

In the local-watches.yaml file, edit the chart field to contain the full path of the
chart on your machine. Remember the name of the local watches file; you will
need it later when you start the Operator process.

2. Create the CRDs in the cluster using the kubectl command:
$ kubectl apply -f deploy/crds/*_crd.yaml

3. Once you have finished creating the CRDs, start the Operator using the following
SDK command:

$ operator-sdk up local --watches-file ./local-watches.yaml
INFO[0000] Running the operator locally.
INFO[0000] Using namespace default.

Helm Operator | 55

The Operator log messages will appear in this running process as it starts up
and fields CR requests.

This command starts a running process that behaves in the same way the Opera‐
tor would if you had deployed it as a pod inside the cluster. (We’ll cover testing in
more detail in “Testing an Operator” on page 59.)

Ansible Operator
Ansible is a popular management tool for automating the provisioning and configu‐
ration of commonly run tasks. Similar to a Helm chart, an Ansible playbook defines a
series of tasks that are run on a set of servers. Reusable roles, which extend Ansible
through custom functionality, may be used to enhance the set of tasks in a playbook.

One useful collection of roles is k8s, which provides tasks for interacting with a
Kubernetes cluster. Using this module, you can write playbooks to handle the deploy‐
ment of applications, including all of the necessary supporting Kubernetes resources.

The Operator SDK provides a way to build an Operator that will run Ansible play‐
books to react to CR changes. The SDK supplies the code for the Kubernetes pieces,
such as the controller, allowing you to focus on writing the playbooks themselves.

Building the Operator
As with its Helm support, the Operator SDK generates a project skeleton. When run
with the --type=ansible argument, the project skeleton contains the structure for a
blank Ansible role. The name of the role is derived from the specified CR type name.

The following example demonstrates creating an Ansible Operator that defines a CR
for the Visitors Site application:

$ OPERATOR_NAME=visitors-ansible-operator
$ operator-sdk new $OPERATOR_NAME --api-version=example.com/v1 \
 --kind=VisitorsApp --type=ansible
INFO[0000] Creating new Ansible operator 'visitors-ansible-operator'.
INFO[0000] Created deploy/service_account.yaml
INFO[0000] Created deploy/role.yaml
INFO[0000] Created deploy/role_binding.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_crd.yaml
INFO[0000] Created deploy/crds/example_v1_visitorsapp_cr.yaml
INFO[0000] Created build/Dockerfile
INFO[0000] Created roles/visitorsapp/README.md
INFO[0000] Created roles/visitorsapp/meta/main.yml
INFO[0000] Created roles/visitorsapp/files/.placeholder
INFO[0000] Created roles/visitorsapp/templates/.placeholder
INFO[0000] Created roles/visitorsapp/vars/main.yml
INFO[0000] Created molecule/test-local/playbook.yml

56 | Chapter 6: Adapter Operators

https://www.ansible.com/
https://oreil.ly/1ckgw

INFO[0000] Created roles/visitorsapp/defaults/main.yml
INFO[0000] Created roles/visitorsapp/tasks/main.yml
INFO[0000] Created molecule/default/molecule.yml
INFO[0000] Created build/test-framework/Dockerfile
INFO[0000] Created molecule/test-cluster/molecule.yml
INFO[0000] Created molecule/default/prepare.yml
INFO[0000] Created molecule/default/playbook.yml
INFO[0000] Created build/test-framework/ansible-test.sh
INFO[0000] Created molecule/default/asserts.yml
INFO[0000] Created molecule/test-cluster/playbook.yml
INFO[0000] Created roles/visitorsapp/handlers/main.yml
INFO[0000] Created watches.yaml
INFO[0000] Created deploy/operator.yaml
INFO[0000] Created .travis.yml
INFO[0000] Created molecule/test-local/molecule.yml
INFO[0000] Created molecule/test-local/prepare.yml
INFO[0000] Project creation complete.

This command produces a similar directory structure to the Helm Operator example.
The SDK creates a deploy directory that contains the same set of files, including the
CRD and deployment template.

There are a few notable differences from the Helm Operator:

watches.yaml
• The purpose of this is the same as for the Helm Operator: it maps a CR type to

the location of a file that is executed during its resolution. The Ansible Operator,
however, supports two different types of files (these fields are mutually exclusive):
— If the role field is included, it must point to the directory of an Ansible role

that is executed during resource reconciliation.
— If the playbook field is included, it must point to a playbook file that is run.

• The SDK defaults this file to point to the role it created during generation.

roles/
• This directory contains all of the Ansible roles that may be run by the Operator.

The SDK generates the base files for a new role when the project is created.
• If the Operator manages multiple CR types, multiple roles are added to this

directory. Additionally, an entry for each type, and its associated role, is added to
the watches file.

Next, you’ll implement the Ansible role for the CR. The details of what the role does
will vary depending on the application: some common tasks include the creation of
deployments and services to run the application’s containers. For more on writing
Ansible roles, see the Ansible documentation.

Ansible Operator | 57

https://oreil.ly/bLd5g

You can find the Ansible role for deploying the Visitors Site in the book’s GitHub
repository. For simplicity while following along with the example application, the role
files are available as a release there. Similar to the previous Operator creation com‐
mand, you can add the Visitors Site role with the following:

$ cd $OPERATOR_NAME/roles/visitorsapp
$ wget https://github.com/kubernetes-operators-book/\
 chapters/releases/download/1.0.0/visitors-ansible.tgz
$ tar -zxvf visitors-ansible.tgz
$ rm visitors-ansible.tgz

This command overwrites the default generated role files with the files necessary
to run the Visitors Site role.

We don’t cover writing Ansible roles in this book, but it’s important for you to under‐
stand how user-entered configuration values are propagated into an Ansible role.

As with the Helm Operator, configuration values come from the CR’s spec section.
However, within the playbooks and roles, Ansible’s standard {{ variable_name }}
syntax is used. Field names in Kubernetes typically use camel case (e.g., camelCase),
so the Ansible Operator will convert the name of each field to snake case (e.g.,
snake_case) before passing the parameter to the Ansible role. That is, the field name
serviceAccount would be converted to service_account. This allows the reuse of
existing roles using the standard Ansible convention while also honoring the Kuber‐
netes resource conventions. You can find the source for an Ansible role that deploys
the Visitors Site in the book’s GitHub repository.

Fleshing Out the CRD
As with the Helm Operator, you’ll need to expand on the generated CRD to include
the specifics of your CR. Consult Appendix B for more information.

Reviewing Operator Permissions
The Ansible Operator also includes a generated role the Operator uses to connect to
the Kubernetes API. Check Appendix C for more on refining the default permissions.

Running the Ansible Operator
As with the Helm Operator, the easiest way to test and debug an Ansible Operator is
to run it outside a cluster, avoiding the steps of building and pushing an image.

Before you can do this, however, there are a few extra steps you need to take:

1. First, install Ansible on the machine running the Operator. Consult the Ansible
documentation for specifics on how to install Ansible on your local OS.

58 | Chapter 6: Adapter Operators

https://github.com/kubernetes-operators-book/chapters/tree/master/ch06/ansible/visitors
https://github.com/kubernetes-operators-book/chapters/tree/master/ch06/ansible/visitors
https://github.com/kubernetes-operators-book/chapters/tree/master/ch06/ansible
https://oreil.ly/9yZRC
https://oreil.ly/9yZRC

2. Additional Ansible-related packages must be installed as well, including the fol‐
lowing (consult the documentation for details on installation):
• Ansible Runner
• Ansible Runner HTTP Event Emitter

3. As with the Helm Operator, the watches.yaml file generated by the SDK refers to
a specific directory for the Ansible role. So you’ll copy the watches file and mod‐
ify it as necessary. Again, run these commands from within the Operator project
root directory:

$ cp watches.yaml local-watches.yaml

In the local-watches.yaml file, change the role field to reflect the directory struc‐
ture on your machine.

4. Create the CRDs in the cluster using the kubectl command:
$ kubectl apply -f deploy/crds/*_crd.yaml

5. Once the CRDs are deployed in the cluster, run the Operator using the SDK:
$ operator-sdk up local --watches-file ./local-watches.yaml
INFO[0000] Running the operator locally.
INFO[0000] Using namespace default.

The Operator log messages will appear in this running process as it starts up
and fields CR requests.

This command starts a running process that behaves as the Operator would if it
was deployed as a pod inside the cluster.

Now let’s walk through the steps of how to test an Operator.

Testing an Operator
You can test both of the Adapter Operators using the same approach: by deploying a
CR. Kubernetes notifies the Operator of the CR, which then executes the underlying
files (either Helm charts or Ansible roles). The SDK generates a sample CR template
in the deploy/crds directory that you can use, or you can create one manually.

Follow these steps to test both types of Operators discussed in this chapter:

1. Edit the spec section of the example CR template (in the Visitors Site example,
this is named example_v1_visitorsapp_cr.yaml) with whatever values are relevant
to your CR.

2. Create the resource (in the Operator project root directory) using the Kubernetes
CLI:

$ kubectl apply -f deploy/crds/*_cr.yaml

Testing an Operator | 59

https://oreil.ly/lHDCe
https://oreil.ly/N6ebi

The output for the Operator will appear in the same terminal where you ran the
operator-sdk up local command. Once the test is complete, end the running
process by pressing Ctrl-C.

3. Navigate to the Visitors Site as described in Chapter 5 to verify the application
works as expected.

4. Once the test is complete, delete the CR using the kubectl delete command:
$ kubectl delete -f deploy/crds/*_cr.yaml

During development, repeat this process to test changes. On each iteration, be sure to
restart the Operator process to pick up any changes to the Helm or Ansible files.

Summary
You don’t need to be a programmer to write an Operator. The Operator SDK facili‐
tates the packaging of two existing provisioning and configuration technologies,
Helm and Ansible, as Operators. The SDK also provides a way to rapidly test and
debug changes by running an Operator outside of the cluster, skipping the time-
consuming image building and hosting steps.

In the next chapter, we’ll look at a more powerful and flexible way of implementing
Operators by using the Go language.

Resources
• Helm
• Ansible
• Example Operators

60 | Chapter 6: Adapter Operators

https://helm.sh/
https://www.ansible.com/
https://oreil.ly/KbPFs

CHAPTER 7

Operators in Go with the Operator SDK

While the Helm and Ansible Operators can be created quickly and easily, their func‐
tionality is ultimately limited by those underlying technologies. Advanced use cases,
such as those that involve dynamically reacting to specific changes in the application
or the cluster as a whole, require a more flexible solution.

The Operator SDK provides that flexibility by making it easy for developers to use the
Go programming language, including its ecosystem of external libraries, in their
Operators.

As the process is slightly more involved than for the Helm or Ansible Operators, it
makes sense to start with a summary of the high–level steps:

1. Create the necessary code that will tie in to Kubernetes and allow it to run the
Operator as a controller.

2. Create one or more CRDs to model the application’s underlying business logic
and provide the API for users to interact with.

3. Create a controller for each CRD to handle the lifecycle of its resources.
4. Build the Operator image and create the accompanying Kubernetes manifests to

deploy the Operator and its RBAC components (service accounts, roles, etc.).

While you can write all these pieces manually, the Operator SDK provides commands
that will automate the creation of much of the supporting code, allowing you to focus
on implementing the actual business logic of the Operator.

This chapter uses the Operator SDK to build the project skeleton for implementing
an Operator in Go (see Chapter 4 for instructions on the SDK installation). We will
explore the files that need to be edited with custom application logic and discuss

61

some common practices for Operator development. Once the Operator is ready, we’ll
run it in development mode for testing and debugging.

Initializing the Operator
Since the Operator is written in Go, the project skeleton must adhere to the language
conventions. In particular, the Operator code must be located in your $GOPATH. See
the GOPATH documentation for more information.

The SDK’s new command creates the necessary base files for the Operator. If a specific
Operator type is not specified, the command generates a Go-based Operator project:

$ OPERATOR_NAME=visitors-operator
$ operator-sdk new $OPERATOR_NAME
INFO[0000] Creating new Go operator 'visitors-operator’.
INFO[0000] Created go.mod
INFO[0000] Created tools.go
INFO[0000] Created cmd/manager/main.go
INFO[0000] Created build/Dockerfile
INFO[0000] Created build/bin/entrypoint
INFO[0000] Created build/bin/user_setup
INFO[0000] Created deploy/service_account.yaml
INFO[0000] Created deploy/role.yaml
INFO[0000] Created deploy/role_binding.yaml
INFO[0000] Created deploy/operator.yaml
INFO[0000] Created pkg/apis/apis.go
INFO[0000] Created pkg/controller/controller.go
INFO[0000] Created version/version.go
INFO[0000] Created .gitignore
INFO[0000] Validating project
[...]

The output is truncated for readability. The generation can take a few minutes as
all of the Go dependencies are downloaded. The details of these dependencies
will appear in the command output.

The SDK creates a new directory with the same name as $OPERATOR_NAME. The gener‐
ation process produces hundreds of files, both generated and vendor files, that the
Operator uses. Conveniently, you do not need to manually edit most of them. We will
show you how to generate the files necessary to fulfill custom logic for an Operator in
“Custom Resource Definitions” on page 64.

Operator Scope
One of the first decisions you need to make is the scope of the Operator. There are
two options:

62 | Chapter 7: Operators in Go with the Operator SDK

https://oreil.ly/2PU_Q

Namespaced
Limits the Operator to managing resources in a single namespace

Cluster
Allows the Operator to manage resources across the entire cluster

By default, Operators that the SDK generates are namespace-scoped.

While namespace-scoped Operators are often preferable, changing an SDK–gener‐
ated Operator to be cluster-scoped is possible. Make the following changes to enable
the Operator to work at the cluster level:

deploy/operator.yaml
• Change the value of the WATCH_NAMESPACE variable to "", indicating all namespa‐

ces will be watched instead of only the namespace in which the Operator pod is
deployed.

deploy/role.yaml
• Change the kind from Role to ClusterRole to enable permissions outside of the

Operator pod’s namespace.

deploy/role_binding.yaml
• Change the kind from RoleBinding to ClusterRoleBinding.
• Under roleRef, change the kind to ClusterRole.
• Under subjects, add the key namespace with the value being the namespace in

which the Operator pod is deployed.

Additionally, you need to update the generated CRDs (discussed in the following sec‐
tion) to indicate that the definition is cluster-scoped:

• In the spec section of the CRD file, change the scope field to Cluster instead of
the default value of Namespaced.

• In the _types.go file for the CRD, add the tag // +genclient:nonNamespaced
above the struct for the CR (this will have the same name as the kind field you
used to create it). This ensures that future calls to the Operator SDK to refresh
the CRD will not reset the value to the default.

For example, the following modifications to the VisitorsApp struct indicate that it is
cluster-scoped:

// +k8s:deepcopy-gen:interfaces=k8s.io/apimachinery/pkg/runtime.Object

// VisitorsApp is the Schema for the visitorsapps API
// +k8s:openapi-gen=true

Operator Scope | 63

// +kubebuilder:subresource:status
// +genclient:nonNamespaced
type VisitorsApp struct {

The tag must be before the resource type struct.

Custom Resource Definitions
In Chapter 6, we discussed the role of CRDs when creating an Operator. You can add
new CRDs to an Operator using the SDK’s add api command. This command, run
from the Operator project root directory, generates the CRD for the Visitors Site
example used in this book (using the arbitrary “example.com” for demonstration
purposes):

$ operator-sdk add api --api-version=example.com/v1 --kind=VisitorsApp
INFO[0000] Generating api version example.com/v1 for kind VisitorsApp.
INFO[0000] Created pkg/apis/example/group.go
INFO[0000] Created pkg/apis/example/v1/visitorsapp_types.go
INFO[0000] Created pkg/apis/addtoscheme_example_v1.go
INFO[0000] Created pkg/apis/example/v1/register.go
INFO[0000] Created pkg/apis/example/v1/doc.go
INFO[0000] Created deploy/crds/example_v1_visitorsapp_cr.yaml
INFO[0001] Created deploy/crds/example_v1_visitorsapp_crd.yaml
INFO[0001] Running deepcopy code-generation for Custom Resource group versions:
 [example:[v1],]
INFO[0001] Code-generation complete.
INFO[0001] Running OpenAPI code-generation for Custom Resource group versions:
 [example:[v1],]
INFO[0003] Created deploy/crds/example_v1_visitorsapp_crd.yaml
INFO[0003] Code-generation complete.
INFO[0003] API generation complete.

The command generates a number of files. In the following list, note how both the
api-version and CR type name (kind) contribute to the generated names (file paths
are relative to the Operator project root):

deploy/crds/example_v1_visitorsapp-cr.yaml
This is an example CR of the generated type. It is prepopulated with the appro‐
priate api-version and kind, as well as a name for the resource. You’ll need to
fill out the spec section with values relevant to the CRD you created.

deploy/crds/example_v1_visitorsapp_crd.yaml
This file is the beginning of a CRD manifest. The SDK generates many of the
fields related to the name of the resource type (such as plural and list variations),
but you’ll need to add in the custom fields specific to your resource type. Appen‐
dix B goes into detail on fleshing out this file.

64 | Chapter 7: Operators in Go with the Operator SDK

pkg/apis/example/v1/visitorsapp_types.go
This file contains a number of struct objects that the Operator codebase lever‐
ages. This file, unlike many of the generated Go files, is intended to be edited.

The add api command builds the appropriate skeleton code, but before you can use
the resource type, you must define the set of configuration values that are specified
when creating a new resource. You’ll also need to add a description of the fields the
CR will use when reporting its status. You’ll add these sets of values in the definition
template itself as well as the Go objects. The following two sections go into more
detail about each step.

Defining the Go Types
In the *_types.go file (in this example, visitorsapp_types.go), there are two struct
objects that you need to address:

• The spec object (in this example, VisitorsAppSpec) must include all possible
configuration values that may be specified for resources of this type. Each config‐
uration value is made up of the following:
— The name of the variable as it will be referenced from within the Operator

code (following Go conventions and beginning with a capital letter for lan‐
guage visibility purposes)

— The Go type for the variable
— The name of the field as it will be specified in the CR (in other words, the

JSON or YAML manifest users will write to create the resource)
• The status object (in this example, VisitorsAppStatus) must include all possible

values that the Operator may set to convey the state of the CR. Each value con‐
sists of the following:
— The name of the variable as it will be referenced from within the Operator

code (following Go conventions and beginning with a capital letter for visibil‐
ity purposes)

— The Go type for the variable
— The name of the field as it will appear in the description of the CR (for exam‐

ple, when getting the resource with the -o yaml flag)

The Visitors Site example supports the following values in its VisitorsApp CR:

Size

The number of backend replicas to create

Title

The text to display on the frontend web page

Custom Resource Definitions | 65

It is important to realize that despite the fact that you are using these values in differ‐
ent pods in the application, you are including them in a single CRD. From the end
user’s perspective, they are attributes of the overall application. It is the Operator’s
responsibility to determine how to use the values.

The VisitorsApp CR uses the following values in the status of each resource:

BackendImage

Indicates the image and version used to deploy the backend pods

FrontendImage

Indicates the image and version used to deploy the frontend pod

The following snippet from the visitorsapp_types.go file demonstrates these additions:

type VisitorsAppSpec struct {
 Size int32 `json:"size"`
 Title string `json:"title"`
}

type VisitorsAppStatus struct {
 BackendImage string `json:"backendImage"`
 FrontendImage string `json:"frontendImage"`
}

The remainder of the visitorsapp_types.go file does not require any further changes.

After any change to a *_types.go file, you need to update any generated code that
works with these objects using the SDK’s generate command (from the project’s root
directory):

$ operator-sdk generate k8s
INFO[0000] Running deepcopy code-generation for Custom Resource
group versions: [example:[v1],]
INFO[0000] Code-generation complete.

The CRD Manifest
The additions to the types file are useful within the Operator code, but provide no
insight to the end user creating the resource. Those additions are made to the CRD
itself.

Similar to the types file, you’ll make the additions to the CRD in the spec and status
sections. Appendix B describes the process of editing these sections.

Operator Permissions
In addition to generating a CRD, the Operator SDK creates the RBAC resources the
Operator needs to run. The generated role is extremely permissive by default,
and you should refine its granted permissions before you deploy the Operator to

66 | Chapter 7: Operators in Go with the Operator SDK

production. Appendix C covers all of the RBAC-related files and talks about how to
scope the permissions to what is applicable to the Operator.

Controller
The CRD and its associated types file in Go define the inbound API through which
users will communicate. Inside of the Operator pod itself, you need a controller to
watch for changes to CRs and react accordingly.

Similar to adding a CRD, you use the SDK to generate the controller’s skeleton code.
You’ll use the api-version and kind of the previously generated resource definition
to scope the controller to that type. The following snippet continues the Visitors Site
example:

$ operator-sdk add controller --api-version=example.com/v1 --kind=VisitorsApp
INFO[0000] Generating controller version example.com/v1 for kind VisitorsApp.
INFO[0000] Created pkg/controller/visitorsapp/visitorsapp_controller.go
INFO[0000] Created pkg/controller/add_visitorsapp.go
INFO[0000] Controller generation complete.

Note the name of this file. It contains the Kubernetes controller that implements
the Operator’s custom logic.

As with the CRD, this command generates a number of files. Of particular interest is
the controller file, which is located and named according to the associated kind. You
do not need to manually edit the other generated files.

The controller is responsible for “reconciling” a specific resource. The notion of a sin‐
gle reconcile operation is consistent with the declarative model that Kubernetes fol‐
lows. Instead of having explicit handling for events such as add, delete, or update, the
controller is passed the current state of the resource. It is up to the controller to deter‐
mine the set of changes to update reality to reflect the desired state described in the
resource. More information on Kubernetes controllers is found in their official docu‐
mentation.

In addition to the reconcile logic, the controller also needs to establish one or more
“watches.” A watch indicates that Kubernetes should invoke this controller when
changes to the “watched” resources occur. While the bulk of the Operator logic
resides in the controller’s Reconcile function, the add function establishes the
watches that will trigger reconcile events. The SDK adds two such watches in the gen‐
erated controller.

The first watch listens for changes to the primary resource that the controller moni‐
tors. The SDK generates this watch against resources of the same type as the kind
parameter that was used when first generating the controller. In most cases, this does

Controller | 67

https://oreil.ly/E_hau
https://oreil.ly/E_hau

not need to be changed. The following snippet creates the watch for the VisitorsApp
resource type:

// Watch for changes to primary resource VisitorsApp
err = c.Watch(&source.Kind{Type: &examplev1.VisitorsApp{}},
 &handler.EnqueueRequestForObject{})
if err != nil {
 return err
}

The second watch, or more accurately, series of watches, listens for changes to any
child resources the Operator created to support the primary resource. For example,
creating a VisitorsApp resource results in the creation of multiple deployment and
service objects to support its function. The controller creates a watch for each of these
child types, being careful to scope the watch to only child resources whose owner is of
the same type as the primary resource. For example, the following code creates two
watches, one for deployments and one for services whose parent resource is of the
type VisitorsApp:

err = c.Watch(&source.Kind{Type: &appsv1.Deployment{}},
 &handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &examplev1.VisitorsApp{},
})
if err != nil {
 return err
}

err = c.Watch(&source.Kind{Type: &corev1.Service{}},
 &handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &examplev1.VisitorsApp{},
})
if err != nil {
 return err
}

For the watches created in this snippet, there are two areas of interest:

• The value for Type in the constructor indicates the child resource type that
Kubernetes watches. Each child resource type needs its own watch.

• The watches for each of the child resource types set the value for OwnerType to
the primary resource type, scoping the watch and causing Kubernetes to trigger a
reconcile on the parent resource. Without this, Kubernetes will trigger a reconcile
on this controller for all service and deployment changes, regardless of whether
or not they belong to the Operator.

68 | Chapter 7: Operators in Go with the Operator SDK

The Reconcile Function
The Reconcile function, also known as the reconcile loop, is where the Operator’s
logic resides. The purpose of this function is to resolve the actual state of the system
against the desired state requested by the resource. More information to help you
write this function is included in the next section.

As Kubernetes invokes the Reconcile function multiple times
throughout the lifecycle of a resource, it is important that the
implementation be idempotent to prevent the creation of duplicate
child resources. More information is found in “Idempotency” on
page 75.

The Reconcile function returns two objects: a ReconcileResult instance and an
error (if one is encountered). These return values indicate whether or not Kubernetes
should requeue the request. In other words, the Operator tells Kubernetes if the rec‐
oncile loop should execute again. The possible outcomes based on the return values
are:

return reconcile.Result{}, nil

The reconcile process finished with no errors and does not require another pass
through the reconcile loop.

return reconcile.Result{}, err

The reconcile failed due to an error and Kubernetes should requeue it to try
again.

return reconcile.Result{Requeue: true}, nil

The reconcile did not encounter an error, but Kubernetes should requeue it to
run for another iteration.

return reconcile.Result{RequeueAfter: time.Second*5}, nil

Similar to the previous result, but this will wait for the specified amount of time
before requeuing the request. This approach is useful when there are multiple
steps that must run serially, but may take some time to complete. For example, if
a backend service needs a running database prior to starting, the reconcile can be
requeued with a delay to give the database time to start. Once the database is run‐
ning, the Operator does not requeue the reconcile request, and the rest of the
steps continue.

Controller | 69

Operator Writing Tips
It is impossible to cover all of the conceivable uses and intricacies of Operators in a
single book. The differences in application installation and upgrade alone are too
many to enumerate, and those represent only the first two layers of the Operator
Maturity Model. Instead, we will cover some general guidelines to get you started
with the basic functions commonly performed by Operators.

Since Go-based Operators make heavy use of the Go Kubernetes libraries, it may be
useful to review the API documentation. In particular, the core/v1 and apps/v1 mod‐
ules are frequently used to interact with the common Kubernetes resources.

Retrieving the Resource
The first step the Reconcile function typically performs is to retrieve the primary
resource that triggered the reconcile request. The Operator SDK generates the code
for this, which should look similar to the following from the Visitors Site example:

// Fetch the VisitorsApp instance
instance := &examplev1.VisitorsApp{}
err := r.client.Get(context.TODO(), request.NamespacedName, instance)

if err != nil {
 if errors.IsNotFound(err) {
 return reconcile.Result{}, nil
 }
 // Error reading the object - requeue the request.
 return reconcile.Result{}, err
}

Populates the previously created VisitorsApp object with the values from the
resource that triggered the reconcile.

The variable r is the reconciler object the Reconcile function is called on. It pro‐
vides the client object, which is an authenticated client for the Kubernetes API.

When a resource is deleted, Kubernetes still calls the Reconcile function, in
which case the Get call returns an error. In this example, the Operator requires
no further cleanup of deleted resources and simply returns that the reconcile was
a success. We provide more information on handling deleted resources in “Child
Resource Deletion” on page 74.

The retrieved instance serves two primary purposes:

• Retrieving configuration values about the resource from its Spec field

70 | Chapter 7: Operators in Go with the Operator SDK

https://godoc.org/k8s.io/api

• Setting the current state of the resource using its Status field, and saving that
updated information into Kubernetes

In addition to the Get function, the client provides a function to update a resource’s
values. When updating a resource’s Status field, you’ll use this function to persist the
changes to the resource back into Kubernetes. The following snippet updates one of
the fields in the previously retrieved VisitorsApp instance’s status and saves the
changes back into Kubernetes:

instance.Status.BackendImage = "example"
err := r.client.Status().Update(context.TODO(), instance)

Child Resource Creation
One of the first tasks commonly implemented in an Operator is to deploy the resour‐
ces necessary to get the application running. It is critical that this operation be idem‐
potent; subsequent calls to the Reconcile function should ensure the resource is
running rather than creating duplicate resources.

These child resources commonly include, but are not limited to, deployment and ser‐
vice objects. The handling for them is similar and straightforward: check to see if the
resource is present in the namespace and, if it is not, create it.

The following example snippet checks for the existence of a deployment in the target
namespace:

found := &appsv1.Deployment{}
findMe := types.NamespacedName{
 Name: "myDeployment",
 Namespace: instance.Namespace,
}
err := r.client.Get(context.TODO(), findMe, found)
if err != nil && errors.IsNotFound(err) {
 // Creation logic
}

The Operator knows the names of the child resources it created, or at least how
to derive them (see “Child Resource Naming” on page 75 for a more in-depth
discussion). In real use cases, "myDeployment" is replaced with the same name
the Operator used when the deployment was created, taking care to ensure
uniqueness relative to the namespace as appropriate.

The instance variable was set in the earlier snippet about resource retrieval and
refers to the object representing the primary resource being reconciled.

Operator Writing Tips | 71

At this point, the child resource was not found and no further errors were
retrieved from the Kubernetes API, so the resource creation logic should be
executed.

The Operator creates resources by populating the necessary Kubernetes objects and
using the client to request that they be created. Consult the Kubernetes Go client API
for specifications on how to instantiate the resource for each type. You’ll find many of
the desired specs in either the core/v1 or the apps/v1 module.

As an example, the following snippet creates a deployment specification for the
MySQL database used in the Visitors Site example application:

labels := map[string]string {
 "app": "visitors",
 "visitorssite_cr": instance.Name,
 "tier": "mysql",
}
size := int32(1)

userSecret := &corev1.EnvVarSource{
 SecretKeyRef: &corev1.SecretKeySelector{
 LocalObjectReference: corev1.LocalObjectReference{Name: mysqlAuthName()},
 Key: "username",
 },
}

passwordSecret := &corev1.EnvVarSource{
 SecretKeyRef: &corev1.SecretKeySelector{
 LocalObjectReference: corev1.LocalObjectReference{Name: mysqlAuthName()},
 Key: "password",
 },
}

dep := &appsv1.Deployment{
 ObjectMeta: metav1.ObjectMeta{
 Name: "mysql-backend-service",
 Namespace: instance.Namespace,
 },
 Spec: appsv1.DeploymentSpec{
 Replicas: &size,
 Selector: &metav1.LabelSelector{
 MatchLabels: labels,
 },
 Template: corev1.PodTemplateSpec{
 ObjectMeta: metav1.ObjectMeta{
 Labels: labels,
 },
 Spec: corev1.PodSpec{
 Containers: []corev1.Container{{
 Image: "mysql:5.7",
 Name: "visitors-mysql",

72 | Chapter 7: Operators in Go with the Operator SDK

 Ports: []corev1.ContainerPort{{
 ContainerPort: 3306,
 Name: "mysql",
 }},
 Env: []corev1.EnvVar{
 {
 Name: "MYSQL_ROOT_PASSWORD",
 Value: "password",
 },
 {
 Name: "MYSQL_DATABASE",
 Value: "visitors",
 },
 {
 Name: "MYSQL_USER",
 ValueFrom: userSecret,
 },
 {
 Name: "MYSQL_PASSWORD",
 ValueFrom: passwordSecret,
 },
 },
 }},
 },
 },
 },
}

controllerutil.SetControllerReference(instance, dep, r.scheme)

In many cases, the Operator would read the number of deployed pods from the
primary resource’s spec. For simplicity, this is hardcoded to 1 in this example.

This is the value used in the earlier snippet when you are attempting to see if the
deployment exists.

For this example, these are hardcoded values. Take care to generate randomized
values as appropriate.

This is, arguably, the most important line in the definition. It establishes the par‐
ent/child relationship between the primary resource (VisitorsApp) and the child
(deployment). Kubernetes uses this relationship for certain operations, as you’ll
see in the following section.

The structure of the Go representation of the deployment closely resembles the
YAML definition. Again, consult the API documentation for the specifics on how to
use the Go object models.

Operator Writing Tips | 73

Regardless of the child resource type (deployment, service, etc.), create it using the
client:

createMe := // Deployment instance from above

// Create the service
err = r.client.Create(context.TODO(), createMe)

if err != nil {
 // Creation failed
 return &reconcile.Result{}, err
} else {
 // Creation was successful
 return nil, nil
}

Child Resource Deletion
In most cases, deleting child resources is significantly simpler than creating them:
Kubernetes will do it for you. If the child resource’s owner type is correctly set to the
primary resource, when the parent is deleted, Kubernetes garbage collection will
automatically clean up all of its child resources.

It is important to understand that when Kubernetes deletes a resource, it still calls the
Reconcile function. Kubernetes garbage collection is still performed, and the Opera‐
tor will not be able to retrieve the primary resource. See “Retrieving the Resource” on
page 70 for an example of the code that checks for this situation.

There are times, however, where specific cleanup logic is required. The approach in
such instances is to block the deletion of the primary resource through the use of a
finalizer.

A finalizer is simply a series of strings on a resource. If one or more finalizers are
present on a resource, the metadata.deletionTimestamp field of the object is popula‐
ted, signifying the end user’s desire to delete the resource. However, Kubernetes will
only perform the actual deletion once all of the finalizers are removed.

Using this construct, you can block the garbage collection of a resource until the
Operator has a chance to perform its own cleanup step. Once the Operator has fin‐
ished with the necessary cleanup, it removes the finalizer, unblocking Kubernetes
from performing its normal deletion steps.

The following snippet demonstrates using a finalizer to provide a window in which
the Operator can take pre-deletion steps. This code executes after the retrieval of the
instance object, as outlined in “Retrieving the Resource” on page 70:

finalizer := "visitors.example.com"

beingDeleted := instance.GetDeletionTimestamp() != nil

74 | Chapter 7: Operators in Go with the Operator SDK

if beingDeleted {
 if contains(instance.GetFinalizers(), finalizer) {

 // Perform finalization logic. If this fails, leave the finalizer
 // intact and requeue the reconcile request to attempt the clean
 // up again without allowing Kubernetes to actually delete
 // the resource.

 instance.SetFinalizers(remove(instance.GetFinalizers(), finalizer))
 err := r.client.Update(context.TODO(), instance)
 if err != nil {
 return reconcile.Result{}, err
 }
 }
 return reconcile.Result{}, nil
}

The presence of a deletion timestamp indicates that a requested delete is being
blocked by one or more finalizers.

Once the cleanup tasks have finished, the Operator removes the finalizer so
Kubernetes can continue with the resource cleanup.

Child Resource Naming
While the end user provides the name of the CR when creating it, the Operator is
responsible for generating the names of any child resources it creates. Take into con‐
sideration the following principles when creating these names:

• Resource names must be unique within a given namespace.
• Child resource names should be dynamically generated. Hardcoding child

resource names leads to conflicts if there are multiple resources of the CR type in
the same namespace.

• Child resource names must be reproducible and consistent. An Operator may
need to access a resource’s children in a future iteration through the reconcile
loop and must be able to reliably retrieve those resources by name.

Idempotency
One of the biggest hurdles many developers face when writing controllers is the idea
that Kubernetes uses a declarative API. End users don’t issue commands that Kuber‐
netes immediately fulfills. Instead, they request an end state that the cluster should
achieve.

As such, the interface for controllers (and by extension, Operators) doesn’t include
imperative commands such as “add resource” or “change a configuration value.”

Operator Writing Tips | 75

Instead, Kubernetes simply asks the controller to reconcile the state of a resource. The
Operator then determines what steps, if any, it will take to ensure that end state.

Therefore, it is critical that Operators are idempotent. Multiple calls to reconcile an
unchanged resource must produce the same effect each time.

The following tips can help you ensure idempotency in your Operators:

• Before creating child resources, check to see if they already exist. Remember,
Kubernetes may call the reconcile loop for a variety of reasons beyond when a
user first creates a CR. Your controller should not duplicate the CR’s children on
each iteration through the loop.

• Changes to a resource’s spec (in other words, its configuration values) trigger the
reconcile loop. Therefore, it is often not enough to simply check for the existence
of expected child resources. The Operator also needs to verify that the child
resource configuration matches what is defined in the parent resource at the time
of reconciliation.

• Reconciliation is not necessarily called for each change to the resource. It is pos‐
sible that a single reconciliation may contain multiple changes. The Operator
must be careful to ensure the entire state of the CR is represented by all of its
child resources.

• Just because an Operator does not need to make changes during a reconciliation
request doesn’t mean it doesn’t need to update the CR’s Status field. Depending
on what values are captured in the CR’s status, it may make sense to update these
even if the Operator determines it doesn’t need to make any changes to the exist‐
ing resources.

Operator Impact
It is important to be aware of the impact your Operator will have on the cluster. In
most cases, your Operator will create one or more resources. It also needs to commu‐
nicate with the cluster through the Kubernetes APIs. If the Operator incorrectly han‐
dles these operations, they can negatively affect the performance of the entire cluster.

How best to handle this varies from Operator to Operator. There is no set of rules
that you can run through to ensure your Operator doesn’t overburden your cluster.
However, you can use the following guidelines as a starting point to analyze your
Operator’s approach:

• Be careful when making frequent calls to the Kubernetes API. Make sure you use
sensible delays (on the order of seconds rather than milliseconds) when repeat‐
edly checking the API for a certain state being met.

76 | Chapter 7: Operators in Go with the Operator SDK

• When possible, try not to block the reconcile method for long periods of time. If,
for instance, you are waiting for a child resource to be available before continu‐
ing, consider triggering another reconcile after a delay (see “The Reconcile Func‐
tion” on page 69 for more information on triggering subsequent iterations
through the reconcile loop). This approach allows Kubernetes to manage its
resources instead of having a reconcile request wait for long periods of time.

• If you are deploying a large number of resources, consider throttling the deploy‐
ment requests across multiple iterations through the reconcile loop. Remember
that other workloads are running concurrently on the cluster. Your Operator
should not cause excessive stress on cluster resources by issuing many creation
requests at once.

Running an Operator Locally
The Operator SDK provides a means of running an Operator outside of a running
cluster. This helps speed up development and testing by removing the need to go
through the image creation and hosting steps. The process running the Operator may
be outside of the cluster, but Kubernetes will treat it as it does any other controller.

The high-level steps for testing an Operator are as follows:

1. Deploy the CRD. You only need to do this once, unless further changes to the
CRD are needed. In those cases, run the kubectl apply command again (from
the Operator project root directory) to apply any changes:

$ kubectl apply -f deploy/crds/*_crd.yaml

2. Start the Operator in local mode. The Operator SDK uses credentials from the
kubectl configuration file to connect to the cluster and attach the Operator. The
running process acts as if it were an Operator pod running inside of the cluster
and writes logging information to standard output:

$ export OPERATOR_NAME=<operator-name>
$ operator-sdk up local --namespace default

The --namespace flag indicates the namespace in which the Operator will appear
to be running.

3. Deploy an example resource. The SDK generates an example CR along with the
CRD. It is located in the same directory and is named similarly to the CRD, but
with the filename ending in _cr.yaml instead to denote its function.
In most cases, you’ll want to edit the spec section of this file to provide the rele‐
vant configuration values for your resource. Once the necessary changes are
made, deploy the CR (from the project root directory) using kubectl:

$ kubectl apply -f deploy/crds/*_cr.yaml

Running an Operator Locally | 77

4. Stop the running Operator process. Stop the Operator process by pressing Ctrl+C.
Unless the Operator adds finalizers to the CR, this is safe to do before deleting
the CR itself, as Kubernetes will use the parent/child relationships of its resources
to clean up any dependent objects.

The process described here is useful for development purposes, but
for production, Operators are delivered as images. See Appendix A
for more information on how to build and deploy an Operator as a
container inside the cluster.

Visitors Site Example
The codebase for the Visitors Site Operator is too large to include. You can find the
fully built Operator available in this book’s GitHub repository.

The Operator SDK generated many of the files in that repository. The files that were
modified to run the Visitors Site application are:

deploy/crds/
• example_v1_visitorsapp_crd.yaml

— This file contains the CRD.

• example_v1_visitorsapp_cr.yaml
— This file defines a CR with sensible example data.

pkg/apis/example/v1/visitorsapp_types.go
• This file contains Go objects that represent the CR, including its spec and status

fields.

pkg/controller/visitorsapp/
• backend.go, frontend.go, mysql.go

— These files contain all of the information specific to deploying those compo‐
nents of the Visitors Site. This includes the deployments and services that the
Operator maintains, as well as the logic to handle updating existing resources
when the end user changes the CR.

• common.go
— This file contains utility methods used to ensure the deployments and serv‐

ices are running, creating them if necessary.

78 | Chapter 7: Operators in Go with the Operator SDK

https://github.com/kubernetes-operators-book/chapters/tree/master/ch07/visitors-operator

• visitorsapp_controller.go
— The Operator SDK initially generated this file, which was then modified for

the Visitors Site–specific logic. The Reconcile method contains the majority
of the changes; it drives the overall flow of the Operator by calling out to func‐
tions in the previously described files.

Summary
Writing an Operator requires a considerable amount of code to tie into Kubernetes as
a controller. The Operator SDK eases development by generating much of this boiler‐
plate code, letting you focus on the business logic aspects. The SDK also provides
utilities for building and testing Operators, greatly reducing the effort needed to go
from inception to a running Operator.

Resources
• Kubernetes CR documentation
• Kubernetes API documentation

Summary | 79

https://oreil.ly/IwYGV
https://godoc.org/k8s.io/api

CHAPTER 8

Operator Lifecycle Manager

Once you have written an Operator, it’s time to turn your attention to its installation
and management. As there are multiple steps involved in deploying an Operator,
including creating the deployment, adding the custom resource definitions, and con‐
figuring the necessary permissions, a management layer becomes necessary to facili‐
tate the process.

Operator Lifecycle Manager (OLM) fulfills this role by introducing a packaging
mechanism for delivering Operators and the necessary metadata for visualizing them
in compatible UIs, including installation instructions and API hints in the form of
CRD descriptors.

OLM’s benefits extend beyond installation into Day 2 operations, including managing
upgrades to existing Operators, providing a means to convey Operator stability
through version channels, and the ability to aggregate multiple Operator hosting
sources into a single interface.

We begin this chapter by introducing OLM and its interfaces, including both the
CRDs that end users will interact with inside of the cluster and the packaging format
it uses for Operators. After that, we will show you OLM in action, using it to connect
to OperatorHub.io to install an Operator. We conclude the chapter with a developer-
focused exploration of the process of writing the necessary metadata files to make an
Operator available to OLM and test it against a local cluster.

OLM Custom Resources
As you know, the CRDs owned by an Operator make up that Operator’s API. So, it
makes sense to look at each of the CRDs that are installed by OLM and explore their
uses.

81

ClusterServiceVersion
The ClusterServiceVersion (CSV) is the primary metadata resource that describes an
Operator. Each CSV represents a version of an Operator and contains the following:

• General metadata about the Operator, including its name, version, description,
and icon

• Operator installation information, describing the deployments that are created
and the permissions that are required

• The CRDs that are owned by the Operator as well as references to any CRDs the
Operator is dependent on

• Annotations on the CRD fields to provide hints to users on how to properly
specify values for the fields

When learning about CSVs, it can be useful to relate the concepts to that of a tradi‐
tional Linux system. You can think of a CSV as analogous to a Linux package, such as
a Red Hat Package Manager (RPM) file. Like an RPM file, the CSV contains informa‐
tion on how to install the Operator and any dependencies it requires. Following this
analogy, you can think of OLM as a management tool similar to yum or DNF.

Another important aspect to understand is the relationship between a CSV and the
Operator deployment resource it manages. Much like how a deployment describes
the “pod template” for the pods it creates, a CSV contains a “deployment template” for
the deployment of the Operator pod. This is a formal ownership in the Kubernetes
sense of the word; if the Operator deployment is deleted, the CSV will recreate it to
bring the cluster back to the desired state, similar to how a deployment will cause
deleted pods to be recreated.

A ClusterServiceVersion resource is typically populated from a Cluster Service Ver‐
sion YAML file. We provide more details on how to write this file in “Writing a Clus‐
ter Service Version File” on page 93.

CatalogSource
A CatalogSource contains information for accessing a repository of Operators. OLM
provides a utility API named packagemanifests for querying catalog sources, which
provides a list of Operators and the catalogs in which they are found. It uses resources
of this kind to populate the list of available Operators. The following is an example of
using the packagemanifests API against the default catalog source:

$ kubectl -n olm get packagemanifests
NAME CATALOG AGE
akka-cluster-operator Community Operators 19s
appsody-operator Community Operators 19s
[...]

82 | Chapter 8: Operator Lifecycle Manager

Subscription
End users create a subscription to install, and subsequently update, the Operators that
OLM provides. A subscription is made to a channel, which is a stream of Operator
versions, such as “stable” or “nightly.”

To continue with the earlier analogy to Linux packages, a subscription is equivalent to
a command that installs a package, such as yum install. An installation command
through yum will typically refer to the package by name rather than to a specific ver‐
sion, leaving the determination of the latest package to yum itself. In the same way, a
subscription to an Operator by name and its channel lets OLM resolve the version
based on what is available in that particular channel.

Users configure a subscription with an approval mode. This value, set to either manual
or automatic, tells OLM if manual user review is required before an Operator is
installed. If set to manual approval, OLM-compatible user interfaces present the user
with the details of the resources OLM will create during the Operator installation.
The user has the option of approving or rejecting the Operator, and OLM takes the
appropriate next steps.

InstallPlan
A subscription creates an InstallPlan, which describes the full list of resources that
OLM will create to satisfy the CSV’s resource requirements. For subscriptions set to
require manual approval, the end user sets an approval on this resource to inform
OLM that the installation should proceed. Otherwise, users do not need to explicitly
interact with these resources.

OperatorGroup
End users control Operator multitenancy through an OperatorGroup. These designate
namespaces that may be accessed by an individual Operator. In other words, an
Operator belonging to an OperatorGroup will not react to custom resource changes
in a namespace not indicated by the group.

Although you can use OperatorGroups for fine-grained control for a set of namespa‐
ces, they are most commonly used in two ways:

• To scope an Operator to a single namespace
• To allow an Operator to run globally across all namespaces

For example, the following definition creates a group that scopes Operators within it
to the single namespace ns-alpha:

OLM Custom Resources | 83

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: group-alpha
 namespace: ns-alpha
spec:
 targetNamespaces:
 - ns-alpha

Omitting the designator entirely results in a group that will cover all namespaces in
the cluster:

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: group-alpha
 namespace: ns-alpha

Note that, as a Kubernetes resource, the OperatorGroup must still reside in a spe‐
cific namespace. However, the lack of the targetNamespaces designation means
the OperatorGroup will cover all namespaces.

The two examples shown here cover the majority of use cases; cre‐
ating fine-grained OperatorGroups scoped to more than one spe‐
cific namespace is outside the scope of this book. You can find
more information in OLM’s GitHub repository.

Installing OLM
In the rest of this chapter, we explore using and developing for OLM. As OLM is not
installed by default in most Kubernetes distributions, the first step is to install the
necessary resources to run it.

OLM is an evolving project. As such, be sure to consult its GitHub
repository to find the latest installation instructions for the current
release. You can find the releases on the project’s GitHub reposi‐
tory.

As of the current release (0.11.0), the installation performs two primary tasks.

To begin, you’ll need to install the CRDs required by OLM. These function as the API
into OLM and provide the ability to configure external sources that provide Opera‐
tors and the cluster-side resources used to make those Operators available to users.
You create these through the kubectl apply command, as follows:

84 | Chapter 8: Operator Lifecycle Manager

https://oreil.ly/ZBAou
https://oreil.ly/It369
https://oreil.ly/It369

$ kubectl apply -f \
https://github.com/operator-framework/operator-lifecycle-manager/releases/\
download/0.11.0/crds.yaml
clusterserviceversions.operators.coreos.com created
installplans.operators.coreos.com created
subscriptions.operators.coreos.com created
catalogsources.operators.coreos.com created
operatorgroups.operators.coreos.com created

The examples here use the 0.11.0 release, which was the latest ver‐
sion at the time of writing; you can update these commands to use
the most up-to-date version available at the time you’re reading the
book.

The second step is to create all of the Kubernetes resources that make up OLM itself.
These include the Operators that will drive OLM as well as the necessary RBAC
resources (ServiceAccounts, ClusterRoles, etc.) for it to function.

As with the CRD creation, you perform this step through the kubectl apply

command:

$ kubectl apply -f \
https://github.com/operator-framework/operator-lifecycle-manager/\
releases/download/0.11.0/olm.yaml
namespace/olm created
namespace/operators created
system:controller:operator-lifecycle-manager created
serviceaccount/olm-operator-serviceaccount created
clusterrolebinding.rbac.authorization.k8s.io/olm-operator-binding-olm created
deployment.apps/olm-operator created
deployment.apps/catalog-operator created
clusterrole.rbac.authorization.k8s.io/aggregate-olm-edit created
clusterrole.rbac.authorization.k8s.io/aggregate-olm-view created
operatorgroup.operators.coreos.com/global-operators created
operatorgroup.operators.coreos.com/olm-operators created
clusterserviceversion.operators.coreos.com/packageserver created
catalogsource.operators.coreos.com/operatorhubio-catalog created

You can verify the installation by looking at the resources that were created:

$ kubectl get ns olm
NAME STATUS AGE
olm Active 43s

$ kubectl get pods -n olm
NAME READY STATUS RESTARTS AGE
catalog-operator-7c94984c6c-wpxsv 1/1 Running 0 68s
olm-operator-79fdbcc897-r76ss 1/1 Running 0 68s
olm-operators-qlkh2 1/1 Running 0 57s
operatorhubio-catalog-9jdd8 1/1 Running 0 57s
packageserver-654686f57d-74skk 1/1 Running 0 39s

Installing OLM | 85

packageserver-654686f57d-b8ckz 1/1 Running 0 39s

$ kubectl get crd
NAME CREATED AT
catalogsources.operators.coreos.com 2019-08-07T20:30:42Z
clusterserviceversions.operators.coreos.com 2019-08-07T20:30:42Z
installplans.operators.coreos.com 2019-08-07T20:30:42Z
operatorgroups.operators.coreos.com 2019-08-07T20:30:42Z
subscriptions.operators.coreos.com 2019-08-07T20:30:42Z

Using OLM
Now that we’ve introduced the basic concepts around OLM, let’s see how to use it to
install an Operator. We’ll use OperatorHub.io as the source repository for Operators.
We cover OperatorHub.io in more detail in Chapter 10, but for now the important
thing to know is that it’s a community-curated list of publicly available Operators for
use with OLM. In keeping with the Linux package analogy from earlier in the chapter,
you can think of it as similar to an RPM repository.

Installing OLM creates a default catalog source in the olm namespace. You can verify
that this source, named operatorhubio-catalog, exists by using the CLI:

$ kubectl get catalogsource -n olm
NAME NAME TYPE PUBLISHER AGE
operatorhubio-catalog Community Operators grpc OperatorHub.io 4h20m

You can find further details about the source by using the describe command:

$ kubectl describe catalogsource/operatorhubio-catalog -n olm
Name: operatorhubio-catalog
Namespace: olm
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration...
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
Metadata:
 Creation Timestamp: 2019-09-23T13:53:39Z
 Generation: 1
 Resource Version: 801
 Self Link: /apis/operators.coreos.com/v1alpha1/...
 UID: 45842de1-3b6d-4b1b-bd36-f616dec94c6a
Spec:
 Display Name: Community Operators
 Image: quay.io/operator-framework/upstream-community-operators:latest
 Publisher: OperatorHub.io
 Source Type: grpc
Status:
 Last Sync: 2019-09-23T13:53:54Z
 Registry Service:
 Created At: 2019-09-23T13:53:44Z
 Port: 50051

86 | Chapter 8: Operator Lifecycle Manager

 Protocol: grpc
 Service Name: operatorhubio-catalog
 Service Namespace: olm
Events: <none>

Note that the display name is simply “Community Operators,” rather than indi‐
cating anything about OperatorHub.io. This value appears in the output of the
next command, when we look at the list of possible Operators.

This catalog source is configured to read all of the Operators hosted on
OperatorHub.io. You can use the packagemanifest utility API to get a list of the
Operators that are found:

$ kubectl get packagemanifest -n olm
NAME CATALOG AGE
akka-cluster-operator Community Operators 4h47m
appsody-operator Community Operators 4h47m
aqua Community Operators 4h47m
atlasmap-operator Community Operators 4h47m
[...]

At the time of writing, there are close to 80 Operators on OperatorHub.io. We
truncated the output of this command for brevity.

For this example, you’ll install the etcd Operator. The first step is to define an Opera‐
torGroup to dictate which namespaces the Operator will manage. The etcd Operator
you’re going to be using is scoped to a single namespace (you’ll see later how we
determined that), so you’ll create a group for just the default namespace:

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: default-og
 namespace: default
spec:
 targetNamespaces:
 - default

Create the group using the kubectl apply command (this example assumes the
YAML in the previous snippet is saved to a file named all-og.yaml):

$ kubectl apply -f all-og.yaml
operatorgroup.operators.coreos.com/default-og created

The creation of a subscription triggers the installation of an Operator. Before you can
do that, you need to determine which channel you want to subscribe to. OLM pro‐
vides channel information in addition to a wealth of other details about the Operator.

You can view this information by using the packagemanifest API:

Using OLM | 87

$ kubectl describe packagemanifest/etcd -n olm
Name: etcd
Namespace: olm
Labels: catalog=operatorhubio-catalog
 catalog-namespace=olm
 provider=CNCF
 provider-url=
Annotations: <none>
API Version: packages.operators.coreos.com/v1
Kind: PackageManifest
Metadata:
 Creation Timestamp: 2019-09-23T13:53:39Z
 Self Link: /apis/packages.operators.coreos.com/v1/namespaces/...
Spec:
Status:
 Catalog Source: operatorhubio-catalog
 Catalog Source Display Name: Community Operators
 Catalog Source Namespace: olm
 Catalog Source Publisher: OperatorHub.io
 Channels:
 Current CSV: etcdoperator.v0.9.4-clusterwide
 Current CSV Desc:
 Annotations:
 Alm - Examples: [...]
[...]
 Install Modes:
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: true
 Type: MultiNamespace
 Supported: false
 Type: AllNamespaces
 Supported: false
 Provider:
 Name: CNCF
 Version: 0.9.4
Name: singlenamespace-alpha
 Default Channel: singlenamespace-alpha
 Package Name: etcd
 Provider:
 Name: CNCF
[...]

The examples section of a package manifest contains a series of manifests that
you can use to deploy custom resources defined by this Operator. For brevity, we
have omitted them from this output.

We cut out much of the file for readability. We’ll cover many of these fields when
we talk about creating the CSV file in “Writing a Cluster Service Version File” on
page 93.

88 | Chapter 8: Operator Lifecycle Manager

The install modes section describes the circumstances in which an end user may
deploy this Operator. We will also cover these later in this chapter.

This particular channel offers an Operator that is configured to be run to watch
the same namespace it is deployed in.

Along the same lines, end users cannot install this Operator to monitor all name‐
spaces in the cluster. If you look around in the package manifest data you’ll find
another channel named clusterwide-alpha that is suited to this purpose.

The Name field in this section indicates the name of the channel which is refer‐
enced by a subscription.

Since this Operator comes from OperatorHub.io, it can be beneficial to view its page
on the site directly. All of the data contained in the package manifest is displayed on
the individual Operator’s page, but formatted in a more easily readable manner. You
can check this out on the etcd Operator page.

Once you have decided on a channel, the last step is to create the subscription
resource itself. Here is an example manifest:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-subscription
 namespace: default
spec:
 name: etcd
 source: operatorhubio-catalog
 sourceNamespace: olm
 channel: singlenamespace-alpha

This manifest installs the subscription, and thus the Operator deployment itself,
in the default namespace.

The name of the Operator to be installed, as found by the packagemanifest API
call.

The source and sourceNamespace describe where to find the catalog source that
provides the Operator.

OLM will install Operators from the singlenamespace-alpha channel.

As with other resources, you create the subscription using kubectl apply (this com‐
mand assumes the subscription YAML above is saved in a file named sub.yaml):

Using OLM | 89

https://oreil.ly/1bjkr

$ kubectl apply -f sub.yaml
subscription.operators.coreos.com/etcd-subscription created

Exploring the Operator
When you create the subscription, a number of things happen. At the highest level of
the resource hierarchy, OLM creates a ClusterServiceVersion resource in the default
namespace:

$ kubectl get csv -n default
NAME DISPLAY VERSION REPLACES PHASE
etcdoperator.v0.9.4 etcd 0.9.4 etcdoperator.v0.9.2 Succeeded

The CSV is effectively what the subscription installs—it’s the package, in the RPM
analogy. OLM performs the Operator installation steps defined in the CSV to create
the Operator pods themselves. Additionally, OLM will store information about events
in this process, which you can view using the describe command:

$ kubectl describe csv/etcdoperator.v0.9.4 -n default
[...]
Events:
operator-lifecycle-manager requirements not yet checked
one or more requirements couldn't be found
all requirements found, attempting install
waiting for install components to report healthy
installing: ComponentMissing: missing deployment with name=etcd-operator
installing: ComponentMissing: missing deployment with name=etcd-operator
installing: Waiting: waiting for deployment etcd-operator to become ready:
 Waiting for rollout to finish: 0 of 1 updated replicas are available...
install strategy completed with no errors

The output here has been edited to fit the page. Your output will
vary slightly and contain more data per event.

OLM is responsible for following the deployment template contained within the CSV
to create the Operator pod itself. Continuing down the resource ownership hierarchy,
you can see that OLM creates a deployment resource as well:

$ kubectl get deployment -n default
NAME READY UP-TO-DATE AVAILABLE AGE
etcd-operator 1/1 1 1 3m42s

Viewing the details of the deployment explicitly shows the owner relationship
between the CSV and this deployment:

$ kubectl get deployment/etcd-operator -n default -o yaml
[...]
ownerReferences:

90 | Chapter 8: Operator Lifecycle Manager

- apiVersion: operators.coreos.com/v1alpha1
 blockOwnerDeletion: false
 controller: false
 kind: ClusterServiceVersion
 name: etcdoperator.v0.9.4
 uid: 564c15d9-ab49-439f-8ea4-8c140f55e641
[...]

Unsurprisingly, the deployment creates a number of pods based on its resource defi‐
nition. In the case of the etcd Operator, the CSV defines the deployment as requiring
three pods:

$ kubectl get pods -n default
NAME READY STATUS RESTARTS AGE
etcd-operator-c4bc4fb66-zg22g 3/3 Running 0 6m4s

To summarize, creating the subscription caused the following to take place:

• OLM creates a CSV resource in the same namespace as the subscription. This
CSV contains, among other things, the manifest for the deployment of the Oper‐
ator itself.

• OLM uses the deployment manifest to create a deployment resource for the
Operator. The owner of that resource is the CSV itself.

• The deployment causes the creation of replica sets and pods for the Operator
itself.

Deleting the Operator
Deleting an OLM-deployed Operator isn’t as straightforward as it is when working
with simple deployment resources.

A deployment resource acts as installation instructions for pods. If a pod is removed,
either by user intervention or because of an error on the pod itself, Kubernetes
detects the difference between the desired state of the deployment and the actual
number of pods.

In much the same way, the CSV resource acts as the installation instructions for the
Operator. Often, a CSV indicates that a deployment must exist to fulfill this plan. If
that deployment ceases to exist, OLM takes the necessary steps to make the actual
state of the system match the CSV’s desired state.

As such, it’s not sufficient to simply delete the Operator’s deployment resource.
Instead, an Operator deployed by OLM is deleted by deleting the CSV resource:

$ kubectl delete csv/etcdoperator.v0.9.4
clusterserviceversion.operators.coreos.com "etcdoperator.v0.9.4" deleted

Using OLM | 91

OLM takes care of deleting the resources that the CSV created when it was originally
deployed, including the Operator’s deployment resource.

Additionally, you’ll need to delete the subscription to prevent OLM from installing
new CSV versions in the future:

$ kubectl delete subscription/etcd-subscription
subscription.operators.coreos.com "etcd-subscription" deleted

OLM Bundle Metadata Files
An “OLM bundle” provides details on an Operator that can be installed. The bundle
contains all the necessary information (for all the available versions of the Operator)
to:

• Provide a flexible delivery structure for the Operator by offering one or more
channels that a user can subscribe to.

• Deploy the CRDs required for the Operator to function.
• Instruct OLM on how to create the Operator deployment.
• Include additional information on each CRD spec field, including hints on how

to render those fields in a UI.

There are three types of files included in an OLM bundle: custom resource defini‐
tions, Cluster Service Version files, and package manifest files.

Custom Resource Definitions
Since the Operator requires its CRDs to function, the OLM bundle includes them.
OLM installs the CRDs along with the Operator itself. You, as the OLM bundle devel‐
oper, do not need to make any changes or additions to the CRD files beyond what
already exists to support the Operator.

Keep in mind that only CRDs that are owned by the Operator should be included.
Any dependent CRDs that are provided by other Operators will be installed automat‐
ically by OLM’s dependency resolution (the notion of required CRDs is addressed in
“Owned CRDs” on page 96).

Each CRD must be defined in its own file.

92 | Chapter 8: Operator Lifecycle Manager

Cluster Service Version File
The CSV file contains the bulk of the metadata about the Operator, including:

• How to deploy the Operator
• The list of CRDs that the Operator uses (those that it owns as well as dependen‐

cies from other Operators)
• Metadata about the Operator, including a description, logo, its maturity level,

and related links

Given the large role this file plays, we cover details on how to write one in the follow‐
ing section.

Package Manifest File
The package manifest file describes a list of channels that point to particular Operator
versions. It is up to the Operator owners to determine the breakdown of channels and
their respective delivery cadence. We strongly recommend that channels set expecta‐
tions around stability, features, and rate of changes.

Users subscribe to channels. OLM will use the package manifest to determine if a new
version of the Operator is available in a subscribed-to channel and allow the user to
take steps to update as appropriate. We’ll get into more detail about this file in “Writ‐
ing a Package Manifest File” on page 101.

Writing a Cluster Service Version File
Each version of an Operator will have its own Cluster Service Version file. The CSV
file is a standard Kubernetes manifest of kind ClusterServiceVersion, which is one of
the custom resources that OLM provides.

The resources in this file provide OLM with information about a specific Operator
version, including installation instructions and extra details on how the user interacts
with the Operator’s CRDs.

Generating a File Skeleton
Given the amount of data included in a CSV file, the easiest starting point is to use
the Operator SDK to generate a skeleton. The SDK will build this skeleton with the
basic structure of a Cluster Service Version file, and will populate it with as much data
as it can determine about the Operator itself. It provides a good basis from which you
can flesh out the remaining details.

As each CSV corresponds to a particular Operator version, that version information
is reflected in the filename scheme. The filename pattern is to use the Operator name

Writing a Cluster Service Version File | 93

and append the semantic version number. For example, a CSV file for the Visitors
Site Operator will be named something like visitors-operator.v1.0.0.yaml.

In order for the Operator SDK to populate the skeleton CSV file with information
about a specific Operator, you must run the generation command from the root of
the Operator project source code. The general form of this command is as follows:

$ operator-sdk olm-catalog gen-csv --csv-version x.y.z

Again, is it up to the Operator’s development team to determine their own version
numbering policy. For consistency and general user-friendliness, we recommend that
Operator releases follow Semantic Versioning principles.

Running the CSV generation command on the Visitors Site Operator produces the
following output:

$ operator-sdk olm-catalog gen-csv --csv-version 1.0.0
INFO[0000] Generating CSV manifest version 1.0.0
INFO[0000] Fill in the following required fields in file
visitors-operator/1.0.0/visitors-operator.v1.0.0.clusterserviceversion.yaml:
 spec.keywords
 spec.maintainers
 spec.provider
INFO[0000] Created
visitors-operator/1.0.0/visitors-operator.v1.0.0.clusterserviceversion.yaml

Even with only the base CSV structure, the generated file is already fairly detailed. At
a high level, it includes the following:

• References to all CRDs the Operator owns (in other words, those defined in the
Operator project)

• A partial definition for the Operator’s Deployment resource
• A set of RBAC rules that the Operator requires
• Indicators describing the scope of namespaces the Operator will watch
• An example custom resource (found in metadata.annotations.alm-examples)

that you can modify for your needs

We dive deeper into each of these components and the sorts of changes you should
make to them in the following sections.

The SDK will not know the name of the image to use for the Oper‐
ator itself. The skeleton file includes the field image:

REPLACE_IMAGE in the deployment descriptor. You must update this
value to point to a hosted image of the Operator (for example, on
Docker Hub or Quay.io) that OLM will deploy.

94 | Chapter 8: Operator Lifecycle Manager

https://semver.org

Metadata
As previously mentioned, the metadata.annotations.alm-examples field contains
an example for each CRD that the Operator owns. The SDK will initially populate
this field using the custom resource manifest found in the Operator project’s deploy/
crds directory. Be sure to review and flesh out this example with actual data that end
users can further customize to their needs.

Apart from alm-examples, you can find the remainder of the Operator’s metadata
under the spec section of the manifest. The output of the SDK’s generation command
highlights three specific fields as required:

keywords
A list of categories describing the Operator; compatible UIs use this for discovery

maintainers
A list of name and email pairings for the maintainers of the Operator codebase

provider
The name of the publishing entity for the Operator

This snippet from the etcd Operator demonstrates the three required fields:

keywords: ['etcd', 'key value', 'database', 'coreos', 'open source']
maintainers:
- name: etcd Community
 email: etcd-dev@googlegroups.com
provider:
 name: CNCF

We also encourage you to provide the following metadata fields, which produce a
more robust listing in catalogs such as OperatorHub.io:

displayName
A user-friendly name for the Operator

description
A string describing the Operator’s functionality; you can use YAML constructs
for multiline strings to provide further display information

version
The semantic version of the Operator, which should be incremented each time a
new Operator image is published

replaces
The version, if any, of the Operator that this CSV updates

icon
A base64–encoded image used by compatible UIs

Writing a Cluster Service Version File | 95

maturity
The maturity level of the Operator included in this release, such as alpha, beta,
or stable

links
A list of relevant links for the Operator, such as documentation, quick start
guides, or blog entries

minKubeVersion
The minimum version of Kubernetes that the Operator must be deployed on,
using the format “Major.Minor.Patch” (e.g., 1.13.0)

Owned CRDs
In order to install an Operator, OLM must know about all of the CRDs it uses. These
come in two forms: those owned by the Operator and those that are used as depen‐
dencies (in CSV terms, these are referred to as “required” CRDs; we will cover these
in the next section).

The SDK skeleton generation adds the spec.customresourcedefinitions section to
the CSV file. It also populates the owned section with entries for each CRD defined by
the Operator, including identifying information such as kind, name, and version.
However, there are more fields that you must manually add before the OLM bundle is
valid.

The following are required fields that you must set for each owned CRD:

displayName
The user-friendly name of the custom resource

description
Information about what the custom resource represents

resources
A list of Kubernetes resource types that will be created by the custom resource

The resources list does not need to be exhaustive. Rather, it should only list visible
resources that are relevant to the user. For example, you should list things an end user
interacts with, such as service and deployment resources, but omit an internal Con‐
figMap that the user does not directly manipulate.

You only need to include one instance of each resource type, regardless of how many
resources of that type are created by the Operator. For example, if the custom
resource creates multiple deployments, you only need to list the deployment resource
type once.

96 | Chapter 8: Operator Lifecycle Manager

An example list for a custom resource that creates one or more deployments and
services is as follows:

resources:
- kind: Service
 version: v1
- kind: Deployment
 version: v1

There are two more fields you need to add to each owned resource: specDescriptors
and statusDescriptors. These fields provide additional metadata about the spec
and status fields that will be present in the custom resource. Compatible UIs can use
this additional information to render an interface for users.

For each field in the custom resource’s spec, add an entry to the specDescriptors
field. Each entry should contain the following:

displayName
The user-friendly name of the field

description
Information about what the field represents

path
The dot-delimited path of the field in the object

x-descriptors
UI component information about the field’s capabilities

Table 8-1 lists the descriptors that are commonly supported by compatible UIs.

Table 8-1. Commonly used spec descriptors

Type Descriptor string
Boolean switch urn:alm:descriptor:com.tectonic.ui:booleanSwitch

Checkbox urn:alm:descriptor:com.tectonic.ui:checkbox

Endpoint list urn:alm:descriptor:com.tectonic.ui:endpointList

Image pull policy urn:alm:descriptor:com.tectonic.ui:imagePullPolicy

Label urn:alm:descriptor:com.tectonic.ui:label

Namespace selector urn:alm:descriptor:com.tectonic.ui:namespaceSelector

Node affinity urn:alm:descriptor:com.tectonic.ui:nodeAffinity

Number urn:alm:descriptor:com.tectonic.ui:number

Password urn:alm:descriptor:com.tectonic.ui:password

Pod affinity urn:alm:descriptor:com.tectonic.ui:podAffinity

Pod anti-affinity urn:alm:descriptor:com.tectonic.ui:podAntiAffinity

Resource requirements urn:alm:descriptor:com.tectonic.ui:resourceRequirements

Writing a Cluster Service Version File | 97

Type Descriptor string
Selector urn:alm:descriptor:com.tectonic.ui:selector:

Text urn:alm:descriptor:com.tectonic.ui:text

Update strategy urn:alm:descriptor:com.tectonic.ui:updateStrategy

The structure of the statusDescriptors field is similar, including the same fields you
need to specify. The only difference is the set of valid descriptors; these are listed in
Table 8-2.

Table 8-2. Commonly used status descriptors

Type Descriptor string
Conditions urn:alm:descriptor:io.kubernetes.conditions

k8s phase reason urn:alm:descriptor:io.kubernetes.phase:reason

k8s phase urn:alm:descriptor:io.kubernetes.phase

Pod count urn:alm:descriptor:com.tectonic.ui:podCount

Pod statuses urn:alm:descriptor:com.tectonic.ui:podStatuses

Prometheus endpoint urn:alm:descriptor:prometheusEndpoint

Text urn:alm:descriptor:text

W3 link urn:alm:descriptor:org.w3:link

As an example, the following snippet contains a subset of the descriptors for the etcd
Operator:

specDescriptors:
- description: The desired number of member Pods for the etcd cluster.
 displayName: Size
 path: size
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podCount'
- description: Limits describes the minimum/maximum amount of compute
 resources required/allowed
 displayName: Resource Requirements
 path: pod.resources
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:resourceRequirements'

statusDescriptors:
- description: The status of each of the member Pods for the etcd cluster.
 displayName: Member Status
 path: members
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
- description: The current size of the etcd cluster.
 displayName: Cluster Size
 path: size

98 | Chapter 8: Operator Lifecycle Manager

- description: The current status of the etcd cluster.
 displayName: Status
 path: phase
 x-descriptors:
 - 'urn:alm:descriptor:io.kubernetes.phase'
- description: Explanation for the current status of the cluster.
 displayName: Status Details
 path: reason
 x-descriptors:
 - 'urn:alm:descriptor:io.kubernetes.phase:reason'

Required CRDs
Custom resources that are used by an Operator but not owned by it are designated as
required. When installing an Operator, OLM will find the appropriate Operator that
provides a required CRD and install it. This allows Operators to maintain a limited
scope while utilizing composition and dependency resolution when necessary.

The required section of a CSV is optional. Only Operators that require the use of
other, non-Kubernetes resources need to include this.

Each required CRD is specified using its:

name
The full name used to identify the required CRD

version
The version of the CRD desired

kind
The Kubernetes resource kind; displayed to users in compatible UIs

displayName
The user-friendly name of the field; displayed to users in compatible UIs

description
Information on how the required CRD is used; displayed to users in compatible
UIs

For example, the following indicates an EtcdCluster is a required CRD for a different
Operator:

required:
- name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

One entry is needed under the required field for each required CRD.

Writing a Cluster Service Version File | 99

Install Modes
The install modes section of a CSV tells OLM how the Operator can be deployed.
There are four options, all of which must be present in the installModes field with
their own flag indicating whether or not they are supported. The Operator SDK
includes a default set of values for each of these options when generating a CSV.

The following installation modes are supported:

OwnNamespace
The Operator can be deployed to an OperatorGroup that selects its own
namespace.

SingleNamespace
The Operator can be deployed to an OperatorGroup that selects one namespace.

MultiNamespace
The Operator can be deployed to an OperatorGroup that selects more than one
namespace.

AllNamespaces
The Operator can be deployed to an OperatorGroup that selects all namespaces
(defined as targetNamespace: "").

The following snippet shows the proper way to structure this field, along with the
default values set by the SDK during generation:

installModes:
- type: OwnNamespace
 supported: true
- type: SingleNamespace
 supported: true
- type: MultiNamespace
 supported: false
- type: AllNamespaces
 supported: true

Versioning and Updating
True to its name, each Cluster Service Version file represents a single version of an
Operator. Subsequent versions of the Operator will each have their own CSV file. In
many cases, this can be a copy of the previous version with the appropriate changes.

The following describes the general changes you need to make between versions of an
Operator (this is not an exhaustive list; take care to review the entire contents of the
file to ensure no further changes are required):

• Change the new CSV filename to reflect the new version of the Operator.

100 | Chapter 8: Operator Lifecycle Manager

• Update the metadata.name field of the CSV file with the new version.
• Update the spec.version field with the new version.
• Update the spec.replaces field to indicate the previous version of the CSV that

is being upgraded by the new version.
• In most cases, the new CSV will refer to a newer image of the Operator itself. Be

sure to update the spec.containers.image field as appropriate to refer to the
correct image.

• In the event of a CRD change, you may need to update the specDescriptor and
statusDescriptor fields of the CRD reference in the CSV file.

While these changes will result in a new version of the Operator, users cannot access
that version until it is present in a channel. Update the *.package.yaml file to reference
the new CSV file for the appropriate channels (see the next section for more informa‐
tion on this file).

Do not modify existing CSV files once they are released and in use
by OLM. Make changes in a new version of the file instead, and
propagate it to users through the use of channels.

Writing a Package Manifest File
Compared to writing a Cluster Service Version file, writing a package manifest is sig‐
nificantly easier. A package file requires three fields:

packageName
The name of the Operator itself; this should match the value used in the CSV file

channels
A list of all channels for delivering versions of the Operator

defaultChannel
The name of the channel users should subscribe to by default

Each entry in the channels field is made up of two items:

name
The name of the channel; this is what users will subscribe to

currentCSV
The full name (including the Operator name but not the .yaml suffix) of the CSV
file that is currently installed through the channel

Writing a Package Manifest File | 101

It is left to the Operator’s team to determine their policy for what channels will be
supported.

The following example distributes the Visitors Site Operator through two channels:

packageName: visitors-operator
channels:
- name: stable
 currentCSV: visitors-operator.v1.0.0
- name: testing
 currentCSV: visitors-operator.v1.1.0
defaultChannel: stable

Running Locally
Once you have written the necessary bundle files, the next step is to build the bundle
and test it against a local cluster, such as one started by Minikube. In the following
sections, we’ll describe the process of installing OLM into a cluster, building the OLM
bundle, and subscribing to a channel to deploy the Operator.

Prerequisites
This section covers the changes you need to make to the cluster to run OLM, as well
as configuring it to look at your repository of bundles. You only need to complete
these steps once for a cluster; we cover iterative development and testing of an Opera‐
tor in “Building the OLM Bundle” on page 105.

Install the Marketplace Operator
The Marketplace Operator imports Operators from an external data store. In this
chapter, you’ll be using Quay.io to host your OLM bundles.

Despite its name, the Marketplace Operator is not tied to a particu‐
lar source of Operators. It simply acts as a conduit to pull Opera‐
tors from any compatible external store. One such site is
OperatorHub.io, which we discuss in Chapter 10.

In keeping with the notion that CRDs represent an Operator’s API, installing the
Marketplace Operator introduces two CRDs:

• The OperatorSource resource describes an external hosting registry for OLM
bundles. In this example, we use Quay.io, a free image hosting site.

102 | Chapter 8: Operator Lifecycle Manager

• The CatalogSourceConfig resource bridges between an OperatorSource and
OLM itself. An OperatorSource automatically creates CatalogSourceConfig
resources, and you do not need to explicitly interact with this type.

Similar to OLM, the Marketplace Operator is an evolving project.
As such, be sure to consult its GitHub repository to find the latest
installation instructions for the current release.

As there are currently no formal releases of the Marketplace Operator, it is installed
by cloning the upstream repository and using the manifests within:

$ git clone https://github.com/operator-framework/operator-marketplace.git
$ cd operator-marketplace
$ kubectl apply -f deploy/upstream/
namespace/marketplace created
customresourcedefinition.apiextensions.k8s.io/catalogsourceconfigs.....
customresourcedefinition.apiextensions.k8s.io/operatorsources.operators....
serviceaccount/marketplace-operator created
clusterrole.rbac.authorization.k8s.io/marketplace-operator created
role.rbac.authorization.k8s.io/marketplace-operator created
clusterrolebinding.rbac.authorization.k8s.io/marketplace-operator created
rolebinding.rbac.authorization.k8s.io/marketplace-operator created
operatorsource.operators.coreos.com/upstream-community-operators created
deployment.apps/marketplace-operator created

You can verify the installation by ensuring the marketplace namespace was created:

$ kubectl get ns marketplace
NAME STATUS AGE
marketplace Active 4m19s

Install Operator Courier
Operator Courier is a client-side tool used for building and pushing the OLM bundle
to a repository. It is also used for verifying the contents of the bundle files.

You can install Operator Courier through the Python package installer pip:

$ pip3 install operator-courier

Once installed, you can run Operator Courier from the command line:

$ operator-courier
usage: operator-courier <command> [<args>]

These are the commands you can use:
 verify Create a bundle and test it for correctness.
 push Create a bundle, test it, and push it to an app registry.
 nest Take a flat to-be-bundled directory and version nest it.

Running Locally | 103

https://oreil.ly/VNOrU

 flatten Create a flat directory from versioned operator bundle yaml
 files.

Retrieve a Quay token
Quay.io is a free hosting site for container images. We will use Quay.io to host the
OLM bundles to serve them to the Operator Marketplace.

New users can sign up for a free Quay.io account via the website.

In order for Operator Courier to push OLM bundles into your Quay.io account, you
need an authentication token. While the token is accessible through the web UI, you
can also use the following script to retrieve it from the command line, substituting
your username and password as indicated:

USERNAME=<quay.io username>
PASSWORD=<quay.io password>
URL=https://quay.io/cnr/api/v1/users/login

TOKEN_JSON=$(curl -s -H "Content-Type: application/json" -XPOST $URL -d \
'{"user":{"username":"'"${USERNAME}"'","password": "'"${PASSWORD}"'"}}')

echo `echo $TOKEN_JSON | awk '{split($0,a,"\""); print a[4]}'`

An interactive version of this script is provided in this book’s GitHub repository.

You will use this token later when pushing the bundle to Quay.io, so save it some‐
where accessible. The output of the script provides a command to save it as an envi‐
ronment variable.

Create the OperatorSource
An OperatorSource resource defines the external data store used to host Operator
bundles. In this case, you will be defining an OperatorSource to point to your Quay.io
account, which will provide access to its hosted OLM bundles.

A sample OperatorSource manifest follows; you should replace both instances of
<QUAY_USERNAME> with your Quay.io username:

apiVersion: operators.coreos.com/v1
kind: OperatorSource
metadata:
 name: <QUAY_USERNAME>-operators
 namespace: marketplace
spec:
 type: appregistry
 endpoint: https://quay.io/cnr
 registryNamespace: <QUAY_USERNAME>

Using your username here isn’t a hard requirement; it’s just a simple way to
ensure uniqueness for the OperatorSource name.

104 | Chapter 8: Operator Lifecycle Manager

https://quay.io/
https://github.com/kubernetes-operators-book/chapters/blob/master/ch08/get-quay-token

Once you’ve written the OperatorSource manifest, create the resource using the fol‐
lowing command (assuming the manifest file is named operator-source.yaml):

$ kubectl apply -f operator-source.yaml

To verify the OperatorSource was deployed correctly, you can look in the market
place namespace for a list of all known OperatorSources:

$ kubectl get opsrc -n marketplace
NAME TYPE ENDPOINT REGISTRY STATUS
jdob-operators appregistry https://quay.io/cnr jdob Failed

If there are no bundles at the endpoint when you create the source, the status will
be Failed. You can ignore this for now; you’ll refresh this list later, once you’ve
uploaded a bundle.

The output shown here has been truncated for readability; your
results may vary slightly.

When the OperatorSource is initially created, it may fail if there are no OLM bundles
found in the user’s Quay.io application list. In a later step, you will create and deploy
the bundles, after which the OperatorSource will start correctly. We included this step
as a prerequisite since you only need to do it once; when updating an OLM bundle or
creating new ones in the same Quay.io namespace, you will reuse the OperatorSource
resource.

Additionally, the OperatorSource creation results in the creation of a CatalogSource.
No further action is required for this resource, but you can confirm its existence by
checking in the marketplace namespace:

$ kubectl get catalogsource -n marketplace
NAME NAME TYPE PUBLISHER AGE
jdob-operators grpc 6m5s
[...]

Building the OLM Bundle
Once you’ve installed the initial prerequisites, the bulk of your time is spent on a
build and test cycle. This section covers the steps necessary to build and host an OLM
bundle on Quay.io.

Perform linting

OLM bundles are verified using Operator Courier’s verify command:

$ operator-courier verify $OLM_FILES_DIRECTORY

Running Locally | 105

Push the bundle to Quay.io
When the metadata files pass verification and are ready to be tested, Operator Cou‐
rier uploads the OLM bundle into your Quay.io account. There are a number of
required parameters (and some optional arguments) when using the push command:

$ operator-courier push
usage: operator-courier [-h] [--validation-output VALIDATION_OUTPUT]
source_dir namespace repository release token

Here’s an example push for the Visitors Site Operator:

OPERATOR_DIR=visitors-olm/
QUAY_NAMESPACE=jdob
PACKAGE_NAME=visitors-operator
PACKAGE_VERSION=1.0.0
QUAY_TOKEN=*****
$ operator-courier push "$OPERATOR_DIR" "$QUAY_NAMESPACE" \
"$PACKAGE_NAME" "$PACKAGE_VERSION" "$QUAY_TOKEN"

QUAY_TOKEN is the full token, including the “basic” prefix. You can use the script
we introduced earlier in this section to set this variable.

By default, bundles pushed to Quay.io in this fashion are marked as
private. Navigate to the image at https://quay.io/application/ and
mark it as public so that it is accessible to the cluster.

The Operator bundle is now ready for testing. For subsequent versions, update the
PACKAGE_VERSION variable according to the new version of the CSV file (see “Version‐
ing and Updating” on page 100 for more information) and push a new bundle.

Restart the OperatorSource
The OperatorSource reads the list of Operators in the configured Quay.io account on
startup. After uploading a new Operator or a new version of a CSV file, you’ll need to
restart the OperatorSource pod to pick up the changes.

The pod’s name begins with the same name as the OperatorSource. Using the exam‐
ple OperatorSource from the previous section, with “jdob” as the Quay.io username,
the following demonstrates how to restart the OperatorSource:

$ kubectl get pods -n marketplace
NAME READY STATUS RESTARTS AGE
jdob-operators-5969c68d68-vfff6 1/1 Running 0 34s
marketplace-operator-bb555bb7f-sxj7d 1/1 Running 0 102m
upstream-community-operators-588bf67cfc 1/1 Running 0 101m

$ kubectl delete pod jdob-operators-5969c68d68-vfff6 -n marketplace

106 | Chapter 8: Operator Lifecycle Manager

https://quay.io/application/

pod "jdob-operators-5969c68d68-vfff6" deleted

$ kubectl get pods -n marketplace
NAME READY STATUS RESTARTS AGE
jdob-operators-5969c68d68-6w8tm 1/1 Running 0 12s
marketplace-operator-bb555bb7f-sxj7d 1/1 Running 0 102m
upstream-community-operators-588bf67cfc 1/1 Running 0 102m

The newly started pod name suffix differs from the original pod, confirming that
a new pod has been created.

At any point, you can query the OperatorSource to see a list of its known Operators:

$ OP_SRC_NAME=jdob-operators
$ kubectl get opsrc $OP_SRC_NAME \
-o=custom-columns=NAME:.metadata.name,PACKAGES:.status.packages \
-n marketplace
NAME PACKAGES
jdob-operators visitors-operator

Installing the Operator Through OLM
After you’ve configured the Marketplace Operator to retrieve your bundle, test it by
creating a subscription to one of its supported channels. OLM reacts to the subscrip‐
tion and installs the corresponding Operator.

Create the OperatorGroup
You’ll need an OperatorGroup to denote which namespaces the Operator should
watch. It must exist in the namespace where you want to deploy the Operator. For
simplicity while testing, the example OperatorGroup defined here deploys the Opera‐
tor into the existing marketplace namespace:

apiVersion: operators.coreos.com/v1alpha2
kind: OperatorGroup
metadata:
 name: book-operatorgroup
 namespace: marketplace
spec:
 targetNamespaces:
 - marketplace

Like with other Kubernetes resources, use the kubectl apply command to create the
OperatorGroup:

$ kubectl apply -f operator-group.yaml
operatorgroup.operators.coreos.com/book-operatorgroup created

Running Locally | 107

Create the subscription
A subscription links the previous steps together by selecting an Operator and one of
its channels. OLM uses this information to start the corresponding Operator pod.

The following example creates a new subscription to the stable channel for the Visi‐
tors Site Operator:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: book-sub
 namespace: marketplace
spec:
 channel: stable
 name: visitors-operator
 source: jdob-operators
 sourceNamespace: marketplace

Indicates the namespace the subscription will be created in.

Selects one of the channels defined in the package manifest.

Identifies which OperatorSource to look at for the corresponding Operator and
channel.

Specifies the OperatorSource’s namespace.

Create the subscription using the apply command:

$ kubectl apply -f subscription.yaml
subscription.operators.coreos.com/book-sub created

OLM will be notified of the new subscription and will start the Operator pod in the
marketplace namespace:

$ kubectl get pods -n marketplace
NAME READY STATUS RESTARTS AGE
jdob-operators-5969c68d68-6w8tm 1/1 Running 0 143m
visitors-operator-86cb966f59-l5bkg 1/1 Running 0 12s

We have truncated the output here for readability; your results may
vary slightly.

108 | Chapter 8: Operator Lifecycle Manager

Testing the Running Operator
Once OLM has started the Operator, you can test it by creating a custom resource of
the same type that the Operator owns. Refer to Chapters 6 and 7 for more informa‐
tion about testing a running Operator.

Visitors Site Operator Example
You can find the OLM bundle files for the Visitors Site Operator in the book’s GitHub
repository.

There are two directories of note:

bundle
This directory contains the actual OLM bundle files, including the CSV, CRD,
and package files. You can use the process outlined in this chapter to build and
deploy the Visitors Site Operator using these files.

testing
This directory contains the additional resources required to deploy an Operator
from OLM. These include the OperatorSource, OperatorGroup, subscription,
and a sample custom resource to test the Operator.

Readers are welcome to submit feedback, issues, and questions on these files through
the Issues tab in GitHub.

Summary
As with any piece of software, managing installation and upgrades is critical for
Operators. Operator Lifecycle Manager fills this role, giving you a mechanism for dis‐
covering Operators, handling updates, and ensuring stability.

Resources
• OLM installation
• OLM repository
• Marketplace Operator repository
• Operator Courier repository

Visitors Site Operator Example | 109

https://github.com/kubernetes-operators-book/chapters/tree/master/ch08
https://github.com/kubernetes-operators-book/chapters/tree/master/ch08
https://oreil.ly/cu1IP
https://oreil.ly/1IN19
https://oreil.ly/VVvFM
https://oreil.ly/d6XdP

CHAPTER 9

Operator Philosophy

We’ve noted the problems Operators aim to solve, and you’ve stepped through
detailed examples of how to build Operators with the SDK. You’ve also seen how to
distribute Operators in a coherent way with OLM. Let’s try to connect those tactics to
the strategic ideas that underpin them to understand an existential question: what are
Operators for?

The Operator concept descends from Site Reliability Engineering (SRE). Back in
Chapter 1, we talked about Operators as software SREs. Let’s review some key SRE
tenets to understand how Operators apply them.

SRE for Every Application
SRE began at Google in response to the challenges of running large systems with
ever-increasing numbers of users and features. A key SRE objective is allowing serv‐
ices to grow without forcing the teams that run them to grow in direct proportion. To
run systems at dramatic scale without a team of dramatic size, SREs write code to
handle deployment, operations, and maintenance tasks. SREs create software that
runs other software, keeps it running, and manages it over time. SRE is a wider set of
management and engineering techniques with automation as a central principle. You
may have heard its goal referred to by different names, like “autonomous” or “self-
driving” software. In the Operator Maturity Model we introduced in Figure 4-1, we
call it “Auto Pilot.”

Operators and the Operator Framework make it easier to implement this kind of
automation for applications that run on Kubernetes. Kubernetes orchestrates service
deployments, making some of the work of horizontal scaling or failure recovery auto‐
matic for stateless applications. It represents distributed system resources as API

111

1 Beyer et al. (eds.), Site Reliability Engineering, 119.
2 Beyer et al. (eds.), Site Reliability Engineering, 120.

abstractions. Using Operators, developers can extend those practices to complex
applications.

The well-known “SRE book” Site Reliability Engineering (O’Reilly), by Betsy Beyer et
al. (eds.), is the authoritative guide to SRE principles. Google engineer Carla Geisser’s
comments in it typify the automation element of SRE: “If a human operator needs to
touch your system during normal operations, you have a bug.”1 SREs write code to fix
those bugs. Operators are a logical place to program those fixes for a broad class of
applications on Kubernetes. An Operator reduces human intervention bugs by auto‐
mating the regular chores that keep its application running.

Toil Not, Neither Spin
SRE tries to reduce toil by creating software to perform the tasks required to operate a
system. Toil is defined in this context as work that is “automatable, tactical, devoid of
enduring value, and that scales linearly as a service grows.”2

Automatable: Work Your Computer Would Like
Work is automatable if a machine could do it. If a task needs the discernment of
human judgment, a machine can’t do it. For example, expense reports are subjected to
a variety of machine-driven boundary checking, but usually some final human review
is required—of items the automated process flagged as out of bounds, if not of every
receipt. The approval of reports within bounds may be automatable; the final accept‐
ance or rejection of out-of-bounds cases may not. Work that could be automated by
software should be automated by software if it is also repetitive. The cost of building
software to perform a repetitive task can be amortized over a lifetime of repetitions.

Running in Place: Work of No Enduring Value
It can be uncomfortable to think of some work as having no value, but in SRE terms,
work is “devoid of enduring value” if doing the work doesn’t change the service. Back‐
ing up a database server is one example. The database doesn’t go faster, serve more
requests, or become inherently more reliable when you back it up. It also doesn’t stop
working. Yet despite having no enduring value, backups are clearly worth doing. This
kind of work often makes a good job for an Operator.

112 | Chapter 9: Operator Philosophy

https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117/

Growing Pains: Work That Expands with the System
You might design a service so that it scales in the horizontal plane, to serve more
requests or run more instances of the service. But if adding a new instance requires
an engineer to configure computers and wire them to a network, scaling the service is
anything but automatic. In the worst cases of this kind of toil, ops work might scale
linearly with your service. Every 10% of service growth—10% more users, 10% more
requests per second, or a new feature that uses 10% more CPU—means 10% more
custodial labor.

Manual scaling: Just like in the bad old days
Imagine running the stateless web server from Chapter 1. You deploy three instances
on three VMs. To add more web server capacity, you spin up new VMs, assign them
(unique) IP addresses, and assign (per-IP) ports where the web server binaries listen.
Next, you inform the load balancer of the new endpoints so it can route some
requests there.

As designed and provisioned, it’s true that your simple stateless web server can grow
with demand. It can serve more users and add more features by spreading an increas‐
ing load over multiple instances. But the team that runs the service will always have
to grow along with it. This effect gets worse as the system gets larger, because adding
one VM won’t meaningfully increase the capacity of a thousand instances.

Automating horizontal scaling: Kubernetes replicas
If you deploy your stateless web server on Kubernetes instead, you can scale it up and
down with little more than a kubectl command. This is an example of Kubernetes as
an implementation of SRE’s automation principles at the platform level. Kubernetes
abstracts the infrastructure where the web servers run and the IP addresses and ports
through which they serve connections. You don’t have to configure each new web
server instance when scaling up, or deliberately free IPs from your range when scal‐
ing down. You don’t have to program the load balancer to deliver traffic to a new
instance. Software does those chores instead.

Operators: Kubernetes Application Reliability Engineering
Operators extend Kubernetes to extend the principle of automation to complex, state‐
ful applications running on the platform. Consider an Operator that manages an
application with its own notions of clustering. When the etcd Operator replaces a
failed etcd cluster member, it arranges a new pod’s membership by configuring it and
the existing cluster with endpoints and authentication.

If you are on a team responsible for managing internal services, Operators will enable
you to capture expert procedures in software and expand the system’s “normal

Operators: Kubernetes Application Reliability Engineering | 113

3 Beyer et al. (eds.), Site Reliability Engineering, 139.
4 Beyer et al. (eds.), Site Reliability Engineering, 140.
5 Beyer et al. (eds.), Site Reliability Engineering, 139.

operations”: that is, the set of conditions it can handle automatically. If you’re devel‐
oping a Kubernetes native application, an Operator lets you think about how users
toil to run your app and save them the trouble. You can build Operators that not only
run and upgrade an application, but respond to errors or slowing performance.

Control loops in Kubernetes watch resources and react when they don’t match some
desired state. Operators let you customize a control loop for resources that represent
your application. The first Operator concerns are usually automatic deployment and
self-service provisioning of the operand. Beyond that first level of the maturity
model, an Operator should know its application’s critical state and how to repair it.
The Operator can then be extended to observe key application metrics and act to
tune, repair, or report on them.

Managing Application State
An application often has internal state that needs to be synchronized or maintained
between replicas. Once an Operator handles installation and deployment, it can move
farther along the maturity model by keeping such shared state in line among a
dynamic group of pods. Any application with its own concept of a cluster, such as
many databases and file servers, has this kind of shared application state. It may
include authentication resources, replication arrangements, or writer/reader relation‐
ships. An Operator can configure this shared state for a new replica, allowing it to
expand or restore the application’s cluster with new members. An Operator might
rectify external resources its application requires. For example, consider manipulat‐
ing an external load balancer’s routing rules as replicas die and new ones replace
them.

Golden Signals Sent to Software
Beyer at al. suggest monitoring the “four golden signals”3 for the clearest immediate
sense of a system’s health. These characteristics of a service’s basic operation are a
good place to start planning what your Operator should watch. In the SRE book that
popularized them, golden signals convey something about a system’s state important
enough to trigger a call to a human engineer.4 When designing Operators, you should
think of anything that might result in a call to a person as a bug you can fix.

Site Reliability Engineering lists the four golden signals as latency, traffic, errors, and
saturation.5 Accurate measurements of these four areas, adapted to the metrics that
best represent a particular application’s condition, ensure a reasonable understanding

114 | Chapter 9: Operator Philosophy

of the application’s health. An Operator can monitor these signals and take
application-specific actions when they depict a known condition, problem, or error.
Let’s take a closer look:

Latency
Latency is how long it takes to do something. It is commonly understood as the
elapsed time between a request and its completion. For instance, in a network,
latency is measured as the time it takes to send a packet of data between two
points. An Operator might measure application-specific, internal latencies like
the lag time between actions in a game client and responses in the game engine.

Traffic
Traffic measures how frequently a service is requested. HTTP requests per sec‐
ond is the standard measurement of web service traffic. Monitoring regimes
often split this measurement between static assets and those that are dynamically
generated. It makes more sense to monitor something like transactions per sec‐
ond for a database or file server.

Errors
Errors are failed requests, like an HTTP 500-series error. In a web service, you
might have an HTTP success code but see scripting exceptions or other client-
side errors on the successfully delivered page. It may also be an error to exceed
some latency guarantee or performance policy, like a guarantee to respond to any
request within a time limit.

Saturation
Saturation is a gauge of a service’s consumption of a limited resource. These
measurements focus on the most limited resources in a system, typically CPU,
memory, and I/O. There are two key ideas in monitoring saturation. First, perfor‐
mance gets worse even before a resource is 100% utilized. For instance, some file‐
systems perform poorly when more than about 90% full, because the time it takes
to create a file increases as available space decreases. Because of similar effects in
nearly any system, saturation monitors should usually respond to a high-water
mark of less than 100%. Second, measuring saturation can help you anticipate
some problems before they happen. Dividing a file service’s free space by the rate
at which an application writes data lets your Operator estimate the time remain‐
ing until storage is full.

Operators can iterate toward running your service on auto pilot by measuring and
reacting to golden signals that demand increasingly complex operations chores.
Apply this analysis each time your application needs human help, and you have a
basic plan for iterative development of an Operator.

Operators: Kubernetes Application Reliability Engineering | 115

6 Brandon Phillips, “Introducing Operators,” CoreOS Blog, November 3, 2016, https://oreil.ly/PtGuh.

Seven Habits of Highly Successful Operators
Operators grew out of work at CoreOS during 2015 and 2016. User experience with
the Operators built there and continuing at Red Hat, and in the wider community,
have helped refine seven guidelines set out as the concept of Kubernetes Operators
solidified: 6

1. An Operator should run as a single Kubernetes deployment.
You installed the etcd Operator in Chapter 2 from one manifest, without the
OLM machinery introduced in Chapter 8. While you provide a CSV and other
assets to make an OLM bundle for an Operator, OLM still uses that single mani‐
fest to deploy the Operator on your behalf.
To illustrate this, although you usually need to configure RBAC and a service
account, you can add the etcd Operator to a Kubernetes cluster with a single
command. It is just a deployment:

$ kubectl create -f https://raw.githubusercontent.com/\
 kubernetes-operators-book/chapters/master/ch03/
 etcd-operator-deployment.yaml

2. Operators should define new custom resource types on the cluster.
Think of the etcd examples back in Chapter 2. You created a CRD, and in it you
defined a new kind of resource, the EtcdCluster. That kind represents instances
of the operand, a running etcd cluster managed by the Operator. Users create
new application instances by creating new custom resources of the application’s
kind.

3. Operators should use appropriate Kubernetes abstractions whenever possible.
Don’t write new code when API calls can do the same thing in a more consistent
and widely tested manner. Some quite useful Operators do little more than
manipulate some set of standard resources in a way that suits their application.

4. Operator termination should not affect the operand.
When an Operator stops or is deleted from the cluster, the application it manages
should continue to function. Return to your cluster and delete either the etcd or
the Visitors Site Operator. While you won’t have automatic recovery from fail‐
ures, you’ll still be able to use the application features of the operand in the
absence of the Operator. You can visit the Visitors Site or retrieve a key-value pair
from etcd even when the respective Operator isn’t running.
Note that removing a CRD does affect the operand application. In fact, deleting a
CRD will in turn delete its CR instances.

116 | Chapter 9: Operator Philosophy

https://oreil.ly/PtGuh

5. An Operator should understand the resource types created by any previous versions.
Operators should be backward compatible with the structures of their predeces‐
sors. This places a premium on designing carefully and for simplicity, because the
resources you define in version 1 will necessarily live on.

6. An Operator should coordinate application upgrades.
Operators should coordinate upgrades of their operands, potentially including
rolling upgrades across an application cluster and almost certainly including the
ability to roll back to a previous version when there is a problem. Keeping soft‐
ware up to date is necessary toil, because only the latest software has the latest
fixes for bugs and security vulnerabilities. Automating this upgrade toil is an
ideal job for an Operator.

7. Operators should be thoroughly tested, including chaos testing.
Your application and its relationship to its infrastructure constitute a complex
distributed system. You’re going to trust your Operator to manage that system.
Chaos testing intentionally causes failures of system components to discover
unexpected errors or degradation. It’s good practice to build a test suite that sub‐
jects your Operator to simulated errors and the outright disappearance of pods,
nodes, and networking to see where failures arise or cascade between compo‐
nents as their dependencies collapse beneath them.

Summary
Operators tend to advance through phases of maturity ranging from automatic
installs, through seamless application upgrades, to a steady normal state of “auto
pilot” where they react to and correct emergent issues of performance and stability in
their operands. Each phase aims to end a little more human toil.

Making an Operator to distribute, deploy, and manage your application makes it eas‐
ier to run it on Kubernetes and allows the application to leverage Kubernetes features.
An Operator that follows the seven habits outlined here is readily deployed, and can
itself be managed through its lifecycle by OLM. That Operator makes its operand eas‐
ier to run, manage, and potentially to implement. By monitoring its application’s
golden signals, an Operator can make informed decisions and free engineers from
rote operations tasks.

Summary | 117

https://oreil.ly/K8IUR

CHAPTER 10

Getting Involved

All of the components in the Operator Framework, including the Operator SDK,
Operator Lifecycle Manager, and Operator Metering, are still in the early stages of
their lifespans. There are a variety of ways to contribute to their development, rang‐
ing from something as simple as submitting a bug report to becoming an active
developer.

One of the simplest ways of interacting with both users and developers of the Opera‐
tor Framework is through its Special Interest Group, or SIG. The SIG uses a mailing
list to discuss topics including upcoming release information, best practices, and user
questions. The SIG is free to join from their website.

For more direct interaction, the Kubernetes Slack team is an active community of
users and developers. The “kubernetes-operators” channel in particular covers topics
related to this book.

The Operator Framework GitHub organization contains the project repositories for
each of its components. There are also a variety of supplemental repositories, such as
the Operator SDK Samples repository, that further help with Operator development
and usage.

Feature Requests and Reporting Bugs
One of the simplest ways, albeit an extremely valuable one, of getting involved with
the Operator Framework is to submit bug reports. The framework project teams use
GitHub’s built-in issue tracking to triage and fix outstanding issues. You can find the
tracker for each specific project under the Issues tab on the GitHub project page. For
example, the Operator SDK’s issue tracker can be found at the Operator Framework
GitHub repo.

119

https://groups.google.com/forum/#!forum/operator-framework
https://kubernetes.slack.com/
https://oreil.ly/8iDG1
https://oreil.ly/CYhac
https://oreil.ly/l6eUM
https://oreil.ly/l6eUM

1 See example issues here and here.

Additionally, the project teams use the issue tracker to track feature requests. The
New Issue button prompts submitters to select between bug reports and feature
requests, which are then automatically tagged appropriately. Submitting feature
requests provides a wide variety of uses cases and helps drive the project direction
based on community needs.

There are a few general principles1 to keep in mind when submitting a new issue:

• Be specific. For bugs, provide as much information as possible about the running
environment, including project versions and cluster details. When possible,
include detailed reproduction steps. For feature requests, start by including the
use case being addressed by the requested feature. This aids in the feature priori‐
tization and helps the team decide if there is a better or existing way to fulfill the
request.

• Keep the scope limited to a single bug. Multiple reports are easier to triage and
track than a report of a single, multifaceted issue.

• Try to select the applicable project. For example, if the issue specifically applies to
working with OLM, create the issue in that repository. For some bugs, it’s not
always possible to determine where the problem is originating from. In those
cases, you can choose the most applicable project repository and let the team tri‐
age it appropriately.

• Use an existing issue if one is found. Use GitHub’s issue tracker’s search ability to
see if a similar bug or feature request is found before creating a new report. Addi‐
tionally, check the list of closed issues and reopen an existing bug if possible.

Contributing
Of course, if you’re comfortable working with code, contributions to the source code
are appreciated. There are current instructions for setting up a development environ‐
ment in the developer guide. Be sure to review the latest contributing guidelines
before submitting any pull requests.

For reference, the repositories for the three primary Operator Framework compo‐
nents are as follows:

• https://github.com/operator-framework/operator-sdk
• https://github.com/operator-framework/operator-lifecycle-manager
• https://github.com/operator-framework/operator-metering

120 | Chapter 10: Getting Involved

https://oreil.ly/sU3rW
https://oreil.ly/m81qp
https://oreil.ly/Gi9mA
https://oreil.ly/syVVk
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework/operator-lifecycle-manager
https://github.com/operator-framework/operator-metering

If you’re not comfortable coding, you can still contribute by updating and fleshing
out the project documentation. The “kind/documentation” label for issues identifies
outstanding errors and enhancement requests.

Sharing Operators
OperatorHub.io is a hosting site for community-written Operators. The site contains
Operators from a wide variety of categories, including:

• Databases
• Machine learning
• Monitoring
• Networking
• Storage
• Security

The community provides automated testing and manual vetting for Operators fea‐
tured on this site. They are packaged with the necessary metadata files to be installed
and managed by OLM (see Chapter 8 for more information).

You can submit Operators for inclusion in OperatorHub.io via pull requests to the
Community Operators repository. Check out this OperatorHub.io page with the lat‐
est submission instructions, including packaging guidelines.

Additionally, OperatorHub.io provides a way to preview how your CSV file will
appear once it has been accepted and is hosted on the site. This is a good way to
ensure that you have entered the proper metadata fields. You can find out more on
the Operator Preview page.

The Awesome Operators repository keeps an updated list of Operators that are not
hosted on OperatorHub.io. While these Operators have not been vetted in the same
way as those hosted on OperatorHub.io, they are all open source, with their corre‐
sponding GitHub repositories listed.

Summary
As an open source project, the Operator Framework thrives on community involve‐
ment. Every bit helps, from participating in the mailing list conversations to contri‐
buting code for bug fixes and new features. Contributing to OperatorHub.io also
helps promote your Operators while growing the ecosystem of available functionality.

Sharing Operators | 121

https://operatorhub.io
https://oreil.ly/j0rlN
https://operatorhub.io/contribute
https://operatorhub.io/preview
https://oreil.ly/OClO4

APPENDIX A

Running an Operator as a
Deployment Inside a Cluster

Running an Operator outside of the cluster, is convenient for testing and debugging
purposes, but production Operators run as Kubernetes deployments. There are a few
extra steps involved for this deployment style:

1. Build the image. The Operator SDK’s build command chains to the underlying
Docker daemon to build the Operator image, and takes the full image name and
version when run:

$ operator-sdk build jdob/visitors-operator:0.1

2. Configure the deployment. Update the deploy/operator.yaml file that the SDK gen‐
erates with the name of the image. The field to update is named image and can be
found under:

spec -> template -> spec -> containers

The generated file defaults the value to REPLACE_IMAGE, which you should update
to reflect the name of the image built in the previous command.
Once built, push the image to an externally accessible repository such as Quay.io
or Docker Hub.

3. Deploy the CRD. The SDK generates a skeleton CRD that will function correctly,
but see Appendix B for more information on fleshing out this file:

$ kubectl apply -f deploy/crds/*_crd.yaml

4. Deploy the service account and role. The SDK generates the service account and
role required by the Operator. Update these to limit the permissions of the role to
the minimum of what is needed for the Operator to function.
Once you have scoped the role permissions appropriately, deploy the resources
into the cluster:

123

https://quay.io
https://hub.docker.com

$ kubectl apply -f deploy/service_account.yaml
$ kubectl apply -f deploy/role.yaml
$ kubectl apply -f deploy/role_binding.yaml

You must deploy these files in the order listed, as the role
binding requires both the role and the service account to be in
place.

5. Create the Operator deployment. The last step is to deploy the Operator itself. You
can use the previously edited operator.yaml file to deploy the Operator image into
the cluster:

$ kubectl apply -f deploy/operator.yaml

124 | Appendix A: Running an Operator as a Deployment Inside a Cluster

APPENDIX B

Custom Resource Validation

When adding a new API, the Operator SDK generates a skeleton custom resource
definition. This skeleton is usable as is; no further changes or additions need to be
made to create custom resources.

The skeleton CRD achieves this flexibility by simply defining the spec and status
sections, representing the user input and custom resource state, respectively, as open-
ended objects:

spec:
 type: object
status:
 type: object

The drawback to this approach is that Kubernetes isn’t able to validate any of the data
in either of these fields. Since Kubernetes doesn’t know what values should or should
not be allowed, as long as the manifest parses, the values are allowed.

To solve this problem, CRDs include support for the OpenAPI Specification to
describe the validation constraints of each of its fields. You’ll need to manually add
this validation to the CRD to describe the allowed values for both the spec and
status sections.

You’ll make two primary changes to the spec section of the CRD:

• Add a properties map. For each of the attributes that may be specified for cus‐
tom resources of this type, add an entry to this map along with information on
the parameter’s type and allowed values.

• Optionally, you can add a required field listing the properties whose presence
Kubernetes should enforce. Add the name of each required property as an entry

125

https://oreil.ly/bzRIu

in this list. If you omit any of these properties during resource creation, Kuber‐
netes will reject the resource.

You can also flesh out the status section with property information following the
same conventions as for spec; however, there is no need to add a required field.

In both cases, the existing line type: object remains; you insert
the new additions at the same level as this “type” declaration.

You can find both the spec and status fields in the following section of the CRD:

spec -> validation -> openAPIV3Schema -> properties

As an example, the additions to the VisitorsApp CRD are as follows:

spec:
 type: object
 properties:
 size:
 type: integer
 title:
 type: string
 required:
 - size
status:
 type: object
 properties:
 backendImage:
 type: string
 frontendImage:
 type: string

This snippet is only an example of what you can accomplish using OpenAPI valida‐
tion. You can find detailed information on creating custom resource definitions in the
Kubernetes documentation.

126 | Appendix B: Custom Resource Validation

https://oreil.ly/FfkJe
https://oreil.ly/FfkJe

APPENDIX C

Role-Based Access Control (RBAC)

When the Operator SDK generates an Operator project (regardless of whether it is a
Helm, Ansible, or Go-based Operator), it creates a number of manifest files for
deploying the Operator. Many of these files grant permissions to the deployed Opera‐
tor to perform the various tasks it does throughout its lifetime.

The Operator SDK generates three files related to Operator permissions:

deploy/service_account.yaml
Instead of authenticating as a user, Kubernetes provides a programmatic authen‐
tication method in the form of service accounts. A service account functions as
the identity for the Operator pod when making requests against the Kubernetes
API. This file simply defines the service account itself, and you do not need to
manually edit it. More information on service accounts is available in the Kuber‐
netes documentation.

deploy/role.yaml
This file creates and configures a role for the service account. The role dictates
what permissions the service account has when interacting with the cluster APIs.
The Operator SDK generates this file with extremely wide permissions that, for
security reasons, you will want to edit before deploying your Operator in produc‐
tion. In the next section we explain more about refining the default permissions
in this file.

deploy/role_binding.yaml
This file creates a role binding, which maps the service account to the role. You do
not need to make any changes to the generated file.

127

https://oreil.ly/8oXS-
https://oreil.ly/8oXS-

Fine-Tuning the Role
At its most basic level, a role maps resource types to the actions (known as “verbs” in
the role resource terminology) a user or service account may take on resources of
those types. For example, the following role grants view (but not create or delete) per‐
missions for deployments:

- apiGroups: ["apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch"]

Since the Operator SDK does not know the extent to which your Operator will need
to interact with the cluster, the default role allows all actions on a variety of Kuber‐
netes resource types. The following snippet, taken from an SDK-generated Operator
project, illustrates this. The * wildcard allows all actions on the given resources:

...
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - endpoints
 - persistentvolumeclaims
 - events
 - configmaps
 - secrets
 verbs:
 - '*'
- apiGroups:
 - apps
 resources:
 - deployments
 - daemonsets
 - replicasets
 - statefulsets
 verbs:
 - '*'
...

Not surprisingly, it is considered a bad practice to grant such open and wide-reaching
permissions to a service account. The specific changes you should make vary depend‐
ing on the scope and behavior of your Operator. Generally speaking, you should
restrict access as much as possible while still allowing your Operator to function.

For example, the following role snippet provides the minimal functionality needed by
the Visitors Site Operator:

128 | Appendix C: Role-Based Access Control (RBAC)

...
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - secrets
 verbs:
 - create
 - list
 - get
- apiGroups:
 - apps
 resources:
 - deployments
 verbs:
 - create
 - get
 - update
...

Full details on configuring Kubernetes roles are outside the scope of this book. You
can find more information in the Kubernetes RBAC documentation.

Role-Based Access Control (RBAC) | 129

https://oreil.ly/osBC3

Index

A
Adapter Operators, 49-60

Ansible Operator, 56-60
building, 56
fleshing out the CRD for, 58
reviewing permissions for, 58
running, 58

Helm Operator, 51-56
building, 51-55
custom resource definition for, 55
permissions for, 55
running, 55

testing, 59
Ansible, 49
Ansible Operator, 56-59

building, 56
differences from Helm Operator, 57
fleshing out the CRD for, 58
reviewing permissions for, 58
running, 58

Ansible playbooks, 34
tasks and reusable roles, 56

api-version, 50
application plane, 2

(see also data plane)
application reliability engineering with Kuber‐

netes Operators, 113
application state, managing, 114
application upgrades, Operator coordinating,

117
approval mode (subscriptions), 83
authorization

defining in Kubernetes, 30
defining Operator service account, 15, 127

requirements for deploying Operators, 10
Awesome Operators repository, 121

B
billing, help from Operator Metering, 36
budgeting, help from Operator Metering, 36
bug reports, 119
building Operators

Ansible Operator, 56
Helm-based Operators, 51-55

bundle metadata files (OLM), 92-93
cluster service version files, 93
custom resource definitions (CRDs), 92
package manifest files, 93

C
catalogs (OLM), 36
CatalogSource, 82

describing, 86
OperatorSource creation and, 105

channels, 83
channels, subscriptions to, 92
chaos testing, 117
charts (Helm), 51
child resources (see resources)
Cloud Native Computing Foundation (CNCF),

xiii, 33
cluster-admin role, 10
ClusterRoleBindings, 31
ClusterRoles, 31
ClusterServiceVersion (CSV), 82

creation by OLM in default namespace, 90
in OLM bundle metadata files, 93
writing a CSV file, 93-101

131

generating file skeleton, 93
install modes for Operators, 100
owned CRDs, 96
previewing the file on OperatorHub.io,

121
versions and updates for Operators, 100

code examples from this book, xv
Community Operators repository, 121
ConfigMap objects, custom resources versus,

28
container images, for etcd Operator deploy‐

ment pods, 18
control plane, 2
controllers, 2

custom, 29
for Operator in Go created using SDK, 67
Operator SDK generating code for Helm

Operator controller, 51
Operators as custom controllers watching a

custom resource, 5
Operators extending, 27
ReplicaSet, 28

CoreOS, xiv
CRD (see custom resource definitions)
CRs (see custom resources)
CSV (see ClusterServiceVersion)
custom resource definitions (CRDs), 6

creating, 14
creating and deploying for Ansible Operator

cluster, 59
creating with Operator SDK, information

required, 50
deploying, 77
fleshing out for Ansible Operator, 58
fleshing out for Helm Operator, 55
for Go Operator created using Operator

SDK, 64-66
OLM bundle metadata files, 92
required, 99

custom resources (CRs), 5
about, 28
ConfigMaps versus, 28
defining for Ansible Operator, 56
generation by SDK for Helm Operator, 54
installed by OLM, 81-84
Operators defining new types on clusters,

116
validation of, 125-126

D
data plane, 2
deployment

checking for deployment object in target
namespace, 71

deploying backend for Visitors Site applica‐
tion, 43

deploying etcd Operator, 17
deploying manifests for Visitors Site sample

application, 47
deploying MySQL instance into Kubernetes,

41
running Operator as deployment in a clus‐

ter, 123-124
for Visitors Site sample application, 41

E
errors, 114
etcd key-value store, xiv

example, etcd Operator, 6
running the etcd Operator, 13-25

etcd-operator-role.yaml file, 16
etcd-operator-rolebinding.yaml file, 17
etcd-operator-sa.yaml file, 15
etcdctl, put and get commands, 20

F
failure and automated recovery, for etcd cluster,

21
feature requests and reporting bugs, 119
finalizers, 74

G
getting involved in Operator framework devel‐

opment, 119-121
GitHub repository for Operator framework

components, 119
Go programming language

constructing Operators in, support by Oper‐
ator SDK, 34

creating custom Operators using Operator
SDK, 61-79

golden signals sent to software, 114

H
Helm charts, 51

adapter architecture for Operators, 34
creating new for Helm Operator, 52

132 | Index

existing chart, building Operator from, 53
Helm Operator, 51-56

building the Operator, 51-55
differences from Ansible Operator, 57
fleshing out the CRD for, 55
reviewing permissions for, 55
running, 55

Helm project, 49
hypervisors, using with Minikube, 11

I
idempotency

child resource creation for Operator in Go,
71

in Operators, 75
in Reconcile function implementations, 69

initializing the Operator, 62
install modes for Operators in CSV file, 100
InstallPlan, 83

J
Java Operator SDK, xiv

K
kind, for custom resource definitions, 50
Kopf, xiv
Kubebuilder, xiv
kubectl

installing or updating, 11
running Visitors Site sample application

with, 47
kubectl command

create, 15
describe, 19, 21, 86
patch, 24
version, 12

Kubernetes
API versioning conventions, 50
custom resources, 6
Go client API, 72
how it works, 1
Operators using Kubernetes abstractions

where possible, 116

L
latency, 114
lifecycle manager (see Operator Lifecycle Man‐

ager)

linting OLM bundles, 105
local mode, starting an Operator in, 77

M
manifests

CRD manifest for Go language Operator, 66
creating etcd Operator from, 18
deploying for Visitors Site sample applica‐

tion, 47
fetching etcd Operator manifests, 14
for deployment of backend for Visitors Site

sample application, 43
for service deployment in Visitors Site sam‐

ple application, 45
(see also service)

installing Visitors Site application with, 41
packagemanifests API, 82
upgrading etcd clusters in, 24

Marketplace Operator, 102
Maturity Model, 34
metadata.deletionTimestamp field, 74
metrics aggregation, help from Operator

Metering, 36
Minikube, minikube ip command, 47
MongoDB, Operators for, 8

N
namespaces, 29

checking for deployment object in target
namespace, 71

default, for Kubernetes clusters, 17
indicating where Operator will be running,

77
namespace scope for Operators, 29, 63
scoping Operators for, with OperatorGroup,

83
that may be accessed by an Operator, 83

naming conventions, for child resources cre‐
ated by Operators, 75

O
oc API, 11
OpenID Connect (OIDC) providers, 30
OpenShift (see Red Hat OpenShift)
operands, 28

Operator termination not affecting, 116
Operator Courier

installing, 103

Index | 133

verify command, 105
Operator framework, xiv, 33-37

getting involved in, 119-121
Operator Metering, 36
Operator SDK, 34
origins of, 33

Operator Lifecycle Manager (OLM), 33, 81-109
building bundle file and running locally

building the bundle, 105-107
installing Operator through OLM, 107
prerequisites, 102-105
retrieving a Quay token, 104

bundle metadata files, 92-93
CSV files, 93
custom resource definitions (CRDs), 92
package manifest file, 93

contributing to, 119
custom resources, 81-84

CatalogSource, 82
ClusterServiceVersion, 82
InstallPlan, 83
OperatorGroup, 83
subscription, 83

installing, 84-86
overview of, 35
running locally, 102
testing the running Operator, 109
using, 86-92

deleting an OLM-deployed Operator, 91
exploring the CSV Operator, 90

writing a CSV file, 93-101
generating file skeleton, 93
install modes for Operators, 100
owned CRDs, 96
versions and upgrades for Operators,

100
writing a package manifest file, 101

Operator Maturity Model, 34
Operator Metering, 33

about, 36
contributing to, 119

Operator permissions, 66
Operator philosophy, 111-117

habits of highly successful Operators,
116-117

SRE for every application, 111
Operator repositories, 50
Operator SDK, xiv, 33

(see also Operator framework)

about, 34
Adapter Operators, 49
contributing to development of, 119
installing, 35

binary installation, 35
from source, 35

Operator SDK command
add, 64
build, 123
generate, 66
new, 62

Operator SDK Samples repository, 119
operator-sdk command-line tool (see Operator

SDK)
OperatorGroup, 83

creating for Operator installed via OLM,
107

OperatorHub.io, 50, 86, 121
sharing operators on, 121
viewing Operator page directly, 89

Operators
adoption of, 8
application reliability engineering with, 113
as software SREs, 4
etcd Operator example, 6
running a simple Operator, 13-25
running as a Kubernetes deployment,

123-124
scopes, 29

OperatorSource
creating, 104
restarting, 106
verifying deployment of, 105

P
package manifest file, 93

writing, 101
packagemanifests API, 82, 87
PACKAGE_VERSION variable, 106
permissions

defining for Operator in Go created using
SDK, 66

reviewing for Ansible Operator, 58
reviewing for Helm Operator, 55

pods, 2
etcd cluster members and Operator running

as, 7
etcd Operator pod, 18

134 | Index

Q
Quay.io

pushing OLM bundle to, 106
retrieving a token from, 104

R
Raft protocol (etcd), 13
Reconcile function (or reconcile loop), 69, 77

idempotency in Operators, 76
ReconcileResult instances, 69
recovery, 21

(see also failure and automated recovery)
Red Hat CodeReady Containers, 12
Red Hat OpenShift

learning portal, 12
using in Operator lab, 12

Red Hat Operator Framework, 33
Red Hat Operator SDK, xiv
Redis, Operators for, 8
replicas, 1

automated horizontal scaling, Kubernetes
replicas, 113

replicas field for Visitors Site application
backend deployment, 45

Replicas field, staticweb ReplicaSet (example),
27

ReplicaSet objects, 27
reporting, customized, from Operator Meter‐

ing, 36
repository for Operator source, 86
required CRDs in CSV file, 99
resources

child resource creation for Operator in Go,
71

child resource deletion for Operator in Go,
74

child resource naming for Operator in Go,
75

custom, 28
(see also custom resource definitions;

custom resources)
deploying example resource along with the

CRD, 77
required for each component of Visitors Site

application, 41
retrieving primary resource triggering rec‐

oncile request, 70
role-based access control (RBAC), 10, 30,

127-129, 127

binding etcd operator role to service
account, 17

defining etcd operator role, 16
for Operator in Go created using SDK, 66
reviewing permissions for Helm Operator,

55
RoleBinding, 30, 31
roles

ClusterRole and ClusterRoleBinding, 31
defined, 30
for Ansible Operator, 57
reusable roles in Ansible, 56

S
saturation, 115
scaling

automated horizontal scaling, Kubernetes
replicas, 113

manual, 113
of etcd cluster, 20
ReplicaSet resource, 27
scaling individual components in container‐

ized applications, 45
scope of an Operator, 29, 62
secrets,

for MySQL instance deployment into
Kubernetes, 41

Selector field, staticweb ReplicaSet (example),
27

service accounts
about, 30
defining Operator service account, 15, 127

services
creation for etcd Operator, 19
for Visitors Site sample application

deploying with manifest, 45
for Visitors Site sample application, 41

site reliability engineering (SRE) for every
application, 111
toil not, neither spin philosophy, 112-113

site reliability engineers (SREs), Operators as, 4
snake case in Ansible, 58
source code for Operator framework, contribu‐

ting to, 120
spec descriptors, for CRDs owned by Operator

in OLM, 97
spec elements, for etcd cluster, 18
spec field

for Ansible Operator, 58

Index | 135

generated by SDK for custom resource, 54
Special Interest Group (SIG) for Operator

framework, 119
stateless web server, with Kubernetes, 3
staticweb ReplicaSet (example), 27
status descriptors, for CRDs owned by Opera‐

tor in OLM, 98
stopping the running Operator process, 78
storage, Operators for, 8
subscribing to Operators in OLM, 36
subscriptions, 83

creating for Operator installed via OLM,
108

creation of, triggering Operator installation,
87

T
targetNamespaces designation, 84
testing

for Adapter Operators, 59
for running Operator installed via OLM,

109
high-level steps for Operator testing, 77

third party resources (TPRs), 10
TLS certificates, 30
toil not, neither spin philosophy, 112-113
type field

for Ansible Operator, 56
for Helm Operator, 53

types.go file, 65

U
upgrades, for etcd clusters, 22

Users in Kubernetes documentation, 31

V
validation of custom resources, 125-126
values.yaml file (Helm Operator), 52

using to populate custom resource template,
54

versions
Operator version in CSV files, 93
versioning and updating Operators in CSV

file, 100
VirtualBox, 11
Visitors Site sample application, 39-48

accessing, 47
frontends, 45
installation with manifests, 41

backend deployment, 43
deploying MySQL instance, 41-43
frontend deployment, 45

overview, 39
testing the Operator, 109
VisitorsSite Operator, 78

W
watches, 50

creating for Helm Operator, 55
defining for Ansible Operator, 57, 59

WATCH_NAMESPACE variable, 63
web servers, stateless, 3

136 | Index

About the Authors
Jason Dobies is a developer advocate at Red Hat. Jason has worked in the software
industry for close to 20 years, developing in a variety of languages, including Python,
Java, and Go. In addition to his career as an engineer, he is also an adjunct professor
at Villanova University, where he currently teaches software engineering and senior
projects. When not sitting at a computer, Jason enjoys spending time with his wife
and two children, playing video games, and working out.

Joshua Wood is a developer advocate at Red Hat who has worked throughout his
career to build utility computing with open source software. He likes fast cars, slow
boats, and writing short autobiographies.

Colophon
The animal on the cover of Kubernetes Operators is the squacco heron (Ardeola ral‐
loides). Its name comes from an Italian dialect name for this bird, sguacco, believed to
be onomatopoeia, after its call. Though the larger part of the world’s population of
squacco herons are resident in sub-Saharan and southern Africa and Madagascar,
others migrate between Southern Europe east to Iran and south into North Africa.

The squacco heron is a small wading bird that averages 16 to 18 inches long with a
33-inch wingspan, and weighs about 11 ounces. It is pale cinnamon and ivory in
color, and has yellow legs. Adults have a bright cerulean beak with a black tip, and
yellow eyes. In breeding season, adults also grow a tuft of long black and white feath‐
ers at the backs of their heads, which the birds puff out during courtship displays.
They build nests in large colonies in trees by waterways or among reeds.

They primarily eat insects and insect larvae, as well as small fish, amphibians, crusta‐
ceans, and mollusks. As is the strategy for many other herons, these birds stay
motionless for periods of time, waiting for their prey to come close enough. Herons
can correctly determine their striking angle down into the water by taking into
account the light refraction created by the water’s surface.

Squacco herons are also among the heron species that have been observed using
insects as bait to catch larger prey. The bird does this by first killing an insect, Then,
rather than eating it, the heron places it on the surface of the water, to draw in hungry
or curious fish or frogs. If the bug starts to drift away, the bird returns it to its original
position. Scientists are still uncertain how this behavior originates, but it seems to be
something juvenile birds learn by watching adults, and get better at through practice.

Though populations are declining, their current IUCN Red List status is “Least Con‐
cern.” Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	What You Will Learn
	Operator Framework and SDK
	Other Operator Tools

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Operators Teach Kubernetes New Tricks
	How Kubernetes Works
	Example: Stateless Web Server
	Stateful Is Hard
	Operators Are Software SREs
	How Operators Work
	Kubernetes CRs

	How Operators Are Made
	Example: The etcd Operator
	The Case of the Missing Member

	Who Are Operators For?
	Operator Adoption

	Let’s Get Going!

	Chapter 2. Running Operators
	Setting Up an Operator Lab
	Cluster Version Requirements
	Authorization Requirements
	Standard Tools and Techniques
	Suggested Cluster Configurations
	Checking Your Cluster Version

	Running a Simple Operator
	A Common Starting Point
	Fetching the etcd Operator Manifests
	CRs: Custom API Endpoints
	Who Am I: Defining an Operator Service Account
	Deploying the etcd Operator
	Declaring an etcd Cluster
	Exercising etcd
	Scaling the etcd Cluster
	Failure and Automated Recovery
	Upgrading etcd Clusters
	Cleaning Up

	Summary

	Chapter 3. Operators at the Kubernetes Interface
	Standard Scaling: The ReplicaSet Resource
	Custom Resources
	CR or ConfigMap?

	Custom Controllers
	Operator Scopes
	Namespace Scope
	Cluster-Scoped Operators

	Authorization
	Service Accounts
	Roles
	RoleBindings
	ClusterRoles and ClusterRoleBindings

	Summary

	Chapter 4. The Operator Framework
	Operator Framework Origins
	Operator Maturity Model
	Operator SDK
	Installing the Operator SDK Tool

	Operator Lifecycle Manager
	Operator Metering
	Summary

	Chapter 5. Sample Application: Visitors Site
	Application Overview
	Installation with Manifests
	Deploying MySQL
	Backend
	Frontend

	Deploying the Manifests
	Accessing the Visitors Site
	Cleaning Up
	Summary

	Chapter 6. Adapter Operators
	Helm Operator
	Building the Operator
	Fleshing Out the CRD
	Reviewing Operator Permissions
	Running the Helm Operator

	Ansible Operator
	Building the Operator
	Fleshing Out the CRD
	Reviewing Operator Permissions
	Running the Ansible Operator

	Testing an Operator
	Summary
	Resources

	Chapter 7. Operators in Go with the Operator SDK
	Initializing the Operator
	Operator Scope
	Custom Resource Definitions
	Defining the Go Types
	The CRD Manifest

	Operator Permissions
	Controller
	The Reconcile Function

	Operator Writing Tips
	Retrieving the Resource
	Child Resource Creation
	Child Resource Deletion
	Child Resource Naming
	Idempotency
	Operator Impact

	Running an Operator Locally
	Visitors Site Example
	Summary
	Resources

	Chapter 8. Operator Lifecycle Manager
	OLM Custom Resources
	ClusterServiceVersion
	CatalogSource
	Subscription
	InstallPlan
	OperatorGroup

	Installing OLM
	Using OLM
	Exploring the Operator
	Deleting the Operator

	OLM Bundle Metadata Files
	Custom Resource Definitions
	Cluster Service Version File
	Package Manifest File

	Writing a Cluster Service Version File
	Generating a File Skeleton
	Metadata
	Owned CRDs
	Required CRDs
	Install Modes
	Versioning and Updating

	Writing a Package Manifest File
	Running Locally
	Prerequisites
	Building the OLM Bundle
	Installing the Operator Through OLM
	Testing the Running Operator

	Visitors Site Operator Example
	Summary
	Resources

	Chapter 9. Operator Philosophy
	SRE for Every Application
	Toil Not, Neither Spin
	Automatable: Work Your Computer Would Like
	Running in Place: Work of No Enduring Value
	Growing Pains: Work That Expands with the System

	Operators: Kubernetes Application Reliability Engineering
	Managing Application State
	Golden Signals Sent to Software

	Seven Habits of Highly Successful Operators
	Summary

	Chapter 10. Getting Involved
	Feature Requests and Reporting Bugs
	Contributing
	Sharing Operators
	Summary

	Appendix A. Running an Operator as a Deployment Inside a Cluster
	Appendix B. Custom Resource Validation
	Appendix C. Role-Based Access Control (RBAC)
	Fine-Tuning the Role

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

