

OCP
Oracle® Certified Professional

Java SE 17 Developer
Practice Tests

OCP
Oracle® Certified Professional

Java SE 17 Developer
Practice Tests

EXAM 1Z0- 829

Jeanne Boyarsky

Scott Selikoff

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

ISBN: 978- 1- 119- 86461- 5
ISBN: 978- 1- 119- 86463- 9 (ebk.)
ISBN: 978- 1- 119- 86462- 2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per- copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www.
copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748- 6011, fax (201) 748- 6008, or online at www
.wiley.com/go/permission.

Trademarks: WILEY, the Wiley logo, Sybex, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Oracle and Java are registered trademarks of Oracle America, Inc. All other trademarks are the
property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a professional where
appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared
between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any
loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax
(317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022937030

Cover image: © Jeremy Woodhouse/Getty Images
Cover design: Wiley

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com

To the world reopening and many new adventures.

— Jeanne

In loving memory of my other mom, Dalene, for raising a talented daughter

and partner, who fills me with happiness every day.

— Scott

Acknowledgments
Jeanne and Scott would like to thank numerous individuals for their contributions to this
book. Thank you to Kezia Endsley and Archana Pragash for guiding us through the process
and making the book better in many ways. Thank you to Janeice DelVecchio for being our
technical editor as we wrote this book. Janeice pointed out many subtle errors in addition to
the big ones. Thank you to Elena Felder for being our technical proofreader and finding the
errors that we managed to sneak by Janeice. This book also wouldn’t be possible without
many people at Wiley, including Kenyon Brown, Pete Gaughan, Christine O’Connor, and
many others.

Jeanne would personally like to thank everyone who put effort into resuming live events,
including the DevNexus and KCDC conference leadership teams, the NYC/Hudson Valley
FIRST robotics competition committee, and Joe Blay for making miracles happen in holding
694 team meetings. Scott was a great co- author, improving everything Jeanne wrote while
writing his own chapters. A big thank you to everyone at CodeRanch.com, who asked and
responded to questions and comments about our books. Finally, Jeanne would like to thank
all of the new programmers at CodeRanch.com and FIRST robotics teams FRC 694 and
FTC 310/479/8365 for the constant reminders of how new programmers think.

Scott could not have reached this point without his wife, Patti, and family, whose love and
support make this book possible. He would like to thank his twin daughters, Olivia and
Sophia, and youngest daughter, Elysia, for their patience and understanding and bringing
daddy a cup of cold brew coffee when it was “time for Daddy to work in his office!” Scott
would like to extend his gratitude to his wonderfully patient co- author, Jeanne, on this,
their ninth book. He doesn’t know how she puts up with him, but he’s glad she does and is
thrilled at the quality of books we produce. Finally, Scott would like to thank his mother,
Barbara Selikoff (a retired teacher), for teaching him the value of education, and his father,
Mark Selikoff, for instilling in him the benefits of working hard.

Both Jeanne and Scott would like to give a big thank- you to the readers of our books.
Hearing from all of you who enjoyed the book and passed the exam is a great feeling. We’d
also like to thank those who pointed out errors and made suggestions for improvements to
our books. Radu Pana and Vlad Alin were the first to find any in our Java 17 Study Guide.

http://coderanch.com
http://coderanch.com

About the Authors
Jeanne Boyarsky was selected as a Java Champion in 2019 and is a leader of the
NYJavaSIG. She has worked as a Java developer for more than 20 years at a bank in
New York City where she develops, mentors, and conducts training. Besides being a senior
moderator at CodeRanch.com in her free time, she works on the forum code base. Jeanne
also mentors the programming division of a FIRST robotics team, where she works with stu-
dents just getting started with Java. She also speaks at several conferences each year.

Jeanne got her Bachelor of Arts degree in 2002 and her Master’s in Computer
Information Technology degree in 2005. She enjoyed getting her Master’s degree in an online
program while working full time. This was before online education was cool! Jeanne is also
a Distinguished Toastmaster and a Scrum Master. You can find out more about Jeanne at
www.jeanneboyarsky.com or follow her on Twitter @JeanneBoyarsky.

Scott Selikoff is a professional software developer and author with over 20 years of expe-
rience developing full- stack database- driven systems. Skilled in a plethora of software
languages and platforms, Scott currently works as a Staff Software Engineer at Google, spe-
cializing in Architecture and Cloud Services.

A native of Toms River, New Jersey, Scott achieved his Bachelor of Arts degree from
Cornell University in Mathematics and Computer Science in 2002, after three years of study.
In 2003, he received his Master of Engineering degree in Computer Science, also from Cor-
nell University. As someone with a deep love of education, Scott has always enjoyed teaching
others new concepts. Scott is a Leader of the Garden State Java User Group, helping to facil-
itate discussions and exchange of ideas within the community. He’s also taught lectures at
multiple universities and conferences.

Scott lives in New Jersey with his loving wife, Patti; three amazing daughters, twins Olivia
and Sophia and little Elysia; a very playful dog, Georgette; and three silly cats, Snowball,
Sugar, and Minnie Mouse. In his spare time, he plays violin in the Toms River Multigenera-
tional Orchestra. You can find out more about Scott at www.linkedin.com/in/selikoff or follow
him on Twitter @ScottSelikoff.

Jeanne and Scott are both moderators on the CodeRanch.com forums and can be reached
there for questions and comments. They also co- author a technical blog called Down Home
Country Coding at www.selikoff.net.

In addition to this book, Jeanne and Scott are authors of eight best- selling Java books:

 ■ OCA: Java 8 Programmer I Study Guide (Sybex, 2015)

 ■ OCP: Java 8 Programmer II Study Guide (Sybex, 2016)

 ■ OCA / OCP Java 8 Practice Tests (Sybex, 2017)

 ■ OCP Java 11 Programmer I Study Guide (Sybex, 2019)

http://coderanch.com
http://www.jeanneboyarsky.com
http://www.linkedin.com/in/selikoff
http://coderanch.com
http://www.selikoff.net

x About the Authors

 ■ OCP Java 11 Programmer II Study Guide (Sybex, 2020)

 ■ OCP Java 11 Developer Complete Study Guide (Sybex, 2020)

 ■ OCP Java 11 Practice Tests (Sybex, 2021)

 ■ OCP Java 17 Developer Study Guide (Sybex, 2022)

About the Technical Editor
Janeice DelVecchio has been a professional software developer for 12 years, and has had a
lifelong love of programming and computers. Editing technical books is a fun task for her
because she likes finding and fixing defects of all types.

In her day job she uses a very broad range of skills with technologies, including cloud
computing, process automation, advanced unit testing, and DevOps. She also volunteers at
CodeRanch.com, where she runs the Java class known as the Cattle Drive.

She is an expert with the Java programming language. If you ask her which language
is the best, she will tell you that languages are tools and to pick the one that fits your use
case. The first language she learned was BASIC, and one day she hopes to learn gaming
development.

In her spare time, she enjoys cooking, solving puzzles, playing video games, and raising
chickens. She loves eating sushi, drinking craft beer, and petting dogs— her guilty pleasure is
’80s pop music. She lives in Litchfield County, Connecticut.

About the Technical Proofer
Elena Felder got into Java development back when the language lacked even generics, and
she is delighted that the language, its tooling, and its community have continued growing
and adapting to successfully keep up with the ever-changing world. She proofread one of
Jeanne and Scott’s first Java 8 Certification Study Guide chapters for fun and ended up doing
it professionally ever since.

http://coderanch.com

Contents at a Glance

Introduction xvii

Chapter 1 Handling Date, Time, Text, Numeric and
Boolean Values 1

Chapter 2 Controlling Program Flow 25

Chapter 3 Utilizing Java Object- Oriented Approach 45

Chapter 4 Handling Exceptions 149

Chapter 5 Working with Arrays and Collections 181

Chapter 6 Working with Streams and Lambda Expressions 211

Chapter 7 Packaging and Deploying Java Code and Use
the Java Platform Module System 267

Chapter 8 Managing Concurrent Code Execution 295

Chapter 9 Using Java I/O API 319

Chapter 10 Accessing Databases Using JDBC 339

Chapter 11 Implementing Localization 353

Chapter 12 Practice Exam 1 365

Chapter 13 Practice Exam 2 391

Chapter 14 Practice Exam 3 417

Appendix Answers to Review Questions 443

Index 561

Contents

Introduction xvii

Chapter 1 Handling Date, Time, Text, Numeric and
Boolean Values 1

Chapter 2 Controlling Program Flow 25

Chapter 3 Utilizing Java Object- Oriented Approach 45

Chapter 4 Handling Exceptions 149

Chapter 5 Working with Arrays and Collections 181

Chapter 6 Working with Streams and Lambda Expressions 211

Chapter 7 Packaging and Deploying Java Code and Use
the Java Platform Module System 267

Chapter 8 Managing Concurrent Code Execution 295

Chapter 9 Using Java I/O API 319

Chapter 10 Accessing Databases Using JDBC 339

Chapter 11 Implementing Localization 353

Chapter 12 Practice Exam 1 365

Chapter 13 Practice Exam 2 391

Chapter 14 Practice Exam 3 417

Appendix Answers to Review Questions 443

Chapter 1: Handling Date, Time, Text, Numeric
and Boolean Values 444

Chapter 2: Controlling Program Flow 450
Chapter 3: Utilizing Java Object- Oriented Approach 455
Chapter 4: Handling Exceptions 482
Chapter 5: Working with Arrays and Collections 489
Chapter 6: Working with Streams and Lambda Expressions 498
Chapter 7: Packaging and Deploying Java Code and Use

the Java Platform Module System 516
Chapter 8: Managing Concurrent Code Execution 524
Chapter 9: Using Java I/O API 530

xvi Contents

Chapter 10: Accessing Databases Using JDBC 535
Chapter 11: Implementing Localization 538
Chapter 12: Practice Exam 1 541
Chapter 13: Practice Exam 2 548
Chapter 14: Practice Exam 3 554

Index 561

Introduction
OCP Oracle Certified Professional Java SE 17 Developer Practice Tests is intended for those
who want to become a Java 17 Oracle Certified Professional (OCP) by taking the 1Z0- 829
exam, as well as those who want to test their knowledge of Java 17. If you are new to
Java 17, we strongly recommend you start with a study guide to learn all of the facets of the
language and come back to this book once you are thinking of taking the exam.

We recommend the best- selling OCP Oracle Certified Professional Java SE 17 Developer
Study Guide: Exam 1Z0- 829 (Sybex, 2022), which we happen to be the authors of, to begin
your studies. Unlike the questions in our study guide, which are designed to be harder than
the real exam, the questions in this book mirror the exam format. All the questions in this
book tell you how many answers are correct. They will say “Choose two” or “Choose three”
if more than one answer is correct.

Regardless of which study guide you used to prepare, you can use this book to hone your
skills, since it is based on topics on the actual exams.

Understanding the Exam
At the end of the day, the exam is a list of questions. The more you know about the struc-
ture of the exam, the better you are likely to do. For example, knowing how many questions
the exam contains allows you to better manage your progress and time remaining. Table I.1
describes the overall structure of the exam.

For those good at math, that means you need to answer approximately 34 of the 50 ques-
tions correctly to pass. We say “approximately” because Oracle may include questions that
they are testing out, which are unscored.

TABLE I .1 Java 17 Professional Certification Exams

Exam Code 1Z0- 829

Certification Title Oracle Certified Professional: Java SE 17 Developer

Time Limit 90 minutes

Question Count 50 questions

Passing score 68%

xviii Introduction

We recommend checking our blog in case Oracle changes this or there are any changes
made to the 1Z0- 829 Exam after these study guides were published.

www.selikoff.net/ocp17- pt

Java is now over 25 years old, celebrating being “born” in 1995. As with
anything 25 years old, there is a good amount of history and variation
between different versions of Java. For Java 17, Oracle has simplified
things. Becoming an Oracle Certified Professional now requires passing
only one exam, not two, and there are no Java 17 upgrade exams.
Regardless of the previous certifications you hold, everyone takes the
same, single Java 17 exam to become an Oracle Certified Professional.

Who Should Buy This Book
If you are looking to become a Java 17 Oracle Certified Professional, then this book is for
you. It contains over 1,000 questions to help you prepare for the exam. We recommend
using this book with our OCP Java SE 17 Developer Study Guide (Sybex, 2022). This book
is about sharpening your knowledge of Java 17, while our study guide is about building it.

How This Book Is Organized
This book consists of 11 objective- based chapters followed by 3 full- length mock practice
exams. There are some subtle differences between the objective- based chapters and practice
exam chapters that you should be aware of while reading this book.

Using the Objective- Based Chapters
An objective- based chapter is composed of questions that correspond to an objective set,
as defined by Oracle on the 1Z0- 829 Exam. We designed the structure and style of each
question in the objective- based chapters to reflect a more positive learning experience, allow-
ing you to spend less time on each question but covering a broader level of material. For
example, you may see two questions that look similar within a chapter but that contain a
subtle difference that has drastic implications on whether the code compiles or what output
it produces.

Just like the review questions in our study guide, these questions are designed so that
you can answer them many times. While these questions may seem to be easier than exam
questions, they will reinforce concepts if you keep taking them on a topic you don’t feel
strongly on.

In our study guides, we often group related topics into chapters or split them for under-
standing. For example, in our study guides we presented parallel streams as part of the con-
currency chapter since these concepts are often intertwined, whereas the 1Z0- 829 Exam

http://www.selikoff.net/ocp17-pt

Introduction xix

splits concurrency and parallel streams across two separate objectives. In this book, though,
the chapters are organized around Oracle’s objectives so you can test your skills. While you
don’t need to read an entire study guide before using objective- based chapter in this book,
you do need to study the relevant objectives.

Table I.2 shows what chapters you need to have read in our Java 17 study guide at a
minimum before practicing with the questions in this book.

Some of our chapters have a lot of questions. For example, Chapter 3
contains more than 200 questions. This is based on how Oracle chose to
organize its objectives. We recommend doing these larger chapters in
batches of 30–50 questions at a time. That way, you can reinforce your
learning before doing more questions. This also lets you practice with
sets of questions that are closer to the length of the exam.

TABLE I .2 Oracle objectives and related study guide chapters

Chapter in
This Book Objectives

Study Guide
Chapter

1 Handling Date, Time, Text, Numeric and Boolean Values 1, 2, 4

2 Controlling Program Flow 3

3 Utilizing Java Object- Oriented Approach 1, 3, 5, 6, 7, 8

4 Handling Exceptions 11

5 Working with Arrays and Collections 4, 9

6 Working with Streams and Lambda expressions 10, 13

7 Packaging and Deploying Java Code and Use the Java
Platform Module System

12

8 Managing Concurrent Code Execution 13

9 Using Java I/O API 14

10 Accessing Databases Using JDBC 15

11 Implementing Localization 11

xx Introduction

Taking the Practice Exams
Chapters 12, 13, and 14 of this book contain three full- length practice exams. The questions
in these chapters are quite different from the objective- based chapters in a number of impor-
tant ways. These practice exam questions tend to be harder because they are designed to test
your cumulative knowledge rather than reinforcing your existing skillset. In other words,
you may get a question that tests two discrete topics at the same time.

Like the objective chapters, we do indicate exactly how many answers are correct in
the practice exam chapters, as is done on the real exam. Both practice exam chapters are
designed to be taken within 90 minutes and have a passing score of 68 percent. That means
you need to answer at least 34 questions correctly. Remember not to take the practice exam
until you feel ready. There are only so many practice exams available, so you don’t want to
waste a fresh attempt.

While an objective- based chapter can be completed over the course of a few days, the
practice exam chapters were each designed to be completed in one sitting. You should try
simulating the exam experience as much as possible. This means setting aside 90 minutes,
grabbing a whiteboard or scrap paper, and answering every question even if you aren’t sure
of the answer. Remember, there is no penalty for guessing, and the more incorrect answers
you can eliminate, the better.

Reviewing Exam Changes
Oracle does change the number of questions, passing score, and time limit from time- to- time.
Jeanne and Scott maintain a blog that tracks updates to the real exams, as quickly as Oracle
updates them.

www.selikoff.net/ocp17- pt

We recommend you read this page before you take the real exam, in case any of the
information has changed since the time this book was published. Although less common,
Oracle does add, remove, or reword objectives. When this happens, we offer free supple-
mental material on our website as blog entries.

Need More Help Preparing?
Both of the authors are moderators at CodeRanch.com. This site is a quite large and active
programming forum that is friendly toward Java beginners. It has a forum just for this exam
called Programmer Certification.

www.coderanch.com/f/24

http://www.selikoff.net/ocp17-pt
http://coderanch.com
http://www.coderanch.com/f/24

Introduction xxi

As you read the book, feel free to ask your questions in either of those forums. It could
be that you are having trouble compiling a class or are just plain confused about something.
You’ll get an answer from a knowledgeable Java programmer. It might even be one of us!

Bonus Content
This book has a web page that provides all the questions in this book using Wiley’s interac-
tive online test engine.

You can link to this web page from www.wiley.com/go/sybextestprep.

Like all exams, the Java 17 Oracle Certified Professional (OCP) certification
from Oracle is updated periodically and may eventually be retired or replaced.
At some point after Oracle is no longer offering this exam, the old editions
of our books and online tools will be retired. If you have purchased this book
after the exam was retired, or are attempting to register in the Sybex online
learning environment after the exam was retired, please know that we make
no guarantees that this exam’s online Sybex tools will be available once the
exam is no longer available.

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John
Wiley & Sons, we understand how important it is to provide our customers with accurate
content, but even with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

http://www.wiley.com/go/sybextestprep
mailto:wileysupport@wiley.com

Handling Date, Time,
Text, Numeric and
Boolean Values

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Handling date, time, text, numeric and boolean values

 ■ Use primitives and wrapper classes including Math API, paren-

theses, type promotion, and casting to evaluate arithmetic

and boolean expressions

 ■ Manipulate text, including text blocks, using String and

StringBuilder classes

 ■ Manipulate date, time, duration, period, instant and time- zone

objects using Date- Time API

Chapter

1

2 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

1. How many of the Duration, LocalDateTime, and LocalTime classes have the concept
of a time zone?

A. None

B. One

C. Two

D. Three

2. How many lines does this print?

System.out.print("""
 "ape"
 "baboon"
 "gorilla"
 """);

A. Three

B. Four

C. Five

D. The code does not compile.

3. Which of the following are not valid variable names? (Choose two.)

A. _

B. _blue
C. 2blue
D. blue$
E. Blue

4. Which class has a getSeconds() method?

A. Only the Duration class

B. Only the Period class

C. Both the Duration and Period classes

D. Neither class

5. Most of the United States observes daylight saving time on March 13, 2022, by moving the
clocks forward an hour at 2 a.m. What does the following code output?

var localDate = LocalDate.of(2022, 3, 13);
var localTime = LocalTime.of(1, 0);
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);

var offset = z.getOffset();
var duration = Duration.ofHours(3);

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 3

var later = z.plus(duration);

System.out.println(later.getHour() + " "
 + offset.equals(later.getOffset()));

A. 4 false
B. 4 true
C. 5 false
D. 5 true
E. 6 false
F. 6 true
G. None of the above

6. What is the value of tip after executing the following code snippet?

int meal = 5;
int tip = 2;
var total = meal + (meal>6 ? tip++ : tip- -);

A. 1
B. 2
C. 3
D. 7
E. None of the above

7. What does the following output?

int year = 1874;
int month = Month.MARCH;
int day = 24;
LocalDate date = LocalDate.of(year, month, day);
System.out.println(date.isBefore(LocalDate.now()));

A. false
B. true
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

8. What is the output of the following?

12: var b = "12";
13: b += "3";
14: b.reverse();
15: System.out.println(b.toString());

4 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

A. 12
B. 21
C. 123
D. 321
E. The code does not compile.

9. What is the output of the following?

5: var line = new StringBuilder("- ");
6: var anotherLine = line.append("- ");
7: System.out.print(line == anotherLine);
8: System.out.print(" ");
9: System.out.print(line.length());

A. false 1
B. false 2
C. true 1
D. true 2
E. It does not compile.

10. Given that daylight saving time starts on March 13, 2022, at 2 a.m. and clocks jump from
1:59 a.m. to 03:00 a.m., which of the following can fill in the blank so the code doesn’t
throw an exception?

var localDate = LocalDate.of(2022, 3, 13);
var localTime = LocalTime.of();
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);

A. 2, 0
B. 3, 0
C. Either of the above will run without throwing an exception.

D. Both of these will cause an exception to be thrown.

11. Which statement is true of this text block?

var block = """

 green
 yellow
""";

A. There is only essential whitespace.

B. There is only incidental whitespace.

C. There is both essential and incidental whitespace.

D. The code does not compile.

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 5

12. What are the return types of cat, moose, and penguin, respectively?

var cat = Math.ceil(65);
var moose = Math.max(7,8);
var penguin = Math.pow(2, 3);

A. double, double, double
B. double, int, double
C. double, int, int
D. int, double, double
E. int, int, double
F. int, int, int

13. What is the result of the following?

11: var waffleDay = LocalDate.of(2022, Month.MARCH, 25);
12: var period = Period.of(1, 6, 3);
13: var later = waffleDay.plus(period);
14: later.plusDays(1);
15: var thisOne = LocalDate.of(2023, Month.SEPTEMBER, 28);
16: var thatOne = LocalDate.of(2023, Month.SEPTEMBER, 29);
17: System.out.println(later.isBefore(thisOne) + " "
18: + later.isBefore(thatOne));

A. false false
B. false true
C. true true
D. true false
E. The code does not compile.

14. Which operators work with one or more boolean types? (Choose three.)

A. ^
B. ~
C. &
D. +
E. ||
F. @

15. What is a possible result of the following?

var montyPythonDay = LocalDate.of(2023, Month.MAY, 10);
var aprilFools = LocalDate.of(2023, Month.APRIL, 1);
var duration = Duration.ofDays(1);

6 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

var result = montyPythonDay.minus(duration);
System.out.println(result + " " + aprilFools.isBefore(result));

A. 2023- 05- 09 false
B. 2023- 05- 09 true
C. The code does not compile.

D. None of the above.

16. What is the output of the following?

5: var line = new String("- ");
6: var anotherLine = line.concat("- ");
7: System.out.print(line == anotherLine);
8: System.out.print(" ");
9: System.out.print(line.length());

A. false 1
B. false 2
C. true 1
D. true 2
E. Does not compile

17. How many of these lines contain a compiler error?

public void pi() {
 byte b = 3.14;
 double d = 3.14;
 float f = 3.14;
 short s = 3.14;
}

A. None

B. One

C. Two

D. Three

E. Four

18. In the United States, daylight saving time ends on November 6, 2022 at 02:00 a.m. and we
repeat the previous hour. What is the output of the following?

var localDate = LocalDate.of(2022, Month.NOVEMBER, 6);
var localTime = LocalTime.of(1, 0);
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);
var offset = z.getOffset();

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 7

for (int i = 0; i < 6; i++)
 z.plusHours(1);

System.out.print(z.getHour() + " "
 + offset.equals(z.getOffset()));

A. 5 false
B. 5 true
C. 6 false
D. 6 true
E. 7 false
F. 7 true
G. None of the above

19. What does the following code output?

var baa = 8;
var bleat = ~baa;
var sheep = ~bleat;
System.out.printf(bleat + " " + sheep);

A. - 8 8
B. - 8 9
C. - 9 8
D. - 9 9
E. None of the above

20. The author of this method forgot to include the data type. Which of the following reference
types can best fill in the blank to complete this method?

public static void secret(mystery) {
 char ch = mystery.charAt(3);
 mystery = mystery.insert(1, "more");
 int num = mystery.length();
}

A. String
B. StringBuilder
C. Both

D. Neither

8 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

21. LocalTime.of() has a number of overloads. Which of the following is not one of them?

A. LocalTime.of(int hour, int minute)
B. LocalTime.of(int hour, int minute, int second)
C. LocalTime.of(int hour, int minute, int second, int

nanoOfSecond)
D. LocalTime.of(int hour, int minute, int second, int

nanoOfSecond, int picoSeconds)

22. Which statements are true about the output of this code? (Choose three.)

var text = """
 ant antelope \s \n
 cat "kitten" \
 seal sea lion
 """;
System.out.print(text);

A. It contains two quotes.

B. It contains eight quotes.

C. It is three lines.

D. One line is blank.

E. Two lines are blank.

F. The first line contains trailing whitespace.

G. The first line does not contain trailing whitespace.

23. Fill in the blanks: The operators !=, , , , and
++ are listed in the same or increasing levels of operator precedence. (Choose two.)

A. ==, *, !
B. /, %, *
C. *, - - , /
D. !, *, %
E. +=, &&, *
F. *, <, /

24. How many of the LocalDate, Period, and ZonedDate classes have a method to get the year?

A. None

B. One

C. Two

D. Three

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 9

25. Given the following Venn diagram and the boolean variables, apples, oranges, and bananas,
which expression most closely represents the filled- in region of the diagram?

oranges

bananas

apples

A. apples && oranges && !bananas
B. orange || (oranges && !bananas)
C. (apples || bananas) && oranges
D. oranges && apples
E. (apples || oranges) && !bananas
F. apples ^ oranges

26. What is a possible output of this code?

var time = LocalTime.of(1,2,3,4);
System.out.println(time);

A. 01:02:03.4
B. 01:02:03.000000004
C. 01/01/1970 01:02:03.4
D. 01/01/1970 01:02:03.000000004

27. What is the output of the following?

var teams = new StringBuilder("333");
teams.append(" 806");
teams.append(" 1601");
System.out.print(teams);

A. 333
B. 333 806 1601
C. The code compiles but outputs something else.

D. The code does not compile.

10 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

28. Which of the following local variable declarations does not compile?

A. double num1, int num2 = 0;
B. int num1, num2;
C. int num1, num2 = 0;
D. int num1 = 0, num2 = 0;
E. All of the above

F. None of the above

29. Which contains a constant named HOURS?

A. ChronoUnit
B. Duration
C. Instant
D. Period
E. None of the above

30. Which methods, when combined, match the functionality of the strip() method?
(Choose two.)

A. stripAfter()
B. stripBefore()
C. stripEnding()
D. stripIndent()
E. stripLeaders()
F. stripTrailing()

31. The United States observes daylight saving time on March 13, 2022, by moving the clocks
forward an hour at 2 a.m. What does the following code output?

var localDate = LocalDate.of(2022, 3, 13);
var localTime = LocalTime.of(13, 0);
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);

var offset = z.getOffset();
var duration = Duration.ofHours(3);
var later = z.plus(duration);

System.out.println(later.getHour() + " "
 + offset.equals(later.getOffset()));

A. 13 false
B. 13 true

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 11

C. 16 false
D. 16 true
E. 17 false
F. 17 true
G. None of the above

32. Which of the following can fill in the blank so the code prints true?

var happy = " :) - (: ";
var really = happy.trim();
var question = happy.substring();
System.out.println(really.equals(question));

A. 0, happy.length() - 1
B. 0, happy.length()
C. 1, happy.length() - 1
D. 1, happy.length()
E. None of the above

33. How many of the following lines contain a compiler error?

double num1 = 2.718;
double num2 = 2._718;
double num3 = 2.7_1_8;
double num4 = _2.718;

A. 0

B. 1

C. 2

D. 3

E. 4

34. What is a possible result of the following?

var montyPythonDay = LocalDate.of(2022, Month.MAY, 10);
var time = LocalTime.of(5, 40);
var dateTime = LocalDateTime.of(montyPythonDay, time);
var duration = Duration.ofDays(1);
var result = dateTime.minus(duration);
System.out.println(result);

A. 2022- 05- 09
B. 2022- 05- 09T05:40
C. 2022- 05- 10T05:40
D. The code does not compile.

E. None of the above.

12 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

35. What is true of the following code? (Choose two.)

var numPigeons = Long. ("100");
System.out.println(numPigeons.toString());

A. When parseLong fills in the blank, the code does not compile.

B. When parseLong fills in the blank, the code throws an exception.

C. When parseLong fills in the blank, the output is 100.

D. When valueOf fills in the blank, the code does not compile.

E. When valueOf fills in the blank, the code throws an exception.

F. When valueOf fills in the blank, the output is 100.

36. What is the output of the following application?

public class Airplane {
 static int start = 2;
 final int end;
 public Airplane(int x) {
 x = 4;
 end = x;
 }
 public void fly(int distance) {
 System.out.print(end- start+" ");
 System.out.print(distance);
 }
 public static void main(String... start) {
 new Airplane(10).fly(5);
 } }

A. 2 5
B. 8 5
C. 6 5
D. The code does not compile.

E. None of the above.

37. What is the output of the following?

var date1 = LocalDate.of(2022, Month.MARCH, 3);
var date2 = LocalDate.of(2022, Month.FEBRUARY, 31);
System.out.println(date1.equals(date2));

A. false
B. true
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 13

38. How many lines does this print?

System.out.print("""
 "ape"
 "baboon"
 "gorilla" """);

A. Three

B. Four

C. Five

D. The code does not compile.

39. What is the output of the following class?

1: package rocket;
2: public class Countdown {
3: public static void main(String[] blastOff) {
4: var builder = "54321";
5: builder = builder.substring(4);
6: System.out.println(builder.charAt(2));
7: } }

A. 2
B. 3
C. 4
D. The code does not compile.

E. None of the above

40. In the United States, daylight saving time for 2022 starts at 2 a.m. on March 13th and ends
at 2 a.m. on November 6th. Given the sequence in the following image, what time comes
next on March 13th, July 4th, and November 6th, respectively?

01:58 01:59 ?

A. 01:00, 01:00, 01:00

B. 01:00, 02:00, 01:00

C. 01:00, 02:00, 03:00

D. 02:00, 02:00, 02:00

E. 03:00, 02:00, 01:00

F. 03:00, 02:00, 03:00

14 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

41. What does the following code output?

var baa = false;
var bleat = ~baa;
var sheep = ~bleat;
System.out.printf(bleat + " " + sheep);

A. false false
B. false true
C. true false
D. true true
E. None of the above

42. What is a possible output of the following?

var trainDay = LocalDate.of(2022, 5, 13);
var time = LocalTime.of(10, 0);
var zone = ZoneId.of("America/Los_Angeles");
var zdt = ZonedDateTime.of(trainDay, time, zone);
var instant = zdt.toInstant();
instant = instant.plus(1, ChronoUnit.DAYS);
System.out.println(instant);

A. 2022- 05- 13T10:00- 07:00[America/Los_Angeles]
B. 2022- 05- 13T00:00:00Z
C. 2022- 05- 13T17:00:00Z
D. 2022- 05- 14T10:00- 07:00[America/Los_Angeles]
E. 2022- 05- 14T00:00:00Z
F. 2022- 05- 14T17:00:00Z

43. What is the output of the following application?

package transporter;
public class Rematerialize {
 public static void main(String[] input) {
 int init = 11;
 int split = 3;
 int partA = init / split;
 int partB = init % split;
 int result = split * (partB + partA);
 System.out.print(result);
 } }

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 15

A. 9
B. 11
C. 12
D. 15
E. The code does not compile.

F. None of the above.

44. What is the output of the following code?

var math = new Math();
var sum = 0;
sum += math.min(3, 5);
sum += math.floor(1.8);
sum += math.round(5.6);

System.out.println(sum);

A. 9
B. 9.0
C. 10
D. 10.0
E. 11
F. 11.0
G. None of the above

45. What is the output of the following?

var date = LocalDate.of(2022, Month.JULY, 17);
var time = LocalTime.of(10, 0);
var zone = ZoneId.of("America/New_York");
var iceCreamDay = ZonedDateTime.of(date, time, zone);
time = time.plusMonths(1);
System.out.println(iceCreamDay.getMonthValue());

A. 6
B. 7
C. 8
D. 9
E. The code does not compile.

16 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

46. Which of these can replace isEmpty() and trim() to produce the same output? (Choose two.)

String curious = "george likes bananas ";
System.out.println(curious.isEmpty());
System.out.println(curious.trim());

A. empty()
B. isBlank()
C. isMissing()
D. removeBlanks()
E. shorten()
F. strip()

47. What is the result of the following code?

var sb = new StringBuilder("radical")
 .insert(sb.length(), "robots");
System.out.println(sb);

A. radicarobots
B. radicalrobots
C. radical robots
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

48. Given the following code snippet, what is the value of dinner after it is executed?

int time = 9;
int day = 3;
var dinner = ++time >= 10 ? day- - <= 2
 ? "Takeout" : "Salad" : "Leftovers";

A. Takeout
B. Leftovers
C. Salad
D. The code does not compile but would compile if parentheses were added.

E. None of the above.

49. What is the result of the following?

11: var waffleDay = LocalDate.of(2022, Month.MARCH, 25);
12: var period = Period.ofYears(1).ofMonths(6).ofDays(3);
13: var later = waffleDay.plus(period);
14: later.plusDays(1);
15: var thisOne = LocalDate.of(2022, Month.SEPTEMBER, 28);

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 17

16: var thatOne = LocalDate.of(2022, Month.SEPTEMBER, 29);
17: System.out.println(later.isBefore(thisOne) + " "
18: + later.isBefore(thatOne));

A. false false
B. false true
C. true true
D. true false
E. The code does not compile.

50. How many pairs of parentheses can be removed and have the code print 6?

System.out.println((((1+1))*((1+2))));
A. None

B. One pair

C. Two pairs

D. Three pairs

E. Four pairs

F. Five pairs

G. None of the above

51. What is the output of the following?

var teams = new String("694");
teams.concat(" 1155");
teams.concat(" 2265");
teams.concat(" 2869");
System.out.println(teams);

A. 694
B. 694 1155 2265 2869
C. The code compiles but outputs something else.

D. The code does not compile.

52. Which of the following is not a valid wrapper class?

A. Boolean
B. Char
C. Double
D. Integer
E. Long
F. All of these are valid wrapper classes.

18 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

53. What is the output of the following?

var date = LocalDate.of(2022, Month.JULY, 17);
var time = LocalTime.of(10, 0);
var zone = ZoneId.of("America/New_York");
var iceCreamDay = ZonedDateTime.of(date, time, zone);
date = date.plusMonths(1);
System.out.println(iceCreamDay.getMonthValue());

A. 6
B. 7
C. 8
D. The code does not compile.

E. An exception is thrown at runtime.

54. How many of these lines print the same number?

6: var phrase = "prickly \nporcupine";
7: System.out.println(phrase.length());
8: System.out.println(phrase.indent(1).length());
9: System.out.println(phrase.indent(0).length());
10: System.out.println(phrase.indent(- 1).length());

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

55. How many of the following lines compile?

bool b = null;
Bool bl = null;
int i = null;
Integer in = null;
String s = null;

A. None

B. One

C. Two

D. Three

E. Four

F. Five

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 19

56. How many lines does this print?

System.out.print(""" "ape"
 "baboon"
 "gorilla"
""");

A. Three

B. Four

C. Five

D. The code does not compile.

57. Which of the following can fill in the blank to make this code compile?

public boolean isItMyBirthday(LocalDateTime dateTime) {
 ;
 return now.getMonth() == dateTime.getMonth()
 && now.getDayOfMonth() == dateTime.getDayOfMonth();
}

A. LocalDate now = LocalDate.now()
B. LocalDate now = new LocalDate()
C. ZonedDate now = ZonedDate.now()
D. ZonedDate now = new ZonedDate()

58. How many of these print two lines?

18: System.out.println("cheetah\ncub");
19: System.out.println("cheetah\\ncub");
20: System.out.println("cheetah\ncub".translateEscapes());
21: System.out.println("cheetah\\ncub".translateEscapes());

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

59. What is the output of the following code snippet?

int height = 2, length = 3;
boolean w = height > 1 | - - length < 4;
var x = height!=2 ? length++ : height;
boolean z = height % length == 0;
System.out.println(w + "- " + x + "- " + z);

20 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

A. true- 2- true
B. false- 2- false
C. true- 2- false
D. true- 3- false
E. true- 3- true
F. false- 3- false

60. How many backslashes can be removed without changing the value of the text block?

12: var quotes = """
13: \"The Quotes that Could\"
14: \"\"\"
15: """;

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

61. What is the output of the following?

var date1 = LocalDate.of(2022, Month.MARCH, 3);
var date2 = date1.plusDays(2).minusDays(1).minusDays(1);
System.out.println(date1.equals(date2));

A. false
B. true
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

62. What is the output of the following?

1: public class Legos {
2: public static void main(String[] duplo) {
3: var sb = new StringBuilder();
4: sb.append("red");
5: sb.deleteCharAt(0);
6: sb.delete(1, 2);
7: System.out.println(sb);
8: } }

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 21

A. e
B. d
C. ed
D. The code does not compile.

E. None of the above.

63. How many of these lines compile?

35: Boolean.valueOf("8").booleanValue();
36: Character.valueOf('x').byteValue();
37: Double.valueOf("9_.3").byteValue();
38: Long.valueOf(88).byteValue();

A. None

B. One

C. Two

D. Three

E. Four

64. Which is a true statement?

A. If s.contains("abc") is true, then s.equals("abc") is also true.

B. If s.contains("abc") is true, then s.startsWith("abc") is also true.

C. If s.startsWith("abc") is true, then s.equals("abc") is also true.

D. If s.startsWith("abc") is true, then s.contains("abc") is also true.

65. What is a possible output of the following?

var date = LocalDate.of(2022, 5, 13);
var time = LocalTime.of(10, 0);
var trainDay = LocalDateTime.of(date, time);
var instant = trainDay.toInstant();
instant = instant.plus(1, ChronoUnit.DAYS);
System.out.println(instant);

A. 2022- 05- 14T10:00- 07:00[America/Los_Angeles]
B. 2022- 05- 14T17:00:00Z
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

66. Which statement is true of this text block?

var block = """
 green
 yellow
 """;

22 Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values

A. There is only essential whitespace.

B. There is only incidental whitespace.

C. There is both essential and incidental whitespace.

D. The code does not compile.

67. What is the output of the following code snippet?

boolean carrot = true;
Boolean potato = false;
var broccoli = true;
carrot = carrot & potato;
broccoli = broccoli ? !carrot : potato;
potato = !broccoli ^ carrot;
System.out.println(carrot + "," + potato + "," + broccoli);

A. true,false,true
B. true,true,true
C. false,false,false
D. false,true,true
E. false,false,true
F. The code does not compile.

68. Daylight saving time ends on November 6, 2022 at 2 a.m., when we repeat the hour. Suppose
we have a ZonedDateTime that outputs
2012- 11- 06T01:00- 04:00[America/New_York] when calling toString(). What is
a possible value of the ZonedDateTime obtained by adding an hour to this value?

A. 2022- 11- 06T01:00- 04:00[America/New_York]
B. 2022- 11- 06T02:00- 04:00[America/New_York]
C. 2022- 11- 06T01:00- 05:00[America/New_York]
D. 2022- 11- 06T02:00- 05:00[America/New_York]

69. What is the output of the following class?

1: package rocket;
2: public class Countdown {
3: public static void main(String[] fuel) {
4: var builder = new StringBuilder("54321");
5: builder.substring(2);
6: System.out.println(builder.charAt(1));
7: } }

Chapter 1 ■ Handling Date, Time, Text, Numeric and Boolean Values 23

A. 1
B. 2
C. 3
D. 4
E. 5
F. Does not compile

70. What is the output of the following code?

var sum = 0.0;
sum = sum + Math.min(3, 5);
sum = sum + Math.floor(1.8);
sum = sum + Math.round(5.6);

System.out.println(sum);

A. 9
B. 9.0
C. 10
D. 10.0
E. 11
F. 11.0
G. None of the above

Controlling
Program Flow

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Controlling Program Flow

 ■ Create program flow control constructs including if/else,

switch statements and expressions, loops, and break and

continue statements

Chapter

2

26 Chapter 2 ■ Controlling Program Flow

1. Which statements are true of the following code? (Choose two.)

public class Penguins {
 public static void main(String[] args) {
 var pen = new Penguins();
 pen.length("penguins");
 pen.length(5);
 pen.length(new Object());
 }
 public void length(Object obj) {
 if (obj instanceof String x)
 System.out.println(x.length());
 } }

A. The code compiles as is.

B. One line causes compiler errors.

C. Two lines cause compiler errors.

D. If any lines that do not compile are removed, this code does not print anything.

E. If any lines that do not compile are removed, this code prints one line.

F. If any lines that do not compile are removed, this code prints two lines.

2. Variables declared as which of the following are never permitted in a switch statement?
(Choose two.)

A. var
B. double
C. int
D. String
E. char
F. Object

3. When can you omit the default condition in a switch expression? (Choose two.)

A. When all the values of an enum are covered

B. When no value is returned

C. When the type is a Boolean
D. When the type is a Byte
E. When the type is a Boolean or Byte

4. What happens when running the following code snippet?

3: var gas = true;
4: do (
5: System.out.println("helium");

Chapter 2 ■ Controlling Program Flow 27

6: gas = gas ^ gas;
7: gas = !gas;
8:) while (!gas);

A. It completes successfully without output.

B. It outputs helium once.

C. It outputs helium repeatedly.

D. Line 6 does not compile.

E. None of the above.

5. What is output by the following?

10: int m = 0, n = 0;
11: while (m < 5) {
12: n++;
13: if (m == 3)
14: continue;
15:
16: switch (m) {
17: case 0:
18: case 1:
19: n++;
20: default:
21: n++;
22: }
23: m++;
24: }
25: System.out.println(m + " " + n);

A. 3 10
B. 3 12
C. 5 10
D. 5 12
E. The code does not compile.

F. None of the above.

6. What is true of the following program?

enum Admission { ADULT, SENIOR, CHILD}
public class Movie {
 public static void main(String[] args) {
 var price = switch (Admission.CHILD) {
 case ADULT - > 12.50;

28 Chapter 2 ■ Controlling Program Flow

 case SENIOR, CHILD - > 10;
 };
 System.out.println(price);
 } }

A. The code does not compile because the return types of the case branches are different.

B. The code does not compile because one of the case branches has two values.

C. The code does not compile because the value being evaluated in the switch is hard coded.

D. The code does not compile because there are too many semicolons.

E. The code compiles and prints 10.

F. The code compiles and prints 10.0.

7. Given the following, which can fill in the blank and allow the code to compile?
(Choose three.)

var quest = ;
for(var zelda : quest) {
 System.out.print(zelda);
}

A. 3
B. new int[] {3}
C. new StringBuilder("3")
D. List.of(3)
E. new String[3]
F. "Link"

8. Which of the following rules about adding a default branch to this switch statement are
correct? (Choose two.)

switch (numPenguins) {
 case 0 : System.out.println("no penguins");
 case 1 : System.out.println("one penguin");
}

A. This switch statement is required to declare a default statement.

B. A default statement must be placed after all case statements.

C. A default statement can be placed between any case statements.

D. Unlike a case statement, a default statement does not take a parameter value.

E. This switch statement can contain more than one default statement.

F. A default statement can be used only when at least one case statement is present.

Chapter 2 ■ Controlling Program Flow 29

9. What does the following method output?

void dance() {
 var singer = 0;
 while (singer)
 System.out.print(singer++);
}

A. The method does not compile.

B. The method completes with no output.

C. The method prints 0 and then terminates.

D. The method enters an infinite loop.

E. None of the above.

10. How many lines contain compiler errors?

22: int magicNumber = 7;
23: var ok = switch (magicNumber) {
24: case 7 - > true; break;
25: case 9 - > { yield true }
26: case 11 - > yield true;
27: case 13 : {yield true;}
28: default - > false;
29: }

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

11. Which are true statements comparing for- each and traditional for loops? (Choose two.)

A. Both can iterate through an array starting with the first element.

B. Only the for- each loop can iterate through an array starting with the first element.

C. Only the traditional for loop can iterate through an array starting with the first element.

D. Both can iterate through an array starting from the end.

E. Only the for- each loop can iterate through an array starting from the end.

F. Only the traditional for loop can iterate through an array starting from the end.

30 Chapter 2 ■ Controlling Program Flow

12. What statements are true about filling in the blank and calling with zero(0)? (Choose two.)

public void zero(Object number) {
 if (number instanceof Math.abs(n) == 0)
 System.out.println("zero");
 else
 System.out.println("non- zero");
}

A. When filling in the blank with Integer n ||, the code does not compile.

B. When filling in the blank with Integer n ||, the output is zero.

C. When filling in the blank with Integer n ||, the output is non- zero.

D. When filling in the blank with int n &&, the code does not compile.

E. When filling in the blank with int n &&, the output is zero.

F. When filling in the blank with int n &&, the output is non- zero.

13. What is the output of the following application?

package planning;
public class ThePlan {
 public static void main(String[] input) {
 var plan = 1;
 plan = plan++ + - - plan;
 if(plan==1) {
 System.out.print("Plan A");
 } else { if(plan==2) System.out.print("Plan B"); }
 } else System.out.print("Plan C");
 }
 }
}

A. Plan A
B. Plan B
C. Plan C
D. The class does not compile.

E. None of the above.

14. What is true about the following code? (Choose two.)

23: var race = "";
24: loop:
25: do {
26: race += "x";

Chapter 2 ■ Controlling Program Flow 31

27: break loop;
28: } while (true);
29: System.out.println(race);

A. It outputs x.

B. It does not compile.

C. It is an infinite loop.

D. With lines 25 and 28 removed, it outputs x.

E. With lines 25 and 28 removed, it does not compile.

F. With lines 25 and 28 removed, it is an infinite loop.

15. What does the following code output?

int count = 0;
char letter = 'A';
switch (letter) {
 case 'A' - > count++;
 case 'B' - > count++;
}
System.out.println(count);

A. 0
B. 1
C. 2
D. The code does not compile.

16. Which of the following can replace the body of the perform() method to produce the same
output on any nonempty input? (Choose two.)

public void perform(String[] circus) {
 for (int i=circus.length- 1; i>=0; i- -)
 System.out.print(circus[i]);
}

A.

for (int i=circus.length; i>0; i- -)
 System.out.print(circus[i- 1]);

B.

for- reversed (String c = circus)
 System.out.print(c);

32 Chapter 2 ■ Controlling Program Flow

C.

for (var c : circus)
 System.out.print(c);

D.

for (var i=0; i<circus.length; i++)
 System.out.print(circus[circus.length- i- 1]);

E.

for (int i=circus.length; i>0; i- -)
 System.out.print(circus[i+1]);

F.

for- each (String c circus)
 System.out.print(c);

17. What does the following code snippet output?

var bottles = List.of("glass", "plastic", "can");
for (int type = 1; type < bottles.size();) {
 System.out.print(bottles.get(type) + "- ");
 if(type < bottles.size()) break;
}
System.out.print("end");

A. glass- end
B. glass- plastic- can- end
C. plastic- end
D. plastic- can- end
E. The code does not compile.

F. None of the above.

18. What is the result of executing the following code snippet?

final var GOOD = 100;
var score = 10;
switch (score) {
 default:
 1 : System.out.print("1- ");
 - 1 : System.out.print("2- "); break;
 4,5 : System.out.print("3- ");
 6 : System.out.print("4- ");
 9 : System.out.print("5- ");
}

Chapter 2 ■ Controlling Program Flow 33

A. 1-
B. 1- 2-
C. 2-
D. 3-
E. 4-
F. None of the above

19. What is the output of the following application?

package dinosaur;
public class Park {
 public final static void main(String... arguments) {
 int pterodactyl = 8;
 long triceratops = 3;
 if(pterodactyl % 3 > 1 + 1)
 triceratops++;
 triceratops- - ;
 System.out.print(triceratops);
 } }

A. 2
B. 3
C. 4
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

20. What variable type of red allows the following application to compile?

package tornado;
public class Kansas {
 public static void main(String[] args) {
 int colorOfRainbow = 10;
 red = 5;
 switch(colorOfRainbow) {
 default:
 System.out.print("Home");
 break;
 case red:
 System.out.print("Away");
 } } }

34 Chapter 2 ■ Controlling Program Flow

A. long
B. double
C. int
D. var
E. String
F. None of the above

21. What is true about the following method when calling with an empty ArrayList?
(Choose two.)

public void meow(Collection<String> kitties) {
 if (kitties instanceof List c) {
 System.out.println("L " + c.size());
 } else if (kitties instanceof Map c) {
 c = new TreeMap<>(); // x1
 System.out.println("M " + c.size());
 } else {
 System.out.println("E " + c.size());
 }
}

A. The code compiles.

B. The code does not compile due to line x1.

C. The code does not compile for another reason.

D. If any lines that do not compile are removed, the output is L0.

E. If any lines that do not compile are removed, the output is E0.

F. If any lines that do not compile are removed, the output is another value.

22. How many lines of the magic() method contain compilation errors?

10: public void magic() {
11: do {
12: int trick = 0;
13: LOOP: do {
14: trick++;
15: } while (trick < 2- -);
16: continue LOOP;
17: } while (1 > 2);
18: System.out.println(trick);
19: }

Chapter 2 ■ Controlling Program Flow 35

A. Zero

B. One

C. Two

D. Three

E. Four

23. How many of these statements can be inserted after the println to have the code flow follow
the arrow in this diagram?

break;
break letters;
break numbers;
continue;
continue letters;
continue numbers;

A. One

B. Two

C. Three

D. Four

E. Five

F. None of above

24. What is the output of the following application?

package dessert;
public class IceCream {
 public final static void main(String... args) {
 var flavors = 30;
 int eaten = 0;
 switch(flavors) {
 case 30: eaten++;
 case 40: eaten+=2;

letters: for (char ch = 'a'; ch <= 'z'; ch++) {
 numbers: for (int n = 0; n<=10; n++) {
 System.out.print(ch);

 }
}

36 Chapter 2 ■ Controlling Program Flow

 default: eaten- - ;
 }
 System.out.print(eaten);
 } }

A. 1
B. 2
C. 3
D. The code does not compile because var cannot be used in a switch statement.

E. The code does not compile for another reason.

F. None of the above.

25. Which of the following statements compile and create infinite loops at runtime?
(Choose three.)

A. while (!false) {}
B. do {}
C. for(:) {}
D. do {} while (true);
E. while {}
F. for(; ;) {}

26. How many of these methods compile?

public void m(Object obj) {
 if (obj instanceof LocalDate date)
 System.out.println(date);
 else
 System.out.println(date);
}
public void n(Object obj) {
 if (obj instanceof LocalDate date)
 return;
 else
 System.out.println(date);
}
public void o(Object obj) {
 if (!obj instanceof LocalDate date)
 return;
 else
 System.out.println(date);
}
public void p(Object obj) {

Chapter 2 ■ Controlling Program Flow 37

 if (!(obj instanceof LocalDate date))
 return;
 else
 System.out.println(date);
}
public void q(Object obj) {
 if (!obj instanceof LocalDate date)
 return;
 System.out.println(date);
}
public void r(Object obj) {
 if (!(obj instanceof LocalDate date))
 return;
 System.out.println(date);
}

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

G. Six

27. Which of the following iterates a different number of times than the others?

A. for (int k=0; k < 5; k++) {}
B. for (int k=1; k <= 5; k++) {}
C. int k=0; do { } while(k++ < 5);
D. int k=0; while (k++ < 5) {}
E. All of these iterate the same number of times.

28. What is the output of the following code snippet?

int count = 0;
var stops = new String[] { "Washington", "Monroe",
 "Jackson", "LaSalle" };
while (count < stops.length)
 if (stops[++count].length() < 8)
 break;
 else continue;
System.out.println(count);

38 Chapter 2 ■ Controlling Program Flow

A. 0
B. 1
C. 2
D. 3
E. The code does not compile.

F. None of the above.

29. What is the output of the following code snippet?

int hops = 0;
int jumps = 0;
jumps = hops++;
if(jumps)
 System.out.print("Jump!");
else
 System.out.print("Hop!");

A. Jump!
B. Hop!
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

E. None of the above.

30. Which of the following best describes the flow of execution in this for loop if beta always
returns false?

for (alpha; beta; gamma) {
 delta;
}

A. alpha
B. alpha, beta
C. alpha, beta, gamma
D. alpha, gamma
E. alpha, gamma, beta
F. None of the above

31. What is the output of the following code snippet?

boolean balloonInflated = false;
do {
 if (!balloonInflated) {
 balloonInflated = true;

Chapter 2 ■ Controlling Program Flow 39

 System.out.print("inflate- ");
 }
} while (!balloonInflated);
System.out.println("done");

A. done
B. inflate- done
C. The code does not compile.

D. This is an infinite loop.

E. None of the above.

32. Which are true about switch expressions and switch statements? (Choose three.)

A. Both allow assigning the result to a variable.

B. Both allow multiple values in the same case.

C. Only a switch expression supports break.

D. Only a switch statement supports break.

E. A switch expression is more compact.

F. A switch statement is more compact.

33. Which of these code snippets behaves differently from the others?

A.

if (numChipmunks == 1)
 System.out.println("One chipmunk");
if (numChipmunks == 2)
 System.out.println("Two chipmunks");
if (numChipmunks == 3)
 System.out.println("Three chipmunks");

B.

switch (numChipmunks) {
 case 1: System.out.println("One chipmunk");
 case 2: System.out.println("Two chipmunks");
 case 3: System.out.println("Three chipmunks");
}

C.

if (numChipmunks == 1)
 System.out.println("One chipmunk");
else if (numChipmunks == 2)
 System.out.println("Two chipmunks");

40 Chapter 2 ■ Controlling Program Flow

else if (numChipmunks == 3)
 System.out.println("Three chipmunks");

D. All three code snippets do the same thing.

34. Which statements about loops are correct? (Choose three.)

A. A do/while loop requires a body.

B. A while loop cannot be exited early with a return statement.

C. A while loop requires a conditional expression.

D. A do/while loop executes the body (if present) at least once.

E. A do/while loop cannot be exited early with a return statement.

F. A while loop executes the body (if present) at least once.

35. Given the following enum and class, which option fills in the blank and allows the code
to compile?

enum Season { SPRING, SUMMER, WINTER }
public class Weather {
 public int getAverageTemperate(Season s) {
 switch (s) {
 default:
 return 30;
 } } }

A. case Season.WINTER:
B. case WINTER, SPRING:
C. case SUMMER | WINTER:
D. case SUMMER - >
E. case FALL:
F. None of the above

36. Fill in the blank with the line of code that causes the application to compile and print exactly
one line at runtime.

package nyc;
public class TourBus {
 public static void main(String... args) {
 var nycTour = new String[] { "Downtown", "Uptown",
 "Brooklyn" };
 var times = new String[] { "Day", "Night" };
 for (i<nycTour.length && j<times.length;
 i++, j++)
 System.out.println(nycTour[i] + "- " + times[j]);
 } }

Chapter 2 ■ Controlling Program Flow 41

A. int i=1; j=1;
B. int i=0, j=1;
C. int i=1; int j=0;
D. int i=1, int j=0;
E. int i=1, j=0;
F. None of the above

37. What statements are true of the following code? (Choose two.)

public class Penguins {
 public static void main(String[] args) {
 var pen = new Penguins();
 pen.length("penguins");
 pen.length(5);
 pen.length(new Object());
 }
 public void length(Object obj) {
 if (obj instanceof String) {
 System.out.println(obj.length());
 } } }

A. The code compiles as is.

B. One line causes compiler errors.

C. Two lines cause compiler errors.

D. If any lines that do not compile are removed, this code does not print anything.

E. If any lines that do not compile are removed, this code prints one line.

F. If any lines that do not compile are removed, this code prints two lines.

38. The following code contains six pairs of curly braces. How many pairs can be removed
without changing the behavior?

12: public static void main(String[] args) {
13: int secret = 0;
14: for (int i = 0; i < 10; i++) {
15: while (i < 10) {
16: if (i == 5) {
17: System.out.println("if");
18: } else {
19: System.out.println("in");
20: System.out.println("else");
21: }
22: }
23: }

42 Chapter 2 ■ Controlling Program Flow

24: switch (secret) {
25: case 0: System.out.println("zero");
26: }
27: }

A. One

B. Two

C. Three

D. Four

E. Five

F. Six

39. Which of the following can replace the body of the travel() method to produce the same
output on any nonempty input?

public void travel(List<Integer> roads) {
 for (int w = 1; w <= roads.size(); w++)
 System.out.print(roads.get(w- 1));
}

A.

for (int r = 0; r < roads.size(); r += 1)
 System.out.print(roads.get(0));

B.

for(var z : roads)
 System.out.print(z);

C.

for (int t = roads.size(); t > 0; t- -)
 System.out.print(roads.get(t));

D.

for (var var : roads)
 System.out.print(roads);

E.

for (int q = roads.size(); q >= 0; q++)
 System.out.print(roads.get(q));

F. None of the above

Chapter 2 ■ Controlling Program Flow 43

40. Which statement about the following code snippet is correct?

3: final var javaVersions = List.of(17,11,8);
4: var names = List.of("JDK", "Java");
5: V: for (var e1 : javaVersions) {
6: E: for (String e2 : names)
7: System.out.println(e1 + "_" + e2);
8: break;
9: }

A. One line does not compile.

B. Two lines do not compile.

C. Three lines do not compile.

D. It compiles and prints two lines at runtime.

E. It compiles and prints three lines at runtime.

F. None of the above.

Utilizing Java Object-
Oriented Approach

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Utilizing Java Object- Oriented Approach

 ■ Declare and instantiate Java objects including nested class

objects, and explain the object life- cycle including creation,

reassigning references, and garbage collection

 ■ Create classes and records, and define and use instance and

static fields and methods, constructors, and instance and

static initializers

 ■ Implement overloading, including var- arg methods

 ■ Understand variable scopes, use local variable type inference,

apply encapsulation, and make objects immutable

 ■ Implement inheritance, including abstract and sealed classes.

Override methods, including that of Object class. Implement

polymorphism and differentiate object type versus reference

type. Perform type casting, identify object types using instan-

ceof operator and pattern matching

 ■ Create and use interfaces, identify functional interfaces, and

utilize private, static, and default interface methods

 ■ Create and use enumerations with fields, methods and

constructors

Chapter

3

46 Chapter 3 ■ Utilizing Java Object- Oriented Approach

1. How many lines would have to be changed for the following code to compile?

1: enum Color {
2: public static Color DEFAULT = BROWN;
3: BROWN, YELLOW, BLACK;
4: }
5: public record Pony {
6: String name;
7: static int age;
8: { age = 10;}
9: }

A. Zero

B. One

C. Two

D. Three

E. Four or more

2. Which modifiers can be applied to a sealed subclass? (Choose three.)

A. nonsealed
B. default
C. sealed
D. unsealed
E. non- sealed
F. closed
G. final

3. What is the output of the following application?

package dnd;
final class Story {
 void recite(int chapter) throws Exception {}
}
public class Adventure extends Story {
 final void recite(final int chapter) { // g1
 switch(chapter) { // g2
 case 2: System.out.print(9);
 default: System.out.print(3);
 }
 }
 public static void main(String... u) {
 var bedtime = new Adventure();
 bedtime.recite(2);
 } }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 47

A. 3
B. 9
C. 93
D. The code does not compile because of line g1.

E. The code does not compile because of line g2.

F. None of the above.

4. Which of the following lines of code are not permitted as the first line of a Java class file?
(Choose two.)

A. import widget.*;
B. // Widget Manager
C. int facilityNumber;
D. package sprockets;
E. /** Author: Cid **/
F. void produce() {}

5. Which of the following modifiers can be applied to an abstract method? (Choose two.)

A. final
B. private
C. public
D. default
E. protected
F. concrete

6. What is the result of compiling and executing the following class?

1: public class ParkRanger {
2: final static int birds = 10;
3: public static void main(String[] data) {
4: var r = new ParkRanger();
5: var trees = 5f;
6: System.out.print(trees + r.birds);
7: } }

A. It compiles and outputs 5.

B. It compiles and outputs 5.0.

C. It compiles and outputs 15.

D. It compiles and outputs 15.0.

E. It does not compile.

F. It compiles but throws an exception at runtime.

48 Chapter 3 ■ Utilizing Java Object- Oriented Approach

7. Fill in the blanks: The ___________________ access modifier allows access to everything the
___________________ access modifier does and more.

A. package, protected
B. private, package

C. private, protected
D. private, public
E. public, private
F. None of the above

8. Which set of modifiers, when added to a default method within an interface, prevents it from
being overridden by a class implementing the interface?

A. const
B. final
C. static
D. private
E. private static
F. None of the above

9. Given the following application, fill in the missing values in the table starting from the top
and going down.

package competition;
public class Robot {
 static String weight = "A lot";
 double ageMonths = 5, ageDays = 2;
 private static boolean success = true;

 public void compete() {
 final String retries = "1";
 // P1
 } }

Variable Type Number of Variables Accessible at P1

Class _____

Instance _____

Local _____

A. 2, 0, 1

B. 2, 2, 1

C. 1, 0, 2

D. 0, 2, 0

E. 2, 1, 1

F. The class does not compile.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 49

10. Given the following code, what values inserted, in order, into the blank lines allow the code
to compile? (Choose two.)

 agent;
public Banker {
 private static getMaxWithdrawal() {
 return 10;
 } }

A. package, new, int
B. package, class, long
C. import, class, null
D. //, class, int
E. import, interface, void
F. package, class, void

11. Which of the following are correct? (Choose two.)

public class Phone {
 private int size;

 // LINE X

 public static void sendHome(Phone p, int newSize) {
 p = new Phone(newSize);
 p.size = 4;
 }
 public static final void main(String... params) {
 final var phone = new Phone(3);
 sendHome(phone,7);
 System.out.print(phone.size);
 } }

A. Insert this constructor at LINE X:

public static Phone create(int size) {
 return new Phone(size);
}

B. Insert this constructor at LINE X:

public static Phone newInstance(int size) {
 return new Phone();
}

50 Chapter 3 ■ Utilizing Java Object- Oriented Approach

C. Insert this constructor at LINE X:

public Phone(int size) {
 size = this.size;
}

D. Insert this constructor at LINE X:

public void Phone(int size) {
 size = this.size;
}

E. With the correct constructor, the output is 0.

F. With the correct constructor, the output is 3.

G. With the correct constructor, the output is 7.

12. Given the following class structures, which lines can be inserted into the blank independently
that would allow the class to compile? (Choose two.)

public class Dinosaur {
 class Pterodactyl extends Dinosaur {}
 public void roar() {
 var dino = new Dinosaur();
 ;
 } }

A. dino.Pterodactyl()
B. Dinosaur.new Pterodactyl()
C. dino.new Pterodactyl()
D. new Dino().new Pterodactyl()
E. new Dinosaur().Pterodactyl()
F. new Dinosaur.Pterodactyl()

13. What is the output of the Computer program?

class Laptop extends Computer {
 public void startup() {
 System.out.print("laptop- ");
 } }
public class Computer {
 public void startup() {
 System.out.print("computer- ");
 }
 public static void main(String[] args) {
 Computer computer = new Laptop();

Chapter 3 ■ Utilizing Java Object- Oriented Approach 51

 Laptop laptop = new Laptop();
 computer.startup();
 laptop.startup();
 } }

A. computer- laptop-
B. laptop- computer-
C. laptop- laptop-
D. The code does not compile.

E. None of the above.

14. How many lines does the following code output?

public class Cars {
 private static void drive() {
 {
 System.out.println("zoom");
 }
 System.out.println("fast");
 }
 static { System.out.println("faster"); }
 public static void main(String[] args) {
 drive();
 drive();
 } }

A. One

B. Two

C. Three

D. Four

E. Five

F. Six or more

G. None of the above. The code does not compile.

15. Which statements about static interface methods are correct? (Choose three.)

A. A static interface method can be final.

B. A static interface method can be declared private.

C. A static interface method can be declared with package access.

D. A static interface method can be declared public.

E. A static interface method can be declared protected.

F. A static interface method can be declared without an access modifier.

52 Chapter 3 ■ Utilizing Java Object- Oriented Approach

16. Not counting the Planet declaration, how many declarations compile? Assume they are all
declared within the same .java file.

public abstract sealed class Planet permits Mercury, Venus, Earth {}

non-sealed class Venus {}
non- sealed class Mars extends Planet {}
non- sealed class Mercury {}
abstract non- sealed class Earth {}

A. Zero

B. One

C. Two

D. Three

E. Four

17. What is the result of executing the following program?

public class Canine {
 public String woof(int bark) {
 return "1"+bark.toString();
 }
 public String woof(Integer bark) {
 return "2"+bark.toString();
 }
 public String woof(Object bark) {
 return "3"+bark.toString();
 }
 public static void main(String[] a) {
 System.out.println(woof((short)5));
 } }

A. 15
B. 25
C. 35
D. One line does not compile.

E. Two lines do not compile.

F. The program compiles but throws an exception at runtime.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 53

18. What statement best describes the notion of effectively final in Java?

A. A local variable that is marked final.

B. A static variable that is marked final.

C. A local variable whose primitive value or object reference does not change after it is
initialized.

D. A local variable whose primitive value or object reference does not change after a certain
point in the method.

E. None of the above.

19. What is the output of the Turnip class?

interface GameItem {
 int sell();
}
abstract class Vegetable implements GameItem {
 public final int sell() { return 5; }
}
public class Turnip extends Vegetable {
 public final int sell() { return 3; }
 public static void main(String[] expensive) {
 System.out.print(new Turnip().sell());
 } }

A. 3
B. 5
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

E. None of the above.

20. What is the output of the following application?

package holiday;
enum DaysOff {
 Thanksgiving, PresidentsDay, ValentinesDay
}
public class Vacation {
 public static void main(String[] unused) {
 final DaysOff input = DaysOff.Thanksgiving;
 switch(input) {
 default:

54 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 case DaysOff.ValentinesDay:
 System.out.print("1");
 case DaysOff.PresidentsDay:
 System.out.print("2");
 } } }

A. 1
B. 2
C. 12
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. None of the above.

21. What is the output of the following program?

record Animal(boolean isMammal) {}
public record Panda(String name) extends Animal {
 public Panda() {
 this("TaiShan");
 }
 public Panda {
 this.name = name.toLowerCase();
 }
 public static void main(String[] args) {
 System.out.print(new Panda().name());
 } }

A. TaiShan
B. taishan
C. Exactly one line needs to be corrected for the program to compile.

D. Exactly two lines need to be corrected for the program to compile.

E. Three or more lines need to be corrected for the program to compile.

F. The code compiles but prints an exception at runtime.

22. Which statements about instance keywords are correct? (Choose two.)

A. The that keyword can be used to read public members in the direct parent class.

B. The this keyword can be used to read all members declared within the class.

C. The super keyword can be used to read all members declared in a parent class.

D. The that keyword can be used to read members of another class.

E. The this keyword can be used to read public members in the direct parent class.

F. The super keyword can be used in static methods.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 55

23. Fill in the blanks: A class ____________ an interface and ______________ an abstract
class. An interface ______________ another interface.

A. extends, extends, implements
B. extends, implements, extends
C. extends, implements, implements
D. implements, extends, extends
E. implements, extends, implements
F. implements, implements, extends

24. Suppose you have the following code. Which of the images best represents the state of the
references c1, c2, and c3, right before the end of the main() method, assuming garbage col-
lection hasn’t run? In the diagrams, each box represents a Chicken object with a number
of eggs.

1: public class Chicken {
2: private Integer eggs = 2;
3: { this.eggs = 3; }
4: public Chicken(int eggs) {
5: this.eggs = eggs;
6: }
7: public static void main(String[] r) {
8: var c1 = new Chicken(1);
9: var c2 = new Chicken(2);
10: var c3 = new Chicken(3);
11: c1.eggs = c2.eggs;
12: c2 = c1;
13: c3.eggs = null;
14: } }

Option A

Option C Option D

Option B

c1

c2

c3

2

null

2
c1

c2

c3

1

null

2

c1

c2

c3

2

3

1
c1

c2

c3

1

null

1

56 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. Option A

B. Option B

C. Option C

D. Option D

E. The code does not compile.

F. None of the above.

25. What is the output of the following application?

package musical;
interface Speak { default int talk() { return 7; } }
interface Sing { default int talk() { return 5; } }
public class Performance implements Speak, Sing {
 public int talk(String... x) {
 return x.length;
 }
 public static void main(String[] notes) {
 System.out.print(new Performance().talk());
 } }

A. 7
B. 5
C. The code does not compile.

D. The code compiles without issue, but the output cannot be determined until runtime.

E. None of the above.

26. What is the output of the following application?

package ai;
interface Pump { public abstract String toString(); }
interface Bend extends Pump { void bend(double tensileStrength); }
public class Robot {
 public static final void apply(
 Bend instruction, double input) {
 instruction.bend(input);
 }
 public static void main(String... future) {
 final Robot r = new Robot();
 r.apply(x - > System.out.print(x+" bent!"), 5);
 } }

A. 5 bent!
B. 5.0 bent!

Chapter 3 ■ Utilizing Java Object- Oriented Approach 57

C. The code does not compile because Bend is not a functional interface.

D. The code does not compile because of the apply() method declaration.

E. None of the above.

27. Which statement is true about encapsulation while providing the broadest access allowed?

A. Variables are private and methods are private.

B. Variables are private and methods are public.

C. Variables are public and methods are private.

D. Variables are public and methods are public.

E. Variables are private and methods are protected.

F. None of the above.

28. Fill in the blanks: ____________ means the state of an object cannot be changed, while
_____________ means that it can.

A. Encapsulation, factory method

B. Immutability, mutability

C. Rigidity, flexibility

D. Static, instance

E. Tightly coupled, loosely coupled

F. None of the above

29. Which statement about the following interface is correct?

public interface Swimming {
 String DEFAULT = "Diving!"; // k1
 abstract int breath();
 private static void stroke() {
 if(breath()==1) { // k2
 System.out.print("Go!");
 } else {
 System.out.print(dive()); // k3
 } }
 static String dive() {
 return DEFAULT; // k4
 } }

A. The code compiles without issue.

B. The code does not compile because of line k1.

C. The code does not compile because of line k2.

D. The code does not compile because of line k3.

E. The code does not compile because of line k4.

F. None of the above.

58 Chapter 3 ■ Utilizing Java Object- Oriented Approach

30. Which is the first line to fail to compile?

class Tool {
 private void repair() {} // r1
 void use() {} // r2
}
class Hammer extends Tool {
 private int repair() { return 0; } // r3
 private void use() {} // r4
 public void bang() {} // r5
}

A. r1
B. r2
C. r3
D. r4
E. r5
F. None of the above

31. Which modifier can be applied to an abstract interface method?

A. final
B. interface
C. protected
D. volatile
E. sealed
F. None of the above

32. What is the output of the Plant program?

class Bush extends Plant {
 String type = "bush";
}
public class Plant {
 String type = "plant";
 public static void main(String[] args) {
 Plant w1 = new Bush();
 Bush w2 = new Bush();
 Plant w3 = w2;
 System.out.print(w1.type+","+w2.type+","+w3.type);
 } }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 59

A. plant,bush,plant
B. plant,bush,bush
C. bush,plant,bush
D. bush,bush,bush
E. The code does not compile.

F. None of the above.

33. The following Organ class is included, unmodified, in a larger program at runtime. At most,
how many classes can inherit from Organ (excluding Organ itself)?

package body;
public sealed class Organ {
 sealed class Heart extends Organ {}
 final class Lung extends Organ {}
 static non- sealed class Stomach extends Organ {}
 final class Valentine extends Heart {}
}

A. None

B. Three

C. Four

D. Five

E. One of the nested classes does not compile.

F. Two or more of the nested classes do not compile.

G. The number cannot be determined with the information given.

34. What is the correct order of statements for a Java class file?

A. import statements, package statement, class declaration

B. package statement, class declaration, import statements

C. class declaration, import statements, package statement

D. package statement, import statements, class declaration

E. import statements, class declaration, package statement

F. class declaration, package statement, import statements

35. Which are true of the following code? (Choose three.)

1: class Penguin {
2: private enum Baby { EGG }
3: static class Chick {
4: enum Baby { EGG }
5: }

60 Chapter 3 ■ Utilizing Java Object- Oriented Approach

6: public static void main(String[] args) {
7: boolean match = false;
8: Baby egg = Baby.EGG;
9: switch (egg) {
10: case EGG:
11: match = true;
12: } } }

A. It compiles as is.

B. It does not compile as is.

C. Removing private on line 2 would create an additional compiler error.

D. Removing private on line 2 would not create an additional compiler error.

E. Removing the static modifier on line 3 would create an additional compiler error.

F. Removing the static modifier on line 3 would not create an additional compiler error.

36. Which are true of the following? (Choose two.)

package beach;
public class Sand {
 private static int numShovels;
 private int numRakes;

 public static int getNumShovels() {
 return numShovels;
 }
 public static int getNumRakes() {
 return numRakes;
 }
 public Sand() {
 System.out.print("a");
 }
 public void Sand() {
 System.out.print("b");
 }
 public void run() {
 new Sand();
 Sand();
 }
 public static void main(String... args) {
 new Sand().run();
 } }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 61

A. The code compiles.

B. Exactly one line doesn’t compile.

C. Exactly two lines don’t compile.

D. If the code compiles or if any constructors/methods that do not compile are removed,
the remaining code prints a.

E. If the code compiles or if any constructors/methods that do not compile are removed,
the remaining code prints ab.

F. If the code compiles or if any constructors/methods that do not compile are removed,
the remaining code prints aab.

37. Which of the following class types cannot be marked abstract?

A. static nested class

B. Local class

C. Anonymous class

D. Member inner class

E. Sealed class

F. All of the above can be marked abstract.

38. Fill in the blanks: The ___________________ access modifier allows access to everything the
___________________ access modifier does and more. (Choose three.)

A. package, protected
B. package, public
C. protected, package

D. protected, public
E. public, package

F. public, protected

39. Which is the first line containing a compiler error?

var var = "var"; // line x1
var title = "Weather"; // line x2
var hot = 100, var cold = 20; // line x3
var f = 32, int c = 0; // line x4

A. x1
B. x2
C. x3
D. x4
E. None of the above

62 Chapter 3 ■ Utilizing Java Object- Oriented Approach

40. How many of the following members of the Telephone interface are public?

public interface Telephone {
 static int call() { return 1; }
 default void dial() {}
 long answer();
 String home = "555- 555- 5555";
}

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

41. Which best describes what the new keyword does?

A. Creates a copy of an existing object and treats it as a new one.

B. Creates a new primitive.

C. Instantiates a new object.

D. Switches an object reference to a new one.

E. The behavior depends on the class implementation.

42. How many lines will not compile?

11: public class PrintShop {
12: public void printVarargs(String... names) {
13: System.out.println(Arrays.toString(names));
14: }
15: public void printArray(String[] names) {
16: System.out.println(Arrays.toString(names));
17: }
18: public void stormy() {
19: printVarargs("Arlene");
20: printVarargs(new String[]{"Bret"});
21: printVarargs(null);
22: printArray ("Cindy");
23: printArray (new String[]{"Don"});
24: printArray (null);
25: } }

A. Zero

B. One

C. Two

D. Three

Chapter 3 ■ Utilizing Java Object- Oriented Approach 63

E. Four

F. Five

43. How do you change the value of an instance variable in an immutable class?

A. Call the setter method.

B. Remove the final modifier and set the instance variable directly.

C. Create a new instance with an inner class.

D. Use a method other than option A, B, or C.

E. You can’t.

44. What is the minimum number of lines that need to be removed to make this code compile?

@FunctionalInterface
public interface Play {
 public static void baseball() {}
 private static void soccer() {}
 default void play() {}
 void fun();
}

A. One

B. Two

C. Three

D. Four

E. The code compiles as is.

45. Fill in the blanks: A class that defines an instance variable with the same name as a variable
in the parent class is referred to as ___________________ a variable, while a class that defines
a static method with the same signature as a static method in a parent class is referred to as
___________________ a method.

A. hiding, overriding

B. overriding, hiding

C. masking, masking

D. hiding, masking

E. replacing, overriding

F. hiding, hiding

46. Which statements about records are correct? (Choose two.)

A. A record is implicitly public.

B. A record can extend other classes.

C. A record can implement interfaces.

D. A record can contain multiple regular constructors.

E. A record can contain multiple compact constructors.

F. A record is always immutable.

64 Chapter 3 ■ Utilizing Java Object- Oriented Approach

47. What change is needed to make Secret well encapsulated?

import java.util.*;
public class Secret {
 private int number = new Random().nextInt(10);
 public boolean guess(int candidate) {
 return number == candidate;
 } }

A. Change number to use a protected access modifier.

B. Change number to use a public access modifier.

C. Declare a private constructor.

D. Declare a public constructor.

E. Remove the guess method.

F. None. It is already well encapsulated.

48. What is the output of the following application?

interface Toy { String play(); }
public class Gift {
 public static void main(String[] matrix) {
 abstract class Robot {}
 class Transformer extends Robot implements Toy {
 public String name = "GiantRobot";
 public String play() {return "DinosaurRobot";} // y1
 }
 Transformer prime = new Transformer () {
 public String play() {return name;} // y2
 };
 System.out.print(prime.play() + " " + name);
 } }

A. GiantRobot
B. GiantRobot DinosaurRobot
C. DinosaurRobot
D. The code does not compile because of line y1.

E. The code does not compile because of line y2.

F. None of the above.

49. What is the output of the following application?

package space;
public class Bottle {
 public static class Ship {

Chapter 3 ■ Utilizing Java Object- Oriented Approach 65

 private enum Sail { // w1
 TALL {protected int getHeight() {return 100;}},
 SHORT {protected int getHeight() {return 2;}};
 protected abstract int getHeight();
 }
 public Sail getSail() {
 return Sail.TALL;
 } }
 public static void main(String[] stars) {
 var bottle = new Bottle();
 Ship q = bottle.new Ship(); // w2
 System.out.print(q.getSail());
 } }

A. TALL
B. The code does not compile because of line w1.

C. The code does not compile because of line w2.

D. The code does not compile for another reason.

E. The code compiles but throws an exception at runtime.

50. Which of the following is not a valid order for elements within a class?

A. Constructor, instance variables, method declarations

B. Instance variables, static initializer constructor, method declarations

C. Method declarations, instance variables, constructor

D. Instance initializer, constructor, instance variables, constructor

E. None of the above

51. Which line of code, inserted at line p1, causes the application to print 5?

package games;
public class Jump {
 private int rope = 1;
 protected boolean outside;
 public Jump() {
 // line p1
 outside = true;
 }
 public Jump(int rope) {
 this.rope = outside ? rope : rope+1;
 }
 public static void main(String[] bounce) {
 System.out.print(new Jump().rope);
 } }

66 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. this(4);
B. new Jump(4);
C. this(5);
D. rope = 4;
E. super(4);
F. super(5);

52. Which of the following are not reasons to use encapsulation when designing a class?
(Choose two.)

A. Improve security.

B. Increase concurrency and improve performance.

C. Maintain class data integrity of data elements.

D. Prevent users from modifying the internal attributes of a class.

E. Prevent variable state from changing.

F. Promote usability by other developers.

53. Which is not a true statement given this diagram? Assume all classes are public.

com.light

Flashlight

• private replaceBulb()
• public turnOn()

Phone

• protected display()
• public charge()

com.dark

Blanket

• wash()

Tent

• private pitch()
• public goCamping()

A. Instance methods in the Blanket class can call the Flashlight class’s turnOn().

B. Instance methods in the Flashlight class can call the Flashlight class’s replaceBulb().

C. Instance methods in the Phone class can call the Blanket class’s wash().

D. Instance methods in the Tent class can call the Tent class’s pitch().

E. Instance methods in the Tent class can call the Blanket class’s wash().

F. All of the statements are true.

54. Given the diagram in the previous question, how many of the classes shown in the diagram
can call the display() method?

A. Zero

B. One

C. Two

D. Three

E. Four

Chapter 3 ■ Utilizing Java Object- Oriented Approach 67

55. Which of the following statements are correct? (Choose two.)

A. Java allows multiple inheritance using two abstract classes.

B. Java allows multiple inheritance using two interfaces.

C. Java does not allow multiple inheritance.

D. An interface can extend another interface.

E. An interface can extend a record.

F. An interface can implement another interface.

56. Which changes, taken together, would make the Tree class immutable? (Choose three.)

1: public class Tree {
2: String species;
3: public Tree(String species) {
4: this.species = species;
5: }
6: public String getSpecies() {
7: return species;
8: }
9: private final void setSpecies(String newSpecies) {
10: species = newSpecies;
11: } }

A. Make all constructors private.

B. Change the access level of species to private.

C. Change the access level of species to protected.

D. Remove the setSpecies() method.

E. Mark the Tree class final.

F. Make a defensive copy of species in the Tree constructor.

57. What is the output of the following application?

package ocean;
abstract interface CanSwim {
 public void swim(final int distance);
}
public class Turtle {
 final int distance = 2;
 public static void main(String[] seaweed) {
 final int distance = 3;
 CanSwim seaTurtle = {
 final int distance = 5;
 @Override

68 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 public void swim(final int distance) {
 System.out.print(distance);
 }
 };
 seaTurtle.swim(7);
 } }

A. 2
B. 3
C. 5
D. 7
E. The code does not compile.

F. None of the above.

58. What is the output of the following application?

package pet;
public class Puppy {
 public static int wag = 5; // q1
 public void Puppy(int wag) { // q2
 this.wag = wag;
 }
 public static void main(String[] tail) {
 System.out.print(new Puppy(2).wag); // q3
 } }

A. 2
B. 5
C. The first line with a compiler error is line q1.

D. The first line with a compiler error is line q2.

E. The first line with a compiler error is line q3.

59. Given the following method signature used in a class, which classes can call it?
void run(String government)
A. Classes in other packages

B. Classes in the same package

C. Subclasses in a different package

D. All classes

E. None of the above

Chapter 3 ■ Utilizing Java Object- Oriented Approach 69

60. Which is the first declaration to not compile?

package desert;

interface CanBurrow {
 public abstract void burrow();
}

@FunctionalInterface interface HasHardShell
 extends CanBurrow {}

abstract class Tortoise implements HasHardShell {
 public abstract int toughness();
}

public class DesertTortoise extends Tortoise {
 public int toughness() { return 11; }
}

A. CanBurrow
B. HasHardShell
C. Tortoise
D. DesertTortoise
E. All of the declarations compile.

61. Which is the first line to not compile?

interface Building {
 default Double getHeight() { return 1.0; } // m1
}
interface Office {
 public default String getHeight() { return null; } // m2
}
abstract class Tower implements Building, Office {} // m3
public class Restaurant extends Tower {} // m4

A. Line m1
B. Line m2
C. Line m3
D. Line m4
E. None of the above

70 Chapter 3 ■ Utilizing Java Object- Oriented Approach

62. What is the output of the following code snippet?

public class Nature {
 public static void main(String[] seeds) {
 record Tree() {}
 var tree = "pine";
 int count = 0;
 if (tree.equals("pine")) {
 int height = 55;
 count = count + 1;
 }
 System.out.print(height + count);
 } }

A. 1
B. 55
C. 56
D. It does not compile because a record cannot be nested in a method.

E. It does not compile because a record must have at least one value passed in.

F. It does not compile for another reason.

63. Which of the following are valid comments in Java? (Choose three.)

A. /****** TODO */
B. # Fix this bug later
C. ‘ Error closing pod bay doors
D. / Invalid record /
E. /* Page not found */
F. // IGNORE ME

64. Which of the following pairs of modifiers can both be applied to a method? (Choose three.)

A. private and final
B. abstract and final
C. static and private
D. private and abstract
E. abstract and static
F. static and protected

65. Given the following class, what should be inserted into the two blanks to ensure the class
data is properly encapsulated?

package storage;
public class Box {

Chapter 3 ■ Utilizing Java Object- Oriented Approach 71

 public String stuff;
 String () {
 return stuff;
 }

 public void setStuff(String stuff) {
 this.stuff = stuff;
 } }

A. private and getStuff
B. private and isStuff
C. public and getStuff
D. public and isStuff
E. default and getStuff
F. None of the above

66. How many rows of the following table contain an error?

Interface member Membership type Requires method body?

static method Class Yes

private non- static
method

Class Yes

abstract method Instance No

default method Instance No

private static method Class Yes

A. Zero

B. One

C. Two

D. Three

E. Four

67. Fill in the blanks: ___________________ is used to call a constructor in the parent class, while
___________________ is used to reference a member of the parent class.

A. super, this()
B. super, super()
C. super(), this
D. super(), super
E. None of the above

72 Chapter 3 ■ Utilizing Java Object- Oriented Approach

68. Which of the following declarations can be inserted into the blank and have the class
compile?

public sealed class Toy {
 extends Toy {}
}

A. nonsealed class Book
B. abstract class Robot
C. class ActionFigure
D. record Doll()
E. interface Game
F. non- sealed class Ball
G. None of the above, because Toy does not include a permits clause

69. What is the output of the Watch program?

1: class SmartWatch extends Watch {
2: private String getType() { return "smart watch"; }
3: public String getName(String suffix) {
4: return getType() + suffix;
5: } }
6: public class Watch {
7: private String getType() { return "watch"; }
8: public String getName(String suffix) {
9: return getType() + suffix;
10: }
11: public static void main(String[] args) {
12: var watch = new Watch();
13: var smartWatch = new SmartWatch();
14: System.out.print(watch.getName(","));
15: System.out.print(smartWatch.getName(""));
16: } }

A. smart watch,watch
B. watch,smart watch
C. watch,watch
D. The code does not compile

E. An exception is printed at runtime

F. None of the above

Chapter 3 ■ Utilizing Java Object- Oriented Approach 73

70. What is the output of the Movie program?

package theater;
class Cinema {
 private String name = "Sequel";
 public Cinema(String name) {
 this.name = name;
 } }
public class Movie extends Cinema {
 private String name = "adaptation";
 public Movie(String movie) {
 this.name = "Remake";
 }
 public static void main(String[] showing) {
 System.out.print(new Movie("Trilogy").name);
 } }

A. Sequel
B. Trilogy
C. Remake
D. Adaptation
E. null
F. None of the above

71. Which statement best describes this class?

import java.util.*;
public final class Ocean {
 private final List<String> algae;
 private final double wave;
 private int sun;
 public Ocean(double wave) {
 this.wave = wave;
 this.algae = new ArrayList<>();
 }
 public int getSun() {
 return sun;
 }
 public void setSun(int sun) {
 sun = sun;
 }

74 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 public double getWave() {
 return wave;
 }
 public List<String> getAlgae() {
 return new ArrayList<String>(algae);
 } }

A. It can be serialized.

B. It is well encapsulated.

C. It is immutable.

D. It is both well encapsulated and immutable.

E. None of the above, as the code does not compile.

72. Given the file Magnet.java shown, which of the marked lines can you independently insert
the line var color; into and still have the code compile?

// line a1
public class Magnet {
 // line a2
 public void attach() {
 // line a3
 }
 // line a4
}

A. a2
B. a3
C. a2 and a3
D. a1, a2, a3, and a4
E. None of the above

73. Which of the following results is not a possible output of this program?

package sea;
enum Direction { north, south, east, west; };
public class Ship {
 public static void main(String[] compass) {
 System.out.print(Direction.valueOf(compass[0]));
 } }

A. WEST is printed.

B. south is printed.

C. An ArrayIndexOutOfBoundsException is thrown at runtime.

D. An IllegalArgumentException is thrown at runtime.

E. All of the above are possible.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 75

74. What is the output of the following application?

package radio;
public class Song {
 public void playMusic() {
 System.out.print("Play!");
 }
 private static void playMusic() {
 System.out.print("Music!");
 }
 private static void playMusic(String song) {
 System.out.print(song);
 }
 public static void main(String[] tracks) {
 new Song().playMusic();
 } }

A. Play!
B. Music!
C. The code does not compile.

D. The code compiles, but the answer cannot be determined until runtime.

75. Which of the following statements about overriding a method are correct? (Choose three.)

A. The return types must be covariant.

B. The access modifier of the method in the child class must be the same as or narrower
than the method in the superclass.

C. The return types must be the same.

D. A checked exception declared by the method in the parent class must be declared by the
method in the child class.

E. A checked exception declared by a method in the child class must be the same as or nar-
rower than the exception declared by the method in the parent class.

F. The access modifier of the method in the child class must be the same as or broader than
the method in the superclass.

76. How many lines of the following code do not compile?

10: interface Flavor {
11: public default void happy() {
12: printFlavor("Rocky road");
13: }
14: private static void excited() {
15: printFlavor("Peanut butter");
16: }

76 Chapter 3 ■ Utilizing Java Object- Oriented Approach

17: private void printFlavor(String f) {
18: System.out.println("Favorite Flavor is: "+f);
19: }
20: public static void sad() {
21: printFlavor("Butter pecan");
22: }
23: }
24: public class IceCream implements Flavor {
25: @Override public void happy() {
26: printFlavor("Cherry chocolate chip");
27: } }

A. None, they all compile.

B. One

C. Two

D. Three

E. Four

F. Five or more

77. What is the output of the following program?

1: public record Disco(int beats) {
2: public Disco(String beats) {
3: this(20);
4: }
5: public Disco {
6: beats = 10;
7: }
8: public int getBeats() {
9: return beats;
10: }
11: public static void main(String[] args) {
12: System.out.print(new Disco(30).beats());
13: } }

A. 10
B. 20
C. 30
D. Exactly one line needs to be corrected for the program to compile.

E. Exactly two lines need to be corrected for the program to compile.

F. Three or more lines need to be corrected for the program to compile.

G. The code compiles but prints an exception at runtime.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 77

78. Which of the following words are modifiers that are implicitly applied to all interface vari-
ables? (Choose three.)

A. const
B. final
C. abstract
D. static
E. public
F. constant

79. Given the following method, what is the first line that does not compile?

public static void main(String[] args) {
 int Integer = 0; // k1
 Integer int = 0; // k2
 Integer ++; // k3
 int++; // k4
 int var = null; // k5
}

A. k1
B. k2
C. k3
D. k4
E. k5

80. What is the result of compiling and executing the following class?

public class Tolls {
 private static int yesterday = 1;
 int tomorrow = 10;

 public static void main(String[] args) {
 var tolls = new Tolls();
 int today = 20, tomorrow = 40; // line x
 System.out.print(
 today + tolls.tomorrow + tolls.yesterday); // line y
 } }

A. The code does not compile due to line x.

B. The code does not compile due to line y.

C. 31
D. 61
E. None of the above.

78 Chapter 3 ■ Utilizing Java Object- Oriented Approach

81. What is the output of the following application?

package weather;
public class Forecast {
 public enum Snow {
 BLIZZARD, SQUALL, FLURRY
 @Override public String toString() { return "Sunny"; }
 }
 public static void main(String[] modelData) {
 System.out.print(Snow.BLIZZARD.ordinal() + " ");
 System.out.print(Snow.valueOf("flurry".toUpperCase()));
 } }

A. 0 FLURRY
B. 1 FLURRY
C. 0 Sunny
D. 1 Sunny
E. The code does not compile.

F. None of the above.

82. Which of the following is an invalid statement?

A. The first line of every constructor is a call to the parent constructor via the super()
command.

B. A class is not required to have a constructor explicitly defined.

C. A constructor may pass arguments to the parent constructor.

D. A final instance variable whose value is not set when it is declared or in an initialization
block should be set by the constructor.

E. All of the above are valid statements.

83. What can fill in the blank so that the play() method can be called from all classes in the
com.mammal and com.mammal.eland package, but not in the com.mammal.gopher
package?

package com.mammal;
public class Enrichment {
 void play() {}
}

A. Leave it blank

B. private
C. protected
D. public
E. None of the above

Chapter 3 ■ Utilizing Java Object- Oriented Approach 79

84. What is the output of the Rocket program?

package transport;
class Ship {
 protected int weight = 3;
 protected int height = 5;
 public int getWeight() { return weight; }
 public int getHeight() { return height; }
}
public class Rocket extends Ship {
 public int weight = 2;
 public int height = 4;
 public void printDetails() {
 System.out.print(super.getWeight() + "," + this.height);
 }
 public static final void main(String[] fuel) {
 new Rocket().printDetails();
 } }

A. 2,5
B. 3,4
C. 5,2
D. 3,5
E. The code does not compile.

F. None of the above.

85. Imagine you are working with another team to build an application. You are developing
code that uses a class that the other team has not yet finished writing. You want to allow
easy integration once the other team’s code is complete. Which statements would meet this
requirement? (Choose two.)

A. An abstract class is best.

B. An interface is best.

C. Either an abstract class or interface would meet the requirement.

D. The methods should be protected.

E. The methods should be public.

F. The methods should be static.

86. Fill in the blank with the line of code that allows the program to compile and print 10 at
runtime.

interface Speak {
 public default int getVolume() { return 20; }
}

80 Chapter 3 ■ Utilizing Java Object- Oriented Approach

interface Whisper {
 public default int getVolume() { return 10; }
}
public class Debate implements Speak, Whisper {
 public int getVolume() { return 30; }
 public static void main(String[] a) {
 var d = new Debate();
 System.out.println();
 } }

A. Whisper.d.getVolume()
B. d.Whisper.getVolume()
C. Whisper.super.getVolume()
D. d.Whisper.super.getVolume()
E. The code does not compile regardless of what is inserted into the blank.

F. None of the above.

87. Which of the following properties of an enum can be marked abstract?

A. The enum type definition

B. An enum method

C. An enum value

D. An enum constructor

E. None of the above

88. How many lines does the following code output?

public class Cars {
 static {
 System.out.println("static");
 }
 private static void drive() {
 System.out.println("fast");
 }
 { System.out.println("faster"); }
 public static void main(String[] args) {
 drive();
 drive();
 } }

A. One

B. Two

C. Three

D. Four

E. Five

F. None of the above. The code does not compile.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 81

89. What does the following program output?

public record Passenger(String firstName, String lastName) {
 static String middleName;
 @Override public String toString() {
 return null;
 }
 @Override public String getFirstName() {
 return null;
 }
 public static void main(String[] args) {
 var p = new Passenger("John", "Colbert");
 System.out.println(p.getFirstName());
 } }

A. john
B. colbert
C. null
D. The code does not compile.

E. The code compiles but prints an exception at runtime.

F. None of the above.

90. Suppose foo is a reference to an instance of a class Foo. Which of the following is not pos-
sible about the variable reference foo.bar?

A. bar is an instance variable.

B. bar is a static variable.

C. bar is a local variable.

D. It can be used to read from bar.

E. It can be used to write to bar.

F. All of the above are possible.

91. The following diagram shows two reference variables pointing to the same Bunny object in
memory. The reference variable myBunny is of type Bunny, while unknownBunny is a valid
but unknown data type. Which statements about the reference variables are true? Assume the
instance methods and variables shown in the diagram are marked public. (Choose three.)

myBunny

unknownBunny

Bunny Object in Memory

82 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. The reference type of unknownBunny must be Bunny or a supertype of Bunny.

B. The reference type of unknownBunny cannot be cast to a reference type of Bunny.

C. The reference type of unknownBunny must be Bunny or a subclass of Bunny.

D. If the reference type of unknownBunny is Bunny, it has access to all of the same methods
and variables as myBunny.

E. The reference type of unknownBunny could be an interface, class, or abstract class.

F. If the reference type of unknownBunny is Object, it has access to all of the same methods
and variables as myBunny without a cast.

92. Which of the following interface methods are inherited by classes that implement the inter-
face? (Choose two.)

A. private methods

B. private static methods

C. default methods

D. static methods

E. abstract methods

F. final methods

93. Which of these are functional interfaces?

interface Lion {
 public void roar();
 default void drink() {}
 String toString();
}
interface Tiger {
 public void roar();
 default void drink() {}
 int hashCode();
}

A. Lion
B. Tiger
C. Both Lion and Tiger
D. Neither is a functional interface.

E. The code does not compile.

94. Given the following code, which lines when placed independently in the blank allow the code
to compile and print bounce? (Choose two.)

public class TennisBall {
 public TennisBall() {
 System.out.println("bounce");

Chapter 3 ■ Utilizing Java Object- Oriented Approach 83

 }
 public static void main(String[] slam) {
 ;
 } }

A. var new = TennisBall
B. TennisBall()
C. var var = new TennisBall()
D. new TennisBall
E. new TennisBall()

95. How many of the public methods in the class compile?

public class Singing {
 private void sing(String key) {}

 public void sing_do(String key, String... harmonies) {
 this.sing(key);
 }
 public void sing_re(int note, String... sound, String key) {
 this.sing(key);
 }
 public void sing_me(String... keys, String... pitches) {
 this.sing(key);
 }
 public void sing_fa(String key, String... harmonies) {
 this.Singing.sing(key);
 }
 public void sing_so(int note, String... sound,
 String key) {
 this.Singing.sing(key);
 }
 public void sing_la(String... keys, String... pitches) {
 this.Singing.sing(key);
 } }

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

G. Six

84 Chapter 3 ■ Utilizing Java Object- Oriented Approach

96. What is the output of the following application?

package world;
public class Matrix {
 private int level = 1;
 class Deep {
 private int level = 2;
 class Deeper {
 private int level = 5;
 public void printReality(int level) {
 System.out.print(this.level+" ");
 System.out.print(Matrix.Deep.this.level+" ");
 System.out.print(Deep.this.level);
 } } }
 public static void main(String[] bots) {
 Matrix.Deep.Deeper simulation = new Matrix()
 .new Deep().new Deeper();
 simulation.printReality(6);
 } }

A. 1 1 2
B. 5 2 2
C. 5 2 1
D. 6 2 2
E. 6 2 1
F. The code does not compile.

97. Not counting the Time declaration, how many declarations compile? Assume they are all
declared within the same .java file.

public sealed interface Time permits Hour, Minute, Second {}

record Hour() implements Time {}
interface Minute extends Time {}
non- sealed class Second implements Time {}
class Micro extends Second {}

A. Zero

B. One

C. Two

D. Three

E. Four

Chapter 3 ■ Utilizing Java Object- Oriented Approach 85

98. Given that Integer and Long are direct subclasses of Number, what type can be used to fill in
the blank in the following class to allow it to compile?

package orchestra;
interface MusicCreator { public Number play(); }
abstract class StringInstrument {
 public Long play() {return 3L;}
}
public class Violin extends StringInstrument
 implements MusicCreator {
 public play() {
 return null;
 } }

A. Long
B. Integer
C. Long or Integer
D. Long or Number
E. Long, Integer, or Number
F. None of the above

99. What is the output of the RightTriangle program?

package shapes;
abstract class Triangle {
 abstract String getDescription();
}
abstract class IsoRightTriangle extends RightTriangle { // g1
 public String getDescription() { return "irt"; }
}
public class RightTriangle extends Triangle {
 protected String getDescription() { return "rt"; } // g2
 public static void main(String[] edges) {
 final var shape = new IsoRightTriangle(); // g3
 System.out.print(shape.getDescription());
 } }

A. rt
B. irt
C. The code does not compile due to line g1.

D. The code does not compile due to line g2.

E. The code does not compile due to line g3.

F. None of the above.

86 Chapter 3 ■ Utilizing Java Object- Oriented Approach

100. What is the output of the following program?

interface Dog {
 private void buryBone() { chaseTail(); }
 private static void wagTail() { chaseTail(); }
 public default String chaseTail() { return "So cute!"; }
}
public class Puppy implements Dog {
 public String chaseTail() throws IllegalArgumentException {
 throw new IllegalArgumentException("Too little!");
 }
 public static void main(String[] t) {
 var p = new Puppy();
 System.out.print(p.chaseTail());
 } }

A. So cute!
B. An exception is thrown with a Too little! message.

C. A different exception is thrown.

D. The code does not compile because buryBone() is not used.

E. The code does not compile because chaseTail() cannot declare any exceptions in
the Puppy class.

F. None of the above.

101. How do you force garbage collection to occur at a certain point?

A. Calling System.forceGc()
B. Calling System.gc()
C. Calling System.requireGc()
D. Calling GarbageCollection.clean()
E. None of the above

102. Which changes made to the following class would help to properly encapsulate the data in
the class?

package shield;
public class Protect {
 private String material;
 protected int strength;

 public int getStrength() {
 return strength;
 }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 87

 public void setStrength(int strength) {
 this.strength = strength;
 } }

A. Add a getter method for material.

B. Add a setter method for material.

C. Change the access modifier of material to protected.

D. Change the access modifier of strength to private.

E. None of the above.

103. Which are true statements about referencing variables from a lambda? (Choose two.)

A. Instance and static variables can be used regardless of whether they are effec-
tively final.

B. Instance and local variables can be used regardless of whether they are effectively final.

C. Instance variables and method parameters must be effectively final to be used.

D. Local variables and method parameters must be effectively final to be used.

E. Local and static variables can be used regardless of whether they are effec-
tively final.

F. Method parameters and static variables can be used regardless of whether they are
effectively final.

104. Which statement about the following classes is correct?

import java.util.*;
final class Faucet {
 private final String water;
 private final List<Double> pipes;
 public Faucet(String water, List<Double> pipes) {
 this.water = water;
 this.pipes = pipes;
 }
 public String getWater() { return water; }
 public List<Double> getPipes() { return pipes; } }

public final class Spout {
 private final String well;
 private final List<Boolean> buckets;
 public Spout(String well, List<Boolean> buckets) {
 this.well = well;
 this.buckets = new ArrayList<>(buckets);
 }

88 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 public String getWell() { return well; }

 public List<Boolean> getBuckets() {
 return new ArrayList<>(buckets);
 } }

A. Only Faucet is immutable.

B. Only Spout is immutable.

C. Both classes are immutable.

D. Neither class is immutable.

E. None of the above, as one of the classes does not compile.

105. Given the following structure, which snippets of code evaluate to true? (Choose three.)

interface Friendly {}
abstract class Dolphin implements Friendly {}
class Animal implements Friendly {}
class Whale extends Object {}
class Fish {}
class Coral extends Animal {}

A. new Coral() instanceof Friendly
B. null instanceof Object
C. new Coral() instanceof Object
D. new Fish() instanceof Friendly
E. new Whale() instanceof Object
F. new Dolphin() instanceof Friendly

106. What is true of the following code?

public class Eggs {
 enum Animal {
 CHICKEN(21), PENGUIN(75);

 private int numDays;
 private Animal(int numDays) {
 this.numDays = numDays;
 }
 public int getNumDays() {
 return numDays;
 }
 public void setNumDays(int numDays) {
 this.numDays = numDays;

Chapter 3 ■ Utilizing Java Object- Oriented Approach 89

 } }
 public static void main(String[] args) {
 Animal chicken = Animal.CHICKEN;
 chicken.setNumDays(20);
 System.out.print(chicken.getNumDays());
 System.out.print(" ");
 System.out.print(Animal.CHICKEN.getNumDays());
 System.out.print(" ");
 System.out.print(Animal.PENGUIN.getNumDays());
 } }

A. It prints 20 20 20.

B. It prints 20 20 75.

C. It prints 20 21 75.

D. It prints 21 21 75.

E. It does not compile due to setNumDays().

F. It does not compile for another reason.

107. What is the first line to not compile in this interface?

1: public interface Thunderstorm {
2: float rain = 1;
3: char getSeason() { return 'W'; }
4: boolean isWet();
5: private static void hail() {}
6: default String location() { return "Home"; }
7: private static int getTemp() { return 35; }
8: }

A. Line 2

B. Line 3

C. Line 4

D. Line 5

E. Line 6

F. Line 7

G. All of the lines compile.

108. What is the output of the following application?

package finance;
enum Currency { DOLLAR, YEN, EURO }
abstract class Provider {
 protected Currency c = Currency.EURO;
}

90 Chapter 3 ■ Utilizing Java Object- Oriented Approach

public class Bank extends Provider {
 protected Currency c = Currency.DOLLAR;
 public static void main(String[] pennies) {
 int value = 0;
 switch(new Bank().c) {
 case 0:
 value- - ; break;
 case 1:
 value++; break;
 }
 System.out.print(value);
 } }

A. - 1
B. 0
C. 1
D. The Provider class does not compile.

E. The Bank class does not compile.

F. None of the above.

109. Which of the following cannot be declared within a record? (Choose two.)

A. An implementation of hashCode()
B. Instance variables

C. static initializers

D. Nested classes

E. static methods

F. Constructors

G. Instance initializers

110. Which is equivalent to var q = 4.0f;?

A. float q = 4.0f;
B. Float q = 4.0f;
C. double q = 4.0f;
D. Double q = 4.0f;
E. Object q = 4.0f;

Chapter 3 ■ Utilizing Java Object- Oriented Approach 91

111. Fill in the blanks: A class may be assigned to a(n) ___________________ reference variable
automatically but requires an explicit cast when assigned to a(n) ___________________
reference variable.

A. subclass, outer class

B. superclass, subclass

C. concrete class, subclass

D. subclass, superclass

E. abstract class, static class

112. Which statement about functional interfaces is invalid?

A. A functional interface can have any number of static methods.

B. A functional interface can have any number of default methods.

C. A functional interface can have any number of private static methods.

D. A functional interface can have any number of abstract methods.

E. A functional interface can have any number of private methods.

F. All of the above are correct.

113. What are possible outputs of the following given that the comment on line X can be
replaced by arbitrary code?

// Mandrill.java
public class Mandrill {
 public int age;
 public Mandrill(int age) {
 this.age = age;
 }
 public String toString() {
 return "" + age;
 }
}

// PrintAge.java
public class PrintAge {
 public static void main (String[] args) {
 var mandrill = new Mandrill(5);

 // line X

 System.out.println(mandrill);
 } }

92 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. 0
B. 5
C. Either 0 or 5
D. Any int value

E. Does not compile

114. How many of the String objects are eligible for garbage collection right before the end of
the main() method?

public static void main(String[] ohMy) {
 String animal1 = new String("lion");
 String animal2 = new String("tiger");
 String animal3 = new String("bear");

 animal3 = animal1;
 animal2 = animal3;
 animal1 = animal2;
}

A. None

B. One

C. Two

D. Three

E. None of the above

115. Suppose Panther and Cub are interfaces and neither contains any default methods.
Which statements are true? (Choose two.)

Panther

Cub

A. If Panther has a single abstract method, Cub is guaranteed to be a functional
interface.

B. If Panther has a single abstract method, Cub may be a functional interface.

C. If Panther has a single abstract method, Cub cannot be a functional interface.

D. If Panther has two abstract methods, Cub is guaranteed to be a functional
interface.

E. If Panther has two abstract methods, Cub may be a functional interface.

F. If Panther has two abstract methods, Cub cannot be a functional interface.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 93

116. What does the following output?

1: public class InitOrder {
2: public String first = "instance";
3: public InitOrder() {
4: first = "constructor";
5: }
6: { first = "block"; }
7: public void print() {
8: System.out.println(first);
9: }
10: public static void main(String... args) {
11: new InitOrder().print();
12: } }

A. block
B. constructor
C. instance
D. The code does not compile.

E. None of the above.

117. Which statement about the following interface is correct?

public interface Tree {
 public static void produceSap() {
 growLeaves();
 }
 public abstract int getNumberOfRings() {
 return getNumberOfRings();
 }
 private static void growLeaves() {
 produceSap();
 }
 public default int getHeight() {
 return getHeight ();
 } }

A. The code compiles.

B. The method produceSap() does not compile.

C. The method getNumberOfRings() does not compile.

D. The method growLeaves() does not compile.

E. The method getHeight() does not compile.

F. The code does not compile because it contains a cycle.

94 Chapter 3 ■ Utilizing Java Object- Oriented Approach

118. Which statements about a variable with a type of var are true? (Choose two.)

A. The variable can be assigned null at initialization without any type information.

B. The variable can be assigned null after initialization.

C. The variable can never be assigned null.

D. Only primitives can be used with the variable.

E. Only objects can be used with the variable.

F. Either a primitive or an object can be used with the variable.

119. Assume there is a class Bouncer with a protected variable. Methods in which class can
access this variable?

A. Any subclass of Bouncer or any class in the same package as Bouncer
B. Any superclass of Bouncer
C. Only subclasses of Bouncer
D. Only classes in the same package as Bouncer
E. None of the above

120. What is the output of the following application?

package forest;
public class Woods {
 static class Tree {}
 public static void main(String[] leaves) {
 int heat = 2;
 int water = 10- heat;
 final class Oak extends Tree { // p1
 public int getWater() {
 return water; // p2
 }
 }
 System.out.print(new Oak().getWater());
 water = 0;
 } }

A. 8
B. Line p1 contains a compiler error.

C. Line p2 contains a compiler error.

D. Another line of code contains a compiler error.

E. None of the above.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 95

121. Which of the following can fill in the blank to make the code compile? (Choose two.)

interface Australian {}
interface Mammal {}

 Australian, Mammal {}

A. class Quokka extends
B. class Quokka implements
C. Neither A nor B. Only one interface can be implemented.

D. interface Quokka extends
E. interface Quokka implements
F. Neither D nor E. Only one interface can be extended.

122. What is true of the following method?

public void setColor(String color) {
 color = color;
}

A. It is a correctly implemented accessor method.

B. It is a correctly implemented mutator method.

C. It is an incorrectly implemented accessor method.

D. It is an incorrectly implemented mutator method.

E. None of the above.

123. Which of the following statements about calling this() in a constructor are true?
(Choose three.)

A. If arguments are provided to this(), then there must be a constructor in the class
that can take those arguments.

B. If arguments are provided to this(), then there must be a constructor in the super-
class that can take those arguments.

C. If the no- argument this() is called within a constructor, then the class must explicitly
implement the no- argument constructor.

D. If super() and this() are both used in the same constructor, super() must
appear on the line immediately after this().

E. If super() and this() are both used in the same constructor, this() must appear
on the line immediately after super().

F. If this() is used, it must be the first line of the constructor.

124. What is the result of compiling and executing the following class?

public class RollerSkates {
 static int wheels = 1;
 int tracks = 5;

96 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 public static void main(String[] wheels) {
 RollerSkates s = new RollerSkates();
 int feet = 4, tracks = 15;
 System.out.print(feet + tracks + s.wheels);
 } }

A. The code does not compile.

B. 4
C. 5
D. 10
E. 20

125. Which statements about the following program are correct? (Choose two.)

package vessel;
class Problem extends Exception {}
abstract class Danger {
 protected abstract void isDanger() throws Problem; // m1
}
public class SeriousDanger extends Danger { // m2
 protected void isDanger() throws Exception { // m3
 throw new RuntimeException(); // m4
 }
 public static void main(String[] w) throws Throwable { // m5
 var sd = new SeriousDanger().isDanger(); // m6
 } }

A. The code does not compile because of line m1.

B. The code does not compile because of line m2.

C. The code does not compile because of line m3.

D. The code does not compile because of line m4.

E. The code does not compile because of line m5.

F. The code does not compile because of line m6.

126. Which statements about top- level and member inner classes are correct? (Choose three.)

A. Both can be marked protected.

B. Only top- level classes can be declared final.

C. Both can declare constructors.

D. Member inner classes cannot be marked private.

E. Member inner classes can access private variables of the top- level class in which it is
defined.

F. Both can be marked abstract.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 97

127. What is required to define a valid Java class file?

A. A class declaration

B. A package statement

C. An import statement

D. A class declaration and package statement

E. A class declaration and at least one import statement

F. The public modifier

128. How many objects are eligible for garbage collection right before the end of the
main() method?

1: public class Person {
2: public Person youngestChild;
3:
4: public static void main(String... args) {
5: Person elena = new Person();
6: Person janeice = new Person();
7: elena.youngestChild = janeice;
8: janeice = null;
9: Person zoe = new Person();
10: elena.youngestChild = zoe;
11: zoe = null;
12: } }

A. None

B. One

C. Two

D. Three

E. The code does not compile.

129. What is the output of the following application?

package race;
interface Drive {
 int SPEED = 5;
 default Integer getSpeed() { return SPEED; }
}
interface Hover {
 String MAX_SPEED = "10";
 default String getSpeed() { return MAX_SPEED; }
}

98 Chapter 3 ■ Utilizing Java Object- Oriented Approach

public class Car implements Drive, Hover {
 @Override public Object getSpeed() { return 15; }
 public static void main(String[] gears) {
 System.out.print(new Car().getSpeed());
 } }

A. 5
B. 10
C. 15
D. The code does not compile.

E. The code compiles but produces an exception at runtime.

F. The answer cannot be determined with the information given.

130. What is the output of the following application? (Choose two.)

1: public class ChooseWisely {
2: public ChooseWisely() { super(); }
3: public int choose(int choice) { return 5; }
4: public int choose(short choice) { return 2; }
5: public int choose(long choice) { return 11; }
6: public int choose(double choice) { return 6; }
7: public int choose(Float choice) { return 8; }
8: public static void main(String[] path) {
9: ChooseWisely c = new ChooseWisely();
10: System.out.println(c.choose(2f));
11: System.out.println(c.choose((byte)2+1));
12: } }

A. 2
B. 3
C. 5
D. 6
E. 8
F. 11

131. How many lines of the following program do not compile?

1: public enum Color {
2: RED(1,2) { void toSpectrum() {} },
3: BLUE(2) { void toSpectrum() {} void printColor() {} },
4: ORANGE() { void toSpectrum() {} },
5: GREEN(4);

Chapter 3 ■ Utilizing Java Object- Oriented Approach 99

6: public Color(int... color) {}
7: abstract void toSpectrum();
8: final void printColor() {}
9: }

A. Zero

B. One

C. Two

D. Three

E. More than three

132. What is the output of the Square program?

package shapes;
abstract class Trapezoid {
 private int getEqualSides() {return 0;}
}
abstract class Rectangle extends Trapezoid {
 public static int getEqualSides() {return 2;} // x1
}
public class Square extends Rectangle {
 public int getEqualSides() {return 4;} // x2
 public static void main(String[] corners) {
 final Square myFigure = new Square() {}; // x3
 System.out.print(myFigure.getEqualSides());
 } }

A. 0
B. 2
C. 4
D. The code does not compile due to line x1.

E. The code does not compile due to line x2.

F. The code does not compile due to line x3.

133. What can fill in the blank so that the play() method can be called from all classes in the
com.mammal package but not the com.mammal.gopher package?

package com.mammal;
public class Enrichment {
 void play() {}
}

100 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. Leave it blank

B. private
C. protected
D. public
E. None of the above

134. How many cells in the following table are incorrect?

Type Allows abstract
methods?

Allows constants? Allows constructors?

Abstract class Yes Yes No

Concrete class Yes Yes Yes

Interface Yes Yes Yes

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

G. Six

135. Which modifiers are permitted on a direct subclass of a sealed class? (Choose three.)

A. void
B. default
C. public
D. private
E. volatile
F. final
G. nonsealed

136. Which statements are true about a functional interface? (Choose three.)

A. It may contain any number of abstract methods.

B. It must contain a single abstract method.

C. It may contain any number of private methods.

D. It must contain a single private method.

E. It may contain any number of static methods.

F. It must contain a single static method.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 101

137. What is a possible output of the following application?

package wrap;
public class Gift {
 private final Object contents;
 protected Object getContents() {
 return contents;
 }
 protected void setContents(Object contents) {
 this.contents = contents;
 }
 public void showPresent() {
 System.out.print("Your gift: "+contents);
 }
 public static void main(String[] treats) {
 var gift = new Gift();
 gift.setContents(gift);
 gift.showPresent();
 } }

A. Your gift: wrap.Gift@29ca2745
B. Your gift: Your gift:
C. It does not compile.

D. It compiles but throws an exception at runtime.

E. None of the above.

138. How many lines would need to be corrected for the following code to compile?

1: package animal;
2: interface CanFly {
3: public void fly() {}
4: int speed = 5;
5: }
6: final class Bird {
7: public int fly(int speed) {}
8: }
9: public class Eagle extends Bird implements CanFly {
10: public void fly() {}
11: }

A. None

B. One

C. Two

D. Three

E. Four

102 Chapter 3 ■ Utilizing Java Object- Oriented Approach

139. What is the output of the following code?

public class Bunny {
 static class Rabbit {
 void hop() {
 System.out.print("hop");
 }
 }
 static class FlemishRabbit extends Rabbit {
 void hop() {
 System.out.print("HOP");
 }
 }
 public static void main(String[] args) {
 Rabbit r1 = new FlemishRabbit();
 FlemishRabbit r2 = new FlemishRabbit();
 r1.hop();
 r2.hop();
 } }

A. hophop
B. HOPhop
C. hopHOP
D. HOPHOP
E. The code does not compile.

F. None of the above.

140. Which of the following are valid class declarations? (Choose three.)

A. class _ {}
B. class river {}
C. class Str3@m {}
D. class Pond2$ {}
E. class _var_ {}
F. class 5Ocean {}

141. What is the output of the InfiniteMath program?

class Math {
 public final double secret = 2;
}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 103

class ComplexMath extends Math {
 public final double secret = 4;
}
public class InfiniteMath extends ComplexMath {
 public final double secret = 8;
 public static void main(String[] numbers) {
 Math math = new InfiniteMath();
 System.out.print(math.secret);
 } }

A. 2.0
B. 4.0
C. 8.0
D. The code does not compile.

E. The code compiles but prints an exception at runtime.

F. None of the above.

142. Given the following application, which diagram best represents the state of the
mySkier, mySpeed, and myName variables in the main() method after the call to the
slalom() method?

package slopes;
public class Ski {
 private int age = 18;
 private static void slalom(Ski racer,
 int[] speed, String name) {
 racer.age = 18;
 name = "Wendy";
 speed = new int[1];
 speed[0] = 11;
 racer = null;
 }
 public static void main(String[] mountain) {
 final var mySkier = new Ski();
 mySkier.age = 16;
 final int[] mySpeed = new int[1];
 final String myName = "Rosie";
 slalom(mySkier, mySpeed, myName);
 } }

104 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A.

mySkier

mySpeed

myName "Rosie"

int[]

18

null

B.

mySkier

mySpeed

myName "Wendy"

int[]

11

Ski

age: 18

C.

mySkier

mySpeed

myName "Rosie"

int[]

0

Ski

age: 18

D.

mySkier

mySpeed

myName "Wendy"

int[]

0

Ski

age: 16

Chapter 3 ■ Utilizing Java Object- Oriented Approach 105

143. What is the output of the following application?

package zoo;
public class Penguin {
 private int volume = 1;
 private class Chick {
 private static int volume = 3;
 void chick(int volume) {
 System.out.print("Honk("+Penguin.this.volume+")!");
 } }
 public static void main(String... eggs) {
 Penguin pen = new Penguin();
 final Penguin.Chick littleOne = pen.new Chick();
 littleOne.chick(5);
 } }

A. Honk(1)!
B. Honk(3)!
C. Honk(5)!
D. The code does not compile.

E. The code compiles, but the output cannot be determined until runtime.

F. None of the above.

144. What is a possible output of the following program?

record Name(String v) {}
public record Fruit(Name n) {
 public static void main(String[] vitamins) {
 var x = new Name("Apple");
 System.out.println(new Fruit(x));
 } }

A. Fruit@3f2f5b24
B. Fruit[Apple]
C. Fruit[Name[Apple]]
D. Fruit[n=Apple]
E. Fruit[n=Name[v=Apple]]
F. Fruit[v=Apple]
G. The code does not compile.

H. None of the above.

106 Chapter 3 ■ Utilizing Java Object- Oriented Approach

145. Fill in the blank with the line of code that allows the program to compile and print X at
runtime.

interface Fruit {
 public default char getColor() { return 'Z'; }
}
interface Edible {
 public default char getColor() { return 'X'; }
}
public class Banana implements Fruit, Edible {
 public char getColor() { return ; }
 public static void main(String[] a) {
 var d = new Banana();
 System.out.println(d.getColor());
 } }

A. Edible.getColor()
B. Edible.super.getColor()
C. super.Edible.getColor()
D. super.getColor()
E. The code does not compile regardless of what is inserted into the blank.

F. None of the above.

146. Given the following two classes, each in a different package, which line inserted into the
code allows the second class to compile?

package clothes;
public class Store {
 public static String getClothes() { return "dress"; }
}

package wardrobe;
// INSERT CODE HERE
public class Closet {
 public void borrow() {
 System.out.print("Borrowing clothes: "+getClothes());
 } }

A. static import clothes.Store.getClothes;
B. import clothes.Store.*;
C. import static clothes.Store.getClothes;
D. import static clothes.Store;
E. None of the above

Chapter 3 ■ Utilizing Java Object- Oriented Approach 107

147. What is the output of the ElectricCar program?

package vehicles;
class Automobile {
 private final String drive() { return "Driving vehicle"; }
}
class Car extends Automobile {
 protected String drive() { return "Driving car"; }
}
public class ElectricCar extends Car {
 public final String drive() { return "Driving electric car"; }
 public static void main(String[] wheels) {
 final Automobile car = new ElectricCar();
 var v = (Car)car;
 System.out.print(v.drive());
 } }

A. Driving vehicle
B. Driving electric car
C. Driving car
D. The code does not compile.

E. The code compiles but produces a ClassCastException at runtime.

F. None of the above.

148. Which statements about sealed classes are correct? (Choose three.)

A. A sealed class may be extended by another sealed class.

B. In an unnamed module, a sealed class must include all its subclasses within the
same file.

C. A sealed class cannot contain nested classes.

D. A sealed class can be declared abstract.

E. A sealed class can be declared final.

F. In an unnamed module, a sealed class must include all its subclasses within the same
package.

149. What is the output of the following program?

public class Music {
 { System.out.print("do- "); }
 static { System.out.print("re- "); }
 { System.out.print("mi- "); }
 static { System.out.print("fa- "); }
 public Music() {

108 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 System.out.print("so- ");
 }
 public Music(int note) {
 System.out.print("la- ");
 }
 public static void main(String[] sound) {
 System.out.print("ti- ");
 var play = new Music();
 } }

A. re- fa- ti- do- mi- so-
B. do- re- mi- fa- ti- so-
C. ti- re- fa- do- mi- so-
D. re- fa- la- mi- ti- do-
E. do- re- mi- fa- so- ti
F. The code does not compile.

G. None of the above.

150. Given the following class declaration, which options correctly declare a local variable
containing an instance of the class?

public class Earth {
 private abstract class Sky {
 void fall() {
 var e =
 } } }

A. new Sunset() extends Sky {};
B. new Sky();
C. new Sky() {}
D. new Sky() { final static int blue = 1; };
E. The code does not compile regardless of what is placed in the blank.

F. None of the above.

151. What is the output of the Encyclopedia program?

package paper;
abstract class Book {
 protected static String material = "papyrus";
 public Book() {}
 abstract String read() {}
 public Book(String material) {this.material = material;}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 109

}
public class Encyclopedia extends Book {
 public static String material = "cellulose";
 public Encyclopedia() {super();}
 public String read() { return "Reading is fun!"; }
 public String getMaterial() {return super.material;}

 public static void main(String[] pages) {
 System.out.print(new Encyclopedia().read());
 System.out.print("- " + new Encyclopedia().getMaterial());
 } }

A. Reading is fun!- papyrus
B. Reading is fun!- cellulose
C. null- papyrus
D. null- cellulose
E. The code does not compile.

F. None of the above.

152. What does the following print?

interface Vehicle {}
class Bus implements Vehicle {}
public class Transport {
 public static void main(String[] args) {
 Vehicle vehicle = new Bus();
 boolean n = null instanceof Bus;
 boolean v = vehicle instanceof Vehicle;
 boolean b = vehicle instanceof Bus;
 System.out.println(n + " " + v + " " + b);
 } }

A. false false false
B. false false true
C. false true true
D. true false true
E. true true false
F. true true true

110 Chapter 3 ■ Utilizing Java Object- Oriented Approach

153. How many rows of the following table contain an error?

Interface member Optional modifier(s) Required modifier(s)

Private method private -

Default method public default

Static method public static -

Abstract method public abstract

A. Zero

B. One

C. Two

D. Three

E. Four

154. What is the output of the following program?

public class Dwarf {
 private final String name;
 public Dwarf() {
 this("Bashful");
 }
 public Dwarf(String name) {
 name = "Sleepy";
 }
 public static void main(String[] sound) {
 var d = new Dwarf("Doc");
 System.out.println(d.name);
 } }

A. Sleepy
B. Bashful
C. Doc
D. The code does not compile.

E. An exception is thrown at runtime.

155. What is the output of the following application?

package pocketmath;
interface AddNumbers {
 int add(int x, int y);
 static int subtract(int x, int y) { return x- y; }
 default int multiply(int x, int y) { return x*y; }
}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 111

public class Calculator {
 protected void calculate(AddNumbers n, int a, int b) {
 System.out.print(n.add(a, b));
 }
 public static void main(String[] moreNumbers) {
 final var ti = new Calculator() {};
 ti.calculate((k,p) - > p+k+1, 2, 5); // x1
 } }

A. 0
B. 7
C. 8
D. The code does not compile because AddNumbers is not a functional interface.

E. The code does not compile because of line x1.

F. The code does not compile for a different reason.

G. None of the above.

156. Which of the following variables are always in scope for the entire program once defined?

A. Package variables

B. Class variables

C. Instance variables

D. Local variables

E. Pseudo variables

157. What is the command to call one constructor from another constructor in the same class?

A. construct()
B. parent()
C. super()
D. this()
E. that()
F. overthere()

158. Which of the following statements about no- argument constructors and inheritance are
correct? (Choose two.)

A. The compiler cannot insert a no- argument constructor into an abstract class.

B. If a parent class does not include a no- argument constructor, a child class cannot
declare one.

C. If a parent class only declares constructors that take at least one parameter, then a
child class must declare at least one constructor.

D. The no- argument constructor is sometimes inserted by the compiler.

E. If a parent class declares a no- argument constructor, a child class must declare a no-
argument constructor.

F. If a parent class declares a no- argument constructor, a child class must declare at least
one constructor.

112 Chapter 3 ■ Utilizing Java Object- Oriented Approach

159. What is the result of executing the Grasshopper program?

// Hopper.java
package com.animals;
public class Hopper {
 protected void hop() {
 System.out.println("hop");
 }
}

// Grasshopper.java
package com.insect;
import com.animals.Hopper;
public class Grasshopper extends Hopper {
 public void move() {
 hop(); // p1
 }
 public static void main(String[] args) {
 var hopper = new Grasshopper();
 hopper.move(); // p2
 hopper.hop(); // p3
 } }

A. The code prints hop once.

B. The code prints hop twice.

C. The first compiler error is on line p1.

D. The first compiler error is on line p2.

E. The first compiler error is on line p3.

160. What is the minimum number of lines that need to be removed to make this code compile?

@FunctionalInterface
public interface Play {
 public static void baseball() {}
 private static void soccer() {}
 default void play() {}
 void fun();
 void game();
 void toy();
}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 113

A. One

B. Two

C. Three

D. Four

E. The code compiles as is.

161. Which statement about the following classes is correct?

import java.util.*;
public class Flower {
 private final String name;
 private final List<Integer> counts;
 public Flower(String name, List<Integer> counts) {
 this.name = name;
 this.counts = new ArrayList<>(counts);
 }
 public final String getName() { return name; }
 public final List<Integer> getCounts() {
 return new ArrayList<>(counts);
 } }

class Plant {
 private final String name;
 private final List<Integer> counts;
 public Plant(String name, List<Integer> counts) {
 this.name = name;
 this.counts = new ArrayList<>(counts);
 }
 public String getName() { return name; }
 public List<Integer> getCounts() {
 return new ArrayList<>(counts);
 } }

A. Only Flower is immutable.

B. Only Plant is immutable.

C. Both classes are immutable.

D. Neither class is immutable.

E. None of the above, as one of the classes does not compile.

114 Chapter 3 ■ Utilizing Java Object- Oriented Approach

162. What is the result of executing the Sounds program?

// Sheep.java
package com.mammal;
public class Sheep {
 private void baa() {
 System.out.println("baa!");
 }
 private void speak() {
 baa();
 } }

// Sounds.java
package com.animals;
import com.mammal.Sheep;
public class Sounds {
 public static void main(String[] args) {
 var sheep = new Sheep();
 sheep.speak();
 } }

A. The code runs and prints baa!.

B. The Sheep class does not compile.

C. The Sounds class does not compile.

D. Neither class compiles.

E. None of the above.

163. What is the output of the following application?

package stocks;
public class Bond {
 private static int price = 5;
 public boolean sell() {
 if(price<10) {
 price++;
 return true;
 } else if(price>=10) {
 return false;
 } }
 public static void main(String[] cash) {
 new Bond().sell();
 new Bond().sell();

Chapter 3 ■ Utilizing Java Object- Oriented Approach 115

 new Bond().sell();
 System.out.print(price);
 } }

A. 5
B. 6
C. 7
D. 8
E. The code does not compile.

F. The output cannot be determined with the information given.

164. Given the following class declaration, what expression can be used to fill in the blank so
that 88 is printed at runtime?

final public class Racecar {
 final private int speed = 88;
 final protected class Engine {
 private final int speed = 100;
 public final int getSpeed() {
 return ;
 }
 }
 final Engine e = new Engine();
 final public static void main(String[] feed) {
 System.out.print(new Racecar().e.getSpeed());
 } }

A. Racecar.speed
B. this.speed
C. this.Racecar.speed
D. Racecar.Engine.this.speed
E. Racecar.this.speed
F. The code does not compile regardless of what is placed in the blank.

165. Which statements about static initializers are correct? (Choose three.)

A. They cannot be used to create instances of the class they are contained in.

B. They can assign a value to a static final variable.

C. They are executed at most once per program.

D. They are executed each time an instance of the class is created from a local cache of
objects.

E. They are executed each time an instance of the class is created using the new keyword.

F. They may never be executed.

116 Chapter 3 ■ Utilizing Java Object- Oriented Approach

166. What is the output of the BlueCar program?

package race;
abstract class Car {
 static { System.out.print("1"); }
 public Car(String name) {
 super();
 System.out.print("2");
 }
 { System.out.print("3"); } }
public class BlueCar extends Car {
 { System.out.print("4"); }
 public BlueCar() {
 super("blue");
 System.out.print("5");
 }
 public static void main(String[] gears) {
 new BlueCar();
 } }

A. 23451
B. 12345
C. 14523
D. 13245
E. 23154
F. The code does not compile.

G. None of the above.

167. The following Fish class is included, unmodified, in a larger program at runtime. As most,
how many classes can inherit Fish (excluding Fish itself)?

public sealed class Fish {
 final class Blobfish extends Clownfish {}
 private non- sealed class Dory extends BlueTang {}
 sealed class Clownfish extends Fish {}
 sealed class BlueTang extends Fish {}
 final class Swordfish extends Fish {}
 private non- sealed class Nemo extends Clownfish {}
}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 117

A. None

B. Four

C. Five

D. Six

E. One of the nested classes does not compile.

F. Two or more of the nested classes do not compile.

G. The number cannot be determined with the information given.

168. Given the following class declaration, which value cannot be inserted into the blank line
that would allow the code to compile?

package mammal;
interface Pet {
 public Object getDoggy();
}
public class Canine implements Pet {
 public getDoggy() {
 return this;
 } }

A. Canine
B. List
C. Object
D. Pet
E. All of the above can be inserted.

F. The code does not compile regardless of what is inserted into the blank.

169. Which statement about the following interface is correct?

public interface Movie {
 String pass = "TICKET";
 private void buyPopcorn() {
 purchaseTicket();
 }
 public static int getDrink() {
 buyPopcorn();
 return 32;
 }
 private static String purchaseTicket() {
 getDrink();
 return pass;
 } }

118 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. The code compiles.

B. The code contains an invalid constant.

C. The method buyPopcorn() does not compile.

D. The method getDrink() does not compile.

E. The method purchaseTicket() does not compile.

F. The code does not compile for a different reason.

170. Which methods compile?

class YardWork {
 private static int numShovels;
 private int numRakes;
 public int getNumShovels() {
 return numShovels;
 }
 public int getNumRakes() {
 return numRakes;
 } }

A. Just getNumRakes()
B. Just getNumShovels()
C. Both methods

D. Neither method

171. How many lines of the following class contain compilation errors?

1: class Fly {
2: public Fly Fly() { return new Fly(); }
3: public void Fly(int kite) {}
4: public int Fly(long kite) { return 1; }
5: public static void main(String[] a) {
6: var f = new Fly();
7: f.Fly();
8: } }

A. None

B. One

C. Two

D. Three

E. Four

F. The answer cannot be determined with the information given.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 119

172. How many of the classes in the diagram can write code that references the sky() method?

com.color

Red

• protected boolean light

Blue

• void sky()

com.light

BrightLight extends Red

Light

A. None

B. One

C. Two

D. Three

E. Four

173. For the diagram in Question 172, how many classes can write code that references the
light variable?

A. None

B. One

C. Two

D. Three

E. Four

174. Which of the following are the best reasons for creating a public static interface
method? (Choose two.)

A. Allow static methods to access instance methods.

B. Allow an interface to define a method at the class level.

C. Provide an implementation that a class implementing the interface can override.

D. Improve code reuse within the interface.

E. Add backward compatibility to existing interfaces.

F. Improve encapsulation of the interface.

175. What is the output of the HighSchool application?

package edu;
import java.io.FileNotFoundException;
abstract class School {
 abstract Float getNumTeachers();
 public int getNumStudents() {

120 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 return 10;
 } }
public class HighSchool extends School {
 final Float getNumTeachers() { return 4f; }
 public int getNumStudents() throws FileNotFoundException {
 return 20;
 }
 public static void main(String[] s) throws Exception {
 var school = new HighSchool();
 System.out.print(school.getNumStudents());
 } }

A. 10
B. 20
C. 4.0
D. One line of the program does not compile.

E. Two lines of the program do not compile.

F. None of the above.

176. What is the output of the following application?

package track;
interface Run {
 default CharSequence walk() {
 return "Walking and running!";
 } }
interface Jog {
 default String walk() {
 return "Walking and jogging!";
 } }
public class Sprint implements Run, Jog {
 public String walk() {
 return "Sprinting!";
 }
 public static void main(String[] args) {
 var s = new Sprint();
 System.out.println(s.walk());
 } }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 121

A. Walking and running!
B. Walking and jogging!
C. Sprinting!
D. The code does not compile.

E. The code compiles but prints an exception at runtime.

F. None of the above.

177. What is true of these two interfaces?

interface Crawl {
 abstract void wriggle();
}
interface Dance {
 public void wriggle();
}

A. A concrete class can implement both interfaces, but must implement wriggle().

B. A concrete class can implement both interfaces, but must not implement wriggle().

C. A concrete class would only be able to implement both interfaces if the public
modifier were removed but must implement wriggle().

D. If the public modifier were removed, a concrete class could implement both inter-
faces, but must not implement wriggle().

E. None of the above.

178. Which of these are functional interfaces?

interface Lion {
 public void roar();
 default void drink() {}
 boolean equals(Lion lion);
}
interface Tiger {
 public void roar();
 default void drink() {}
 String toString(String name);
}
interface Bear {
 void ohMy();
 default void drink() {}
}

122 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. Lion
B. Tiger
C. Bear
D. Lion and Tiger
E. Tiger and Bear
F. Bear and Lion
G. None of them

H. All of them

179. How many lines of the following class contain a compiler error?

1: public class Dragon {
2: boolean scaly;
3: static final int gold;
4: Dragon protectTreasure(int value, boolean scaly) {
5: scaly = true;
6: return this;
7: }
8: static void fly(boolean scaly) {
9: scaly = true;
10: }
11: int saveTheTreasure(boolean scaly) {
12: return this.gold;
13: }
14: static void saveTheDay(boolean scaly) {
15: this.gold = 0;
16: }
17: static { gold = 100; } }

A. None

B. One

C. Two

D. Three

E. More than three

180. Which are requirements for a class to be immutable? (Choose three.)

A. A private constructor is provided.

B. Any instance variables are private.

C. Any instance variables are initialized in a constructor.

D. Methods cannot be overridden.

E. There are no mutator methods that modify instance variables.

F. Any instance variables are marked final.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 123

181. Which statement about the following interface is correct?

public interface Planet {
 int circumference;
 public abstract void enterAtmosphere();
 public default int getCircumference() {
 enterAtmosphere();
 return circumference;
 }
 private static void leaveOrbit() {
 var earth = new Planet() {
 public void enterAtmosphere() {}
 };
 earth.getCircumference();
 } }

A. The code compiles.

B. The method enterAtmosphere() does not compile.

C. The method getCircumference() does not compile.

D. The method leaveOrbit() does not compile.

E. The code does not compile for a different reason.

F. None of the above.

182. What is the output of the following program?

import java.time.*;
import java.time.temporal.*;
public record User(LocalDate creationDate) {
 static LocalDate today = LocalDate.now();
 public User {
 creationDate = today;
 creationDate = today;
 }
 public static void main(String[] p) {
 LocalDate yesterday = LocalDate.now()
 .minus(1, ChronoUnit.DAYS);
 var u = new User(yesterday);
 System.out.print(u.creationDate());
 } }

124 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. null
B. Today’s date

C. Yesterday’s date

D. An exception is thrown at runtime.

E. Exactly one line needs to be corrected for the code to compile.

F. Two or more lines need to be corrected for the code to compile.

G. None of the above.

183. Fill in the blanks: ___________________ methods always have the same name but a differ-
ent list of parameters, while ___________________ methods always have the same name
and the same return type.

A. Overloaded, overridden

B. Inherited, overridden

C. Overridden, overloaded

D. Hidden, overloaded

E. Overridden, hidden

F. None of the above

184. What is the output of the following program?

public class Husky {
 { this.food = 10; }
 { this.toy = 2; }
 private final int toy;
 private static int food;
 public Husky(int friend) {
 this.food += friend++;
 this.toy - = friend- - ;
 }
 public static void main(String... unused) {
 var h = new Husky(2);
 System.out.println(h.food+","+h.toy);
 } }

A. 12,- 1
B. 12,2
C. 13,- 1
D. Exactly one line of this class does not compile.

E. Exactly two lines of this class do not compile.

F. None of the above.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 125

185. Suppose you have the following code. Which of the images best represents the state of
the references right before the end of the main() method, assuming garbage collection
hasn’t run?

1: public class Link {
2: private String name;
3: private Link next;
4: public Link(String name, Link next) {
5: this.name = name;
6: this.next = next;
7: }
8: public void setNext(Link next) {
9: this.next = next;
10: }
11: public Link getNext() {
12: return next;
13: }
14: public static void main(String... args) {
15: var apple = new Link("x", null);
16: var orange = new Link("y", apple);
17: var banana = new Link("z", orange);
18: orange.setNext(banana);
19: banana.setNext(orange);
20: apple = null;
21: banana = null;
22: } }

Option A

Option C Option D

Option B

x

y z

apple

banana

orange

nullapple

banana

orange

x

y z

nullapple

banana

orange

x

y z

null
apple

banana

orange

x

y z

126 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. Option A

B. Option B

C. Option C

D. Option D

E. The code does not compile.

F. None of the above.

186. Which statement about a no- argument constructor is true?

A. The Java compiler will always insert a default no- argument constructor if you do not
define a no- argument constructor in your class.

B. For a class to call super() in one of its constructors, its parent class must explicitly
implement a constructor.

C. If a class extends another class that has only one constructor that takes a value, then
the child class must explicitly declare at least one constructor.

D. A class may contain more than one no- argument constructor.

E. None of the above.

187. Which variable declaration is the first line not to compile?

public class Complex {
 class Building {}
 final class House extends Building {}

 public void convert() {
 Building b1 = new Building();
 House h1 = new House();
 Building b2 = new House();
 Building b3 = (House) b1;
 House h2 = (Building) h1;
 Building b4 = (Building) b2;
 House h3 = (House) b2;
 } }

A. b2
B. b3
C. h2
D. b4
E. h3
F. All of the lines compile.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 127

188. What is the output of the following application?

1: interface Tasty {
2: default void eat() {
3: System.out.print("Spoiled!");
4: } }
5: public class ApplePicking {
6: public static void main(String[] food) {
7: var apple = new Tasty() {
8: @Override
9: void eat() {
10: System.out.print("Yummy!");
11: }
12: }
13: }
14: }

A. Spoiled!
B. Yummy!
C. The application completes without printing anything.

D. One line needs to be corrected for the program to compile.

E. Two lines need to be corrected for the program to compile.

F. None of the above.

189. Which of the following statements about functional interfaces is true?

A. It is possible to define a functional interface that returns two data types.

B. It is possible to define a primitive functional interface that uses float, char,
or short.

C. All functional interfaces must take arguments or return a value.

D. None of the primitive functional interfaces includes generic arguments.

E. None of these statements is true.

190. What is the result of executing the Tortoise program?

// Hare.java
package com.mammal;
public class Hare {
 void init() {
 System.out.print("init- ");
 }
 protected void race() {
 System.out.print("hare- ");
 } }

128 Chapter 3 ■ Utilizing Java Object- Oriented Approach

// Tortoise.java
package com.reptile;
import com.mammal.Hare;
public class Tortoise {
 protected void race(Hare hare) {
 hare.init(); // x1
 hare.race(); // x2
 System.out.print("tortoise- ");
 }
 public static void main(String[] args) {
 var tortoise = new Tortoise();
 var hare = new Hare();
 tortoise.race(hare);
 } }

A. init- hare- tortoise
B. init- hare
C. The first line with a compiler error is line x1.

D. The first line with a compiler error is line x2.

E. The code does not compile due to a different line.

F. The code throws an exception.

191. How many lines of the following program do not compile?

interface Tool {
 void use(int fun);
}
abstract class Childcare {
 abstract void use(int fun);
}
final public class Stroller extends Childcare implements Tool {
 final public void use(int fun) {
 final int width = 5;
 class ParkVisit {
 final int getValue() { return width + fun; }
 }
 System.out.print(new ParkVisit().getValue());
 } }

A. Zero

B. One

C. Two

D. Three

E. More than three

Chapter 3 ■ Utilizing Java Object- Oriented Approach 129

192. What is the result of executing the Bush program?

// Evergreen.java
package tree;
public class Evergreen {
 String leaves = "Green ";
 default void season() {
 System.out.println("spring");
 }
 default void bloom() {
 season();
 } }

// Bush.java
package shrub;
import tree.Evergreen;
public class Bush {
 public static void main(String[] args) {
 var var = new Evergreen();
 System.out.print(var.leaves);
 var.bloom();
 } }

A. The code runs and prints Green spring.

B. The code runs and prints Green springspring.

C. The Evergreen class does not compile.

D. The Bush class does not compile.

E. Neither class compiles.

193. What is the output of the following program?

public sealed class Seasons {
 final static class Spring extends Seasons {}
 non- sealed class Summer extends Seasons {}
 public static void main(String[] w) {
 var t = new Spring();
 final String m = switch (t) {
 case Spring - > "Flowers";
 case Summer - > "Pool";
 default - > "Snow";
 };
 System.out.print(m);
 } }

130 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. Flowers
B. Pool
C. Snow
D. The Spring declaration does not compile.

E. The Summer declaration does not compile.

F. The main() method does not compile.

194. What is the best reason for marking an existing static method private within an
interface?

A. It allows the method to be overridden in a subclass.

B. It hides the secret implementation details from another developer using the interface.

C. It improves the visibility of the method.

D. It ensures the method is not replaced with an overridden implementation at runtime.

E. It allows the method to be marked abstract.

F. Trick question! All static methods are implicitly private within an interface.

195. What is the output of the following application?

package jungle;
public class RainForest extends Forest {
 public RainForest(long treeCount) {
 this.treeCount = treeCount+1;
 }
 public static void main(String[] birds) {
 System.out.print(new RainForest(5).treeCount);
 } }
class Forest {
 public long treeCount;
 public Forest(long treeCount) {
 this.treeCount = treeCount+2;
 } }

A. 5
B. 6
C. 7
D. 8
E. The code does not compile.

196. What is the result of compiling and executing the following class?

package sports;
public class Bicycle {
 String color = "red";

Chapter 3 ■ Utilizing Java Object- Oriented Approach 131

 private void printColor(String color) {
 color = "purple";
 System.out.print(color);
 }
 public static void main(String[] rider) {
 new Bicycle().printColor("blue");
 } }

A. red
B. purple
C. blue
D. null
E. It does not compile.

197. Given that Short and Integer extend Number directly, what type can be used to fill in
the blank in the following class to allow it to compile?

package band;
interface Horn {
 public Integer play();
}
abstract class Woodwind {
 public Short play() {
 return 3;
 } }
public final class Saxophone extends Woodwind implements Horn {
 public play() {
 return null;
 } }

A. Object
B. Integer
C. Short
D. Number
E. None of the above

198. Which statements about abstract classes and methods are correct? (Choose three.)

A. An abstract class can be extended by a final class.

B. An abstract method can be overridden by a final method.

C. An abstract class can be extended by multiple classes directly.

D. An abstract class can extend multiple classes directly.

E. An abstract class cannot implement an interface.

F. An abstract class can extend an interface.

132 Chapter 3 ■ Utilizing Java Object- Oriented Approach

199. Given the following enum declaration, how many lines would need to be corrected for the
code to compile?

public enum Proposition {
 TRUE(1) { String getNickName() { return "RIGHT"; }},
 FALSE(2) { public String getNickName() { return "WRONG"; }},
 UNKNOWN(3) { public String getNickName() { return "LOST"; }}
 public int value;
 Proposition(int value) {
 this.value = value;
 }
 public int getValue() {
 return this.value;
 }
 protected abstract String getNickName();
}

A. Zero

B. One

C. Two

D. Three

E. More than three

200. What is the result of executing the HopCounter program?

// Hopper.java
package com.animals;
public class Hopper {
 protected void hop() {
 System.out.println("hop");
 } }

// Grasshopper.java
package com.insect;
import com.animals.Hopper;
public class Grasshopper extends Hopper {
 public void move() {
 hop(); // p1
 } }

// HopCounter.java
package com.insect;

Chapter 3 ■ Utilizing Java Object- Oriented Approach 133

public class HopCounter {
 public static void main(String[] args) {
 var hopper = new Grasshopper();
 hopper.move(); // p2
 hopper.hop(); // p3
 } }

A. The code prints hop once.

B. The code prints hop twice.

C. The first compiler error is on line p1.

D. The first compiler error is on line p2.

E. The first compiler error is on line p3.

F. None of the above.

201. Which of the following are not attributes common to both abstract classes and interfaces?
(Choose two.)

A. They both can contain abstract methods.

B. They both can contain default methods.

C. They both can contain protected methods.

D. They both can contain public methods.

E. They both can contain static variables.

202. Given the following class, which method signature could be successfully added to the class
as an overloaded version of the findAverage() method? (Choose two.)

public class Calculations {
 public Integer findAverage(int sum) { return sum; }
}

A. public Long findAverage(int x)
B. public Long findAverage(int x, int y)
C. public Integer average(int x)
D. private void findAverage(int x)
E. public Integer findAverage(int... x) throws Exception
F. private Integer findAverage(int x)

203. Which of the following is a valid method name in Java? (Choose two.)

A. Go_$Outside$2()
B. have- Fun()
C. new()
D. 9enjoyTheWeather()
E. $sprint()
F. walk#()

134 Chapter 3 ■ Utilizing Java Object- Oriented Approach

204. Fill in the blanks: A functional interface must contain or inherit ______________ and may
optionally include ______________.

A. at least one abstract method, the @Override annotation

B. exactly one method, static methods

C. exactly one abstract method, the @FunctionalInterface annotation

D. at least one static method, at most one default method

E. None of the above

205. Fill in the blank with the line of code that allows the program to compile and print 15 at
runtime.

package love;
interface Sport {
 private int play() { return 15; }
}
interface Tennis extends Sport {
 private int play() { return 30; }
}
public class Game implements Tennis {
 public int play() { return ; }
 public static void main(String... ace) {
 System.out.println(new Game().play());
 } }

A. Sport.play()
B. Sport.super.play()
C. Sport.Tennis.play()
D. Tennis.Sport.super.play()
E. The code does not compile regardless of what is inserted into the blank.

F. None of the above.

206. What is the output of the following program?

public class MoreMusic {
 {
 System.out.print("do- ");
 System.out.print("re- ");
 }
 public MoreMusic() {
 System.out.print("mi- ");
 }
 public MoreMusic(int note) {

Chapter 3 ■ Utilizing Java Object- Oriented Approach 135

 this(null);
 System.out.print("fa- ");
 }
 public MoreMusic(String song) {
 this(9);
 System.out.print("so- ");
 }
 public static void main(String[] sound) {
 System.out.print("la- ");
 var play = new MoreMusic(1);
 } }

A. la- do- re- mi- so- fa-
B. la- do- re- mi- fa-
C. do- re- mi- fa- so- la-
D. fa- re- do- mi- so-
E. The code does not compile.

F. None of the above.

207. Given the following two classes in the same package, what is the result of executing the
Hug program?

public class Kitten {
 /** private **/ float cuteness;
 /* public */ String name;
 // default double age;
 void meow() { System.out.println(name + " - "+cuteness); }
}

public class Hug {
 public static void main(String... friends) {
 var k = new Kitten();
 k.cuteness = 5;
 k.name = "kitty";
 k.meow();
 } }

A. kitty - 5.0
B. The Kitten class does not compile.

C. The Hug class does not compile.

D. The Kitten and Hug classes do not compile.

E. None of the above.

136 Chapter 3 ■ Utilizing Java Object- Oriented Approach

208. What is the output of the following application?

package prepare;
interface Ready {
 static int first = 2;
 final short DEFAULT_VALUE = 10;
 GetSet go = new GetSet(); // n1
}
public class GetSet implements Ready {
 int first = 5;
 static int second = DEFAULT_VALUE; // n2
 public static void main(String[] begin) {
 var r = new Ready() {};
 System.out.print(r.first); // n3
 System.out.print(" " + second); // n4
 } }

A. 2 10
B. 5 10
C. 5 2
D. The code does not compile because of line n1.

E. The code does not compile because of line n2.

F. The code does not compile because of line n3.

G. The code does not compile because of line n4.

209. What is the result of executing the Tortoise program?

// Hare.java
package com.mammal;
public class Hare {
 public void init() {
 System.out.print("init- ");
 }
 protected void race() {
 System.out.print("hare- ");
 } }

// Tortoise.java
package com.reptile;
import com.mammal.Hare;

Chapter 3 ■ Utilizing Java Object- Oriented Approach 137

public class Tortoise extends Hare {
 protected void race(Hare hare) {
 hare.init(); // x1
 hare.race(); // x2
 System.out.print("tortoise- ");
 }
 public static void main(String[] args) {
 var tortoise = new Tortoise();
 var hare = new Hare();
 tortoise.race(hare);
 } }

A. init- hare- tortoise
B. init- hare
C. The first line with a compiler error is line x1.

D. The first line with a compiler error is line x2.

E. The code does not compile due to a different line.

F. The code throws an exception.

210. What is the output of the following program?

interface Autobot {}
public record Transformer(Boolean matrix) implements Autobot {
 public boolean isMatrix() {
 return matrix;
 }
 abstract void transform() {}
 public Transformer {
 if(matrix == null)
 throw new IllegalArgumentException();
 }
 public static void main(String[] u) {
 var prime = new Transformer(null) {
 public void transform() {}
 };
 System.out.print(prime.matrix());
 } }

138 Chapter 3 ■ Utilizing Java Object- Oriented Approach

A. true
B. false
C. An exception is thrown at runtime.

D. Exactly one line needs to be corrected for the code to compile.

E. Two or more lines need to be corrected for the code to compile.

F. None of the above.

211. What is the result of executing the Movie program?

// Story.java
package literature;
public abstract class Story {
 private void tell() {
 System.out.println("Once upon a time");
 }
 public static void play() {
 tell();
 } }

// Movie.java
package media;
import literature.Story;
public class Movie {
 public static void main(String[] args) {
 var story = new Story();
 story.play();
 } }

A. The code runs and prints Once upon a time.

B. The code runs but does not print anything.

C. The Story class does not compile.

D. The Movie class does not compile.

E. Neither class compiles.

212. What is the output of the Helicopter program?

package flying;
class Rotorcraft {
 protected final int height = 5;
 abstract int fly();
}
interface CanFly {}

Chapter 3 ■ Utilizing Java Object- Oriented Approach 139

public class Helicopter extends Rotorcraft implements CanFly {
 private int height = 10;
 protected int fly() {
 return super.height;
 }
 public static void main(String[] unused) {
 Helicopter h = (Helicopter)new Rotorcraft();
 System.out.print(h.fly());
 } }

A. 5
B. 10
C. The code does not compile.

D. The code compiles but produces a ClassCastException at runtime.

E. None of the above

213. Given the following program, what is the first line to fail to compile?

1: public class Electricity {
2: interface Power {}
3: public static void main(String[] light) {
4: class Source implements Power {};
5: final class Super extends Source {};
6: var start = new Super() {};
7: var end = new Source() { static boolean t = true; };
8: } }

A. Line 2

B. Line 4

C. Line 5

D. Line 6

E. Line 7

F. All of the lines compile.

214. What is the output of the following application?

package prepare;
public class Ready {
 protected static int first = 2;
 private static final short DEFAULT_VALUE = 10;
 private static class GetSet {
 int first = 5;

140 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 static int second = DEFAULT_VALUE;
 }
 private GetSet go = new GetSet();
 public static void main(String[] begin) {
 Ready r = new Ready();
 System.out.print(r.go.first);
 System.out.print(", "+r.go.second);
 } }

A. 2, 5
B. 5, 10
C. 5, 5
D. 2, 10
E. The code does not compile because of the GetSet class declaration.

F. The code does not compile for another reason.

215. Which of the following are true about the following code? (Choose two.)

public class Values {
 static defaultValue = 8;
 static DEFAULT_VALUE;

 public static void main(String[] args) {
 System.out.println("" + defaultValue + DEFAULT_VALUE);
 } }

A. When you fill in both blanks with double, it prints 8.00.0.

B. When you fill in both blanks with double, it prints 8.0.

C. When you fill in both blanks with int, it prints 8.

D. When you fill in both blanks with int, it prints 80.

E. When you fill in both blanks with var, it prints 8.

F. When you fill in both blanks with var, it prints 80.

216. How many Gems objects are eligible for garbage collection right before the end of the
main() method?

public record Gems(String name) {
 public static void main(String... args) {
 var g1 = Gems("Garnet");
 var g2 = Gems("Amethyst");
 var g3 = Gems("Pearl");
 var g4 = Gems("Steven");
 g2 = g3;

Chapter 3 ■ Utilizing Java Object- Oriented Approach 141

 g3 = g2;
 g1 = g2;
 g4 = null;
 } }

A. None

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

217. How many lines of the following program contain compilation errors?

package sky;
public class Stars {
 private int inThe = 4;
 public void Stars() {
 super();
 }
 public Stars(int inThe) {
 this.inThe = this.inThe;
 }
 public static void main(String[] endless) {
 System.out.print(new sky.Stars(2).inThe);
 } }

A. None

B. One

C. Two

D. Three

E. Four

218. What is the output of the following application?

package sports;
abstract class Ball {
 protected final int size;
 public Ball(int size) {
 this.size = size;
 } }
interface Equipment {}
public class SoccerBall extends Ball implements Equipment {

142 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 public SoccerBall() {
 super(5);
 }
 public Ball get() { return this; }
 public static void main(String[] passes) {
 var equipment = (Equipment)(Ball)new SoccerBall().get();
 System.out.print(((SoccerBall)equipment).size);
 } }

A. 5
B. 55
C. The code does not compile due to an invalid cast.

D. The code does not compile for a different reason.

E. The code compiles but throws a ClassCastException at runtime.

219. Which statement about the Elephant program is correct?

package stampede;
interface Long {
 Number length();
}
public class Elephant {
 public class Trunk implements Long {
 public Number length() { return 6; } // k1
 }
 public class MyTrunk extends Trunk { // k2
 public Integer length() { return 9; } // k3
 }
 public static void charge() {
 System.out.print(new MyTrunk().length());
 }
 public static void main(String[] cute) {
 new Elephant().charge(); // k4
 } }

A. It compiles and prints 9.

B. The code does not compile because of line k1.

C. The code does not compile because of line k2.

D. The code does not compile because of line k3.

E. The code does not compile because of line k4.

F. None of the above.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 143

220. What is the minimum number of lines that need to be removed for this code to compile?

1: package figures;
2: public class Dolls {
3: public int num() { return 3.0; }
4: public int size() { return 5L; }
5:
6: public void nested() { nested(2,true); }
7: public int nested(int w, boolean h) { return 0; }
8: public int nested(int level) { return level+1; }
9:
10: public static void main(String[] outOfTheBox) {
11: System.out.print(new Dolls().nested());
12: } }

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five or more

221. How many of these lines compile?

18: Comparator<String> c1 = (j, k) - > 0;
19: Comparator<String> c2 = (String j, String k) - > 0;
20: Comparator<String> c3 = (var j, String k) - > 0;
21: Comparator<String> c4 = (var j, k) - > 0;
22: Comparator<String> c5 = (var j, var k) - > 0;

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

222. What is the output of the following code?

public class Bunny {
 static interface Rabbit { }
 static class FlemishRabbit implements Rabbit { }

144 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 private static void hop(Rabbit r) {
 System.out.print("hop");
 }
 private static void hop(FlemishRabbit r) {
 System.out.print("HOP");
 }
 public static void main(String[] args) {
 Rabbit r1 = new FlemishRabbit();
 FlemishRabbit r2 = new FlemishRabbit();
 hop(r1);
 hop(r2);
 } }

A. hophop
B. HOPhop
C. hopHOP
D. HOPHOP
E. The code does not compile.

223. Which is one of the lines output by this code?

10: var list = new ArrayList<Integer>();
11: list.add(10);
12: list.add(9);
13: list.add(8);
14:
15: var num = 9;
16: list.removeIf(x - > {int keep = num; return x != keep;});
17: System.out.println(list);
18:
19: list.removeIf(x - > {int keep = num; return x == keep;});
20: System.out.println(list);

A. []
B. [8]
C. [8, 10]
D. [8, 9, 10]
E. [10, 8]
F. The code does not compile.

Chapter 3 ■ Utilizing Java Object- Oriented Approach 145

224. What does this code output?

var babies = Arrays.asList("chick", "cygnet", "duckling");
babies.replaceAll(x - > { var newValue = "baby";
 return newValue; });
System.out.println(babies);

A. [baby]
B. [baby, baby, baby]
C. [chick, cygnet, duckling]
D. []
E. None of the above.

F. The code does not compile.

225. Which statement best describes this class?

import java.util.*;
public final class Forest {
 private final int flora;
 private final List<String> fauna;
 public Forest() {
 this.flora = 5;
 this.fauna = new ArrayList<>();
 }
 public int getFlora() {
 return flora;
 }
 public List<String> getFauna() {
 return fauna;
 } }

A. It is serializable.

B. It is well encapsulated.

C. It is immutable.

D. It is both well encapsulated and immutable.

E. None of the above, as the code does not compile.

226. What is the output of the following program?

public record Light(String type, float lumens) {
 final static String DEFAULT_TYPE = "PAR";
 public Light {
 if(type == null)

146 Chapter 3 ■ Utilizing Java Object- Oriented Approach

 throw new IllegalArgumentException();
 else type = DEFAULT_TYPE;
 }
 public Light(String type) {
 this.type = "B";
 this.lumens = 10f;
 }
 public static void main(String[] p) {
 final var bulb = new Light("A", 300);
 System.out.print(bulb.type());
 } }

A. null
B. A
C. PAR
D. An exception is thrown at runtime.

E. The code does not compile.

F. None of the above.

227. Which statement about the following code is correct?

public class Dress {
 int size = 10;
 default int getSize() {
 display();
 return size;
 }
 static void display() {
 System.out.print("What a pretty outfit!");
 }
 private int getLength() {
 display();
 return 15;
 }
 private static void tryOn() {
 display();
 } }

Chapter 3 ■ Utilizing Java Object- Oriented Approach 147

A. The code contains an invalid constant.

B. The getSize() method does not compile.

C. The getLength() method does not compile.

D. The tryOn() method does not compile.

E. The code compiles.

F. None of the above.

228. Which of the following are the best reasons for creating a private interface method?
(Choose two.)

A. Add backward compatibility to existing interfaces.

B. Provide an implementation that a class implementing the interface can override.

C. Increase code reuse within the interface.

D. Allow interface methods to be inherited.

E. Improve encapsulation of the interface.

F. Allow static methods to access instance methods.

229. How many subclasses of Snack compile?

public abstract sealed class Snack permits Snack.Lollipop {
 final static class Toast extends Snack {}
 sealed static class Lollipop extends Snack {}
 final class Treat extends Lollipop {}
 abstract non- sealed class IceCream extends Snack {}
}

A. Zero

B. One

C. Two

D. Three

E. Four

F. Trick question! Snack does not compile.

230. Given the following two classes, each in a different package, which line inserted into the
code allows the second class to compile?

package commerce;
public class Bank {
 public static void withdrawal(int amountInCents) {}
 public static void deposit(int amountInCents) {}
}

148 Chapter 3 ■ Utilizing Java Object- Oriented Approach

package employee;
// INSERT CODE HERE
public class Teller {
 public void processAccount(int deposit, int withdrawal) {
 withdrawal(withdrawal);
 deposit(deposit);
 } }

A. import static commerce.Bank.*;
B. import static commerce.Bank;
C. static import commerce.Bank.*;
D. static import commerce.Bank;
E. None of the above

Handling Exceptions

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Handling Exceptions

 ■ Handle exceptions using try/catch/finally, try- with- resources,

and multi- catch blocks, including custom exceptions

Chapter

4

150 Chapter 4 ■ Handling Exceptions

1. Fill in the blanks: The ___________________ keyword is used in method declarations,
whereas the ___________________ keyword is used to send an exception to the surrounding
process.

A. throwing, catch
B. throws, throw
C. catch, throw
D. throws, catch
E. throw, throws
F. catch, throwing

2. What is the output of the following application?

package paper;
import java.io.Closeable;
public class PrintCompany {
 class Printer implements Closeable { // r1
 public void print() {
 System.out.println("This just in!");
 }
 public void close() {}
 }
 public void printHeadlines() {
 try {Printer p = new Printer()} { // r2
 p.print();
 }
 }
 public static void main(String[] headlines) {
 new PrintCompany().printHeadlines(); // r3
 } }

A. This just in!
B. The code does not compile because of line r1.

C. The code does not compile because of line r2.

D. The code does not compile because of line r3.

E. The code does not compile for a different reason.

F. None of the above.

3. What is the result of compiling and executing the following application?

package mind;
import java.io.*;
public class Remember {

Chapter 4 ■ Handling Exceptions 151

 public static void think() throws IOException { // k1
 try {
 throw Exception();
 } catch (RuntimeException r) {} // k2
 }
 public static void main(String[] ideas) throws Exception {
 think();
 } }

A. The code compiles and runs without printing anything.

B. The code compiles, but a stack trace is printed at runtime.

C. The code does not compile because of line k1.

D. The code does not compile because of line k2.

E. None of the above.

4. Given the following keywords, in which order could they be used? (Choose two.)

A. try, finally
B. catch, try, finally
C. try, catch, catch, finally
D. finally, catch, try
E. try, finally, catch
F. try, catch, finally, finally

5. Assuming - g:vars is used when the code is compiled to include debug information, what is the
output of the following code snippet?

13: String cogsworth = null;
14: Integer lumiere = null;
15: Object mrsPotts = null;
16: if(lumiere > cogsworth.length()) {
17: System.out.println(mrsPotts.toString());
18: }

A. A NullPointerException that does not include any variable names in the stack
trace

B. A NullPointerException naming cogsworth in the stack trace

C. A NullPointerException naming lumiere in the stack trace

D. A NullPointerException naming mrsPotts in the stack trace

E. A NullPointerException naming cogsworth and lumiere in the stack trace

F. None of the above

152 Chapter 4 ■ Handling Exceptions

6. What is the output of the following application?

package park;
class LostBallException extends Exception {}
public class Ball {
 public void toss() throws LostBallException {
 var windUp = new int[1];
 System.out.println(windUp[1]);
 }
 public static void main(String[] bouncy) {
 try {
 new Ball().toss();
 } catch (Throwable e) {
 System.out.print("Caught!");
 }
 } }

A. 0
B. Caught!
C. The code does not compile because LostBallException is not handled or declared in the

main() method.

D. The code does not compile because ArrayIndexOutOfBoundsException is not handled or
declared in the toss() method.

E. The code does not compile for a different reason.

F. None of the above.

7. Assuming Scanner is a valid class that implements AutoCloseable, what is the expected output
of the following code?

try (Scanner s = new Scanner(System.in)) {
 System.out.print(1);
 s.nextLine();
 System.out.print(2);
} catch (IllegalArgumentException | NullPointerException x) {
 s.nextLine();
 System.out.print(3);
} finally {
 s.nextLine();
 System.out.print(4);
}
System.out.print(5);

Chapter 4 ■ Handling Exceptions 153

A. 1245
B. 125
C. 1234 followed by a stack trace

D. 124 followed by a stack trace

E. Does not compile

F. None of the above

8. How many constructors in WhaleSharkException compile in the following class?

package friendly;
public class WhaleSharkException extends Exception {
 public WhaleSharkException() {
 super("Friendly shark!");
 }
 public WhaleSharkException(String message) {
 super(new Exception(new WhaleSharkException()));
 }
 public WhaleSharkException(Exception cause) {}
}

A. None

B. One

C. Two

D. Three

9. What is the output of the following application?

package game;
public class Football {
 public static void main(String officials[]) {
 try {
 System.out.print('W');
 throw new ArrayIndexOutOfBoundsException();
 } catch (RuntimeException r) {
 System.out.print('X');
 throw r;
 } catch (Exception e) {
 System.out.print('Y');
 } finally {
 System.out.print('Z');
 }
 } }

154 Chapter 4 ■ Handling Exceptions

A. WXY
B. WXZ
C. WXY followed by a stack trace

D. WXZ followed by a stack trace

E. WZ followed by a stack trace

F. None of the above

10. Which of the following types are not recommended to catch in your application? (Choose
two.)

A. Exception
B. CheckedException
C. Throwable
D. RuntimeException
E. UncheckedException
F. Error

11. What is the output of the following program?

package buffet;
class Garden implements AutoCloseable {
 private final int g;
 Garden(int g) { this.g = g; }
 public void close() throws Exception {
 System.out.print(g);
 } }
public class Salad {
 public static void main(String[] u) throws Exception {
 var g = new Garden(5);
 try (g;
 var h = new Garden(4);
 var i = new Garden(2)) {
 } finally {
 System.out.println(9);
 }
 g = null;
 } }

A. 2459
B. 9245
C. 5429
D. 9542
E. The code does not compile.

F. None of the above.

Chapter 4 ■ Handling Exceptions 155

12. How many of these custom exceptions are unchecked exceptions?

class ColoringException extends IOException {}
class CursiveException extends WritingException {}
class DrawingException extends IllegalStateException {}
class SketchingException extends DrawingException {}
class WritingException extends Exception {}

A. None

B. One

C. Two

D. Three

E. Four

F. Five

13. How many lines of text does the following program print?

package lighting;
import java.io.IOException;
public class Light {
 public static void main(String[] v) throws Exception {
 try {
 new Light().turnOn();
 } catch (RuntimeException v) { // y1
 System.out.println(v);
 throw new IOException(); // y2
 } finally {
 System.out.println("complete");
 }
 }
 public void turnOn() throws IOException {
 new IOException("Not ready"); // y3
 } }

A. One.

B. Two.

C. The code does not compile because of line y1.

D. The code does not compile because of line y2.

E. The code does not compile because of line y3.

F. None of the above.

156 Chapter 4 ■ Handling Exceptions

14. Which statements about try- with- resources are true? (Choose three.)

A. If more than one resource is used, the resources are closed in the order they were
created.

B. Parentheses are used for the resource declaration section, even if more than one resource
is used.

C. If the try block and close() method both throw an exception, then the one thrown by the
close() method is suppressed.

D. A resource may be declared before it is used in a try- with- resources statement.

E. Resources declarations are separated by commas.

F. A catch block is required.

15. How many lines of text does the following program print?

package bee;
class SpellingException extends RuntimeException {}
public class SpellChecker {
 public final static void main(String[] participants) {
 try {
 if(!"cat".equals("kat")) {
 new SpellingException();
 }
 } catch (SpellingException | NullPointerException e) {
 System.out.println("Spelling problem!");
 } catch (Exception e) {
 System.out.println("Unknown Problem!");
 } finally {
 System.out.println("Done!");
 } } }

A. One.

B. Two.

C. Three.

D. The code does not compile.

E. None of the above.

16. Which of the following exception types must be handled or declared by the method in which
they are thrown? (Choose three.)

A. FileNotFoundException
B. ClassCastException
C. Error
D. IOException
E. NullPointerException
F. Exception

Chapter 4 ■ Handling Exceptions 157

17. What is the output of the following application?

package bed;
public class Sleep {
 public static void snore() {
 try {
 String sheep[] = new String[3];
 System.out.print(sheep[3]);
 } catch (RuntimeException | Error e) {
 System.out.print("Awake!");
 throw e; // x1
 } finally {
 throw new Exception(); // x2
 }
 }
 public static void main(String[] sheep) {
 new Sleep().snore(); // x3
 } }

A. Awake!
B. Awake! followed by a stack trace

C. Does not compile because of line x1
D. Does not compile because of line x2
E. Does not compile because of line x3
F. None of the above

18. What is the output of the following code?

class ProblemException extends Exception {
 ProblemException(Exception e) { super(e); }
}
class MajorProblemException extends ProblemException {
 MajorProblemException(String message) { super(message); }
}
public class Unfortunate {
 public static void main(String[] args) throws Exception {
 try {
 System.out.print(1);
 throw new MajorProblemException("Uh oh");
 } catch (ProblemException | RuntimeException e) {
 System.out.print(2);
 try {
 throw new MajorProblemException("yikes");

158 Chapter 4 ■ Handling Exceptions

 } finally {
 System.out.print(3);
 }
 } finally {
 System.out.print(4);
 } } }

A. 123
B. 123 followed by an exception stack trace

C. 1234
D. 1234 followed by an exception stack trace

E. The code does not compile.

F. None of the above

19. Which statements best describe how a class that implements the AutoCloseable interface
should be written? (Choose two.)

A. The close() method is optional since the AutoCloseable interface defines a default imple-
mentation.

B. The close() method should avoid modifying data after it has been run once.

C. The close() method should not throw any exceptions.

D. The close() method should throw an exception if there is a problem closing the resource.

E. The close() method should return a status code.

20. Which of the following diagrams of java.lang classes shows the inheritance model
properly?

A. RuntimeException

Throwable Error

Object

Exception

B. Error

Throwable Exception

Object

RuntimeException

Chapter 4 ■ Handling Exceptions 159

C. Throwable

RuntimeException Error

Object

Exception

D. RuntimeException

Exception Error

Object

Throwable

21. Which exception classes, when inserted into the blank in the Problems class, allow the code
to compile?

class MissingMoneyException {}
class MissingFoodException {}
public class Problems {
 public void doIHaveAProblem()
 throws MissingMoneyException, MissingFoodException {
 System.out.println("No problems");
 }
 public static void main(String[] s) throws {
 try {
 final Problems p = new Problems();
 p.doIHaveAProblem();
 } catch (Exception e) {
 throw e;
 } } }

A. Exception
B. RuntimeException
C. MissingFoodException
D. MissingMoneyException, MissingFoodException
E. MissingMoneyException
F. None of the above

160 Chapter 4 ■ Handling Exceptions

22. Which statements about Closeable and AutoCloseable are true? (Choose two.)

A. AutoCloseable extends Closeable.

B. Closeable extends AutoCloseable.

C. The close() method in a class that implements AutoCloseable cannot throw an
IOException.

D. The close() method in a class that implements Closeable cannot throw an Exception.

E. There is no difference; one was added for backward compatibility.

F. Both have a generic return type.

23. Which expressions, when inserted into the blank in the following class, allow the code to
compile? (Choose two.)

package sun;
import java.io.*;
public class Beach {
 class TideException extends Exception {}
 public void surf() throws RuntimeException {
 try {
 throw new TideException();
 } catch () {}
 }
}

A. Exception a | RuntimeException f
B. IllegalStateException | TideException t
C. TideException | IOException i
D. TideException | Exception x
E. Error e
F. Exception z

24. Which of the following are the best scenarios in which to use and catch an exception?
(Choose two.)

A. The computer caught fire.

B. A network connection goes down.

C. A caller passes invalid data to a method.

D. The code does not compile.

E. A method finishes sooner than expected.

F. The program runs out of memory.

G. A search returned no results.

Chapter 4 ■ Handling Exceptions 161

25. Which statement about the following program is correct?

1: package dogpark;
2: public class Fetch {
3: public int play(String name) throws RuntimeException {
4: try {
5: throw new RuntimeException(name);
6: } catch (Throwable e) {
7: throw new RuntimeException(e);
8: }
9: }
10: public static final void main(String[] ball)
11: throws RuntimeException {
12: new Fetch().play("Webby");
13: new Fetch().play("Georgette");
14: } }

A. One exception is thrown to the caller at runtime.

B. Two exceptions are thrown to the caller at runtime.

C. More than two exceptions are thrown to the caller at runtime.

D. The class does not compile because of the play() method.

E. The class does not compile because of the main() method.

F. None of the above.

26. What is the output of the following application?

package body;
import java.io.IOException;
class Organ {
 public void operate() throws IOException {
 throw new RuntimeException("Not supported");
 }
}
public class Heart extends Organ {
 public void operate() throws Exception {
 System.out.print("beat");
 }
 public static void main(String[] c) throws Exception {
 try {

162 Chapter 4 ■ Handling Exceptions

 new Heart().operate();
 } finally {
 System.out.print("!");
 }
 } }

A. beat
B. beat!
C. Not supported
D. The code does not compile.

E. The code compiles, but a stack trace is printed at runtime.

F. None of the above.

27. Which of the following are true of using a try- with- resources statement? (Choose two.)

A. It shortens the amount of code a developer must write.

B. It is possible to manually close a resource before the end of the try block.

C. Associated catch blocks are run before the declared resources have been closed.

D. It is only compatible with all classes that implement the Close interface.

E. It is only compatible with all classes that implement the AutoClose interface.

F. It cannot be used with a finally block.

28. What is the output of the following application?

package zoo;
class BigCat {
 void roar(int level) throws RuntimeException {
 if(level<3) throw new IllegalArgumentException();
 System.out.print("Roar!");
 } }
public class Lion extends BigCat {
 public void roar() { System.out.print("Roar!!!"); }
 @Override void roar(int sound) throws IllegalStateException {
 System.out.print("Meow");
 }
 public static void main(String[] cubs) {
 final BigCat kitty = new Lion();
 kitty.roar(2);
 } }

Chapter 4 ■ Handling Exceptions 163

A. Meow
B. Roar!
C. Roar!!!
D. MeowRoar!
E. A stack trace is printed at runtime.

F. None of the above.

29. What is the result of compiling and executing the following class?

package wind;
public class Storm {
 public static void main(String[] rain) throws Exception {
 var weatherTracker = new AutoCloseable() {
 public void close() throws RuntimeException {
 System.out.println("Thunder");
 }
 };
 try (weatherTracker) {
 System.out.println("Tracking");
 } catch (Exception e) {
 System.out.println("Lightning");
 } finally {
 System.out.println("Storm gone");
 weatherTracker.close();
 }
 } }

A. It prints one line.

B. It prints two lines.

C. It prints three lines.

D. It prints four lines.

E. It does not compile due to an error in the declaration of the weatherTracker resource.

F. It does not compile for a different reason.

G. None of the above.

30. How many of the following are valid exception declarations?

class Error extends Exception {}
class _X extends IllegalArgumentException {}
class 2BeOrNot2Be extends RuntimeException {}

164 Chapter 4 ■ Handling Exceptions

class NumberException<Integer> extends NumberFormatException {}
interface Worry implements NumberFormatException {}

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

31. If a try statement has catch blocks for both ClassCastException and
RuntimeException, then which of the following statements is correct?

A. The catch blocks for these two exception types can be declared in any order.

B. A try statement cannot be declared with these two catch block types because they are
incompatible.

C. The catch block for ClassCastException must appear before the catch block for
RuntimeException.

D. The catch block for RuntimeException must appear before the catch block for
ClassCastException.

E. None of the above.

32. Assuming Scanner is a valid class that implements AutoCloseable, what is the expected output
of the following application?

package castles;
import java.util.Scanner;
public class Fortress {
 public void openDrawbridge() throws Exception { // p1
 try {
 throw new Exception("Circle"); // p2
 } catch (Exception | Error e) {
 System.out.print("Opening!");
 } finally {
 System.out.print("Walls");
 }
 }
 public static void main(String[] moat) {
 try (var e = new Scanner(System.in)) {
 new Fortress().openDrawbridge(); // p3
 }
 } }

Chapter 4 ■ Handling Exceptions 165

A. Opening!Walls
B. The code does not compile because of line p1.

C. The code does not compile because of line p2.

D. The code does not compile because of line p3.

E. The code compiles, but a stack trace is printed at runtime.

F. None of the above.

33. What is the output of the following application?

package game;
public class BasketBall {
 public static void main(String[] dribble) {
 try {
 System.out.print(1);
 throw new ClassCastException();
 } catch (ArrayIndexOutOfBoundsException ex) {
 System.out.print(2);
 } catch (Throwable ex) {
 System.out.print(3);
 } finally {
 System.out.print(4);
 }
 System.out.print(5);
 } }

A. 145
B. 1345
C. 1235
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. None of the above.

34. Assuming - g:vars is used when the code is compiled to include debug information, what is the
output of the following code snippet?

41: String mode = null;
42: int grade = (Integer)null;
43: Integer average = null;
44: if(grade >= average && Integer.parseInt(mode) > 0) {
45: System.out.println("You passed!");
46: }

166 Chapter 4 ■ Handling Exceptions

A. A NullPointerException naming mode in the stack trace

B. A NullPointerException naming grade in the stack trace

C. A NullPointerException naming average in the stack trace

D. A NullPointerException naming grade, average, and mode in the stack trace

E. None of the above

35. What is the output of the following application?

package signlanguage;
import java.io.Closeable;
class ReadSign implements Closeable {
 public void close() {}
 public String get() { return "Hello"; } }
class MakeSign implements AutoCloseable {
 public void close() {}
 public void send(String message) {
 System.out.print(message);
 } }
public class Translate {
 public static void main(String[] hands) {
 try (ReadSign r = new ReadSign();
 MakeSign w = new MakeSign();) {
 w.send(r.get());
 }
 } }

A. Hello
B. The code does not compile because of the ReadSign class.

C. The code does not compile because of the MakeSign class.

D. The code does not compile because of the try- with- resources statement.

E. None of the above.

36. What is the output of the following application?

package what;
class FunEvent implements AutoCloseable {
 private final int value;
 FunEvent(int value) { this.value = value; }
 public void close() {
 System.out.print(value);
 }
}

Chapter 4 ■ Handling Exceptions 167

public class Happening {
 public static void main(String[] lots) {
 FunEvent e = new FunEvent(1);
 try (e; var f = new FunEvent(8)) {
 System.out.print("2");
 throw new ArithmeticException();
 } catch (Exception x) {
 System.out.print("3");
 } finally {
 System.out.print("4");
 }
 } }

A. 24
B. 21834
C. 23418
D. 23481
E. 28134
F. The code does not compile.

37. What is the output of the following application?

package office;
import java.io.*;
public class Printer {
 public void print() {
 try {
 throw new FileNotFoundException();
 } catch (Exception | RuntimeException e) {
 System.out.print("Z");
 } catch (Throwable f) {
 System.out.print("X");
 } finally {
 System.out.print("Y");
 }
 }
 public static void main(String[] ink) {
 new Printer().print();
 } }

168 Chapter 4 ■ Handling Exceptions

A. Y
B. XY
C. ZY
D. The code does not compile.

E. The code compiles, but a stack trace is printed at runtime.

F. None of the above.

38. What is the output of the following program?

class ProblemException extends Exception {
 ProblemException(Exception e) { super(e); }
}
class MajorProblemException extends ProblemException {
 MajorProblemException(Exception e) { super(e); }
}
public class Unfortunate {
 public static void main(String[] args) throws Exception {
 try {
 System.out.print(1);
 throw new MajorProblemException(
 new IllegalStateException());
 } catch (ProblemException | RuntimeException e) {
 System.out.print(2);
 try {
 throw new MajorProblemException(e);
 } finally {
 System.out.print(3);
 }
 } finally {
 System.out.print(4);
 } } }

A. 123
B. 123 followed by an exception stack trace

C. 1234
D. 1234 followed by an exception stack trace

E. Does not compile

F. None of the above

Chapter 4 ■ Handling Exceptions 169

39. What is the output of the following application?

1: package robots.are.real;
2: public class Computer {
3: public void compute() throws Exception {
4: throw new NullPointerException("Does not compute!");
5: }
6: public static void main(String[] b) throws Exception {
7: try {
8: new Computer().compute();
9: } catch (RuntimeException e) {
10: System.out.print("zero");
11: throw e;
12: } catch (Exception e) {
13: System.out.print("one");
14: throw e;
15: } } }

A. zero
B. one
C. zero followed by a stack trace

D. one followed by a stack trace

E. Does not compile

F. None of the above

40. Given the following class diagram, which two classes are missing in the hierarchy at positions
1 and 2?

2

1

Throwable

UnsupportedOperationException

Error

A. IOException at position 1, Exception at position 2

B. Exception at position 1, RuntimeException at position 2

C. IllegalArgumentException at position 1, RuntimeException at position 2

D. IllegalStateException at position 1, RuntimeException at position 2

E. Exception at position 1, FileNotFoundException at position 2

F. None of the above

170 Chapter 4 ■ Handling Exceptions

41. What is the output of the following application?

package vortex;
class TimeException extends Exception {}
class TimeMachine implements AutoCloseable {
 int v;
 public TimeMachine(int v) {this.v = v;}
 public void close() throws Exception {
 System.out.print(v);
 } }
public class TimeTraveler {
 public static void main(String[] twelve) {
 try (var timeSled = new TimeMachine(1);
 var delorean = new TimeMachine(2);
 var tardis = new TimeMachine(3)) {
 } catch (TimeException e) {
 System.out.print(4);
 } finally {
 System.out.print(5);
 } } }

A. 1235
B. 3215
C. 5123
D. 5321
E. The code does not compile.

F. None of the above.

42. Which of the following are common reasons to add a checked exception to a method signa-
ture? (Choose three.)

A. To alert developers that the state of the JVM has been corrupted

B. To force a caller to handle or declare potential problems

C. To ensure that exceptions never cause the application to terminate

D. To notify the caller of potential types of problems

E. To give the caller a chance to recover from a problem

F. To annoy other developers

43. Which statement about the following application is correct?

package highway;
import java.io.*;
class CarCrash extends Error {
 CarCrash(Exception e) {} // w1
}

Chapter 4 ■ Handling Exceptions 171

public class Car {
 public static void main(String[] s) throws Exception { // w2
 try {
 throw new IOException("Auto- pilot error");
 } catch (IOException | CarCrash e) { // w3
 throw e;
 } catch (FileNotFoundException a) { // w4
 throw a;
 } } }

A. The code does not compile because of line w1.

B. The code does not compile because of line w2.

C. The code does not compile because of line w3.

D. The code does not compile because of line w4.

E. The code compiles and prints a stack trace at runtime.

F. None of the above.

44. Which of the following exception classes must be handled or declared in the method in which
they are thrown? (Choose three.)

public class Happy extends IOException {}
public class Dopey extends Grumpy {}
public class Sleepy extends IllegalStateException {}
public class Sneezy extends UnsupportedOperationException {}
public class Doc extends AssertionError {}
public class Grumpy extends SQLException {}

A. Happy
B. Dopey
C. Sleepy
D. Sneezy
E. Doc
F. Grumpy

45. What is the output of the following application?

package pond;
import java.io.*;
abstract class Duck {
 protected int count;
 public abstract int getDuckies() throws IOException;
}

172 Chapter 4 ■ Handling Exceptions

public class Ducklings extends Duck {
 private int age;
 public Ducklings(int age) { this.age = age; }
 public int getDuckies() { return this.age/count; }
 public static void main(String[] pondInfo) throws Exception {
 var itQuacks = new Ducklings(5);
 System.out.print(itQuacks.getDuckies());
 } }

A. 0
B. 1
C. 5
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. None of the above.

46. Which statements about the following line of code are correct? (Choose three.)

throw new IllegalArgumentException();
A. The method where this is called must declare a compatible exception.

B. The code where this is called can include a try- with- resources block that handles this
exception.

C. This exception should not be handled or declared.

D. The code where this is called can include a try/catch block that handles this exception.

E. This exception should be thrown only at the start of a method.

F. This exception does not need to be handled by the method in which it is called.

47. What is the output of the following application?

package storage;
import java.io.*;
public class Backup {
 public void performBackup() {
 try {
 throw new IOException("Disk not found"); // z1
 } catch (Exception e) {
 try {
 throw new FileNotFoundException("File not found");
 } catch (FileNotFoundException e) { // z2
 System.out.print("Failed");
 } } }

Chapter 4 ■ Handling Exceptions 173

 public static void main(String[] files) {
 new Backup().performBackup(); // z3
 } }

A. Failed
B. The application compiles, but a stack trace is printed at runtime.

C. The code does not compile because of line z1.

D. The code does not compile because of line z2.

E. The code does not compile because of line z3.

F. None of the above.

48. What is the output of the following?

package com.tps;
import java.io.IOException;
public class IncidentReportException extends RuntimeException {
 public static void main(String[] args) throws Exception {
 try {
 throw new IncidentReportException(new IOException());
 } catch (RuntimeException e) {
 System.out.println(e.getCause());
 } } }

A. com.tps.IncidentReportException
B. java.lang.IOException
C. The code does not compile because IOException is a checked exception.

D. The code does not compile due to the declaration of the IncidentReportException
object.

E. None of the above.

49. Which expressions, when inserted into the blank in the following class, allow the code to
compile? (Choose two.)

package music;
import java.sql.*;
public class Bells {
 class Player implements AutoCloseable {
 @Override public void close() throws RingException {}
 }
 class RingException extends Exception {
 public RingException(String message) {}
 }

174 Chapter 4 ■ Handling Exceptions

 public static void main(String[] notes) throws Throwable {
 try (Player p = null) {
 throw new Exception();
 } catch (Exception e) {
 } catch (q) {
 } } }

A. Error
B. IllegalStateException
C. RingException
D. SQLException
E. Throwable
F. RuntimeException

50. Which statement about the following program is true?

package tag;
class MissedCallException extends Exception {}
public class Phone {
 static void makeCall() throws RuntimeException {
 throw new ArrayIndexOutOfBoundsException("Call");
 }
 public static void main(String[] messages) {
 try {
 makeCall();
 } catch (MissedCallException e) {
 throw new RuntimeException("Voicemail");
 } finally {
 throw new RuntimeException("Text");
 } } }

A. An exception is printed at runtime with Call in the message.

B. An exception is printed at runtime with Voicemail in the message.

C. An exception is printed at runtime with Text in the message.

D. The code does not compile.

E. None of the above.

Chapter 4 ■ Handling Exceptions 175

51. If a try statement has catch blocks for both IllegalArgumentException and
NullPointerException, then which of the following statements is correct?

A. The catch blocks for these two exception types can be declared in any order.

B. A try statement cannot be declared with these two catch block types because they are
incompatible.

C. The catch block for IllegalArgumentException must appear before the catch
block for NullPointerException.

D. The catch block for NullPointerException must appear before the catch block
for IllegalArgumentException.

E. None of the above.

52. What is the output of the following application?

package furniture;
class Chair {
 public void sit() throws IllegalArgumentException {
 System.out.print("creak");
 throw new RuntimeException();
 }
}
public class Stool extends Chair {
 public void sit() throws RuntimeException {
 System.out.print("thud");
 }
 public static void main(String[] c) throws Exception {
 try {
 new Stool().sit();
 } finally {
 System.out.print("?");
 } } }

A. creak
B. thud
C. thud?
D. The code does not compile.

E. The code compiles, but a stack trace is printed at runtime.

F. None of the above.

176 Chapter 4 ■ Handling Exceptions

53. What is the output of the following application?

import java.io.*;
import java.sql.*;
public class DatabaseHelper {
 static class MyDatabase implements Closeable {
 public void close() throws SQLException {
 System.out.print("2");
 }
 public void write(String data) {}
 public String read() {return null;}
 }
 public static void main(String[] files) throws Exception {
 try (MyDatabase myDb = new MyDatabase()) {
 // TODO: Decide what to read/rite
 } finally {
 System.out.print("1");
 } } }

A. 12
B. 21
C. The code does not compile because of the MyDatabase nested class.

D. The code does not compile because of the try- with- resources statement.

E. The code does not compile for a different reason.

54. What constructors are capable of being called on a custom exception class that directly
extends the Exception class?

A. One that takes a single Exception
B. One that takes a single String
C. Both of these

D. Neither of these

55. What is the result of compiling and running the following application?

package dinner;
public class Pizza {
 Exception order(RuntimeException e) { // h1
 throw e; // h2
 }
 public static void main(String[] u) {
 var p = new Pizza();
 try {
 p.order(new IllegalArgumentException()); // h3
 } catch(RuntimeException e) { // h4

Chapter 4 ■ Handling Exceptions 177

 System.out.print(e);
 } } }

A. java.lang.IllegalArgumentException is printed.

B. The code does not compile because of line h1.

C. The code does not compile because of line h2.

D. The code does not compile because of line h3.

E. The code does not compile because of line h4.

F. The code compiles, but a stack trace is printed at runtime.

56. Given an application that hosts a website, which of the following would most likely result in
a java.lang.Error being thrown? (Choose two.)

A. A user tries to sign in too many times.

B. Two users try to register an account at the same time.

C. An order update page calls itself infinitely.

D. The application temporarily loses connection to the network.

E. A user enters their password incorrectly.

F. The connections to a database are never released and keep accumulating.

57. How many lines of text does the following program print?

package tron;
class DiskPlayer implements AutoCloseable {
 public void close() {}
}
public class LightCycle {
 public static void main(String[] bits) {
 try (DiskPlayer john = new DiskPlayer()) {
 System.out.println("ping");
 john.close();
 } finally {
 System.out.println("pong");
 john.close();
 }
 System.out.println("return");
 } }

A. One.

B. Two.

C. Three.

D. The code does not compile because of the DiskPlayer class.

E. The code does not compile for a different reason.

F. None of the above.

178 Chapter 4 ■ Handling Exceptions

58. What is the output of the following?

package com.tps;
import java.io.IOException;
public class OfficeException extends RuntimeException {
 public OfficeException(Exception e) {
 super(e);
 }
 public static void main(String[] args) throws Exception {
 try {
 throw new OfficeException(new IOException());
 } catch (RuntimeException e) {
 System.out.println(e.getCause());
 } } }

A. com.tps.OfficeException
B. java.lang.IOException
C. The code does not compile because IOException is a checked exception.

D. The code does not compile due to the declaration of OfficeException.

E. None of the above.

59. Given the following application, what is the name of the class printed at line e1?

package canyon;
final class FallenException extends Exception {}
final class HikingGear implements AutoCloseable {
 @Override public void close() throws Exception {
 throw new FallenException();
 } }
public class Cliff {
 public final void climb() throws Exception {
 try (HikingGear gear = new HikingGear()) {
 throw new RuntimeException();
 } }
 public static void main(String[] rocks) {
 try {
 new Cliff().climb();
 } catch (Throwable t) {
 System.out.println(t); // e1
 } } }

Chapter 4 ■ Handling Exceptions 179

A. java.lang.RuntimeException
B. canyon.FallenException
C. The code does not compile.

D. The code compiles, but the answer cannot be determined until runtime.

E. None of the above.

60. Given the following application, which specific type of exception will be printed in the stack
trace at runtime?

package carnival;
public class WhackAnException {
 public static void main(String[] hammer) {
 try {
 throw new ClassCastException();
 } catch (IllegalArgumentException e) {
 throw new IllegalArgumentException();
 } catch (RuntimeException e) {
 throw new NullPointerException();
 } finally {
 throw new RuntimeException();
 } } }

A. ClassCastException
B. IllegalArgumentException
C. NullPointerException
D. RuntimeException
E. The code does not compile.

F. None of the above.

Working with Arrays
and Collections

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Working with Arrays and Collections
 ■ Create Java arrays, List, Set, Map, and Deque collections, and

add, remove, update, retrieve and sort their elements

Chapter

5

182 Chapter 5 ■ Working with Arrays and Collections

1. What is the output of the following?

List<String> museums = new ArrayList<>(1);
museums.add("Natural History");
museums.add("Science");
museums.add("Art");
museums.remove(2);
System.out.println(museums);

A. [Natural History, Science]
B. [Natural History, Art, Science]
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

2. How many of the following are legal declarations?

[]String lions = new String[];
String[] tigers = new String[1] {"tiger"};
String bears[] = new String[] {};
String ohMy [] = new String[0] {};

A. None

B. One

C. Two

D. Three

E. Four

3. Which of the following can fill in the blank to make the code compile?

public class News< > {}
A. ? only

B. N only

C. ? and N
D. News, and Object
E. N, News, and Object
F. None of the above

4. Which of the following are true about this code? (Choose two.)

26: List<String> strings = new ArrayList<?>();
27: var ints = new HashSet<Integer>();
28: Double dbl = 5.0;
29: ints.add(2);
30: ints.add(null);

Chapter 5 ■ Working with Arrays and Collections 183

A. The code compiles as is.

B. One line needs to be removed for the code to compile.

C. Two lines need to be removed for the code to compile.

D. One line of code uses autoboxing.

E. Two lines of code use autoboxing

F. Three lines of code use autoboxing

5. Which of the following creates an empty two- dimensional array with dimensions 2×2?

A. int[][] blue = new int[2, 2];
B. int[][] blue = new int[2], [2];
C. int[][] blue = new int[2][2];
D. int[][] blue = new int[2 x 2];
E. None of the above

6. What is the output of the following?

var q = new ArrayDeque<String>();
q.offer("snowball");
q.offer("minnie");
q.offer("sugar");

System.out.print(q.peek() + " " + q.peek() + " " + q.size());

A. sugar sugar 3
B. sugar minnie 1
C. snowball minnie 1
D. snowball snowball 3
E. The code does not compile.

F. None of the above.

7. You are running a library. Patrons select books by name. They get at the back of the checkout
line. When they get to the front, they scan the book’s ISBN, a unique identification number.
The checkout system finds the book based on this number and marks the book as checked
out. Of these choices, which data structures best represent the line to check out the book and
the book lookup to mark it as checked out, respectively?

A. ArrayList, HashSet
B. ArrayList, TreeMap
C. ArrayList, TreeSet
D. LinkedList, HashSet
E. LinkedList, TreeMap
F. LinkedList, TreeSet

184 Chapter 5 ■ Working with Arrays and Collections

8. What is the result of running the following program?

1: package fun;
2: public class Sudoku {
3: static int[][] game;
4:
5: public static void main(String[] args) {
6: game[3][3] = 6;
7: Object[] obj = game;
8: game[3][3] = "X";
9: System.out.println(game[3][3]);
10: } }

A. X
B. The code does not compile.

C. The code compiles but throws a NullPointerException at runtime.

D. The code compiles but throws a different exception at runtime.

E. None of the above.

9. Suppose you want to implement a Comparator<String> so that it sorts the longest strings
first. You may assume there are no null values. Which method could implement such a
comparator?

A.

public int compare(String s1, String s2) {
 return s1.length() - s2.length();
}

B.

public int compare(String s1, String s2) {
 return s2.length() - s1.length();
}

C.

public int compare(Object obj1, Object obj2) {
 String s1 = (String) obj1;
 String s2 = (String) obj2;
 return s1.length() - s2.length();
}

D.

public int compare(Object obj1, Object obj2) {
 String s1 = (String) obj1;

Chapter 5 ■ Working with Arrays and Collections 185

 String s2 = (String) obj2;
 return s2.length() - s1.length();
}

E. None of the above

10. How many lines does the following code output?

var days = new String[] { "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday" };

for (int i = 1; i < days.length; i++)
 System.out.println(days[i]);

A. Zero

B. Six

C. Seven

D. The code does not compile.

E. The code compiles but throws an exception at runtime.

11. Which cannot fill in the blank for this code to compile and print true at runtime?

var c = new <String>();
c.add("pen");
c.remove("pen");
System.out.println(c.isEmpty());

A. ArrayDeque
B. ArrayList
C. TreeMap
D. TreeSet
E. All of these can fill in the blank.

12. What is true of the following code? (Choose two.)

import java.util.*;
public class Garden {
 private static void sortAndSearch(String x, String y) {
 var coll = Arrays.asList(x,y);
 Collections.sort(coll);
 result = Collections.binarySearch(coll, x);
 System.out.println(result);
 }

186 Chapter 5 ■ Working with Arrays and Collections

 public static void main(String[] args) {
 sortAndSearch("seed", "flower");
 } }

A. If the blank contains int, then the code outputs 0.

B. If the blank contains int, then the code outputs 1.

C. If the blank contains int, then the code does not compile.

D. If the blank contains String, then the code outputs flower.

E. If the blank contains String, then the code outputs seed.

F. If the blank contains String, then the code does not compile.

13. How many of the following are legal declarations?

public void greek() {
 [][]String alpha;
 []String beta;
 String[][] gamma;
 String[] delta[];
 String epsilon[][];
 var[][] zeta;
}

A. One

B. Two

C. Three

D. Four

E. Five

F. Six

14. What is the result of the following?

var list = new ArrayList<Integer>();
list.add(56);
list.add(56);
list.add(3);

var set = new TreeSet<Integer>(list);
System.out.print(set.size());
System.out.print(" ");
System.out.print(set.iterator().next());

A. 2 3
B. 2 56

Chapter 5 ■ Working with Arrays and Collections 187

C. 3 3
D. 3 56
E. None of the above

15. What is true of this code when run as java Copier.java with no arguments? (Choose
two.)

1: import java.util.Arrays;
2:
3: public class Copier {
4: public static void main(String... original) {
5: String... copy = original;
6: Arrays.linearSort(original);
7: Arrays.search(original, "");
8: System.out.println(original.size()
9: + " " + original[0]);
10: } }

A. One line contains a compiler error.

B. Two lines contain a compiler error.

C. Three lines contain a compiler error.

D. Four lines contain a compiler error.

E. If the compiler errors were fixed, the code would throw an exception.

F. If the compiler errors were fixed, the code would run successfully.

16. What is the output of the following? (Choose three.)

20: var chars = new <Character>();
21: chars.add('a');
22: chars.add(Character.valueOf('b'));
23: chars.set(1, 'c');
24: chars.remove(0);
25: System.out.print(chars.size() + " " + chars.contains('b'));

A. When inserting ArrayList into the blank, the code prints 1 false.

B. When inserting ArrayList into the blank, the code does not compile.

C. When inserting HashMap into the blank, the code prints 1 false.

D. When inserting HashMap into the blank, the code does not compile.

E. When inserting HashSet into the blank, the code prints 1 false.

F. When inserting HashSet into the blank, the code does not compile.

188 Chapter 5 ■ Working with Arrays and Collections

17. What is the output of the following?

import java.util.*;
record Magazine(String name) {
 public int compareTo(Magazine m) {
 return name.compareTo(m.name);
 }
}
public class Newsstand {
 public static void main(String[] args) {
 var set = new TreeSet<Magazine>();
 set.add(new Magazine("highlights"));
 set.add(new Magazine("Newsweek"));
 set.add(new Magazine("highlights"));
 System.out.println(set.iterator().next());
 } }

A. Magazine[name=highlights]
B. Magazine[name=Newsweek]
C. null
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

18. Which is the first line to prevent this code from compiling or running without error?

11: char[][] ticTacToe = new char[3][3];
12: ticTacToe[1][3] = 'X';
13: ticTacToe[2][2] = 'X';
14: ticTacToe[3][1] = 'X';
15: System.out.println(ticTacToe.length + " in a row!");

A. Line 11

B. Line 12

C. Line 13

D. Line 14

E. Line 15

F. None of the above; the code compiles and runs without issue.

19. What is the first line with a compiler error?

class Mammal {}
class Bat extends Mammal {}
class Cat extends Mammal {}
class Sat {}

Chapter 5 ■ Working with Arrays and Collections 189

class Fur<T extends Mammal> { // line R
 void clean() {
 var bat = new Fur<Bat>(); // line S
 var cat = new Fur<Cat>(); // line T
 var sat = new Fur<Sat>(); // line U
 }
}

A. Line R
B. Line S
C. Line T
D. Line U
E. None of the above

20. What is a possible result of this code?

17: var nums = new HashSet<Long>();
18: nums.add((long) Math.min(5, 3));
19: nums.add(Math.round(3.14));
20: nums.add((long) Math.pow(4,2));
21: System.out.println(nums);

A. [3]
B. [16]
C. [16, 3]
D. [16, 3, 3]
E. None of the above

21. What is the output of the following?

5: var x = new ArrayDeque<Integer>();
6: x.offer(18);
7: x.offer(5);
8: x.push(13);
9: System.out.println(x.poll() + " " + x.poll());

A. 13 5
B. 13 18
C. 18 5
D. 18 13
E. The code does not compile.

F. The code compiles but prints something else.

190 Chapter 5 ■ Working with Arrays and Collections

22. Suppose we want to store JellyBean objects. Which of the following require JellyBean
to implement the Comparable interface or create a Comparator to add them to the collec-
tion? (Choose two.)

A. ArrayList
B. HashMap
C. HashSet
D. SortedArray
E. TreeMap
F. TreeSet

23. Which of the following references the first and last elements in a nonempty array?

A. trains[0] and trains[trains.length]
B. trains[0] and trains[trains.length - 1]
C. trains[1] and trains[trains.length]
D. trains[1] and trains[trains.length - 1]
E. None of the above

24. Which of the following fills in the blank so this code compiles?

public static void throwOne(Collection< > coll) {
 var iter = coll.iterator();
 if (iter.hasNext())
 throw iter.next();
}

A. ?
B. ? extends RuntimeException
C. ? super RuntimeException
D. T
E. T extends RuntimeException
F. T super RuntimeException
G. None of the above

25. Which of these four array declarations produces a different array than the others?

A. int[][] nums = new int[2][1];
B. int[] nums[] = new int[2][1];
C. int[] nums[] = new int[][] { { 0 }, { 0 } };
D. int[] nums[] = new int[][] { { 0, 0 } };

Chapter 5 ■ Working with Arrays and Collections 191

26. What does the following output?

var laptops = new String[] { "Linux", "Mac", "Windows" };
var desktops = new String[] { "Mac", "Linux", "Windows" };

var search = Arrays.binarySearch(laptops, "Linux");
var mismatch1 = Arrays.mismatch(laptops, desktops);
var mismatch2 = Arrays.mismatch(desktops, desktops);

System.out.println(search + " " + mismatch1 + " " + mismatch2);

A. - 1 0 - 1 is guaranteed

B. - 1 - 1 0 is guaranteed

C. 0 - 1 0 is guaranteed

D. 0 0 - 1 is guaranteed

E. The output is not defined.

F. The code does not compile.

27. Which line in the main() method doesn’t compile or points to a class that doesn’t compile?

1: interface Comic<S> {
2: void draw(S s);
3: }
4: class ComicClass<S> implements Comic<S> {
5: public void draw(S s) {
6: System.out.println(s);
7: }
8: }
9: class SnoopyClass implements Comic<Snoopy> {
10: public void draw(Snoopy s) {
11: System.out.println(s);
12: }
13: }
14: class SnoopyComic implements Comic<Snoopy> {
15: public void draw(S s) {
16: System.out.println(s);
17: }
18: }
19: public class Snoopy {

192 Chapter 5 ■ Working with Arrays and Collections

20: public static void main(String[] args) {
21: Comic<Snoopy> s1 = s - > System.out.println(s);
22: Comic<Snoopy> s2 = new ComicClass<>();
23: Comic<Snoopy> s3 = new SnoopyClass();
24: Comic<Snoopy> s4 = new SnoopyComic();
25: } }

A. Line 21

B. Line 22

C. Line 23

D. Line 24

E. None of the above. All of the code compiles.

28. Fill in the blank to make this code compile:

public class Truck implements Comparable<Truck> {
 private int id;
 public Truck(int id) {
 this.id = id;
 }
 @Override
 public int {
 return id - t.id;
 } }

A. compare(Truck t)
B. compare(Truck t1, Truck t2)
C. compareTo(Truck t)
D. compareTo(Truck t1, Truck t2)
E. None of the above

29. How many lines does the following code output?

var days = new String[] { "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday" };

for (int i = 0; i < days.length; i++)
 System.out.println(days[i]);

A. Six

B. Seven

C. The code does not compile.

D. The code compiles but throws an exception at runtime.

Chapter 5 ■ Working with Arrays and Collections 193

30. Which of the following fill in the blank to print out true? (Choose two.)

String[] array = {"Natural History", "Science"};
var museums = ;
museums.set(0, "Art");
System.out.println(museums.contains("Art"));

A. Arrays.asList(array)
B. Arrays.asList("Natural History, Science")
C. List.of(array)
D. List.of("Natural History", "Science")
E. new ArrayList<String>("Natural History", "Science")
F. new List<String>("Natural History", "Science")

31. Which option cannot fill in the blank to print Clean socks?

class Wash<T> {
 T item;
 public void clean(T item) {
 System.out.println("Clean " + item);
 } }
public class LaundryTime {
 public static void main(String[] args) {

 wash.clean("socks");
 } }

A. var wash = new Wash<String>();
B. var wash = new Wash<>();
C. Wash wash = new Wash();
D. Wash wash = new Wash<String>();
E. Wash<String> wash = new Wash<>();
F. All of these can fill in the blank.

32. Which of the options in the graphic best represent the blocks variable?

var blocks = new char[][] {
 { 'a', 'b', 'c' }, { 'd' }, { 'e', 'f' } };

194 Chapter 5 ■ Working with Arrays and Collections

Option A

blocks blocks

Option B

Option C

blocks blocks

Option D

A. Option A

B. Option B

C. Option C

D. Option D

33. Fill in the blank so the code prints gamma. (Choose two.)

var list = Arrays.asList("alpha", "beta", "gamma");
Collections.sort(list,);
System.out.println(list.get(0));

A. (s, t) - > s.compareTo(t)
B. (s, t) - > t.compareTo(s)
C. Comparator.comparing((String s) - > s.charAt(0))
D. Comparator.comparing((String s) - > s.charAt(0)).reverse()
E. Comparator.comparing((String s) - > s.charAt(0)).reversed()

34. How many of the following are legal declarations?

float[] lion = new float[];
float[] tiger = new float[1];
float[] bear = new[] float;
float[] ohMy = new[1] float;

A. None

B. One

C. Two

D. Three

E. Four

Chapter 5 ■ Working with Arrays and Collections 195

35. Which is the first line of code that causes an ArrayIndexOutOfBoundsException?

var matrix = new String[1][2];
matrix[0][0] = "Don't think you are, know you are."; // m1
matrix[0][1] = "I'm trying to free your mind Neo"; // m2
matrix[1][0] = "Is all around you "; // m3
matrix[1][1] = "Why oh why didn't I take the BLUE pill?"; // m4

A. m1
B. m2
C. m3
D. m4
E. The code does not compile.

F. None of the above.

36. Suppose we have list of type List<Integer>. Which method allows you to pass that List and
return an immutable Set containing the same elements?

A. List.copyOf(list)
B. List.of(list)
C. Set.copyOf(list)
D. Set.of(list)
E. None of the above

37. What does the following output? (Choose two.)

var os = new String[] { "Mac", "Linux", "Windows" };
Arrays.sort(os);

System.out.println(Arrays.binarySearch(os, "RedHat"));
System.out.println(Arrays.binarySearch(os, "Mac"));

A. - 1
B. - 2
C. - 3
D. 0
E. 1
F. 2

38. What does the following output?

var names = new HashMap<String, String>();
names.put("peter", "pan");
names.put("wendy", "darling");
var first = names.entrySet(); // line x1
System.out.println(first.getKey()); // line x2

196 Chapter 5 ■ Working with Arrays and Collections

A. peter
B. wendy
C. It does not compile due to line x1.

D. It does not compile due to line x2.

E. It does not compile due to another reason.

F. It throws an exception at runtime.

39. Which of these elements are in the output of the following? (Choose three.)

var q = new ArrayDeque<String>();
q.offerFirst("snowball");
q.offer("sugar");
q.offerLast("minnie");

System.out.println(q.poll());
System.out.println(q.removeFirst());
System.out.println(q.size());

A. sugar
B. minnie
C. snowball
D. 1
E. 2
F. 3

40. Which of these pairs of declarations can point to an array that is different from the others?

A. int[][][][] nums1a, nums1b;
B. int[][][] nums2a[], nums2b;
C. int[][] nums3a[][], nums3b[][];
D. int[] nums4a[][][], numbs4b[][][];

41. Which of the following does not behave the same way as the others?

A. var set = new HashSet<>();
B. var set = new HashSet<Object>();
C. HashSet<> set = new HashSet<Object>();
D. HashSet<Object> set = new HashSet<>();
E. HashSet<Object> set = new HashSet<Object>();

42. What is true about the output of the following code?

var ints = new int[] {3,1,4};
var others = new int[] {2,7,1,8};
System.out.println(Arrays.compare(ints, others));

Chapter 5 ■ Working with Arrays and Collections 197

A. It is negative because ints has fewer elements.

B. It is 0 because the arrays can’t be compared.

C. It is positive because the first element is larger.

D. It is undefined.

E. The code does not compile.

43. Fill in the blank so that the code prints beta.

var list = List.of("alpha", "beta", "gamma");
Collections.sort(list,);
System.out.println(list.get(0));

A. (s, t) - > s.compareTo(t)
B. (s, t) - > t.compareTo(s)
C. Comparator.comparing(String::length)
D. Comparator.comparing(String::length).reversed()
E. None of the above

44. What is the output of the following?

12: var queue = new ArrayDeque<>();
13: queue.offer("exelsior");
14: queue.peekFirst();
15: queue.addFirst("edwin");
16: queue.removeLast();
17: System.out.println(queue);

A. [edwin]
B. [excelsior]
C. [edwin, excelsior]
D. [excelsior, edwin]
E. The code does not compile.

F. The code throws an exception at runtime.

45. How many dimensions does the array reference moreBools allow?

boolean[][] bools[], moreBools;
A. One dimension

B. Two dimensions

C. Three dimensions

D. None of the above

198 Chapter 5 ■ Working with Arrays and Collections

46. What is the result of the following?

Comparator<Integer> c = (x, y) - > y - x;
var ints = Arrays.asList(3, 1, 4);
Collections.sort(ints, c);
System.out.println(Collections.binarySearch(ints, 1));

A. - 1 is guaranteed.

B. 0 is guaranteed.

C. 1 is guaranteed.

D. The code does not compile.

E. The result is not defined.

47. Which statement most accurately represents the relationship between searching and sorting
with respect to the Arrays class?

A. If the array is not sorted, calling Arrays.binarySearch() will be accurate, but
slower than if it were sorted.

B. The array does not need to be sorted before calling Arrays.binarySearch() to get
an accurate result.

C. The array must be sorted before calling Arrays.binarySearch() to get an accurate
result.

D. None of the above.

48. Which statements are true about the following figure while ensuring the code continues to
compile? (Choose two.)

List balloons = new ArrayList ();

P Q

var air = new ArrayList ();

SR

A. <> can be inserted at positions P and R without making any other changes.

B. <> can be inserted at positions Q and S without making any other changes.

C. <> can be inserted at all four positions.

D. Both variables point to an ArrayList<String>.

E. Only one variable points to an ArrayList<String>.

F. Neither variable points to an ArrayList<String>.

Chapter 5 ■ Working with Arrays and Collections 199

49. What is the result of the following when called without any command- line arguments?
(Choose two.)

1: import java.util.*;
2: public class Binary {
3:
4: public static void main(String... args) {
5: Arrays.sort(args);
6: System.out.println(Arrays.toString(args));
7: System.out.println(args[0]);
8: } }

A. null
B. []
C. Binary
D. The code throws an ArrayIndexOutOfBoundsException.

E. The code throws a NullPointerException.

F. The code does not compile.

50. What is the first line with a compiler error?

class Mammal {}
class Bat extends Mammal {}
class Cat extends Mammal {}
class Sat {}

class Fur<? extends Mammal> { // line R
 void clean() {
 var bat = new Fur<Bat>(); // line S
 var cat = new Fur<Cat>(); // line T
 var sat = new Fur<Sat>(); // line U
 } }

A. Line R

B. Line S

C. Line T

D. Line U

E. None of the above

51. What is the result of running the following program?

1: package fun;
2: public class Sudoku {

200 Chapter 5 ■ Working with Arrays and Collections

3: static int[][] game = new int[6][6];
4:
5: public static void main(String[] args) {
6: game[3][3] = 6;
7: Object[] obj = game;
8: obj[3] = "X";
9: System.out.println(game[3][3]);
10: } }

A. 6
B. X
C. The code does not compile.

D. The code compiles but throws a NullPointerException at runtime.

E. The code compiles but throws a different exception at runtime.

52. How many of these allow inserting null values: ArrayList, LinkedList, HashSet, and TreeSet?

A. 0

B. 1

C. 2

D. 3

E. 4

53. What is the output of the following?

var threes = Arrays.asList("3", "three", "THREE");
Collections.sort(threes);
System.out.println(threes);

A. [3, three, THREE]
B. [3, THREE, three]
C. [three, THREE, 3]
D. [THREE, three, 3]
E. None of the above

54. How many dimensions does the array reference moreBools allow?

boolean[][][] bools, moreBools;
A. One dimension

B. Two dimensions

C. Three dimensions

D. None of the above

Chapter 5 ■ Working with Arrays and Collections 201

55. What is the output of the following?

20: List<Character> chars = new ArrayList<>();
21: chars.add('a');
22: chars.add('b');
23: chars.clear();
24: chars.remove(0);
25: System.out.print(chars.isEmpty() + " " + chars.length());

A. false 1
B. true 0
C. 2
D. The code does not compile.

E. The code throws an exception at runtime.

56. Which fills in the blank in the method signature to allow this code to compile and print
[duck, duck, goose] at runtime?

import java.util.*;
public class ExtendingGenerics {
 private static < , U> U add(T list, U element) {
 list.add(element);
 return element;
 }
 public static void main(String[] args) {
 var values = new ArrayList<String>();
 add(values, "duck");
 add(values, "duck");
 add(values, "goose");
 System.out.println(values);
 } }

A. ? extends Collection<U>
B. ? implements Collection<U>
C. T extends Collection<U>
D. T implements Collection<U>
E. None of the above

202 Chapter 5 ■ Working with Arrays and Collections

57. What does the following output?

String[] os = new String[] { "Mac", "Linux", "Windows" };
System.out.println(Arrays.binarySearch(os, "Linux"));

A. 0 is guaranteed.

B. 1 is guaranteed.

C. 2 is guaranteed

D. The output is not defined.

E. The code does not compile.

58. Which is the first line to prevent this code from compiling and running without error?

11: char[][] ticTacToe = new char[3,3];
12: ticTacToe[1][3] = 'X';
13: ticTacToe[2][2] = 'X';
14: ticTacToe[3][1] = 'X';
15: System.out.println(ticTacToe.length + " in a row!");

A. Line 11

B. Line 12

C. Line 13

D. Line 14

E. Line 15

F. None of the above; the code compiles and runs without issue.

59. What is the result of the following?

var list = new ArrayList<String>();
list.add("Austin");
list.add("Boston");
list.add("San Francisco");

list.removeIf(a - > a.length() > 10);
System.out.println(list.size());

A. 0
B. 1
C. 2
D. 3
E. The code does not compile.

Chapter 5 ■ Working with Arrays and Collections 203

60. What happens when calling the following method with a non- null and non- empty array?

public static void addStationName(String[] names) {
 names[names.length] = "Times Square";
}

A. It adds an element to the array whose value is Times Square.

B. It replaces the last element in the array with the value Times Square.

C. It throws an exception.

D. It does not compile regardless of what is passed in.

E. None of the above.

61. Which is not a true statement about an array?

A. An array expands automatically when it is full.

B. An array is allowed to contain duplicate values.

C. An array understands the concept of ordered elements.

D. An array uses a zero index to reference the first element.

62. Which of the following cannot fill in the blank to make the code compile?

private void output(<?> x) {
 x.forEach(System.out::println);
}

A. Collection
B. LinkedList
C. TreeMap
D. None of these can fill in the blank.

E. All of these can fill in the blank.

63. Which of the following fills in the blank so this code compiles?

public static void getExceptions(Collection< > coll) {
 coll.add(new RuntimeException());
 coll.add(new Exception());
}

A. ?
B. ? extends RuntimeException
C. ? super RuntimeException
D. T
E. T extends RuntimeException
F. T super RuntimeException
G. None of the above

204 Chapter 5 ■ Working with Arrays and Collections

64. What is the output of the following? (Choose two.)

35: var mags = new HashMap<String, Integer>();
36: mags.put("People", 1974);
37: mags.put("Readers Digest", 1922);
38: mags.put("The Economist", 1843);
39:
40: Collection<Integer> years = mags.values();
41:
42: List<Integer> sorted = new ArrayList<>(years);
43: Collections.sort(sorted);
44:
45: int first = sorted.get(0);
46: System.out.println(first);
47:
48: Integer last = sorted.get(sorted.size());
49: System.out.println(last);

A. 1843
B. 1922
C. 1974
D. The code compiles but throws an exception at runtime.

E. The code does not compile.

65. How do you access the array element with the value of "z"?

"one"

"p"

"x"

"y"

"x"

"y"

"z"

"two" "three"

dimensions

A. dimensions["three"][2]
B. dimensions["three"][3]
C. dimensions[2][2]
D. dimensions[3][3]

Chapter 5 ■ Working with Arrays and Collections 205

66. What is the output of the following?

import java.util.*;
record Magazine(String name) implements Comparable<Magazine> {
 public int compareTo(Magazine m) {
 return name.compareTo(m.name);
 }
}
public class Newsstand {
 public static void main(String[] args) {
 var set = new TreeSet<Magazine>();
 set.add(new Magazine("highlights"));
 set.add(new Magazine("Newsweek"));
 set.add(new Magazine("highlights"));
 System.out.println(set.iterator().next());
 } }

A. Magazine[name=highlights]
B. Magazine[name=Newsweek]
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

67. Which can fill in the blanks to print Cleaned 2 items?

import java.util.*;
class Wash<T Collection> {
 public void clean(T items) {
 System.out.println("Cleaned " + items.size() + " items");
 } }
public class LaundryTime {
 public static void main(String[] args) {
 Wash<List> wash = new Wash< >();
 wash.clean(List.of("sock", "tie"));
 } }

A. extends, ArrayList
B. extends, List
C. super, ArrayList
D. super, List
E. None of the above

206 Chapter 5 ■ Working with Arrays and Collections

68. How many lines does the following code output?

var days = new String[] { "Sunday", "Monday", "Tuesday",
 "Wednesday", "Thursday", "Friday", "Saturday" };
for (int i = 1; i <= days.length; i++)
 System.out.println(days[i]);

A. Six

B. Seven

C. The code does not compile.

D. The code compiles but throws an exception at runtime.

69. What is the output of the following?

var listing = new String[][] {
 { "Book" }, { "Game", "29.99" } };
System.out.println(listing.length + " " + listing[0].length);

A. 1 1
B. 1 2
C. 2 1
D. 2 2
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

70. What is the output of the following?

Queue<String> q = new ArrayDeque<>();
q.add("snowball");
q.addLast("sugar");
q.addFirst("minnie");

System.out.println(q.peek() + " " + q.peek() + " " + q.size());

A. sugar sugar 3
B. sugar minnie 1
C. minnie minnie 3
D. minnie snowball 1
E. The code does not compile.

F. None of the above.

71. What is the result of the following?

13: var numbers = Arrays.asList(3, 1, 4);
14: numbers.set(1, null);

Chapter 5 ■ Working with Arrays and Collections 207

15: int first = numbers.get(0);
16: int middle = numbers.get(1);
17: int last = numbers.get(3);
18: System.out.println(first + " " + middle + " " + last);

A. The code does not compile.

B. Line 14 throws an exception.

C. Line 15 throws an exception.

D. Line 16 throws an exception.

E. Line 17 throws an exception.

F. 3null4

72. Fill in the blank so the code prints gamma.

var list = Arrays.asList("alpha", "beta", "gamma");
Collections.sort(list,);
System.out.println(list.get(0));

A.

Comparator.comparing(String::length)
 .andCompare(s - > s.charAt(0))

B.

Comparator.comparing(String::length)
 .thenCompare(s - > s.charAt(0))

C.

Comparator.comparing(String::length)
 .thenComparing(s - > s.charAt(0))

D.

Comparator.comparing(String::length)
 .andCompare(s - > s.charAt(0))
 .reversed()

E.

Comparator.comparing(String::length)
 .thenCompare(s - > s.charAt(0))
 .reversed()

F.

Comparator.comparing(String::length)
 .thenComparing(s - > s.charAt(0))
 .reversed()

208 Chapter 5 ■ Working with Arrays and Collections

73. What is the output of the following when run as java FirstName.java Wolfie?
(Choose two.)

public class FirstName {
 public static void main(String... names) {
 System.out.println(names[0]);
 System.out.println(names[1]);
 } }

A. FirstName
B. Wolfie
C. The code throws an ArrayIndexOutOfBoundsException.

D. The code throws a NullPointerException.

E. The code throws a different exception.

74. What does the following output?

11: var pennies = new ArrayList<>();
12: pennies.add(1);
13: pennies.add(2);
14: pennies.add(Integer.valueOf(3));
15: pennies.add(Integer.valueOf(4));
16: pennies.remove(2);
17: pennies.remove(Integer.valueOf(1));
18: System.out.println(pennies);

A. [1, 2]
B. [1, 4]
C. [2, 4]
D. [2, 3]
E. [3, 4]
F. The code does not compile.

75. What is true of the following code? (Choose two.)

private static void sortAndSearch(String... args) {
 var one = args[1];
 Comparator<String> comp = (x, y) - > ;
 Arrays.sort(args, comp);
 var result = Arrays.binarySearch(args, one, comp);
 System.out.println(result);
}
public static void main(String[] args) {
 sortAndSearch("seed", "flower");
}

Chapter 5 ■ Working with Arrays and Collections 209

A. If the blank contains - x.compareTo(y), then the code outputs 0.

B. If the blank contains - x.compareTo(y), then the code outputs - 1.

C. If the blank contains x.compareTo(y), then the code outputs 0.

D. If the blank contains - y.compareTo(x), then the code outputs 0.

E. If the blank contains - y.compareTo(x), then the code outputs - 1.

F. If the blank contains y.compareTo(x), then the code outputs 0.

G. If the blank contains y.compareTo(x), then the code outputs - 1.

76. What does this code output?

String[] nums = new String[] { "1", "9", "10" };
Arrays.sort(nums);
System.out.println(Arrays.toString(nums));

A. [1, 9, 10]
B. [1, 10, 9]
C. [9, 1, 10]
D. [9, 10, 1]
E. [10, 1, 9]
F. [10, 9, 1]

77. Which is the first line to prevent this code from compiling and running without error?

11: char[][] ticTacToe = new char[3][3];
12: ticTacToe[0][0] = 'X';
13: ticTacToe[1][1] = 'X';
14: ticTacToe[2][2] = 'X';
15: System.out.println(ticTacToe.length + " in a row!");

A. Line 11

B. Line 12

C. Line 13

D. Line 14

E. Line 15

F. None of the above; the code compiles and runs without issue.

78. What is true of the following code? (Choose three.)

36: var names = new HashMap<String, String>();
37: names.put("peter", "pan");
38: names.put("wendy", "darling");
39:
40: String w = names.getOrDefault("peter");

210 Chapter 5 ■ Working with Arrays and Collections

41: String x = names.getOrDefault("peter", "x");
42: String y = names.getOrDefault("john", "x");

A. Exactly one line does not compile.

B. Exactly two lines do not compile.

C. If any lines that do not compile are removed, the String on line 40 is set to null.

D. If any lines that do not compile are removed, the String on line 41 is set to "pan".

E. If any lines that do not compile are removed, the String on line 41 is set to "x".

F. If any lines that do not compile are removed, the String on line 42 is set to "x".

79. What does the following output?

18: List<String> list = List.of(
19: "Mary", "had", "a", "little", "lamb");
20: Set<String> set = new HashSet<>(list);
21: set.addAll(list);
22: for(String sheep : set)
23: if (sheep.length() > 1)
24: set.remove(sheep);
25: System.out.println(set);

A. [a, lamb, had, Mary, little]
B. [a]
C. [a, a]
D. The code does not compile.

E. The code throws an exception at runtime.

80. Which of the following fills in the blank so this code compiles?

public static void getExceptions(Collection< > coll) {
 coll.add(new RuntimeException());
 coll.add(new Exception());
}

A. ?
B. ? extends Exception
C. ? super Exception
D. T
E. T extends Exception
F. T super Exception
G. None of the above

Working
with Streams and
Lambda Expressions

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Working with Streams and Lambda expressions

 ■ Use Java object and primitive Streams, including lambda

expressions implementing functional interfaces, to supply,

filter, map, consume, and sort data

 ■ Perform decomposition, concatenation and reduction, and

grouping and partitioning on sequential and parallel streams

Chapter

6

212 Chapter 6 ■ Working with Streams and Lambda Expressions

1. The following figure represents a stream pipeline. Given this, what would the boxes X, Y, Z
best represent?

X Y Z

A. Origin, intermediate operation, and final operation

B. Origin, intermediate operation, and sink

C. Origin, intermediate operation, and terminal operation

D. Source, intermediate operation, and final operation

E. Source, intermediate operation, and sink

F. Source, intermediate operation, and terminal operation

2. Which of the following is required for all valid lambda expressions?

A. ()
B. - >
C. {}
D. Parameter data type(s)

E. None of the above

3. Fill in the blanks: The functional interface does not take any inputs, while
the functional interface does not return any data.

A. IntConsumer, LongSupplier
B. IntSupplier, Function
C. Supplier, DoubleConsumer
D. UnaryOperator, Consumer
E. None of the above

4. A lambda expression for which of the following functional interfaces could be used to return
a Double value? (Choose two.)

A. UnaryOperator
B. BiPredicate
C. BiOperator
D. BiConsumer
E. BiFunction
F. BiSupplier

5. What does the following output?

var list = List.of("Austin", "Boston",
 "San Francisco");

Chapter 6 ■ Working with Streams and Lambda Expressions 213

var c = list.stream()
 .filter(a - > a.length() > 10) // line x
 .count();
System.out.println(c + " " + list.size());

A. 1 1
B. 1 3
C. 2 3
D. The code does not compile due to line x.

E. The code throws an exception.

6. Identify the correct functional interfaces to fill in this table correctly. (Choose three.)

Functional interface Possible return type

Interface X Boolean

Interface Y int

Interface Z void

A. Interface X is Predicate.

B. Interface X is Supplier.

C. Interface Y is Comparator.

D. Interface Y is Supplier.

E. Interface Z is Consumer.

F. Interface Z is Supplier.

7. What is the most likely reason for a stream pipeline not to run?

A. The source doesn’t generate any items.

B. There are no intermediate operations.

C. The terminal operation is missing.

D. The version of Java is too old.

E. None of the above.

8. Which functional interface takes a long value as an input argument and has an
accept() method?

A. LongConsumer
B. LongFunction
C. LongPredicate
D. LongSupplier
E. None of the above

214 Chapter 6 ■ Working with Streams and Lambda Expressions

9. Given a parallel Stream<T>, which method would you use to obtain an equivalent serial
Stream<T>?

A. unordered()
B. reduce()
C. concat()
D. stream()
E. boxed()
F. None of the above

10. What is the output of the following code?

var odds = IntStream.iterate(1, a - > a+2);
var evens = IntStream.iterate(2, a - > a+2);
var sum = IntStream.concat(odds, evens).limit(3).sum();
System.out.print(sum);

A. 6
B. 8
C. 9
D. 12
E. The code does not compile.

F. The program does not terminate.

11. Which of the following is a valid lambda expression?

A. r - > {return 1==2}
B. (q) - > true
C. (x,y) - > {int test; return test>0;}
D. a,b - > true
E. None of the above

12. Which are true of running these lines independently of each other? (Choose two.)

var empty = Optional.empty();

var param = Optional.of(null);

var method = Optional.ofNullable(null);

A. All of these will run without error.

B. Exactly one line fails to compile or throws an exception.

C. Exactly two lines fail to compile or throw an exception.

D. None of these returns true when calling opt.isPresent().

E. One of these returns true when calling opt.isPresent().

F. Two of these return true when calling opt.isPresent().

Chapter 6 ■ Working with Streams and Lambda Expressions 215

13. Which of the following statements about DoubleSupplier and Supplier<Double> is
not true?

A. Both are functional interfaces.

B. Both take zero parameters.

C. Lambdas for both can return a double value.

D. Lambdas for both can return a null value.

E. One supports a generic type; the other does not.

F. All of these are true.

14. Fill in the blank with the functional interface from java.util.function that allows the
code to compile and print 3 at runtime.

 transformer = x - > x;

var prime = List.of(3,1,4,1,5,9)
 .stream()
 .limit(1)
 .peek(s - > {})
 .mapToInt(transformer)
 .peek(s - > {})
 .sum();
System.out.println(prime);

A. Function<Integer,Integer>
B. UnaryOperator<Integer>
C. ToIntFunction<Integer>
D. IntUnaryOperator
E. The code does not compile regardless of what functional interface is placed in the blank.

F. The code is capable of compiling, but since prime is an OptionalInt value, it cannot be 3
at runtime.

15. Which fills in the blank so the code is guaranteed to print 1?

var stream = Stream.of(1, 2, 3);
System.out.print(stream.);

A. anyMatch()
B. findAny()
C. first()
D. min()
E. None of the above

216 Chapter 6 ■ Working with Streams and Lambda Expressions

16. What is the result of the following?

6: var list = new ArrayList<String>();
7: list.add("Monday");
8: list.add(String::new);
9: list.add("Tuesday");
10: list.remove(0);
11: System.out.println(list.get(0));

A. null
B. An empty String
C. Monday
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

17. Which functional interface, when filled in the blank, allows the class to compile?

package space;
import java.util.function.*;
public class Asteroid {
 public void mine(lambda) {
 // IMPLEMENTATION OMITTED
 }
 public static void main(String[] debris) {
 new Asteroid().mine((s,p) - > s+p);
 } }

A. BiConsumer<Integer,Double>
B. BiConsumer<Integer,Double,Double>
C. BiFunction<Integer,Double,Double>
D. BiFunction<Integer,Integer,Double>
E. Function<Integer,Double>
F. None of the above

18. What best describes a reduction?

A. A source operation that creates a small value

B. An intermediate operation where it filters the stream it receives

C. An intermediate operation where it mathematically divides each element in the stream

D. A terminal operation where a single value or object is generated by reading each element
in the prior step in a stream pipeline

E. A terminal operation where one element is returned from the prior step in a stream
pipeline without reading all the elements

Chapter 6 ■ Working with Streams and Lambda Expressions 217

19. Suppose you have a stream with exactly one element and the following line of code. Filling
in xxxx from top to bottom in the table, how many elements can be printed out? Assume a
valid lambda expression is passed to each method in the table.
stream.xxxx.forEach(System.out::print);

Method Number elements printed

filter() ?

flatMap() ?

map() ?

A. Zero or one, zero or more, exactly one

B. Zero or one, exactly one, zero or more

C. Zero or one, zero or more, zero or more

D. Exactly one, zero or more, exactly one

E. Exactly one, exactly one, zero or more

F. Exactly one, zero or more, zero or more

20. Assuming the proper generic types are used, which lambda expressions can be assigned to a
ToDoubleBiFunction functional interface reference? (Choose three.)

A. (Integer a, Double b) - > {int c; return b;}
B. (h,i) - > (long)h
C. (String u, Object v) - > u.length()+v.length()
D. (x,y) - > {int z=2; return y/z;}
E. z - > z
F. (double y, double z) - > y + z

21. Given a Stream<T>, which method would you use to obtain an equivalent parallel
Stream<T>?

A. getParallelStream()
B. parallelStream()
C. parallel()
D. getParallel()
E. parallels()
F. None of the above

22. Rewrite this lambda that takes an int n using a constructor reference:
n - > new ArrayList<>(n)
A. ArrayList::new
B. ArrayList::new()
C. ArrayList::new(n)
D. ArrayList::new[n]
E. None of the above

218 Chapter 6 ■ Working with Streams and Lambda Expressions

23. On a DoubleStream, how many of the average(), count(), max(), and sum() methods return an
OptionalDouble?

A. None

B. One

C. Two

D. Three

E. Four

24. Which of the following are not functional interfaces in the java.util.function
package? (Choose two.)

A. BiPredicate
B. DoubleUnaryOperator
C. IntUnaryOperator
D. ObjectDoubleConsumer
E. ObjectIntConsumer
F. ToLongFunction

25. Five of the following six methods always produce the same result whether they are executed
on an ordered serial or parallel stream. Which one does not?

A. findAny()
B. findFirst()
C. limit()
D. skip()
E. anyMatch()
F. count()

26. In a stream pipeline, which can return a value other than a Stream?

A. Source

B. Intermediate operation

C. Terminal operation

D. None of the above

27. When working with a Stream<String>, which of these types can be returned from the
collect() terminal operator by passing arguments to Collectors.groupingBy()?

A. Only Map<Boolean, HashSet<String>>
B. Only Map<Integer, List<String>>
C. Both Map<Boolean, HashSet<String>> and Map<Integer, List<String>>
D. Only List<Integer>
E. Only List<String>
F. Both List<Integer> and List<String>

Chapter 6 ■ Working with Streams and Lambda Expressions 219

28. What does the following output?

12: Set<String> set = new HashSet<>();
13: set.add("tire- ");
14: List<String> list = new LinkedList<>();
15: Deque<String> queue = new ArrayDeque<>();
16: queue.push("wheel- ");
17: Stream.of(set, list, queue)
18: .flatMap(x - > x)
19: .forEach(System.out::print);

A. [tire-][wheel-]
B. tire- wheel-
C. [wheel-][tire-]
D. wheel- tire-
E. None of the above

F. The code does not compile.

29. What is the result of executing the following?

var list = new LinkedList<>();
list.add("Archie");
list.add("X- Men");
Stream s = list.stream(); // line w
s.forEach(System.out::println);
s.forEach(System.out::println);

A. The code runs without exception and prints two lines.

B. The code runs without exception and prints four lines.

C. The code does not compile due to line w.

D. The code does not compile due to another line.

E. The code compiles but throws an exception at runtime.

30. What is the output of the following application?

package zoo;
import java.util.function.*;
 public class TicketTaker {
 private static int AT_CAPACITY = 100;
 public int takeTicket(int currentCount,
 IntUnaryOperator<Integer> counter) {
 return counter.applyAsInt(currentCount);
 }

220 Chapter 6 ■ Working with Streams and Lambda Expressions

 public static void main(String[] theater) {
 final TicketTaker bob = new TicketTaker();
 final int oldCount = 50;
 final int newCount = bob.takeTicket(oldCount,t - > {
 if(t>AT_CAPACITY) {
 throw new RuntimeException(
 "Sorry, max has been reached");
 }
 return t+1;
 });
 System.out.print(newCount);
 } }

A. 50
B. 51
C. The code does not compile because of the lambda expression.

D. The code does not compile for a different reason.

E. The code compiles but prints an exception at runtime.

31. What are the three requirements for performing a parallel reduction with the collect()
method, which takes a Collector argument? (Choose three.)

A. The Collector argument is marked concurrent.

B. The elements of the stream implement the Comparable interface.

C. The stream is parallel.

D. The stream is thread- safe.

E. The stream or Collector is marked unordered.

F. The stream is not a primitive stream.

32. Which are true about the following code? (Choose two.)

27: public static void main(String[] s) {
28: Predicate dash = c - > c.startsWith("- ");
29: System.out.println(dash.test("–"));
30:
31: Consumer clear = x - > System.out.println(x);
32: clear.accept("pink");
33:
34: Comparator<String> c = (String s, String t) - > 0;
35: System.out.println(c.compare("s", "t"));
36: }

Chapter 6 ■ Working with Streams and Lambda Expressions 221

A. The code compiles successfully.

B. One line does not compile.

C. Two lines do not compile.

D. Three lines do not compile.

E. If any lines that do not compile are fixed, the output includes pink.

F. If any lines that do not compile are fixed, the output does not include pink.

33. Which functional interface returns a primitive value?

A. BiPredicate
B. CharSupplier
C. LongFunction
D. UnaryOperator
E. TriDoublePredicate
F. None of the above

34. Given the following code snippet, which lambda expressions are the best choices for an accu-
mulator? (Choose two.)

import java.util.*;
import java.util.function.*;
public class GoodAccumulator {
 int i = 0;
 List<String> words = new ArrayList<>();
 public void test() {
 BiFunction<Integer,Integer,Integer> x = ;
 System.out.print(List.of(1,2,3,4,5)
 .parallelStream()
 .reduce(0, x, (s1, s2) - > s1 + s2));
 } }

A. (a,b) - > (a- b)
B. (a,b) - > 5
C. (a,b) - > i++
D. (a,b) - > {words.add("awesome"); return 0;}
E. (a,b) - > {return 0;}
F. (a,b) - > words.add("awesome")

35. Fill in the blanks so that both methods produce the same output for all inputs.

private static void longer(Optional<Boolean> opt) {
 if (opt. ())
 System.out.println("run: " + opt.get());
}

222 Chapter 6 ■ Working with Streams and Lambda Expressions

private static void shorter(Optional<Boolean> opt) {
 opt.map(x - > "run: " + x)
 . (System.out::println);
}

A. isNotNull, isPresent
B. ifPresent, isPresent
C. isPresent, forEach
D. isPresent, ifPresent
E. None of the above

36. Rewrite this lambda using a method reference:
() - > Math.random()
A. Math.random
B. Math::random
C. Math::random()
D. java.lang::Math.random
E. None of the above

37. Which operation can occur more than once in a stream pipeline?

A. Origin

B. Sink

C. Source

D. Intermediate operation

E. Terminal operation

F. None of the above

38. What is true of the following code?

21: var list = List.of('c', 'b', 'a');
22:
23: list.stream()
24: .sorted()
25: .findAny()
26: .ifPresent(System.out::println);
27:
28: System.out.println(list.stream().sorted().findFirst());

A. Both streams are guaranteed to print the single character a.

B. Both streams will print a single character of a, b, or c.

C. Only one stream is guaranteed to print the single character a.

D. Only one stream will print a single character of a, b, or c.

E. The code does not compile.

Chapter 6 ■ Working with Streams and Lambda Expressions 223

39. Which functional interface, when entered into the following blank, allows the class to
compile?

package groceries;
import java.util.*;
import java.util.function.*;
public class Market {
 private static void checkPrices(List<Double> prices,
 scanner) {
 prices.forEach(scanner);
 }
 public static void main(String[] right) {
 List<Double> prices = List.of(1.2, 6.5, 3.0);
 checkPrices(prices,
 p - > {
 String result = p<5 ? "Correct" : "Too high";
 System.out.println(result);
 });
 } }

A. Consumer
B. Consumer<Integer>
C. DoubleConsumer
D. Supplier<Double>
E. None of the above

40. Which of the following is not a valid lambda expression?

A. (Integer j, k) - > 5
B. (p,q) - > p+q
C. (Integer x, Integer y) - > x*y
D. (left,right) - > {return "null";}
E. All of these are valid.

41. What is the output of the following application?

import java.util.*;
public class Concat {
 public String concat1(List<String> values) {
 return values.parallelStream()
 .reduce("a",
 (x,y)- >x+y,
 String::concat);
 }

224 Chapter 6 ■ Working with Streams and Lambda Expressions

 public String concat2(List<String> values) {
 return values.parallelStream()
 .reduce((w,z)- >z+w).get();
 }
 public static void main(String[] questions) {
 Concat c = new Concat();
 var list = List.of("Cat","Hat");
 String x = c.concat1(list);
 String y = c.concat2(list);
 System.out.print(x+" "+y);
 } }

A. CatHat CatHat
B. aCataHat HatCat
C. The code does not compile because the stream in concat1() returns an Optional.

D. The code does not compile for a different reason.

E. An exception is printed at runtime.

F. None of the above.

42. Which of the following three functional interfaces is not equivalent to the other two?

A. BiFunction<Double,Double,Double>
B. BinaryOperator<Double>
C. DoubleFunction<Double>
D. None of the above. All three are equivalent.

43. Given the following code snippet, what changes should be made for the JVM to correctly
process this as a concurrent reduction? (Choose two.)

var w = Stream.of("c","a","t")
 .collect(HashSet::new, Set::add, Set::addAll);
System.out.println(w);

A. Replace HashSet with LinkedHashSet.

B. Mark the stream parallel.

C. Remove the second argument of the collect() method.

D. Remove the third argument of the collect() method.

E. Replace HashSet with ConcurrentSkipListSet.

F. Mark the stream unordered.

44. Fill in the blank so this code outputs three lines:

var list = new ArrayList<String>();
list.add("Atlanta");
list.add("Chicago");

Chapter 6 ■ Working with Streams and Lambda Expressions 225

list.add("New York");
list.stream()
 .filter()
 .forEach(System.out::println);

A. String::isEmpty
B. ! String::isEmpty
C. String::! isEmpty
D. String::isNotEmpty
E. None of the above

45. What does the following output?

var chars = Stream.generate(() - > 'a');
chars.filter(c - > c < 'b')
 .sorted()
 .findFirst()
 .ifPresent(System.out::print);

A. a
B. The code runs successfully without any output.

C. The code does not complete.

D. None of the above.

46. What is the expected output of the following code snippet?

Stream.iterate(1, x - > x + 1)
 .limit(5)
 .skip(2)
 .peek(System.out::print)
 .collect(Collectors.toList())
 .forEach(System.out::print);

A. It does not compile.

B. It throws an exception at runtime.

C. It does not print any output at runtime.

D. 345345
E. 334455
F. The behavior of the code snippet cannot be determined until runtime.

47. What is the output of the following program?

package ai;
import java.util.function.*;
public class Android {

226 Chapter 6 ■ Working with Streams and Lambda Expressions

 public void wakeUp(Supplier supplier) { // d1
 supplier.get();
 }
 public static void main(String[] electricSheep) {
 Android data = new Android();
 data.wakeUp(() - > System.out.print("Started!")); // d2
 } }

A. Started!
B. The code does not compile because of line d1 only.

C. The code does not compile because of line d2 only.

D. The code does not compile because of lines d1 and d2.

E. The code does not compile for another reason.

48. Fill in the blanks so this code prints *8.0- 8.0* (Choose two.)

var ints = IntStream.of(6, 10);
var longs = ints.mapToLong(i - > i);
var first = longs. ;

var moreLongs = LongStream.of(6, 10);
var stats = moreLongs.summaryStatistics();
var second = stats. ;
System.out.println("*" + first + "- " + second + "*");

A. averageAsDouble() in the first blank

B. average().getAsDouble() in the first blank

C. getAverage().get() in the first blank

D. average() in the second blank

E. average().get() in the second blank

F. getAverage() in the second blank

49. Starting with DoubleConsumer and going downward, fill in the missing values for
the table.

Functional interface # Parameters in method signature

DoubleConsumer

IntFunction

LongSupplier

ObjDoubleConsumer

Chapter 6 ■ Working with Streams and Lambda Expressions 227

A. 0, 1, 1, 1
B. 0, 1, 0, 2
C. 0, 2, 1, 2
D. 1, 1, 0, 2
E. 1, 1, 1, 1
F. None of the above

50. Starting with DoubleConsumer and going downward, fill in the values for the table. For the
following choices, assume R is a generic type.

Functional interface Return type

DoubleConsumer

IntFunction

LongSupplier

ObjDoubleConsumer

A. double, int, long, R
B. double, R, long, R
C. R, int, long, R
D. R, int, long, void
E. void, int, R, void
F. void, R, long, void

51. What is a possible output of the following application?

package salvage;
import java.util.*;
import java.util.stream.*;
public record Car(String model, int year) {
 @Override public String toString() {return model;}

 public static void main(String[] make) {
 var cars = new ArrayList<Car>();
 cars.add(new Car("Mustang",1967));
 cars.add(new Car("Thunderbird",1967));
 cars.add(new Car("Escort",1975));
 var map = cars
 .stream()
 .collect(

228 Chapter 6 ■ Working with Streams and Lambda Expressions

 Collectors.groupingByConcurrent(Car::year));
 System.out.print(map);
 } }

A. {1975=[Escort], 1967=[Mustang, Thunderbird]}
B. {Escort=[1975], Thunderbird=[1967], Mustang=[1967]}
C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The application throws an exception at runtime because the stream is not parallel.

F. None of the above.

52. How many lines does this code output?

var list = new LinkedList<String>();
list.add("Archie");
list.add("X- Men");
list.stream().forEach(System.out.println);
list.stream().forEach(System.out.println);

A. Two

B. Four

C. The code does not compile.

D. The code compiles but throws an exception at runtime.

53. Which lambda expression can replace the instance of new BiologyMaterial() on line
h1 and produce the same results under various inputted values?

package university;
@FunctionalInterface interface Study {
 abstract int learn(String subject, int duration);
}
class BiologyMaterial implements Study {
 @Override public int learn(String subject, int duration) {
 if(subject == null)
 return duration;
 else
 return duration+1;
 } }

public class Scientist {
 public static void main(String[] courses) {
 final Study s = new BiologyMaterial(); // h1
 System.out.print(s.learn(courses[0],

Chapter 6 ■ Working with Streams and Lambda Expressions 229

 Integer.parseInt(courses[1])));
 } }

A. (p,q) - > q==null ? p : p+1
B. (c,d) - > {int d=1; return c!=null ? d+1 : d;}
C. (x,y) - > {return x==null ? y : y+1;}
D. (a,b) - > 1
E. None of the above

54. Which are true of the following? (Choose two.)

var s = Stream.of("speak", "bark", "meow", "growl");
BinaryOperator<String> merge = (a, b) - > a;
var map = s.collect(Collectors.toMap(
 String::length, k - > k, merge));
System.out.println(map.size() + " " + map.get(4));

A. The output is 2 bark.

B. The output is 2 meow.

C. The output is 4 bark.

D. The output is 4 meow.

E. If "meow" were replaced by a null reference, the output would remain the same.

F. If "meow" were replaced by a null reference, the output would change.

55. Which statement about a source in a Stream is true?

A. The source is mandatory in a stream pipeline.

B. The source is only allowed to return primitives.

C. The source must be retrieved by calling the stream() method.

D. The source must return a finite number of elements.

E. None of the above.

56. Given an IntStream, which method would you use to obtain an equivalent parallel
Stream<T>?

A. parallel()
B. parallelStream()
C. parallels()
D. getParallel()
E. getParallelStream()
F. None of the above

230 Chapter 6 ■ Working with Streams and Lambda Expressions

57. Which can fill in the blank to have the code print true?

var stream = Stream.iterate(1, i - > i+1);
var b = stream. (i - > i > 5);
System.out.println(b);

A. anyMatch
B. allMatch
C. findAny
D. findFirst
E. noneMatch
F. None of the above

58. Which of the following fills in the blank so that the code outputs weasel but uses a poor
practice?

import java.util.*;
public class Cheater {
 int count = 0;
 public void sneak(Collection<String> coll) {
 coll.stream(). ;
 }
 public static void main(String[] args) {
 var c = new Cheater();
 c.sneak(Arrays.asList("weasel"));
 } }

A. peek(System.out::println)
B. peek(System.out::println).findFirst()
C. peek(r - > System.out.println(r)).findFirst()
D. peek(r - > {count++; System.out.println(r); }).findFirst()
E. None of the above compile.

F. None of these are bad practice.

59. What is the output of the following application?

package nesting;
import java.util.function.*;
public class Doll {
 private int layer;
 public Doll(int layer) {
 super();
 this.layer = layer;
 }

Chapter 6 ■ Working with Streams and Lambda Expressions 231

 public static void open(
 UnaryOperator<Doll> task, Doll doll) {

 while((doll = task.accept(doll)) != null)
 System.out.print("X");
 }
 public static void main(String[] wood) {
 open(s - > {
 if(s.layer<=0) return null;
 else return new Doll(s.layer- -);
 }, new Doll(5));
 } }

A. XXXXX
B. The code does not compile because of the lambda expression in the main() method.

C. The code does not compile for a different reason.

D. The code compiles but produces an infinite loop at runtime.

E. The code compiles but throws an exception at runtime.

60. What is the expected output of the following code snippet?

Random r = new Random();
Stream.generate(r::nextDouble)
 .skip(2)
 .limit(4)
 .sorted()
 .peek(System.out::println)
 .forEach(System.out::println);

A. It does not compile.

B. It throws an exception at runtime.

C. It does not print any output at runtime.

D. It prints four numbers twice each.

E. It can print up to eight distinct numbers.

F. The behavior of the code snippet cannot be determined until runtime.

61. Which statements about the findAny() method applied to a stream are correct?
(Choose three.)

A. It always returns the first element on an ordered serial stream.

B. It may return any element on an ordered serial stream.

C. It always returns the first element on an unordered stream.

D. It may return any element on an unordered stream.

E. It always returns the first element on an ordered parallel stream.

F. It may return any element on an ordered parallel stream.

232 Chapter 6 ■ Working with Streams and Lambda Expressions

62. Which functional interface has a get() method?

A. Consumer
B. Function
C. Supplier
D. UnaryOperator
E. Producer
F. None of the above

63. Why can’t String::charAt be used as a method reference within a Function?

A. Method references can only be used on static methods.

B. The charAt() method takes an int rather than Integer parameter.

C. The method reference is not compatible with Function.

D. The method reference syntax is illegal.

E. There is no charAt() method in the String class.

F. None of the above.

64. Given the following independent stream operations, which statements are correct?
(Choose three.)

List.of(2,4,6,8)
 .parallel()
 .parallelStream()
 .forEach(System.out::print);

List.of(2,4,6,8)
 .parallelStream()
 .parallel()
 .forEach(System.out::print);

List.of(2,4,6,8)
 .parallelStream()
 .parallel().parallel().parallel()
 .forEach(System.out::print);

A. The first stream operation compiles.

B. The second stream operation compiles.

C. The third stream operation compiles.

D. None of the stream operations that compile produce an exception at runtime.

E. At least one of the stream operations that compiles produces an exception at runtime.

F. The output of the stream operations that compile is consistent between executions.

Chapter 6 ■ Working with Streams and Lambda Expressions 233

65. Which method reference can replace the lambda on the first line so the output is the same?

BiPredicate<String, String> pred = (a, b) - > a.contains(b);
System.out.println(pred.test("fish", "is"));

A. a::contains(b)
B. a::contains
C. String::contains(b)
D. String::contains
E. The supplied code does not compile.

F. None of the above.

66. What is the result of the following?

import static java.util.stream.Collectors.*;
import java.util.stream.Stream;
public class Speaking {
 record Ballot(String name, int judgeNumber, int score) {}
 public static void main(String[] args) {
 Stream<Ballot> ballots = Stream.of(
 new Ballot("Mario", 1, 10),
 new Ballot("Christina", 1, 8),
 new Ballot("Mario", 2, 9),
 new Ballot("Christina", 2, 8)
);

 var scores = ballots.collect(
 groupingBy(Ballot::name,
 summingInt(Ballot::score)));
 System.out.println(scores.get("Mario"));
 } }

A. 2
B. 18
C. 19
D. 110
E. The code does not compile.

234 Chapter 6 ■ Working with Streams and Lambda Expressions

67. Which of the following can fill in the blank to have the code print 44?

var stream = Stream.of("base", "ball");
stream. (s - > s.length()).forEach(System.out::print);

A. Only map
B. Only mapToInt
C. Only mapToObject
D. Both map and mapToInt
E. Both map and mapToObject
F. map, mapToInt, and mapToObject

68. What does the following do? (Choose two.)

public class Player {
 interface Basket {
 boolean needToAim(double angle);
 }
 static void prepare(double angle, Basket t) {
 boolean ready = t.needToAim(angle); // k1
 System.out.println(ready);
 }
 public static void main(String[] args) {
 prepare(45, d - > d > 5 || d < - 5); // k2
 } }

A. If any compiler errors are fixed, it prints true.

B. If any compiler errors are fixed, it prints false.

C. It compiles without issue.

D. It doesn’t compile due to line k1.

E. It doesn’t compile due to line k2.

69. Which statements about the following code are correct?

var data = List.of(1,2,3);
int f = data.parallelStream()
 .reduce(1, (a,b) - > a+b, (a,b) - > a+b);
System.out.println(f);

A. It consistently prints 6.

B. It consistently prints 7.

C. It consistently prints another value.

D. It does not consistently print the same value on every execution.

E. It compiles but throws an exception at runtime.

F. None of the above.

Chapter 6 ■ Working with Streams and Lambda Expressions 235

70. What is the result of the following?

11: var s1 = IntStream.empty();
12: System.out.print(s1.average().getAsDouble());
13:
14: var s2 = IntStream.of(- 1,0, 1);
15: System.out.print(s2.average().getAsDouble());

A. Both statements print 0.

B. Both statements print 0.0.

C. The statements print different values.

D. The code does not compile.

E. The code compiles but throws an exception at runtime.

71. Which lambdas can replace the method references in this code? (Choose two.)

11: Stream.of("fish", "mammal", "amphibian")
12: .map(String::length)
13: .findFirst()
14: .ifPresent(System.out::println);

A. x.length() on line 12

B. x - > x.length() on line 12

C. x - > x::length on line 12

D. System.out.println(s) on line 14

E. s - > System.out.println(s) on line 14

F. s - > System.out::println on line 14

72. In the image, what collector can turn the stream at left to the Map at right?

Sree

Ken

Kumar

Ye

Dan

true Sree Kumar

Ken Ye Dan
false

A. Only grouping()
B. Only groupingBy()
C. Only partitioning()
D. Only partitioningBy()
E. Both grouping() and partitioning()
F. Both groupingBy() and partitioningBy()

236 Chapter 6 ■ Working with Streams and Lambda Expressions

73. Which expression is compatible with the IntSupplier functional interface?

A. () - > 1<10 ? "3" : 4
B. () - > {return 1/0;}
C. () - > return 4
D. System.out::print
E. None of the above

74. What is the output of the following application?

package beach;
import java.util.function.*;
public class Lifeguard {
 record Tourist(double distance) { }
 private void saveLife(Predicate<Tourist> canSave,
 Tourist tourist) {

 System.out.print(canSave.test(tourist)
 ? "Saved" : "Too far");
 }
 public final static void main(String[] sand) {
 new Lifeguard().saveLife(s - > s.distance<4,
 new Tourist(2));
 } }

A. Saved
B. Too far
C. The code does not compile because of the main() method.

D. The code does not compile because of the saveLife() method.

E. None of the above.

75. Given a LinkedList<E>, which method would you call to obtain a parallel stream that uses it
as a data source?

A. getParallel()
B. parallels()
C. getParallelStream()
D. parallel()
E. parallelStream()
F. None of the above

Chapter 6 ■ Working with Streams and Lambda Expressions 237

76. How many lines does the following code output?

import java.util.*;
public class PreSchool {
 record Blankie(String color) { }
 public static void main(String[] args) {
 var b1 = new Blankie("pink");
 var b2 = new Blankie("blue");
 var list = Arrays.asList(b1, b2);
 list.stream()
 .filter(Blankie::getColor) // line x
 .forEach(System.out::println); // line y
 } }

A. One

B. Two

C. The code does not compile due to line x.

D. The code does not compile due to line y.

E. The code compiles but throws an exception at runtime.

77. Which are true statements? (Choose two.)

A. A source cannot return an infinite stream.

B. A source may return an infinite stream.

C. A source must return an infinite stream.

D. An intermediate operation cannot return an infinite stream.

E. An intermediate operation may return an infinite stream.

F. An intermediate operation must return an infinite stream.

78. How many of these lines have compiler errors?

14: Consumer<Object> c1 = ArrayList::new;
15: Consumer<Object> c2 = String::new;
16: Consumer<Object> c3 = System.out::println;
17: var c4 = ArrayList::new;
18: var c5 = String::new;
19: var c6 = System.out::println;

A. One

B. Two

C. Three

D. Four

E. Five

F. The code compiles as is.

238 Chapter 6 ■ Working with Streams and Lambda Expressions

79. What is the output of the following program?

var p = List.of(new StringBuilder("hello"),
 new StringBuilder("goodbye"));
var q = p.parallelStream().reduce(0,
 (w,x) - > w.length() + x.length(),
 (y,z) - > y.length() + z.length());
System.out.print(q);

A. 0
B. 12
C. 14
D. One line does not compile.

E. Two lines do not compile.

F. None of the above.

80. Which are true of this code? (Choose two.)

var bools = Stream.of(Boolean.TRUE, null);
var map = bools
 .limit(1) // line k
 .collect(Collectors.partitioningBy(b - > b));
System.out.println(map);

A. It outputs {true=[true]}.

B. It outputs {false=null, true=[true]}.

C. It outputs {false=[], true=[true]}.

D. It outputs {false=[null], true=[true]}.

E. The output is the same if line k is removed.

F. The output is different after line k is removed.

81. What is the output of the following code snippet?

var apples = List.of(1, 2);
var oranges = List.of(1, 2);
final var count = Stream.of(apples, oranges)
 .flatMapToInt(List::stream)
 .peek(System.out::print)
 .count();
System.out.print(count);

Chapter 6 ■ Working with Streams and Lambda Expressions 239

A. 12124
B. 11224
C. 122
D. The code does not compile.

E. The code compiles but does not output anything at runtime.

F. None of the above.

82. Which functional interface, when filled in the blank, prevents the class from compiling?

package morning;
import java.util.function.*;
public class Sun {
 public static void dawn(sunrise) {}
 public static void main(String[] rays) {
 dawn(s - > s+1);
 } }

A. DoubleUnaryOperator
B. Function<String,String>
C. IntToLongFunction
D. UnaryOperator
E. All of the above allow the code to compile.

83. Which statements about applying forEachOrdered() to a parallel ordered stream instead of
using forEach() are correct? (Choose two.)

A. The operation will likely be faster.

B. The operation will likely be slower.

C. There is no expected change in performance.

D. It forces some stream operations in the pipeline to be performed in a serial manner.

E. It forces all stream operations in the pipeline to be performed in a serial manner.

F. All stream operations will continue to be performed in a parallel manner.

84. Which are true of the following? (Choose two.)

IntegerSummaryStatistics stats = Stream.of(20, 40)
 .mapToInt(i - > i)
 .summaryStatistics();
long total = stats.getSum();
long count = stats.getCount();
long max = stats.getMax();
System.out.println(total + "- " + count + "- " + max);

240 Chapter 6 ■ Working with Streams and Lambda Expressions

A. The output is 60- 0- 40.

B. The output is 60- 2- 40.

C. The code does not compile for one reason.

D. The code does not compile for two reasons.

E. Correct code could be written without summary statistics using a single stream pipeline.

F. Correct code could not be written without summary statistics using a single stream
pipeline.

85. What is a difference between lambdas and method references?

A. Only one can take a method parameter.

B. Only one can reference an effectively final local variable.

C. Only one can make a method call where the method parameter is the hard- coded
number 3.

D. Only one can use deferred execution.

E. None of the above.

86. How many of these print 3?

System.out.println(IntStream.of(1, 2).reduce(0, Integer::sum));
System.out.println(IntStream.of(1, 2).sum());
System.out.println(Stream.of(1, 2).reduce(0, Integer::sum));
System.out.println(Stream.of(1, 2).sum());

A. Zero

B. One
C. Two
D. Three
E. Four

87. Which of the four method calls in this code can be removed and have the method still com-
pile and run without error?

Stream.generate(() - > 'a')
 .limit(5)
 .filter(c - > c < 'b')
 .sorted()
 .findFirst()
 .ifPresent(System.out::print);

A. filter()
B. sorted()
C. filter() and sorted()
D. filter() and ifPresent()
E. filter(), sorted(), and ifPresent()
F. filter(), sorted(), findFirst(), and ifPresent()

Chapter 6 ■ Working with Streams and Lambda Expressions 241

88. Which are true of the following? (Choose three.)

import java.util.*;
public class Catch {
 public static void main(String[] args) {
 Optional opt = Optional.empty();
 var message = "";
 try {
 message = (opt);
 } catch (IllegalArgumentException e) {
 System.out.print("Caught it");
 }
 System.out.print(message);
 }
 private static String x(Optional<String> opt) {
 return opt.orElseThrow();
 }
 private static String y(Optional<String> opt) {
 return opt.orElseThrow(IllegalArgumentException::new);
 }
 private static String z(Optional<String> opt) {
 return opt.orElse("Caught it");
 } }

A. If filling in the blank with method x, the code outputs Caught it.

B. If filling in the blank with method x, the code prints a stack trace.

C. If filling in the blank with method y, the code outputs Caught it.

D. If filling in the blank with method y, the code prints a stack trace.

E. If filling in the blank with method z, the code outputs Caught it.

F. If filling in the blank with method z, the code prints a stack trace.

89. Which statement is not true of Predicate?

A. A boolean is returned from the method it declares.

B. It is an interface.

C. The method it declares accepts two parameters.

D. The method it declares is named test().

E. All of the above are true.

242 Chapter 6 ■ Working with Streams and Lambda Expressions

90. Which functional interfaces do not have the correct number of generic arguments?
(Choose two.)

A. BiFunction<T,U,R>
B. BinaryOperator<T, U>
C. DoubleFunction<T,R>
D. ToDoubleFunction<T>
E. ToIntBiFunction<T,U>

91. How many changes need to be made to the following stream operation to execute a parallel
reduction?

var r = new Random();
var data = Stream.generate(() - > String.valueOf(r.nextInt()))
 .limit(50_000_000)
 .collect(Collectors.toSet());
var map = data.stream()
 .collect(Collectors.groupingBy(String::length));

A. None, it is already a parallel reduction.

B. One

C. Two

D. Three

E. The code does not compile.

F. None of the above.

92. What is the output of this code?

Stream.of("one", "two", "bloat")
 .limit(1)
 .map(String::toUpperCase) // line x
 .sorted()
 .forEach(System.out::println);

A. bloat
B. BLOAT
C. one
D. ONE
E. The code does not compile due to line x.

F. None of the above.

Chapter 6 ■ Working with Streams and Lambda Expressions 243

93. Which lambda expression can be passed to the magic() method?

package show;
import java.util.function.*;
public class Magician {
 public void magic(BinaryOperator<Long> lambda) {
 lambda.apply(3L, 7L);
 } }

A. (a) - > a
B. (b,w) - > (long)w.intValue()
C. (c,m) - > {long c=4; return c+m;}
D. (Integer d, Integer r) - > (Long)r+d
E. All of these can be passed to the method.

F. None of the above.

94. Fill in the blank: is the only functional interface that does not involve
double, int, or long.

A. BooleanSupplier
B. CharPredicate
C. FloatUnaryOperator
D. ShortConsumer
E. None of the above

95. Which statements about parallel streams are correct? (Choose two.)

A. A parallel stream is always faster than a serial stream.

B. The JVM will automatically apply a parallel stream operation to an arbitrary stream in
order to boost performance.

C. A parallel stream synchronizes its operations so that they are atomic.

D. All streams can be converted to a parallel stream.

E. If a stream uses a reduction method, the result will be the same regardless of whether the
stream is parallel or serial.

F. Sometimes, a parallel stream will still operate in a single- threaded manner.

96. What is the output of the following?

var s = Stream.of("over the river",
 "through the woods",
 "to grandmother's house we go");

244 Chapter 6 ■ Working with Streams and Lambda Expressions

s.filter(n - > n.startsWith("t"))
 .sorted(Comparator::reverseOrder)
 .findFirst()
 .ifPresent(System.out::println);

A. over the river
B. through the woods
C. to grandmother's house we go
D. The output cannot be determined ahead of time.

E. None of the above.

97. Which can fill in the blank to have the code print the single digit 9?

var stream = LongStream.of(9);
stream. (p - > p).forEach(System.out::print);

A. Only mapToDouble
B. Only mapToInt
C. Only mapToLong
D. Both mapToDouble and mapToInt
E. mapToDouble, mapToInt, and mapToLong
F. None of the above

98. What is the output of the following application?

package savings;
import java.util.function.*;
public class Bank {
 private int savingsInCents;
 private static class ConvertToCents {
 static DoubleToIntFunction f = p - > p*100;
 }
 public static void main(String[] currency) {
 Bank creditUnion = new Bank();
 creditUnion.savingsInCents = 100;
 double deposit = 1.5;

 creditUnion.savingsInCents +=
 ConvertToCents.f.applyAsInt(deposit); // j1
 System.out.print(creditUnion.savingsInCents);
 } }

Chapter 6 ■ Working with Streams and Lambda Expressions 245

A. 100
B. 200
C. 250
D. The code does not compile because of line j1.

E. None of the above.

99. Which statements about stateful lambda expressions are correct? (Choose two.)

A. Stateful lambda expressions should be avoided on both serial and parallel streams.

B. Stateful lambda expressions should be avoided only on serial streams.

C. Stateful lambda expressions should be avoided only on parallel streams.

D. One way to avoid modifying a List with a stateful lambda expression is to use a
concurrent collection.

E. One way to avoid modifying a List with a stateful lambda expression is to use a
collector that outputs a List.

F. One way to avoid modifying a List with a stateful lambda expression is to use a
synchronized list.

100. Which method reference can replace the lambda on the second line so the output is
the same?

var s = "fish";
Predicate<String> pred = (a) - > s.contains(a);
System.out.println(pred.test("fish", "is"));

A. a::contains(b)
B. a::contains
C. String::contains(b)
D. String::contains
E. The supplied code does not compile.

F. None of the above.

101. What is the best example of lazy evaluation?

A. The pipeline can execute before seeing all the data.

B. The pipeline does not begin until the terminal operation is executed.

C. The pipeline executes all operations as quickly as possible.

D. The pipeline loses data.

E. The pipeline takes a nap.

246 Chapter 6 ■ Working with Streams and Lambda Expressions

102. Which method can be applied to an existing Stream<T> to return a stream with a differ-
ent generic type?

A. distinct()
B. iterate()
C. peek()
D. sorted()
E. filter()
F. None of the above

103. The functional interface has an apply() method, while the
 functional interface has an applyAsDouble() method. (Choose two.)

A. BiConsumer
B. BiFunction
C. BiPredicate
D. DoubleConsumer
E. DoublePredicate
F. DoubleUnaryOperator

104. Which of the following can fill in the blank to have the code print out *?

Stream.generate(() - > "*")
 .limit(3)
 .sorted()
 .distinct()
 .forEach(System.out::println);

A. (s,t) - > s.length() - t.length()
B. String::isEmpty
C. Both of these will produce the desired output.

D. Neither of these will allow the code to compile.

E. The code does not complete regardless of what goes in the blank.

105. Which statement about functional interfaces and lambda expressions is not true?

A. A lambda expression may be compatible with multiple functional interfaces.

B. A lambda expression must be assigned to a functional interface when it is declared.

C. A method can return a lambda expression in the form of a functional interface
instance.

D. The compiler uses deferred execution to skip determining whether or not a lambda
expression compiles.

E. All of these are true.

Chapter 6 ■ Working with Streams and Lambda Expressions 247

106. Which of the following are output by this code? (Choose two.)

16: void shareToys() {
17: record Toy(String name){ }
18:
19: var toys = Stream.of(
20: new Toy("Jack in the Box"),
21: new Toy("Slinky"),
22: new Toy("Yo- Yo"),
23: new Toy("Rubik's Cube"));
24:
25: var spliterator = toys.spliterator();
26: var batch = spliterator.trySplit();
27:
28: var more = batch.tryAdvance(x - > {});
29: System.out.println(more);
30: spliterator.tryAdvance(System.out::println);
31: }

A. false
B. true
C. Toy[name=Jack in the Box]
D. Toy[name=Slinky]
E. Toy[name=Rubik's Cube]
F. Toy[name=Yo- Yo]

107. Which can fill in the blank to have the code print true?

var stream = Stream.iterate(1, i - > i);
var b = stream. (i - > i > 5);
System.out.println(b);

A. anyMatch
B. allMatch
C. findAny
D. findFirst
E. noneMatch
F. None of the above

248 Chapter 6 ■ Working with Streams and Lambda Expressions

108. Given the following class, how many changes need to be made for the code to compile?

1: package showtimes;
2: import java.util.*;
3: import java.util.function.*;
4: public class FindMovie {
5: private Function<String> printer;
6: protected FindMovie() {
7: printer = s - > {System.out.println(s); return s;}
8: }
9: void printMovies(List<String> movies) {
10: movies.forEach(printer);
11: }
12: public static void main(String[] screen) {
13: List<String> movies = new ArrayList<>();
14: movies.add("Stream 3");
15: movies.add("Lord of the Recursion");
16: movies.add("Silence of the Lambdas");
17: new FindMovie().printMovies(movies);
18: } }

A. None. The code compiles as is.

B. One

C. Two

D. Three

E. Four

F. Five

109. Which statements about the findFirst() method applied to a stream are correct?
(Choose three.)

A. It always returns the first element on an ordered serial stream.

B. It may return any element on an ordered serial stream.

C. It always returns the first element on an unordered stream.

D. It may return any element on an unordered stream.

E. It always returns the first element on an ordered parallel stream.

F. It may return any element on an ordered parallel stream.

110. Which method reference can replace the lambda in the first line of the main() method to
produce the same output?

interface Marsupial {
 void carryInPouch(int size);
}

Chapter 6 ■ Working with Streams and Lambda Expressions 249

public class Opossum {
 public static void main(String[] args) {
 Marsupial mar =
 x - > System.out.println("Carrying " + x);
 mar.carryInPouch(1);
 } }

A. System:out:println
B. System::out:println
C. System::out::println
D. System.out::println
E. None of the above

111. What is true of the following code?

21: Stream<Integer> s1 = Stream.of(8, 2);
22: Stream<Integer> s2 = Stream.of(10, 20);
23: s2 = s1.filter(n - > n > 4);
24: s1 = s2.filter(n - > n < 1);
25: System.out.println(s1.count());
26: System.out.println(s2.count());

A. The code runs without error and prints 0.

B. The code runs without error and prints 1.

C. The code throws an exception on line 23.

D. The code throws an exception on line 24.

E. The code throws an exception on line 25.

F. The code throws an exception on line 26.

112. Which changes can be independently made to this code and have it still compile?
(Choose three.)

Predicate<StringBuilder> p =
 (StringBuilder b) - > {return true;};

A. Change StringBuilder b to var b.

B. Change StringBuilder b to b.

C. Remove StringBuilder b.

D. Remove - >.

E. Remove { and ;}.

F. Remove { return and ;}.

250 Chapter 6 ■ Working with Streams and Lambda Expressions

113. What does this code output?

var babies = Arrays.asList("chick", "cygnet", "duckling");
babies.replaceAll(x - > { var newValue = "baby";
 return newValue; });
System.out.println(newValue);

A. baby
B. chick
C. cygnet
D. duckling
E. The code does not compile.

114. Which lambda expression cannot be assigned to a DoubleToLongFunction functional
interface?

A. a - > null==null ? 1 : 2L
B. e - > (int)(10.0*e)
C. (double m) - > {long p = (long)m; return p;}
D. (Double s) - > s.longValue()
E. All of these can be assigned.

115. Given the following code snippet, which values of x will allow the call divide(x) to com-
pile and provide predictable results at runtime? (Choose two.)

import java.util.*;
import java.util.stream.*;
public class Divide {
 static float divide(Stream<Float> s) {
 return s.reduce(1.0f, (a,b) - > a/b, (a,b) - > a/b);
 } }

A. Set.of(1f,2f,3f,4f).stream()
B. List.of(1f,2f,3f,4f).stream()
C. List.of(1f,2f,3f,4f).parallel()
D. List.of(1f).parallelStream()
E. List.of(1f,2f,3f,4f).parallelStream()
F. List.of(1f).parallel()

116. Which of the following produces different output than the others?

A.

Stream.of("eeny", "meeny", "miny", "moe")
 .collect(Collectors.partitioningBy(x - > x.charAt(0) == 'e'))

Chapter 6 ■ Working with Streams and Lambda Expressions 251

 .get(false)
 .stream()
 .collect(Collectors.groupingBy(String::length))
 .get(4)
 .forEach(System.out::println);

B.

Stream.of("eeny", "meeny", "miny", "moe")
 .filter(x - > x.charAt(0) != 'e')
 .collect(Collectors.groupingBy(String::length))
 .get(4)
 .forEach(System.out::println);

C.

Stream.of("eeny", "meeny", "miny", "moe")
 .collect(Collectors.groupingBy(x - > x.charAt(0) == 'e'))
 .get(false)
 .stream()
 .collect(Collectors.partitioningBy(String::length))
 .get(4)
 .forEach(System.out::println);

D.

Stream.of("eeny", "meeny", "miny", "moe")
 .collect(Collectors.groupingBy(x - > x.charAt(0) == 'e'))
 .get(false)
 .stream()
 .collect(Collectors.groupingBy(String::length))
 .get(4)
 .forEach(System.out::println);

E.

Stream.of("eeny", "meeny", "miny", "moe")
 .collect(Collectors.partitioningBy(x - > x.charAt(0) == 'e'))
 .get(false)
 .stream()
 .collect(Collectors.partitioningBy(x - > x.length() == 4))
 .get(true)
 .forEach(System.out::println);

F. They all produce the same output.

252 Chapter 6 ■ Working with Streams and Lambda Expressions

117. Given an IntStream, which method would you use to obtain an equivalent parallel
IntStream?

A. parallelStream()
B. parallels()
C. getParallelStream()
D. parallel()
E. getParallel()
F. None of the above

118. Which of these statements is true?

A. All lambdas can be converted to method references.

B. All method references can be converted to lambdas.

C. Both of these statements are true.

D. None of the above.

119. The following diagram shows input arguments being used in three functional interface
methods of unknown type. Which three functional interfaces, inserted in order from left to
right, could be used to complete the diagram?

???

A.

DoubleBinaryOperator
ToDoubleBiFunction<Integer,Double>
UnaryOperator<Integer>

B.

BinaryOperator<Double>
BiFunction<Integer,Integer,Double>
UnaryOperator<Integer>

C.

Function<Double,Integer>
BiFunction<Integer,Integer,Double>
DoubleToIntFunction

Chapter 6 ■ Working with Streams and Lambda Expressions 253

D.

BiFunction<Integer,Double,Integer>
BinaryOperator<Integer>
IntUnaryOperator

E. None of the above

120. Which of the following are functional interfaces in the java.util.function package?
(Choose three.)

A. DoublePredicate
B. LongUnaryOperator
C. NullOperator
D. ShortSupplier
E. ToIntBiFunction
F. ToStringOperator

121. What is the output of the following application?

package tps;
import java.util.*;
record Boss(String name) {
 @Override public String toString() {
 return name.toUpperCase();
 }
}
public class Initech {
 public static void main(String[] reports) {
 final List<Boss> bosses = new ArrayList(8);
 bosses.add(new Boss("Peter"));
 bosses.add(new Boss("Samir"));
 bosses.add(new Boss("Michael"));
 bosses.removeIf(s - > s.equalsIgnoreCase("samir"));
 System.out.print(bosses);
 } }

A. [PETER, MICHAEL]
B. [samir]
C. [tps.Boss@4218224c, tps.Boss@815f19a]
D. The code does not compile because of the lambda expression.

E. The code does not compile for a different reason.

254 Chapter 6 ■ Working with Streams and Lambda Expressions

122. Which lambda can implement this functional interface?

public interface Serval {
 static void printName(String name) {}
 boolean cat(String name) { return true; }
}

A. () - > System.out.println()
B. n - > System.out.println(n)
C. () - > true
D. n - > true
E. None of the above

123. How many of these lines compile?

17: Comparator<String> c1 = s - > false;
18: Comparator<String, String> c2 = (s1, s2) - > false;
19: Predicate<String> p1 = String s - > false;
20: Predicate<String> p2 = (String s) - > false;
21: Supplier<String> s1 = String s - > false;
22: Supplier<String> s2 = (String s) - > false;

A. One

B. Two

C. Three

D. Four

E. Five

F. Six

124. What is the output of the following code?

public static void main(String[] args) {
 record Pet(int age) {}
 record PetSummary(long count, int sum) {}
 var summary = Stream.of(new Pet(2), new Pet(5), new Pet(8))
 .collect(Collectors.teeing(
 Collectors.counting(),
 Collectors.summingInt(Pet::age),
 PetSummary::new));

 System.out.println(summary);
}

Chapter 6 ■ Working with Streams and Lambda Expressions 255

A. PetSummary[count=1, sum=3]
B. PetSummary[count=1, sum=15]
C. PetSummary[count=3, sum=3]
D. PetSummary[count=3, sum=15]
E. The code does not compile due to the teeing() call.

F. The code does not compile since records are defined inside a method.

G. The code does not compile for another reason.

125. Which method is not available on the IntSummaryStatistics class?

A. getCountAsLong()
B. getMax()
C. toString()
D. None of these methods are available.

E. All of these methods are available.

126. Which functional interface, when placed in the blank, allows the class to compile?

package sleep;
import java.util.function.*;
class Sheep {}
public class Dream {
 int MAX_SHEEP = 10;
 int sheepCount;
 public void countSheep(backToSleep) {
 while(sheepCount<MAX_SHEEP) {
 // TODO: Apply lambda
 sheepCount++;
 }
 }
 public static void main(String[] dark) {
 new Dream().countSheep(System.out::println);
 } }

A. Consumer<Sheep>
B. Function<Sheep,void>
C. Supplier<Sheep>
D. UnaryOperator<Sheep>
E. None of the above

256 Chapter 6 ■ Working with Streams and Lambda Expressions

127. Given an instance of Stream s and Collection c, which of the following are valid
ways of creating a parallel stream? (Choose three.)

A. c.parallel()
B. c.parallel().parallelStream()
C. c.parallelStream()
D. s.parallelStream()
E. c.parallelStream().parallel()
F. s.parallel()

128. Which are true of the following code? (Choose two.)

3: public static void main(String[] args) {
4: var prefix = "r";
5: var pets = List.of("rabbit", "snake", "turtle");
6:
7: // prefix = "t";
8: pets.forEach(p - > {
9: if (p.startsWith(prefix)) System.out.println(p); });
10: }

A. As written, the code prints one line.

B. As written, the code prints two lines.

C. As written, the code does not compile.

D. If line 7 is uncommented, the code prints one line.

E. If line 7 is uncommented, the code prints two lines.

F. If line 7 is uncommented, the code does not compile.

129. What is the output of the following code snippet?

10: var pears = List.of(1, 2, 3, 4, 5, 6);
11: final var sum = pears.stream()
12: .skip(1)
13: .limit(3)
14: .flatMapToInt(s - > IntStream.of(s))
15: .skip(1)
16: .boxed()
17: .mapToDouble(s - > s)
18: .sum();
19: System.out.print(sum);

Chapter 6 ■ Working with Streams and Lambda Expressions 257

A. 6
B. 7.0
C. 6.0
D. 7
E. Exactly one line contains a compiler error.

F. More than one line contains a compiler error.

130. What is the minimum number of intermediate operations that can fill in each box
[M, N, O, P] to have the pipeline complete given any intermediate operation?

Source Intermediate operation Terminal operation

Finite Stream Source M count()

Finite Stream Source N findFirst()

Infinite Stream Source O count()

Infinite Stream Source P findFirst()

A. [0, 0, 0, 1]
B. [0, 0, 1, 0]
C. [0, 0, 1, 1]
D. [1, 1, 0, 1]
E. [1, 1 ,1, 0]
F. [1, 1, 1, 1]

131. Given the table in the previous question, how many of the boxes in the Intermediate oper-
ation column will have the pipeline complete regardless of which intermediate operation is
placed in the box?

A. Zero

B. One

C. Two

D. Three

E. Four

132. Which of the following declares a Comparator where all objects are treated as equal?

A. Comparator<Character> comp = (c1) - > 0;
B. Comparator<Character> comp = (c1) - > {0};
C. Comparator<Character> comp = (c1, c2) - > 0;
D. Comparator<Character> comp = (c1, c2) - > {0};
E. None of the above

258 Chapter 6 ■ Working with Streams and Lambda Expressions

133. Which can fill in the blank so this code outputs true?

import java.util.function.*;
import java.util.stream.*;
public class HideAndSeek {
 public static void main(String[] args) {
 var hide = Stream.of(true, false, true);
 var found = hide.filter(b - > b). ();
 System.out.println(found);
 } }

A. Only anyMatch
B. Only allMatch
C. Both anyMatch and allMatch
D. Only noneMatch
E. The code does not compile with any of these options.

134. Which method reference can replace the lambda on the second line so the output is
the same?

var s = "fish";
Predicate<String> pred = (a) - > s.contains(a);
System.out.println(pred.test("is"));

A. s::contains(a)
B. s::contains
C. String::contains(a)
D. String::contains
E. The supplied code does not compile.

F. None of the above.

135. How many of these lines compile?

Predicate<String> pred1 = (final String s) - > s.isEmpty();
Predicate<String> pred2 = (final s) - > s.isEmpty();
Predicate<String> pred3 = (final var s) - > s.isEmpty();
Predicate<String> pred4 = (String s) - > s.isEmpty();
Predicate<String> pred5 = (var s) - > s.isEmpty();

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

Chapter 6 ■ Working with Streams and Lambda Expressions 259

136. What is the output of the following application?

package pet;
import java.util.*;
import java.util.function.*;
public class DogSearch {
 void reduceList(List<String> names,
 Predicate<String> tester) {
 names.removeIf(tester);
 }
 public static void main(String[] treats) {
 int MAX_LENGTH = 2;
 DogSearch search = new DogSearch();
 List<String> names = new ArrayList<>();
 names.add("Lassie");
 names.add("Benji");
 names.add("Brian");
 search.reduceList(names, d - > d.length()>MAX_LENGTH);
 System.out.print(names.size());
 } }

A. 0
B. 2
C. 3
D. The code does not compile because of the lambda expression.

E. The code does not compile for a different reason.

137. What is the output of the following program?

var p = List.of(1,3,5);
var q = p.parallelStream().reduce(0f,
 (w,x) - > w.floatValue() + x.floatValue(),
 (y,z) - > y.floatValue() + z.floatValue());
System.out.println(q);

A. 0.0
B. 9.0
C. 11.0
D. One line does not compile.

E. Two lines do not compile.

F. None of the above.

260 Chapter 6 ■ Working with Streams and Lambda Expressions

138. What does the following output?

Set<String> set = new HashSet<>();
set.add("tire- ");
List<String> list = new LinkedList<>();
Deque<String> queue = new ArrayDeque<>();
queue.push("wheel- ");
Stream.of(set, list, queue)
 .flatMap(x - > x.stream())
 .forEach(System.out::print);

A. [tire-][wheel-]
B. tire- wheel-
C. None of the above.

D. The code does not compile.

139. How many lines does this code output?

1: import java.util.*;
2: public class PrintNegative {
3: public static void main(String[] args) {
4: List<String> list = new ArrayList<>();
5: list.add("- 5");
6: list.add("0");
7: list.add("5");
8: list.removeIf(e - > e < 0);
9: list.forEach(x - > System.out.println(x));
10: } }

A. One

B. Two

C. Three

D. None. The code does not compile.

E. None. The code throws an exception at runtime.

140. How many of the following lines compile?

8: IntFunction<Integer> f1 =(Integer f) - > f;
9: IntFunction<Integer> f2 = (v) - > null;
10: IntFunction<Integer> f3 = s - > s;
11: IntFunction<Integer> f4 = () - > 5;
12: IntFunction<Integer> f5 = () - > Integer.valueOf(9);

Chapter 6 ■ Working with Streams and Lambda Expressions 261

A. None

B. One

C. Two

D. Three

E. Four

F. Five

141. Which statements about using a parallel stream instead of a serial stream are correct?
(Choose three.)

A. The number of threads used is guaranteed to be higher.

B. It requires a stateful lambda expression.

C. The stream operation may execute faster.

D. The stream operation may execute slower.

E. The result of the stream operation will be the same.

F. The result of the stream operation may change.

142. Which is a possible output of the following code snippet?

var landmarks = Set.of("Eiffel Tower", "Statue of Liberty",
 "Stonehenge", "Mount Fuji");
var result = landmarks
 .stream()
 .collect(Collectors.partitioningBy(b - > b.contains(" ")))
 .entrySet()
 .stream()
 .flatMap(t - > t.getValue().stream())
 .collect(Collectors.groupingBy(s - > !s.startsWith("S")));
System.out.print(result);

A. {false=[Stonehenge, Statue of Liberty], true=[Eiffel Tower,
Mount Fuji]}

B. {false=[Stonehenge], true=[Mount Fuji, Eiffel Tower, Statue of
Liberty]}

C. {false=[Mount Fuji, Stonehenge], true=[Eiffel Tower, Statue of
Liberty]}

D. Exactly one line contains a compiler error.

E. More than one line contains a compiler error.

F. None of the above.

262 Chapter 6 ■ Working with Streams and Lambda Expressions

143. Which can independently fill in the blank to output No dessert today?

import java.util.*;
public class Dessert {
 public static void main(String[] yum) {
 eatDessert(Optional.of("Cupcake"));
 }
 private static void eatDessert(Optional<String> opt) {
 System.out.println(opt.);
 } }

A. get("No dessert today")
B. orElse("No dessert today")
C. orElseGet(() - > "No dessert today")
D. orElseThrow()
E. None of the above

144. What is the output of this code?

List.of("one", "two", "bloat")
 .limit(1)
 .map(String::toUpperCase) // line x
 .sorted()
 .forEach(System.out::println);

A. bloat
B. BLOAT
C. one
D. ONE
E. The code does not compile due to line x.

F. None of the above.

145. Which is one of the lines output by this code?

10: var list = new ArrayList<Integer>();
11: list.add(10);
12: list.add(9);
13: list.add(8);
14:
15: var num = 9;
16: list.removeIf(x - > {int keep = num; return x == keep;});
17: System.out.println(list);
18:

Chapter 6 ■ Working with Streams and Lambda Expressions 263

19: num = 8;
20: list.removeIf(x - > {int keep = num; return x == keep;});
21: System.out.println(list);

A. []
B. [8]
C. [9]
D. [10]
E. The code does not compile.

146. What is the output of the following?

import java.util.*;
import java.util.stream.*;
public class Compete {
 public static void main(String[] args) {
 Stream<Integer> is = Stream.of(8, 6, 9);
 Comparator<Integer> c = (a, b) - > a - b;
 is.sort(c).forEach(System.out::print);
 } }

A. 689
B. 869
C. 986
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

147. What can a lambda implement?

A. Any functional interface

B. Any interface

C. Only functional interfaces in the JDK

D. None of the above

148. What is the output of the following application?

package lot;
import java.util.function.*;
public class Warehouse {
 private int quantity = 40;
 private final BooleanSupplier stock;
 {
 stock = () - > quantity>0;
 }

264 Chapter 6 ■ Working with Streams and Lambda Expressions

 public void checkInventory() {
 if(stock.get())
 System.out.print("Plenty!");
 else
 System.out.print("On Backorder!");
 }
 public static void main(String[] widget) {
 final Warehouse w13 = new Warehouse();
 w13.checkInventory();
 } }

A. Plenty!
B. On Backorder!
C. The code does not compile because of the checkInventory() method.

D. The code does not compile for a different reason.

149. What is a possible output of the following application?

import java.util.*;
import java.util.stream.*;
public record Thermometer(String feelsLike, double temp) {
 @Override public String toString() { return feelsLike; }
 public static void main(String[] season) {
 var readings = List.of(new Thermometer("HOT!",72),
 new Thermometer("Too Cold!",0),
 new Thermometer("Just right!",72));
 readings
 .parallelStream() // k1
 .collect(Collectors.groupingByConcurrent(
 Thermometer::temp)) // k2
 .forEach(System.out::println); // k3
 } }

A. {0.0=[Cold!], 72.0=[HOT!, Just right!]}
B. {0.0=[Cold!], 72.0=[Just right!] , 72.0=[HOT!]}
C. The code does not compile because of line k1.

D. The code does not compile because of line k2.

E. The code does not compile because of line k3.

F. None of the above.

Chapter 6 ■ Working with Streams and Lambda Expressions 265

150. What is the output of the following code?

var odds = IntStream.iterate(1, a - > a+2);
var evens = IntStream.iterate(2, a - > a+2);
var sum = Stream.concat(odds, evens).limit(3).sum();
System.out.println(sum);

A. 6
B. 9
C. 12
D. The code does not compile.

E. The program does not terminate.

Packaging and
Deploying Java Code
and Use the Java
Platform Module
System

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Packaging and deploying Java code and use the Java
Platform Module System

 ■ Define modules and their dependencies, expose module

content including for reflection. Define services, producers,

and consumers

 ■ Compile Java code, produce modular and non- modular jars,

runtime images, and implement migration using unnamed

and automatic modules

Chapter

7

268 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

1. What is the name of a file that declares a module?

A. mod.java
B. mod- data.java
C. mod- info.java
D. module.java
E. module- data.java
F. module- info.java

2. Suppose you have a module that calls exports(ChocolateLab.class) using a service
locator. Which part of the module service contains this class?

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

3. Which are considered part of a service? (Choose two.)

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

4. Given the following diagram, how many of the following are named modules?

classpath module path

dog.fluffy.jar

dog.fluffy

dog.hair.jar

dog.hair

dog.husky.jar

dog.husky

module-info

dog.bark.jar

dog.bark

module-info

A. 0

B. 1

C. 2

D. 3

E. 4

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 269

5. Given the diagram from the previous question, which is an automatic module?

A. dog.bark
B. dog.fluffy
C. dog.hair
D. dog.husky
E. None of the above

6. Given the diagram from Question 4, which is a default module?

A. dog.bark
B. dog.fluffy
C. dog.hair
D. dog.husky
E. None of the above

7. Given the diagram from Question 4, how many are unnamed modules?

A. 0

B. 1

C. 2

D. 3

E. 4

8. Which of the following statements are true? (Choose two.)

A. It is a good practice to add the - - add- exports option to your java command.

B. It is permitted, but not recommended, to add the - - add- exports option to your
java command.

C. There is no - - add- exports option on the java command.

D. It is a good practice to add the - - add- requires option to your java command.

E. It is permitted, but not recommended, to add the - - add- requires option to your
java command.

F. There is no - - add- requires option on the java command.

9. How many of the following are legal module- info.java files?

module com.koala {
 exports cute;
}
module com- koala {
 exports cute;
}
public module com.koala {
 exports cute;
}

270 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

public module com- koala {
 exports cute;
}

A. None

B. One

C. Two

D. Three

E. Four

10. Which two would be best to combine into a single module?

A. Consumer and service locator

B. Consumer and service provider

C. Consumer and service provider interface

D. Service locator and service provider interface

E. Service locator and service provider

F. Service provider and service provider interface

11. Which command could you run to print output similar to the following?

java.base@17
java.compiler@17
java.datatransfer@17
java.desktop@17
...

A. java - - all- modules
B. java - - describe- modules
C. java - - list- modules
D. java - - output- modules
E. java - - show- modules
F. None of the above

12. Suppose we have an automatic module on the module path named dog- arthur2.jar and
no Automatic- Module- Name specified. What module name should named modules use to
reference it?

A. dog- arthur
B. dog- arthur2
C. dog.arthur
D. dog.arthur2
E. None of the above

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 271

13. Each box in the diagram corresponds to a module. Given the module dependencies in the dia-
gram, which boxes represent the service provider interface and service provider, respectively?

W

Z

X

Y

A. W and X

B. W and Z

C. X and Y

D. X and Z

E. Y and Z

F. None of the above

14. Using the diagram in the previous question, which boxes represent the consumer and service
locator, respectively?

A. W and X

B. W and Z

C. X and Y

D. X and Z

E. Y and Z

F. None of the above

15. What is the minimum number of JAR files you need for a cyclic dependency?

A. 0

B. 1

C. 2

D. 3

E. 4

16. Fill in the blank with code to look up and call a service.

String cheese = ServiceLoader.load(Mouse.class)
 .map()
 .map(Mouse::favoriteFood)
 .findFirst()
 .orElse("");

272 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

A. Mouse.get()
B. Mouse::get
C. Provider.get()
D. Provider::get
E. None of the above

17. Suppose we want to have two modules: com.ny and com.sf. Which is true about the
placement of the module- info.java file(s)?

module com.ny

V

package com.ny.city

module com.sf

package com.sf.city

W

X

Y

Z

A. One module- info.java file is required in position Z.

B. Two module- info.java files are required, in positions V and X.

C. Two module- info.java files are required, in positions W and Y.

D. Three module- info.java files are required, in positions V, X, and Z.

E. Three module- info.java files are required, in positions W, Y, and Z.

F. None of the above.

18. Consider the modules in the previous diagram. Suppose we want the code in module com.sf
to depend on code in module com.ny. Which of the following directives goes into module
com.sf’s module- info file to configure that behavior?

A. export com.ny;
B. exports com.ny;
C. require com.ny;
D. require com.ny.city;
E. requires com.ny;
F. requires com.ny.city;

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 273

19. Consider the modules diagram in Question 17. Suppose we want the code in module com.sf
to depend on code in module com.ny. Which of the following directives goes into module
com.ny’s module- info file to configure that behavior?

A. export com.ny;
B. export com.ny.city;
C. exports com.ny;
D. exports com.ny.city;
E. requires com.ny;
F. requires com.ny.city;

20. Suppose the consumer, service locator, service provider, and service provider interface
are each in separate modules. Which of the following best describes the following
module- info file?

module nature.tree {
 provides nature.sapling.Tree with nature.tree.Maple;
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

21. Which options are commonly used when compiling a module with the javac command?

A. - c and - d
B. - d and - p
C. - c and - p
D. - c, - d, and - p
E. None of the above

22. Which of the following are modules supplied by the JDK? (Choose three.)

A. java.base
B. java.basic
C. java.desktop
D. java.sdk
E. java.sql
F. java.swing

274 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

23. Which best describes a top- down migration? (Choose two.)

A. The first step is to move all the modules to the module path.

B. The first step is to move a single module to the module path.

C. Most steps consist of changing an automatic module to a named module.

D. Most steps consist of changing an automatic module to an unnamed module.

E. Most steps consist of changing an unnamed module to an automatic module.

F. Most steps consist of changing an unnamed module to a named module.

24. Suppose the consumer, service locator, service provider, and service provider interface
are each in separate modules. Which of the following best describes the following
module- info file?

module nature.tree {
 requires nature.sapling;
 requires nature.bush;
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

25. Suppose you have these two JARs that are not modules. Which steps, when taken together,
would be the best way to make them modules? (Choose two.)

baby.otter

food.fish

A. Add a module- info.java to each.

B. Add them to the classpath.

C. Create a third module to contain the common code.

D. Merge them into one module to break the cyclic dependency.

E. Rename the modules to use dashes instead of dots.

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 275

26. Which command produces output such as the following?

animal.puppy - > animal.dog

A. jdeps –d zoo.animal.puppy.jar
B. jdeps –s zoo.animal.puppy.jar
C. jmod –d zoo.animal.puppy.jar
D. jmod –s zoo.animal.puppy.jar
E. None of the above

27. Suppose the consumer, service locator, service provider, and service provider interface
are each in separate modules. Which of the following best describes the following
module- info file?

module nature.tree{
 requires nature.sapling;
 provides nature.sapling.Tree with nature.tree.Maple
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

28. Suppose we have a com.bird module that contains a com.bird.tweet package and a
Tweety class with a main() method. Which of the following can fill in the blank to run this
program?
java - - module- path mods –module
A. com.bird.Tweety
B. com.bird.tweety.Tweety
C. com.bird/Tweety
D. com.bird.tweet/Tweety
E. com.bird/com.bird.tweet.Tweety
F. com.bird.tweet/com.bird.Tweety

29. Which types of modules are required to contain a module- info file?

A. Automatic only

B. Named only

C. Unnamed only

D. Automatic and named

E. Automatic and unnamed

F. Named and unnamed

276 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

30. Suppose the consumer, service locator, service provider, and service provider interface
are each in separate modules. Which of the following best describes the following
module- info file?

module nature.tree {
 exports nature.tree.leaf;
 requires nature.sapling;
 uses nature.tree.Photosynthesis;
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

31. Which command allows you to create a Java runtime image?

A. jdeps
B. jmod
C. jimage
D. jlink
E. None of the above

32. Suppose the consumer, service locator, service provider, and service provider interface are
each in separate modules. Which of the following best describes the following
module- info file?

module nature.tree{
 requires nature.sapling;
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

33. Which types of modules are allowed to contain a module- info file?

A. Automatic only

B. Named only

C. Unnamed only

D. Automatic and named

E. Automatic and unnamed

F. Named and unnamed

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 277

34. Which of the following is true of this module declaration?

1: class com.mammal {
2: exports com.mammal.cat;
3: exports cat.mammal.mouse to com.mice;
4: uses com.animal;
5: }

A. The first line that fails to compile is line 1.

B. The first line that fails to compile is line 2.

C. The first line that fails to compile is line 3.

D. The first line that fails to compile is line 4.

E. The code compiles.

35. How many of these directives can be used in a module- info.java file: closes, export,
import, require, and uses?

A. None

B. One

C. Two

D. Three

E. Four

F. Five

36. Suppose the consumer, service locator, service provider, and service provider interface are
each in separate modules. Which of the following best describes this module- info file?

module nature.tree{
 exports nature.tree.leaf;
}

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

37. Which of the following are modules supplied by the JDK? (Choose three.)

A. jdk.base
B. jdk.basic
C. jdk.desktop
D. jdk.javadoc
E. jdk.jdeps
F. jdk.net

http://jdk.net

278 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

38. Which are true statements about types of migration? (Choose three.)

A. All modules are immediately moved to the module path in a bottom- up migration.

B. All modules are immediately moved to the module path in a top- down migration.

C. Modules migrate before the modules that depend on them in a bottom- up migration.

D. Modules migrate before the modules that depend on them in a top- down migration.

E. Modules that are not yet named modules are automatic modules in a bottom- up
migration.

F. Modules that are not yet named modules are automatic modules in a top- down
migration.

39. A class in which of the following parts of a module service should include a method call to
load(ChocolateLab.class) that would allow callers to use it?

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

40. How many of these module declarations are valid?

module com.leaf {}
module com.leaf2 {}
module com- leaf { }
module LEAF {}
module leaf2 {}

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

41. Which is a benefit of ServiceLoader?

A. It allows you to add functionality without recompiling the application.

B. It allows you to load a service written in C++.

C. It is an interface.

D. When implementing a service, it references the ServiceLoader.

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 279

42. Which are true statements? (Choose two.)

A. Code on the classpath can reference code in automatic, named, and unnamed modules.

B. Code on the classpath can reference code in named modules, but not automatic and
unnamed modules.

C. Code on the classpath can reference code in automatic and named modules, but not
unnamed modules.

D. Code on the module path can reference code in automatic, named, and unnamed
modules.

E. Code on the module path can reference code in named modules, but not automatic and
unnamed modules.

F. Code on the module path can reference code in automatic and named modules, but not
unnamed modules.

43. Suppose we have the packages in the diagram. What could we add to the
module- info.java in com.duck to allow the com.park module to reference the
Duckling class but not allow the com.bread module to do the same?

com.duck com.bread

com.park

com

duckling
bread

Duckling.java

Egg.java

module-info.java

Food.java

Grass.java
module-info.java

module-info.java

egg

com

com

park

280 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

A. exports com.duckling;
B. exports com.duckling from com.park;
C. exports com.duckling to com.park;
D. exports com.park from com.duckling;
E. exports com.park to com.duckling;
F. None of the above

44. Given the diagram in the previous question, what could we add to module- info.java in
com.duck to allow the com.park package to reference the Duckling class, but not allow
the Egg class to reference the Duckling class?

A. exports com.duckling;
B. exports com.duckling from com.park;
C. exports com.duckling to com.park;
D. exports com.park from com.duckling;
E. exports com.park to com.duckling;
F. None of the above

45. Given the diagram in Question 43 and the correct export statement to share only
com.duckling, which of the following should be included in the module- info.java file
of com.park to specify that com.park should have access to the com.duckling and
com.bread packages, but not the com.egg package?

A. require com.duck, com.bread;
B. requires com.duck; com.bread;
C. require com.duckling, com.bread;
D. requires com.duckling; com.bread;
E. None of the above

46. Which is part of the service and has a provides directive?

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

47. Which command is the simplest way to list suggestions for classes in jdk.unsupported?

A. jdeps cookie.jar
B. jdeps –s cookie.jar
C. jdeps –jdkinternals cookie.jar
D. jdeps - - jdkinternals cookie.jar
E. jdeps - jdkunsupported cookie.jar
F. jdeps - - jdkunsupported cookie.jar

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 281

48. Which modules are on the classpath?

A. Automatic only

B. Named only

C. Unnamed only

D. Automatic and named

E. Automatic and unnamed

F. Named and unnamed

49. Which line of code belongs in a service locator?

A. ServiceLoader loader = ServiceLoader.load();
B. ServiceLoader loader = ServiceLoader.load(Mouse.class);
C. ServiceLoader<Mouse> loader = ServiceLoader.load();
D. ServiceLoader<Mouse> loader = ServiceLoader.load(Mouse.class);
E. Mouse loader = ServiceLoader.load();
F. Mouse loader = ServiceLoader.load(Mouse.class);

50. Which are true about a service? (Choose two.)

A. Changing the service provider interface always requires recompiling the service provider.

B. Changing the service provider interface sometimes requires recompiling the service
provider.

C. Changing the service provider interface never requires recompiling the service provider.

D. If the service provider interface references other classes in the method signatures, they
are considered part of the service.

E. If the service provider interface references other classes in the method signatures, they
are not considered part of the service.

51. Which modules are on the module path?

A. Automatic only

B. Named only

C. Unnamed only

D. Automatic and named

E. Automatic and unnamed

F. Named and unnamed

52. Each box in the diagram corresponds to a module. The service locator and service pro-
vider interface share a module. Which boxes represent the consumer and service provider,
respectively?

X

Z

Y

282 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

A. X and Y

B. X and Z

C. Y and Z

D. Z and Z

E. Z and Y

F. None of the above

53. Which command is the simplest way to list what modules a JAR depends on without listing
package names?

A. jdeps cookie.jar
B. jdeps –s cookie.jar
C. jdeps –jdkinternals cookie.jar
D. jdeps - - jdkinternals cookie.jar
E. jdeps - jdk- unsupported cookie.jar
F. jdeps - - jdk- unsupported cookie.jar

54. What flag do you use on jlink in order to specify the directory where the generated run-
time image should be placed?

A. - d
B. - - directory
C. - d or - - directory
D. - o
E. - - output
F. - o or - - output
G. None of the above

55. Fill in the blanks to list a way of getting a lot of useful information in debugging modules.
 - m x –p y --

A. jar and show- modules
B. jar and show- module- detail
C. jar and show- module- resolution
D. java and show- modules
E. java and show- module- detail
F. java and show- module- resolution

56. Suppose you have the following interface in a module named animal.insect.api. What
needs to be included in the module- info file for it to be a service provider interface?

package animal.insect.api.bugs;
public interface Bug {
 int crawl();
}

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 283

A. exports animal.insect.api;
B. exports animal.insect.api.bugs;
C. exports animal.insect.api.bugs.Bug;
D. requires animal.insect.api;
E. requires animal.insect.api.bugs;
F. requires animal.insect.api.bugs.Bug;

57. Suppose you have the following class in a module named animal.insect.impl and
the service provider interface module from Question 56. What needs to be included in the
module- info for it to be a service provider? (Choose two.)

package animal.insect.impl;
import animal.insect.api.bugs.Bug;

public class Worm implements Bug {
 @Override
 public int crawl() {
 return 1;
 } }

A. requires animal.insect.api;
B. requires animal.insect.lookup;
C. requires animal.printer;
D. provides animal.insect.impl.Worm;
E. provides animal.insect.api.bugs.Bug with

animal.insect.impl.Worm;
F. provides animal.insect.impl.Worm with

animal.insect.api.bugs.Bug;

58. Suppose you have the following class in a module named animal.insect.lookup, the
service provider interface from Question 56, and the service provider from Question 57.
What needs to be included in the module- info file besides an exports directive for it to
be a service locator? (Choose two.)

package animal.insect.lookup;
import animal.insect.api.bugs.Bug;
import java.util.List;
import java.util.ServiceLoader;
import java.util.stream.Collectors;

public class InsectFinder {
 public static List<Bug> findAllBugs() {
 return ServiceLoader.load(Bug.class)

284 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

 .stream()
 .map(ServiceLoader.Provider::get)
 .collect(Collectors.toList());
 } }

A. provides animal.insect.lookup;
B. provides animal.insect.lookup.InsectFinder;
C. requires animal.insect.api;
D. requires animal.insect.api.Bug;
E. uses animal.insect.api.bugs;
F. uses animal.insect.api.bugs.Bug;

59. Suppose you have the following class in a module named animal.insect.printer, the
service provider interface from Question 56, the service provider from Question 57, and the
service locator from Question 58. What needs to be included in the module- info for it to
be a consumer? (Choose two.)

package animal.printer;
import animal.insect.lookup.InsectFinder;

public class Print {
 public static void main(String[] args) {
 var bugs = InsectFinder.findAllBugs();
 bugs.forEach(System.out::println);
 } }

A. requires animal.insect.api.bugs;
B. requires animal.insect.lookup;
C. requires animal.printer;
D. uses animal.insect.api.bugs;
E. uses animal.insect.api.bugs.Bug;
F. uses animal.insect.lookup.InsectFinder;

60. Which command is the simplest way to list what modules a JAR depends on, including
package names?

A. jdeps cookie.jar
B. jdeps –s cookie.jar
C. jdeps –jdkinternals cookie.jar
D. jdeps - - jdkinternals cookie.jar
E. jdeps - jdk- unsupported cookie.jar
F. jdeps - - jdk- unsupported cookie.jar

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 285

61. How many modules are part of the cyclic dependency?

module com.light {
 exports com.light;
}
module com.animal {
 exports com.animal;
 requires com.light;
 requires com.plant;
}
module com.plant {
 exports com.plant;
 requires com.light;
 requires com.animal;
}
module com.worm {
 exports com.worm;
 requires com.light;
 requires com.animal;
 requires com.plant;
}

A. 0

B. 1

C. 2

D. 3

E. 4

62. What is true about the - d option?

A. It can be used with the jar command, but not the java command.

B. It can be used with the java command, but not the jar command.

C. It can be used with the jar and java commands and serves the same purpose for both.

D. It can be used with the jar and java commands, but means “directory” for the former
and “describe module” for the latter.

E. None of the above.

63. Assuming all referenced files and directories exist and are correct, what does this code do?

javac –m mods –d mouse mouse/com/mouse/*.java
 mouse/module- info.java
jar –cvf mods/com.mouse.jar –C mouse/ .

286 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

A. Creates a JAR file representing the com.mouse module

B. Creates a JAR file that is not a module

C. Fails on the javac command

D. Fails on the jar command

64. Which module is always in the jdeps output?

A. java.base
B. java.lang
C. java.self
D. jdk.base
E. jdk.lang
F. jdk.self

65. Which are valid modes on the jmod command? (Choose three.)

A. create
B. list
C. hash
D. show
E. verbose
F. version

66. This diagram shows the second step of a migration to modules. What type of migration
is this?

butterfly

caterpillar

classpath module path

A. Bottom- up

B. Side- to- side

C. Top- down

D. There is not enough information to determine which type it is.

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 287

67. Which are true statements about the diagram and scenario in the previous question?
(Choose two.)

A. butterfly is an automatic module.

B. butterfly is a named module.

C. butterfly is an unnamed module.

D. caterpillar is an automatic module.

E. caterpillar is a named module.

F. caterpillar is an unnamed module.

68. Suppose we have the two JARs in the diagram on the module path and the module- info
in the com.magic JAR only exports one package: com.magic.unicorn. There is no
module- info file in the com.science JAR. How many of the four packages in the
diagram can a third module on the module path access?

com.magic

module-info

com.magic.dragon

com.magic.unicorn

com.science

com.science.bio

com.science.chem

A. 0

B. 1

C. 2

D. 3

E. 4

69. Suppose the two JARs described in the previous question are on the classpath. How many of
the four packages in the diagram can a module on the module path access?

A. 0

B. 1

C. 2

D. 3

E. 4

288 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

70. What is true about the following module- info.java file?

module Book { }
A. It does not compile because it is empty.

B. It does not compile because the module name is uppercase.

C. It does not compile because the module name has only one component.

D. It does not compile for another reason.

E. It compiles.

71. When adding a new service provider, which of these do you need to recompile?

A. Consumer

B. Service locator

C. Existing service providers

D. Service provider interface

E. None of the above

72. When working with modules, what option names are equivalent to - m and - s?

A. - - module and - - short
B. - - module and - - statistics
C. - - module and - - summary
D. - - module- path and - - short
E. - - module- path and - - statistics
F. - - module- path and - - summary

73. Which are considered part of a service?

A. Classes referenced by the implementation, but not the interface

B. Classes referenced by the interface, but not the implementation

C. Classes referenced by either the implementation or the interface

D. None of the above

74. Which command uses –s to represent summary?

A. jdeps
B. jlink
C. jmod
D. Both jdeps and jlink
E. Both jlink and jmod
F. All of the above

G. None of the above

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 289

75. Suppose you have the following class in a module named animal.insect.impl. Which
two most likely go in the module- info of the service locator? (Choose two.)

package animal.insect.impl;
import animal.insect.api.bugs.Bug;

public class Worm implements Bug {
 @Override
 public int crawl() {
 return 1;
 } }

A. requires animal.insect.api.bugs;
B. requires animal.insect.api.bugs.Bug;
C. requires animal.insect.impl;
D. uses animal.insect.api.bugs;
E. uses animal.insect.api.bugs.Bug;
F. uses animal.insect.api.bugs.Bug with animal.insect.impl.Worm;

76. Which of the following statements are true? (Choose two.)

A. A bottom- up migration has more steps involving the classpath than a top- down
migration.

B. A top- down migration has more steps involving the classpath than a bottom- up
migration.

C. Both types of migration have the same number of steps involving the classpath.

D. A bottom- up migration has unnamed modules on the module path.

E. A top- down migration has unnamed modules on the module path.

F. Neither migration type has unnamed modules on the module path.

77. Fill in the blank with code to look up and call a service.

String cheese = ServiceLoader.load(Mouse.class)
 .stream()
 .map()
 .map(Mouse::favoriteFood)
 .findFirst()
 .orElse("");

A. Mouse.get()
B. Mouse::get
C. Provider.get()
D. Provider::get
E. None of the above

290 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

78. Given the following diagram, with each box representing a module, what statements need to
be in module- info.java for the mammal module? (Choose three.)

animal

animal.util

milk

milk.store

mammal

mammal.eat

panda

panda.food

A. exports mammal;
B. exports mammal.eat;
C. requires animal;
D. requires animal.util;
E. requires milk;
F. requires milk.store;

79. Given the previous diagram and the following module- info.java for the panda module,
what change can be made to the requires statement?

module panda {
 requires mammal;
}

A. exports transitive mammal;
B. exports transitive mammal.eat;
C. requires transitive animal;
D. requires transitive animal.util;
E. transitive requires animal;
F. transitive requires animal.util;

80. Given the diagram in Question 78 and the following module- info.java for the panda
module, what is the result of including line m1?

module panda {
 requires mammal;
 requires transitive mammal; // line m1
}

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 291

A. Any modules that require mammal will automatically get panda as well.

B. Any modules that require panda will automatically get mammal as well.

C. There is no change in behavior.

D. The code does not compile.

81. How many service providers are allowed to implement a service provider interface?

A. Exactly one

B. Exactly two

C. One or two

D. One or more

E. None of the above

82. Which of the following are modules supplied by the JDK? (Choose three.)

A. java.logging
B. java.javadoc
C. java.jdk
D. java.management
E. java.naming
F. java.scripts

83. Which are true of a JAR file that has only one module- info.class file, placed in the
META- INF directory? (Choose two.)

A. It is an automatic module if on the classpath.

B. It is an automatic module if on the module path.

C. It is a named module if on the classpath.

D. It is a named module if on the module path.

E. It is an unnamed module if on the classpath.

F. It is an unnamed module if on the module path.

84. Each box in the following diagram corresponds to a module. The service locator and service
provider interface share a module. Which boxes represent the consumer and service provider,
respectively?

X

Z

Y

292 Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform

A. X and Y

B. X and Z

C. Y and Z

D. Z and Z

E. Z and Y

F. None of the above

85. Which of the following statements are most accurate about the ServiceLoader class?
(Choose two.)

A. load() does not take any parameters.

B. load() takes the class type as a parameter.

C. When looping through the results of load(), you need to call the get() method on
Provider.

D. When using the results of load() in a Stream, you need to call the get() method on
Provider.

86. Suppose we have an automatic module on the module path named
lizard- ̂- cricket- ̂- 1.0.0- SNAPSHOT.jar and no Automatic- Module- Name
specified. What module name should named modules use to reference it?

A. lizard- cricket
B. lizard.cricket
C. lizard- cricket- SNAPSHOT
D. lizard- cricket.SNAPSHOT
E. None of the above

87. What file formats are legal for a module to be distributed in?

A. jar
B. jmod
C. zip
D. jar and jmod
E. jar and zip
F. jmod and zip

88. Why is this module- info incorrect for a service provider?

module plant.flower {
 exports plant.flower.impl;
 requires plant.flower.api;
 provides plant.flower.api.Petal
 with plant.flower.impl.PetalImpl;
}

Chapter 7 ■ Packaging and Deploying Java Code and Use the Java Platform 293

A. The exports directive should be export.

B. The exports directive should not be present because all calls to the service provider
should use the service locator.

C. The provides directive should be uses instead.

D. The provides directive has the implementation and interface in the wrong order.

E. The requires directive should be exports instead.

F. The requires directive should not be present because provides implies it.

89. How many modules are part of the cyclic dependency?

module.com.light {
 exports com.light;
}
module com.plant {
 exports com.plant;
 requires com.light;
 requires com.animal;
}
module com.animal {
 exports com.animal;
 requires com.light;
}
module com.worm {
 exports com.worm;
 requires com.light;
 requires com.animal;
 requires com.plant;
}

A. 0

B. 1

C. 2

D. 3

E. 4

90. Which statements are true about requires mandated java.base? (Choose two.)

A. This output is expected when running the java - - list- modules command.

B. This output is expected when running the java - - show- module- resolution
command.

C. This output is expected when running the jdeps command.

D. This output is expected when running the jmod command.

E. All modules will include this in the output.

F. Some modules will include this in the output.

Managing Concurrent
Code Execution

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Managing concurrent code execution

 ■ Create worker threads using Runnable and Callable, manage

the thread lifecycle, including automations provided by differ-

ent Executor services and concurrent API

 ■ Develop thread- safe code, using different locking mechanisms

and concurrent API

 ■ Process Java collections concurrently including the use of

parallel streams

Chapter

8

296 Chapter 8 ■ Managing Concurrent Code Execution

1. How many times does the following code print How rude! at runtime?

public class Speaking {
 void talk() {
 try {
 Thread.sleep(10_000);
 } catch (InterruptedException e) {
 System.out.println("How rude!");
 } }
 public static void main(String[] args) {
 var s = new Speaking();
 var t = new Thread(() - > s.talk());
 t.run();
 t.interrupt();
 t.interrupt();
 t.interrupt();
 } }

A. Zero

B. One

C. Two

D. Three

E. The code does not compile.

F. The code compiles but an exception is printed at runtime.

2. What is the output of the following code snippet?

Callable c = new Callable() {
 public Object run() {
 System.out.print("X");
 return 10;
 }
};
var s = Executors.newScheduledThreadPool(1);
for(int i=0; i<10; i++) {
 Future f = s.submit(c);
 f.get();
}
s.shutdown();
System.out.print("Done!");

Chapter 8 ■ Managing Concurrent Code Execution 297

A. XXXXXXXXXXDone!
B. Done!XXXXXXXXXX
C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The code throws an exception at runtime.

F. The output cannot be determined ahead of time.

3. Which of the following methods is not available on an ExecutorService instance?
(Choose two.)

A. execute(Callable)
B. shutdownNow()
C. submit(Runnable)
D. exit()
E. submit(Callable)
F. execute(Runnable)

4. The following program simulates flipping a coin an even number of times. Assuming five
seconds is enough time for all of the tasks to finish, what is the output of the following
application?

import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
public class Luck {
 private AtomicBoolean coin = new AtomicBoolean(false);
 void flip() {
 coin.getAndSet(!coin.get());
 }
 public static void main(String[] gamble) throws Exception {
 var luck = new Luck();
 ExecutorService s = Executors.newCachedThreadPool();
 for(int i=0; i<1000; i++) {
 s.execute(() - > luck.flip());
 }
 s.shutdown();
 Thread.sleep(5000);
 System.out.println(luck.coin.get());
 } }

A. false
B. true
C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The code throws an exception at runtime.

F. The output cannot be determined ahead of time.

298 Chapter 8 ■ Managing Concurrent Code Execution

5. Which of the following is a recommended way to define an asynchronous task?

A. Create a Callable expression and pass it to an instance of an Executor.

B. Create a class that extends Thread and override the start() method.

C. Create a Runnable lambda expression and pass it to a Thread constructor.

D. Create an anonymous Runnable class that overrides the begin() method.

E. All of the above.

6. Assuming five seconds is enough time for the threads in this program to complete, what is
the expected result of executing the following program?

import java.util.*;
public class Dance {
 int count = 0;
 synchronized int step() { return count++; }
 public static void main(String[] args) throws InterruptedException {
 var waltz = new Dance();
 var dancers = new ArrayList<Thread>();

 for(int i=0; i<10; i++)
 dancers.add(new Thread(() - > waltz.step()));
 for(Thread dancer : dancers)
 dancer.start();
 dancers.forEach(d - > d.interrupt());

 Thread.sleep(5_000);
 System.out.print(waltz.count);
 } }

A. It always prints a number less than 10.

B. It always prints 10.

C. It may print 10 or a number less than 10.

D. The code does not compile.

E. The code compiles but an exception is printed at runtime.

F. None of the above.

7. Given the following program, how many times is Locked! expected to be printed?

import java.util.concurrent.locks.*;
public class Padlock {
 private Lock lock = new ReentrantLock();
 public void lockUp() {
 if (lock.tryLock()) {

Chapter 8 ■ Managing Concurrent Code Execution 299

 lock.lock();
 System.out.println("Locked!");
 lock.unlock();
 }
 }
 public static void main(String... unused) throws Exception {
 var gate = new Padlock();
 for(int i=0; i<5; i++) {
 new Thread(() - > gate.lockUp()).start();
 Thread.sleep(1_000);
 } } }

A. One time.

B. Five times.

C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The code throws an exception at runtime.

F. The output cannot be determined ahead of time.

8. Which statements about the following application are correct? (Choose two.)

import java.util.concurrent.atomic.*;
import java.util.stream.*;
public class TicketTaker {
 long ticketsSold;
 final AtomicInteger ticketsTaken;
 public TicketTaker() {
 ticketsSold = 0;
 ticketsTaken = new AtomicInteger(0);
 }
 public void performJob() {
 IntStream.iterate(1, p - > p+1)
 .parallel()
 .limit(100)
 .forEach(i - > ticketsTaken.getAndIncrement());
 IntStream.iterate(1, q - > q+1)
 .parallel()
 .limit(500)
 .forEach(i - > ++ticketsSold);
 System.out.print(ticketsTaken+" "+ticketsSold);
 }

300 Chapter 8 ■ Managing Concurrent Code Execution

 public static void main(String[] matinee) {
 new TicketTaker().performJob();
 } }

A. The TicketTaker constructor does not compile.

B. The performJob() method does not compile.

C. The class compiles.

D. The first number printed is consistently 100.

E. The second number printed is consistently 500.

F. A ConcurrentModificationException is thrown at runtime.

9. Given the original array, how many of the following for statements result in an
exception at runtime, assuming each is executed independently?

var original = List.of(1,2,3,4,5);

var copy1 = new CopyOnWriteArrayList<Integer>(original);
for(Integer w : copy1)
 copy1.remove(w);

var copy2 = Collections.synchronizedList(original);
for(Integer w : copy2)
 copy2.remove(w);

var copy3 = new ArrayList<Integer>(original);
for(Integer w : copy3)
 copy3.remove(w);

var copy4 = new ConcurrentLinkedQueue<Integer>(original);
for(Integer w : copy4)
 copy4.remove(w);

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

Chapter 8 ■ Managing Concurrent Code Execution 301

10. Fill in the blanks: ______________ is a special case of ______________, in which two or more
active threads try to acquire the same set of locks and are repeatedly unsuccessful.

A. Deadlock, livelock

B. Deadlock, resource starvation

C. Livelock, resource starvation

D. Resource starvation, race conditions

E. Resource starvation, livelock

F. None of the above

11. What is the output of the following program?

import java.util.stream.*;
public class Bull {
 void charge() {
 IntStream.range(1,6)
 .parallel()
 .forEachOrdered(System.out::print);
 }
 public static void main(String[] args) {
 var b = new Bull();
 b.charge();
 } }

A. 12345
B. 54321
C. The output cannot be determined ahead of time.

D. The code does not compile.

E. An exception is thrown at runtime.

F. None of the above.

12. What is the output of the following application?

3: public class TpsReport {
4: public void submitReports() {
5: var s = Executors.newCachedThreadPool();
6: Future bosses = s.submit(() - > System.out.print("1"));
7: s.shutdown();
8: System.out.print(bosses.get());
9: }

302 Chapter 8 ■ Managing Concurrent Code Execution

10: public static void main(String[] memo) {
11: new TpsReport().submitReports();
12: } }

A. null
B. 1null
C. 1
D. Line 6 does not compile.

E. Line 8 does not compile.

F. An exception is thrown at runtime.

13. Which of the following static methods do not exist in the Executors class? (Choose two.)

A. newFixedScheduledThreadPool()
B. newThreadPool()
C. newFixedThreadPool(int)
D. newSingleThreadExecutor()
E. newScheduledThreadPool(int)
F. newSingleThreadScheduledExecutor()

14. How many times does the following application print Ready at runtime?

package parade;
import java.util.concurrent.*;
public class CartoonCat {
 private void await(CyclicBarrier c) {
 try {
 c.await();
 } catch (Exception e) {}
 }
 public void march(CyclicBarrier c) {
 var s = Executors.newSingleThreadExecutor();
 for(int i=0; i<12; i++)
 s.execute(() - > await(c));
 s.shutdown();
 }
 public static void main(String... strings) {
 new CartoonCat().march(new CyclicBarrier(4,
 () - > System.out.println("Ready")));
 } }

A. Zero

B. One

Chapter 8 ■ Managing Concurrent Code Execution 303

C. Three

D. The code does not compile.

E. An exception is thrown at runtime.

15. Let’s say you needed a thread executor to create tasks for a CyclicBarrier that has a barrier
limit of five threads. Which static method in ExecutorService should you use to obtain it?

A. newSingleThreadExecutor()
B. newSingleThreadScheduledExecutor()
C. newCachedThreadPool()
D. newFixedThreadPool(2)
E. None of the above

16. The following diagrams represent the order of read/write operations of two threads sharing
a common variable. Each thread first reads the value of the variable from memory and then
writes a new value of the variable back to memory. Which diagram demonstrates proper
synchronization?

A.

B.

Thread 1

Thread 2

Time

Shared Memory

Thread 1

Thread 2

Time

Shared Memory

304 Chapter 8 ■ Managing Concurrent Code Execution

C.

D.

17. What is the output of the following program? (Choose three.)

import java.util.concurrent.atomic.*;
import java.util.stream.*;
public class Circus {
 private static int seal = 0;
 private static volatile int tiger = 0;
 private static AtomicInteger lion = new AtomicInteger(0);
 public static void main(String[] tent) {
 Stream.iterate(0, x - > x + 1)
 .parallel()
 .limit(100)
 .forEach(q - > {seal++; tiger++; lion.incrementAndGet();});
 System.out.println(seal + "," + tiger + ","+ lion);
 } }

A. The first number printed may be less than 100.

B. The first number printed is always 100.

Thread 1

Thread 2

Time

Shared Memory

Thread 1

Thread 2

Time

Shared Memory

Chapter 8 ■ Managing Concurrent Code Execution 305

C. The second number printed may be less than 100.

D. The second number printed is always 100.

E. The third number printed may be less than 100.

F. The third number printed is always 100.

18. What is the output of the following application?

import java.util.*;
import java.util.concurrent.*;
public class Race {
 ExecutorService service = Executors.newFixedThreadPool(8);
 public static int sleep() {
 try { Thread.sleep(1000); } catch (Exception e) {}
 return 1;
 }
 public void hare() {
 try {
 Callable<Integer> c = () - > sleep();
 final var r = List.of(c,c,c);
 var results = service.invokeAll(r);
 System.out.println("Hare won the race!");
 } catch (Exception e) {e.printStackTrace();}
 }
 public void tortoise() {
 try {
 Callable<Integer> c = () - > sleep();
 final var r = List.of(c,c,c);
 Integer result = service.invokeAny(r);
 System.out.println("Tortoise won the race!");
 } catch (Exception e) {e.printStackTrace();}
 }
 public static void main(String[] p) throws Exception {
 var race = new Race();
 race.service.execute(() - > race.hare());
 race.service.execute(() - > race.tortoise());
 } }

A. Hare won the race! is printed first.

B. Tortoise won the race! is printed first.

306 Chapter 8 ■ Managing Concurrent Code Execution

C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The code throws an exception at runtime.

F. The output cannot be determined ahead of time.

19. Which of the following concurrent collections is sorted? (Choose two.)

A. ConcurrentSkipList
B. ConcurrentSkipListSet
C. CopyOnWriteArrayList
D. ConcurrentSkipListMap
E. ConcurrentLinkedQueue
F. LinkedBlockingQueue

20. What is the output of the following application?

package taxes;
import java.util.concurrent.*;
public class Accountant {
 public static void completePaperwork() {
 System.out.print("[Filing]");
 }
 public static double getPi() {
 return 3.14159;
 }
 public static void main(String[] args) throws Exception {
 ExecutorService x = Executors.newSingleThreadExecutor();
 Future<?> f1 = x.submit(() - > completePaperwork());
 Future<Object> f2 = x.submit(() - > getPi());
 System.out.print(f1.get()+" "+f2.get());
 x.shutdown();
 } }

A. [Filing]
B. [Filing]3.14159
C. [Filing]null 3.14159
D. The declaration of f1 does not compile.

E. The declaration of f2 does not compile.

F. The output cannot be determined ahead of time.

Chapter 8 ■ Managing Concurrent Code Execution 307

21. Assuming 10 seconds is enough time for all the tasks to finish, what statements about the fol-
lowing program are correct? (Choose two.)

import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
public class Clock {
 private AtomicLong bigHand = new AtomicLong(0);
 void incrementBy10() {
 bigHand.getAndSet(bigHand.get() + 10);
 }
 public static void main(String[] c) throws Exception {
 var smartWatch = new Clock();
 ExecutorService s = Executors.newCachedThreadPool();
 for(int i=0; i<100; i++) {
 s.submit(() - > smartWatch.incrementBy10()).get();
 }
 s.shutdown();
 s.awaitTermination(10, TimeUnit.SECONDS);
 System.out.println(smartWatch.bigHand.get());
 } }

A. The code does not compile.

B. The incrementBy10() method is thread- safe.

C. The incrementBy10() method is not thread- safe.

D. The output is 1000 on every execution.

E. The output cannot be determined ahead of time.

F. The code hangs indefinitely at runtime.

22. What is the most likely result of executing the following application?

package jokes;
import java.util.concurrent.*;
public class Riddle {
 public void sleep() {
 try { Thread.sleep(5000); } catch (Exception e) {}
 }
 public String getQuestion(Riddle r) {
 synchronized {
 sleep();
 if(r != null) r.getAnswer(null);
 return "How many programmers does it take "
 + "to change a light bulb?";
 } }

308 Chapter 8 ■ Managing Concurrent Code Execution

 public synchronized String getAnswer(Riddle r) {
 sleep();
 if(r != null) r.getAnswer(null);
 return "None, that's a hardware problem";
 }

 public static void main(String... ununused) {
 var r1 = new Riddle();
 var r2 = new Riddle();
 var s = Executors.newFixedThreadPool(2);
 s.submit(() - > r1.getQuestion(r2));
 s.execute(() - > r2.getAnswer(r1));
 s.shutdown();
 } }

A. A deadlock is produced at runtime.

B. A livelock is produced at runtime.

C. The application completes successfully.

D. The code does not compile.

E. The code hangs indefinitely at runtime.

F. The output cannot be determined ahead of time.

23. Which ScheduledExecutorService method can result in the same action being executed by two
threads at the same time?

A. scheduleAtFixedDelay()
B. scheduleAtFixedRate()
C. scheduleWithFixedDelay()
D. scheduleAtSameRate()
E. scheduleWithRate()
F. None of the above

24. What is the output of the following application?

package olympics;
import java.util.concurrent.*;
public class Athlete {
 int stroke = 0;
 public synchronized void swimming() {
 stroke++;
 }

Chapter 8 ■ Managing Concurrent Code Execution 309

 private int getStroke() {
 synchronized(this) { return stroke; }
 }
 public static void main(String... laps) {
 ExecutorService s = Executors.newFixedThreadPool(10);
 Athlete a = new Athlete();
 for(int i=0; i<1000; i++) {
 s.execute(() - > a.swimming());
 }
 s.shutdown();
 System.out.print(a.getStroke());
 } }

A. A deadlock is produced at runtime.

B. A livelock is produced at runtime.

C. 1000
D. The code does not compile.

E. The result is unknown until runtime because stroke is not written in a thread- safe
manner and a write may be lost.

F. None of the above.

25. Which of the following is most likely to be caused by a race condition?

A. A thread perpetually denied access to a resource

B. A program hanging indefinitely

C. An int variable incorrectly reporting the number of times an operation was performed

D. Two threads actively trying to restart a blocked process that is guaranteed to always end
the same way

E. Two threads endlessly waiting on each other to release shared locks

26. Which statement about the following class is correct?

package my;
import java.util.*;
public class ThreadSafeList {
 private List<Integer> data = new ArrayList<>();
 public synchronized void addValue(int value) {
 data.add(value);
 }
 public int getValue(int index) {
 return data.get(index);
 }

310 Chapter 8 ■ Managing Concurrent Code Execution

 public int size() {
 synchronized(ThreadSafeList.class) {
 return data.size();
 } } }

A. The code compiles and is thread- safe.

B. The code compiles and is not thread- safe.

C. The code does not compile because of the size() method.

D. The code does not compile because of the getValue() method.

E. The code does not compile for another reason.

F. None of the above.

27. Which two method names, when filled into the print2() method, produce the same output
as the print1() method? Assume the input arguments for each represent the same non- null
numeric value.

public static synchronized void print1(int counter) {
 System.out.println(counter- -);
 System.out.println(++counter);
}

public static synchronized void print2(AtomicInteger counter) {
 System.out.println(counter.);
 System.out.println(counter.);
}

A. decrementAndGet() and getAndIncrement()
B. decrementAndGet() and incrementAndGet()
C. getAndDecrement() and getAndIncrement()
D. getAndDecrement() and incrementAndGet()
E. None of the above

28. What is the result of executing the following application multiple times?

package bears;
import java.util.*;
public class Bounce {
 public static void main(String... legend) {
 List.of(1,2,3,4).stream()
 .forEach(System.out::println);
 List.of(1,2,3,4).parallel()
 .forEach(System.out::println);

Chapter 8 ■ Managing Concurrent Code Execution 311

 List.of(1,2,3,4).parallel()
 .forEachOrdered(System.out::println);
 } }

A. Only the first stream prints the same order every time.

B. Only the first and second streams print the same order every time.

C. Only the first and third streams print the same order every time.

D. All of the streams print the same order every time.

E. None of the streams prints the same order every time.

F. None of the above.

29. How many lines of the following code snippet contain compilation errors?

11: ScheduledExecutorService t = Executors
12: .newSingleThreadScheduledExecutor();
13: Future result = t.execute(System.out::println);
14: t.invokeAll(null);
15: t.scheduleAtFixedRate(() - > {return;},5,TimeUnit.MINUTES);

A. None

B. One

C. Two

D. Three

E. None of the above

30. How many times does the following application print W at runtime?

package crew;
import java.util.concurrent.*;
import java.util.stream.*;
public class Boat {
 private void waitTillFinished(CyclicBarrier c) {
 try {
 c.await();
 System.out.print("W");
 } catch (Exception e) {}
 }
 public void row(ExecutorService s) {
 var cb = new CyclicBarrier(5);
 IntStream.iterate(1, i- > i+1)
 .limit(12)
 .forEach(i - > s.submit(() - > waitTillFinished(cb)));
 }

312 Chapter 8 ■ Managing Concurrent Code Execution

 public static void main(String[] oars) {
 ExecutorService service = null;
 try {
 service = Executors.newCachedThreadPool();
 new Boat().row(service);
 } finally {
 service.isShutdown();
 } } }

A. Zero.

B. Ten.

C. Twelve.

D. The code does not compile.

E. The output cannot be determined ahead of time.

F. None of the above.

31. Using the Boat class from the previous question, what is the final state of the application?

A. The application produces an exception at runtime.

B. The application terminates successfully.

C. The application hangs indefinitely because the ExecutorService is never shut down.

D. The application hangs at runtime.

E. None of the above.

32. Given the following code snippet, what statement about the values printed on lines p1 and p2
is correct?

var db = Collections.synchronizedList(new ArrayList<>());
IntStream.range(1,6)
 .parallel()
 .map(i - > {db.add(i); return i;})
 .forEachOrdered(System.out::print); // p1
System.out.println();
db.forEach(System.out::print); // p2

A. They are always the same.

B. They are sometimes the same.

C. They are never the same.

D. The code does not compile.

E. The code will produce a ConcurrentModificationException at runtime.

F. None of the above.

Chapter 8 ■ Managing Concurrent Code Execution 313

33. Given the following program, how many times is TV Time expected to be printed? Assume
10 seconds is enough time for each task created by the program to complete.

import java.util.concurrent.*;
import java.util.concurrent.locks.*;
public class Television {
 private static Lock myTurn = new ReentrantLock();
 public void watch() {
 try {
 if (myTurn.lock(5, TimeUnit.SECONDS)) {
 System.out.println("TV Time");
 myTurn.unlock();
 }
 } catch (InterruptedException e) {}
 }
 public static void main(String[] t) throws Exception {
 var newTv = new Television();
 for (int i = 0; i < 3; i++) {
 new Thread(() - > newTv.watch()).start();
 Thread.sleep(10*1000);
 }
 } }

A. One time.

B. Three times.

C. The code does not compile.

D. The code hangs indefinitely at runtime.

E. The code throws an exception at runtime.

F. The output cannot be determined ahead of time.

34. Given the original array, how many of the following for statements enter an infinite loop at
runtime, assuming each is executed independently?

var original = new ArrayList<Integer>(List.of(1,2,3));

var copy1 = new ArrayList<Integer>(original);
for(Integer q : copy1)
 copy1.add(1);

var copy2 = new CopyOnWriteArrayList<Integer>(original);
for(Integer q : copy2)
 copy2.add(2);

314 Chapter 8 ■ Managing Concurrent Code Execution

var copy3 = new LinkedBlockingQueue<Integer>(original);
for(Integer q : copy3)
 copy3.offer(3);

var copy4 = Collections.synchronizedList(original);
for(Integer q : copy4)
 copy4.add(4);

A. Zero

B. One

C. Two

D. Three

E. Four

F. The code does not compile.

35. Which ExecutorService method guarantees all running tasks are stopped in an
orderly fashion?

A. shutdown()
B. shutdownNow()
C. halt()
D. shutdownAndTerminate()
E. None of the above

36. Assuming 10 seconds is enough time for all of the tasks to finish, what is the output of the
following application?

import java.util.concurrent.*;
public class Bank {
 static int cookies = 0;
 public synchronized void deposit(int amount) {
 cookies += amount;
 }
 public static synchronized void withdrawal(int amount) {
 cookies - = amount;
 }
 public static void main(String[] amount) throws Exception {
 var teller = Executors.newScheduledThreadPool(50);
 Bank bank = new Bank();
 for(int i=0; i<25; i++) {
 teller.submit(() - > bank.deposit(5));
 teller.submit(() - > bank.withdrawal(5));
 }
 teller.shutdown();

Chapter 8 ■ Managing Concurrent Code Execution 315

 teller.awaitTermination(10, TimeUnit.SECONDS);
 System.out.print(bank.cookies);
 } }

A. 0
B. 125
C. - 125
D. The code does not compile.

E. The result is unknown until runtime.

F. An exception is thrown.

37. What is the output of the following application?

import java.util.*;
public class SearchList<T> {
 private List<T> data;
 private boolean foundMatch = false;
 public SearchList(List<T> list) {
 this.data = list;
 }
 public void exists(T v,int start, int end) {
 if(end- start==0) {}
 else if(end- start==1) {
 foundMatch = foundMatch || v.equals(data.get(start));
 } else {
 final int middle = start + (end- start)/2;
 new Thread(() - > exists(v,start,middle)).run();
 new Thread(() - > exists(v,middle,end)).run();
 }
 }
 public static void main(String[] a) throws Exception {
 List<Integer> data = List.of(1,2,3,4,5,6);
 SearchList<Integer> t = new SearchList<Integer>(data);
 t.exists(5, 0, data.size());
 System.out.print(t.foundMatch);
 } }

A. true
B. false
C. The code does not compile.

D. The result is unknown until runtime.

E. An exception is thrown.

F. None of the above.

316 Chapter 8 ■ Managing Concurrent Code Execution

38. Given the following code snippet, what statement about the values printed on lines q1 and q2
is correct?

var mitchsWorkout = new CopyOnWriteArrayList<Integer>();
List.of(1,5,7,9).stream().parallel()
 .forEach(mitchsWorkout::add);
mitchsWorkout
 .forEachOrdered(System.out::print); // q1
List.of(1,5,7,9).stream().parallel()
 .forEachOrdered(System.out::print); // q2

A. They are always the same.

B. They are sometimes the same.

C. They are never the same.

D. The code does not compile.

E. The code will produce a ConcurrentModificationException at runtime.

F. None of the above.

39. What is the output of the following program? (Choose three.)

import java.util.concurrent.atomic.*;
import java.util.stream.*;
public class Moon {
 private volatile AtomicLong green = new AtomicLong(0);
 private volatile int cheese = 0;
 private volatile int rocket = 0;
 private void takeOff() {
 Stream.iterate(0, x - > x + 1).parallel().limit(1000).forEach(q - > {
 green.getAndIncrement();
 cheese++;
 synchronized (this) {
 ++rocket;
 }
 });
 System.out.println(green + "," + cheese + "," + rocket);
 }
 public static void main(String[] tent) {
 new Moon().takeOff();
 } }

A. The first number printed may be less than 1000.

B. The first number printed is always 1000.

Chapter 8 ■ Managing Concurrent Code Execution 317

C. The second number printed may be less than 1000.

D. The second number printed is always 1000.

E. The third number printed may be less than 1000.

F. The third number printed is always 1000.

40. Assuming the two stream operators are compiled and executed independently, which
statements are correct? (Choose two.)

var drink = List.of("coke", "soda", "pop");

System.out.print(drink.parallelStream()
 .parallel()
 .reduce(0, (c1, c2) - > c1 + c2.length(), (s1, s2) - > s1 + s2));

System.out.print(drink.stream()
 .reduce(0, (c1, c2) - > c1 + c2.length(), (s1, s2) - > s1 + s2));

A. The first number printed is sometimes 11.

B. The first number printed is always 11.

C. The second number printed is sometimes 11.

D. The second number printed is always 11.

E. The first stream operation does not compile.

F. The second stream operation does not compile.

Using Java I/O API

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Using Java I/O API

 ■ Read and write console and file data using I/O Streams

 ■ Serialize and de- serialize Java objects

 ■ Create, traverse, read, and write Path objects and their

properties using java.nio.file API

Chapter

9

320 Chapter 9 ■ Using Java I/O API

1. What exception is expected to be thrown by the following code snippet?

var oldPath = Path.get("/rodent/mouse.txt");
var newPath = Path.get("/rodent/rat.txt");
Files.move(oldPath, newPath,
 StandardCopyOption.REPLACE_EXISTING);

A. AtomicMoveNotSupportedException
B. DirectoryNotEmptyException
C. FileAlreadyExistsException
D. The code does not compile.

E. None of the above.

2. What is the result of compiling and executing the following program?

package vacation;
import java.io.*;
import java.util.*;
public class Itinerary {
 private List<String> activities = new ArrayList<>();
 private static Itinerary getItinerary(String name) {
 return null;
 }
 public static void printItinerary() throws Exception {
 Console c = new Console();
 final String name = c.readLine("What is your name?");
 final var stuff = getItinerary(name);
 stuff.activities.forEach(s - > c.printf(s));
 }
 public static void main(String[] h) throws Exception {
 printItinerary();
 } }

A. The code does not compile.

B. The code compiles and prints a NullPointerException at runtime.

C. The code compiles but does not print anything at runtime.

D. The code compiles and prints the value the user enters at runtime.

E. The behavior cannot be determined until runtime.

F. None of the above.

Chapter 9 ■ Using Java I/O API 321

3. Assuming the file path referenced in the following class is accessible and writable, what is the
output of the following program? (Choose two.)

String fn = "icecream.txt";
try (var w = new BufferedWriter(new FileOutputStream(fn));
 var s = System.out) {
 w.write("ALERT!");
 w.flush();
 w.write('!');
 System.out.print("1");
} catch (IOException e) {
 System.out.print("2");
} finally {
 System.out.print("3");
}

A. 1
B. 23
C. 13
D. The code does not compile.

E. If the code compiles or the lines that do not compile are fixed, then the last value
output is 3.

F. If the code compiles or the lines that do not compile are fixed, then the last value
output is not 3.

4. What is the expected result when the writeResume() method is called? Assume the directories
referenced in the class do not exist prior to the execution and that the file system is available
and able to be written to.

package job;
import java.nio.file.*;
public class Resume {
 public void writeResume() throws Exception {
 var f1 = Path.of("/templates/proofs");
 f1.createDirectories();
 var f2 = Path.of("/templates");
 f2.createDirectory(); // k1
 try(var w = Files.newBufferedWriter(
 Path.of(f2.toString(), "draft.txt"))) {
 w.append("My dream job");

322 Chapter 9 ■ Using Java I/O API

 w.flush();
 }
 f1.delete(f1);
 f2.delete(f2); // k2
 } }

A. One line of this application does not compile.

B. Two lines of this application do not compile.

C. The code compiles, but line k1 triggers an exception at runtime.

D. The code compiles, but line k2 triggers an exception at runtime.

E. The code compiles and runs without printing an exception.

F. None of the above.

5. Which classes are least likely to be marked Serializable? (Choose two.)

A. A class that monitors the state of every thread in the application

B. A class that holds data about the amount of rain that has fallen in a given year

C. A class that manages the memory of running processes in an application

D. A class that stores information about apples in an orchard

E. A class that tracks the amount of candy in a gumball machine

F. A class that tracks which users have logged in

6. What is the output of the following code snippet? Assume that the current directory is the
root path.

Path p1 = Path.of("./found/../keys");
Path p2 = Paths.get("/lost/blue.txt");
System.out.println(p1.resolve(p2));
System.out.println(p2.resolve(p1));

A. /lost/blue.txt and /lost/blue.txt/keys
B. /found/../keys/./lost/blue.txt and /lost/blue.txt/keys
C. /found/../keys/./lost/blue.txt and keys
D. /lost/blue.txt and /lost/blue.txt/./found/../keys
E. The code does not compile.

F. None of the above.

7. Fill in the blanks: Writer is a(n) that related stream classes .

A. concrete class, extend

B. abstract class, extend

C. abstract class, implement

D. interface, extend

E. interface, implement

F. None of the above

Chapter 9 ■ Using Java I/O API 323

8. Assuming /away/baseball.txt exists and is accessible, what is the expected result of
executing the following code snippet?

var p1 = Path.of("baseball.txt");
var p2 = Path.of("/home");
var p3 = Path.of("/away");
Files.createDirectories(p2);
Files.copy(p3.resolve(p1),p2);

A. A new file /home/baseball.txt is created.

B. A new file /home/away/baseball.txt is created.

C. The code does not compile.

D. The code compiles, but an exception is printed at runtime.

E. The output cannot be determined until runtime.

F. None of the above.

9. Assuming the file referenced in the following snippet exists and contains five lines with the
word eggs in them, what is the expected output?

var p = Path.of("breakfast.menu");
Files.readAllLines(p)
 .filter(s - > s.contains("eggs"))
 .collect(Collectors.toList())
 .forEach(System.out::println);

A. No lines will be printed.

B. One line will be printed.

C. Five lines will be printed.

D. More than five lines will be printed.

E. The code does not compile.

F. None of the above.

10. What is the output of the following program? Assume the file paths referenced in the class
exist and are able to be written to and read from.

import java.io.*;
public class Vegetable implements Serializable {
 private Integer size = 1;
 private transient String name = "Red";
 { size = 3; name = "Purple"; }
 public Vegetable() { this.size = 2; name = "Green"; }
 public static void main(String[] love) throws Throwable {
 // Write data
 try (var o = new ObjectOutputStream(
 new FileOutputStream("healthy.txt"))) {

324 Chapter 9 ■ Using Java I/O API

 final var v = new Vegetable();
 v.size = 4;
 o.writeObject(v);
 }
 // Read data
 try (var o = new ObjectInputStream(
 new FileInputStream("healthy.txt"))) {
 var v = (Vegetable) o.readObject();
 System.out.print(v.size + "," + v.name);
 } } }

A. 1,Red
B. 2,Green
C. 2,null
D. 3,Purple
E. 4,null
F. null,null
G. None of the above

11. Why does Console readPassword() return a char array rather than a String?

A. It improves performance.

B. It improves security.

C. Passwords must be stored as a char array.

D. String cannot hold the individual password characters.

E. It adds encryption.

F. None of the above.

12. Given the following class inheritance diagram, which two classes can be placed in the
blank boxes?

FilterOutputStream

OutputStream

A. BufferedOutputStream and PrintStream
B. BufferedOutputStream and PrintOutputStream

Chapter 9 ■ Using Java I/O API 325

C. ByteArrayOutputStream and Stream
D. FileOutputStream and OutputStream
E. ObjectOutputStream and PrintOutputStream
F. None of the above

13. How many lines of the following code contain compiler errors?

12: var path = Paths.get(new URI("ice.cool"));
13: var view = Files.readAttributes(path,
14: BasicFileAttributes.class);
15: Files.createDirectories(Path.relativize(".backup"));
16: if(view.length() > 0 && view.isDirectory())
17: view.setTimes(null,null,null);
18: System.out.println(Files.deleteIfExists(path));

A. All of the lines compile.

B. One

C. Two

D. Three

E. Four or more

14. What is the output of the following application?

import java.io.*;
public class TaffyFactory {
 public int getPrize(byte[] luck) throws Exception {
 try (InputStream is = new ByteArrayInputStream(luck)) {
 is.read(new byte[2]);
 if (!is.markSupported()) return - 1;
 is.mark(5);
 is.read(); is.read();
 is.skip(3);
 is.reset();
 return is.read();
 }
 }
 public static void main(String[] sticky) throws Exception {
 final TaffyFactory p = new TaffyFactory();
 final var luck = new byte[] { 1, 2, 3, 4, 5, 6, 7 };
 System.out.print(p.getPrize(luck));
 } }

326 Chapter 9 ■ Using Java I/O API

A. - 2
B. 2
C. 3
D. 5
E. 7
F. An exception is thrown at runtime.

15. What is the output of the following program? Assume the file paths referenced in the class
exist and are able to be written to and read from.

package heart;
import java.io.*;
public class Valve implements Serializable {
 private int chambers = - 1;
 private transient Double size = null;
 private static String color;
 public Valve() { this.chambers = 3; color = "BLUE"; }

 public static void main(String[] love) throws Throwable {
 try (var o = new ObjectOutputStream(
 new FileOutputStream("scan.txt"))) {
 final Valve v = new Valve();
 v.chambers = 2;
 v.size = 10.0;
 v.color = "RED";
 o.writeObject(v);
 }
 new Valve();
 try (var i = new ObjectInputStream(
 new FileInputStream("scan.txt"))) {
 Valve v = (Valve)i.readObject();
 System.out.print(v.chambers+","+v.size+","+v.color);
 }
 }
 { chambers = 4; } }

A. 2,null,RED
B. 2,null,BLUE
C. 3,10.0,RED
D. 3,10.0,BLUE
E. 0,null,null
F. None of the above

Chapter 9 ■ Using Java I/O API 327

16. In the following file system diagram, forward is a symbolic link to the java directory.
If each of the following values is inserted into the blank, which do not print
/java/Sort.java? (Choose two.)

/

java objC

Sort.java Sort.class Heap.m bin

Heap.exe

forward

Path p = Path.of("/", "objC", "bin");
System.out.print(p.resolve(" ").toRealPath());

A. objC/forward/Sort.java
B. ../backwards/../forward/Sort.java
C. ../forward/./Sort.java
D. ../java/./forward/Sort.java
E. ../../java/Sort.java
F. .././forward/Sort.java

17. Which method defined in Reader can be used in place of calling skip(1)?

A. jump()
B. mark()
C. markSupported()
D. read()
E. reset()
F. None of the above

18. The Rose application is run with an input argument of /flower. The /flower directory
contains five subdirectories, each of which contains five files. What is the result of executing
the following program?

import java.nio.file.*;
public class Rose {
 public void tendGarden(Path p) throws Exception {
 Files.walk(p,1)
 .map(q - > q.toRealPath())
 .forEach(System.out::println);
 }

328 Chapter 9 ■ Using Java I/O API

 public static void main(String... thorns) throws Exception {
 new Rose().tendGarden(Paths.get(thorns[0]));
 } }

A. The program completes without outputting anything.

B. One Path value is printed.

C. Six Path values are printed.

D. Twenty- five Path values are printed.

E. Twenty- six Path values are printed.

F. None of the above.

19. What may be the result of executing the following program?

package test;
import java.io.*;
public class Turing {
 public static void main(String... robots) {
 Console c = System.console();
 final String response = c.readLine("Are you human?");
 System.err.print(response);
 } }

A. The program asks the user a question and prints the results to the error stream.

B. The program throws a NullPointerException at runtime.

C. The program does not terminate.

D. All of the above.

E. The class does not compile.

20. What is the output of the following method applied to an InputStream that contains the first
four prime numbers, stored as bytes: 2, 3, 5, 7?

private void jumpAround(InputStream is) throws IOException {
 try (is) {
 is.skip(1);
 is.read();
 is.skip(1);
 is.mark(4);
 is.skip(1);
 is.reset();
 System.out.print(is.read());
 }
}

A. 5
B. 7

Chapter 9 ■ Using Java I/O API 329

C. The code does not compile.

D. The code compiles but throws an exception at runtime.

E. The result cannot be determined until runtime.

F. None of the above.

21. Assuming the directories and files referenced exist and are not symbolic links, what is the
result of executing the following code?

var p1 = Path.of("/tea/earlgrey/..",".").resolve(Path.of("hot.txt"));
var p2 = new File("/./tea/./earlgrey/./.././hot.txt").toPath();
System.out.print(Files.isSameFile(p1,p2));
System.out.print(" ");
System.out.print(p1.normalize().equals(p2.normalize()));
System.out.print(" ");
System.out.print(Files.mismatch(p1,p2));

A. true true - 1
B. true true 0
C. true false - 1
D. true false 0
E. false true - 1
F. false true 0
G. The code does not compile.

H. The result cannot be determined.

22. Which method are classes that implement the java.io.Serializable interface required
to implement?

A. cereal()
B. deserialize()
C. serial()
D. serialize()
E. clone()
F. None of the above

23. What is the result of compiling and executing the following program? Assume the current
directory is /stock and the /stock/sneakers path does not exist prior to execution.

package shoe;
import java.io.*;
import java.nio.file.*;

330 Chapter 9 ■ Using Java I/O API

public class Sneaker {
 public void setupInventory(Path d) throws Exception {
 Path suggestedPath = Paths.get("sneakers");
 if(Files.isSameFile(suggestedPath, d) // j1
 && !Files.exists(suggestedPath))
 Files.createDirectories(d); // j2
 }
 public static void main(String[] socks) throws Exception {
 Path w = new File("/stock/sneakers").toPath(); // j3
 new Sneaker().setupInventory(w);
 } }

A. The /stock/sneakers directory is created.

B. Line j1 does not compile or produces an exception at runtime.

C. Line j2 does not compile or produces an exception at runtime.

D. Line j3 does not compile or produces an exception at runtime.

E. None of the above.

24. Assuming the absolute path referenced in the code exists and its contents are accessible,
which statement about the following code snippet is correct?

Path p = Paths.get("/glasses/lens");

Files.walk(p)
 .map(z - > z.toAbsolutePath().toString())
 .filter(s - > s.endsWith(".java"))
 .collect(Collectors.toList()).forEach(System.out::println);

Files.find(p,Integer.MAX_VALUE,
 (w,a) - > w.toAbsolutePath().toString().endsWith(".java"))
 .collect(Collectors.toList()).forEach(System.out::println);

A. The first stream statement does not compile.

B. The second stream statement does not compile.

C. Neither statement compiles.

D. Both statements compile and produce the same result at runtime.

E. None of the above.

25. When reading file information, what is an advantage of using an NIO.2 attribute interface
rather than reading the values individually using Files methods? (Choose two.)

A. Costs fewer round- trips to the file system

B. Guarantees performance improvement

Chapter 9 ■ Using Java I/O API 331

C. Has support for symbolic links

D. Reduces memory leaks

E. Supports file system–dependent attributes

F. Reduces resource leaks

26. Suppose that you need to read data that consists of serialized int, double, boolean,
and String values from a file. You also want the program to be performant on large files.
Which three java.io stream classes can be chained together to best achieve this result?
(Choose three.)

A. BufferedReader
B. FileReader
C. ObjectInputStream
D. BufferedStream
E. FileInputStream
F. BufferedInputStream

27. Which statement about the following method is correct? Assume the coffee directory exists
and is able to be read.

void brew() throws Exception {
 final var m = Path.of("coffee");
 Files.walk(m)
 .filter(Files::isDirectory)
 .forEach(Files::isDirectory);
}

A. It does not compile.

B. It compiles but does not print anything at runtime.

C. It compiles and prints true exactly once at runtime.

D. It compiles and prints true at least once.

E. The answer cannot be determined without knowing the contents of the directory.

F. None of the above.

28. Assuming the file referenced in the StudentManager class exists and contains at least one
record, which statements about the following class are correct? (Choose two.)

package school;
import java.io.*;
record Student(String name) { static Integer score = - 1; }
public class StudentManager {
 public static void main(String[] grades) {
 try(var ios = new ObjectInputStream(
 new FileInputStream(new File("s.data")))) {

332 Chapter 9 ■ Using Java I/O API

 Student record;
 while((record = (Student)ios.readObject()) != null) // p1
 System.out.print(record);
 } catch (EOFException e) {
 } catch (Exception e) {
 throw new RuntimeException(e);
 } } }

A. The code does not compile.

B. The code compiles but prints an exception at runtime.

C. The program runs and prints all students in the file.

D. The program runs but may only print some students in the files.

E. Line p1 demonstrates the proper way to check if all records have been read.

F. Line p1 does not demonstrate the proper way to check if all records have been read.

29. Given an instance of Console c, which of the following two method calls are invalid ways
of retrieving input from the user? (Choose two.)

A. c.read()
B. c.reader().read()
C. c.reader().readLine()
D. c.readLine()
E. c.readPassword()

30. What is the output of the following code snippet? Assume that the current directory is the
root path /.

Path p1 = Paths.get("./locks");
Path p2 = Paths.get("/found/red.zip");
System.out.println(p1.relativize(p2));
System.out.println(p2.relativize(p1));

A. ../found/red.zip and ../../locks
B. /found/red.zip and /found/red.zip/./locks
C. locks/../found/red.zip and ../found/locks
D. ../../locks and ../found/red.zip
E. /found/red.zip and /found/red.zip/locks
F. None of the above

31. Assuming the current working directory is /home, then what is the output of the
following program?

1: package magic;
2: import java.nio.file.*;
3: public class Magician {

Chapter 9 ■ Using Java I/O API 333

4: public String doTrick(Path path) {
5: return path.subpath(2,3)
6: .getName(1)
7: .toAbsolutePath()
8: .toString();
9: }
10: public static void main(String... cards) {
11: final Magician m = new Magician();
12: System.out.print(m.doTrick(
13: Paths.get("/bag/of/tricks/.././disappear.txt")));
14: } }

A. /home/tricks
B. /home
C. tricks
D. The code does not compile.

E. The code compiles but prints an exception at runtime.

F. None of the above.

32. Which statements about the Files methods lines() and readAllLines() are correct?
(Choose two.)

A. They have different return types.

B. The readAllLines() method is always faster.

C. The lines() method may require more memory.

D. They have the same return type.

E. The lines() method is always faster.

F. The readAllLines() method may require more memory.

33. Given the following application in which a user enters bone twice, what is the
expected result?

long start = System.currentTimeMillis();
var retriever = new BufferedReader(new InputStreamReader(System.in));
try(retriever; var husky = System.err) {
 var fetch = retriever.readLine();
 System.out.printf("%s fetched in %5.1f seconds",fetch, // v1
 (System.currentTimeMillis()- start)/1000.0);
}
var fetchAgain = retriever.readLine();
System.out.println(fetchAgain + " fetched again!");

334 Chapter 9 ■ Using Java I/O API

A. The program completes after printing a message once.

B. The program completes after printing a message twice.

C. An IOException is printed.

D. The program prints an exception because the format of the String on line v1 is invalid.

E. A NullPointerException is thrown since System.in may be unavailable.

F. None of the above, as the code does not compile.

34. What is the expected result of calling deleteTree() on a directory? Assume the directory
exists and is able to be modified.

import java.nio.file.*;
public class Exterminate {
 public void deleteTree(Path q) {
 if (!Files.isDirectory(q))
 Files.delete(q);
 else {
 Files.list(q).forEach(this::deleteTree);
 Files.delete(q);
 } } }

A. It will delete the directory itself only.

B. It will delete the directory and its file contents only.

C. It will delete the entire directory tree.

D. The code does not compile.

E. The code compiles but produces an exception at runtime.

F. None of the above.

35. Which code, if inserted into the method, will cause it to correctly copy any file passed to it
that is accessible? (Choose two.)

void copyFile(String source, String target) throws Exception {
 try (var is = new FileInputStream(source);
 OutputStream os = new FileOutputStream(target)) {
 byte[] data = new byte[123];
 int chirps;

 // INSERT CODE HERE
 } }

A.

while (is.read(data) > 0)
 os.write(data);

Chapter 9 ■ Using Java I/O API 335

B.

while ((chirps = is.read(data)) > 0)
 os.write(data, 0, chirps);

C.

while ((chirps = is.read(data)) > 0)
 os.write(data);

D.

while ((chirps = is.read(data)) > 0)
 os.write(data, chirps, data.length);

E.

String line;
while ((line = is.readLine()) != null)
 os.write(line + "\n");

F.

while ((chirps = is.read()) > 0)
 os.write(chirps);

36. In this question, an instance of Cereal has been serialized to disk, with the source object
having a name value of CornLoops and sugar value of 5. What is the value of name
and sugar after this object has been read from disk using the ObjectInputStream’s
readObject() method?

package breakfast;
import java.io.Serializable;
record Bowl(boolean spoon) {}
public class Cereal implements Serializable {
 private String name = "CocoaCookies";
 private transient int sugar = 10;
 private Bowl bowl;
 public Cereal() {
 super();
 this.name = "CaptainPebbles";
 this.bowl = new Bowl(true);
 sugar = 2;
 }
 { name = "SugarPops"; }
 // Getters/Setters Omitted
}

336 Chapter 9 ■ Using Java I/O API

A. CaptainPebbles and 10
B. CornLoops and 0
C. SugarPops and 10
D. SugarPops and 2
E. CornLoops and - 1
F. None of the above

37. What is the output of the following code snippet?

11: var halleysComet = Path.of("stars/./rocks/../m1.meteor")
12: .subpath(1, 5).normalize();
13:
14: var lexellsComet = Paths.get("./stars/../solar/");
15: lexellsComet.subpath(1, 3)
16: .resolve("m1.meteor").normalize();
17:
18: System.out.print(halleysComet.equals(lexellsComet) ?
19: "Same!" : "Different!");

A. Same!
B. Different!
C. The code does not compile.

D. The class compiles but throws an exception at runtime.

E. None of the above.

38. During deserialization from an I/O stream, which element of the class can be used to assign a
value to the deserialized object?

A. Variable initializer

B. Instance initializer

C. Static initializer

D. Constructor

E. The restoreObject() method

F. None of the above

39. Assuming there are no symbolic links involved and file /nursery/sapling.seed exists,
which statements about the following code snippet are correct? (Choose three.)

Files.move(
 Paths.get("/nursery/sapling.seed"),
 Paths.get("/forest"),
 StandardCopyOption.ATOMIC_MOVE);

Chapter 9 ■ Using Java I/O API 337

A. The code may throw an exception at runtime.

B. The code may complete without throwing an exception at runtime.

C. After it runs, the new location of the file is /nursery/sapling.seed.

D. After it runs, the new location of the file is /forest/sapling.seed.

E. If a process is monitoring the move, it will not see an incomplete file.

F. If a process is monitoring the move, it could see an incomplete file.

40. What is the output of the following application? Assume /all- data exists and is accessible
within the file system.

1: package sesame;
2: import java.nio.file.*;
3: import java.util.stream.*;
4: public class TheCount {
5: public static Stream<String> readLines(Path p) {
6: try { return Files.lines(p); } catch (Exception e) {
7: throw new RuntimeException(e);
8: }
9: }
10: public static long count(Path p) throws Exception {
11: return Files.list(p)
12: .filter(w - > Files.isRegularFile(w))
13: .flatMap(s - > readLines(s))
14: .count();
15: }
16: public static void main(String[] d) throws Exception {
17: System.out.print(count(Paths.get("/all- data")));
18: } }

A. The code does not compile.

B. The number of lines in all files in a directory tree.

C. The number of lines in all files in a single directory.

D. The code hangs indefinitely at runtime.

E. An exception is printed at runtime.

F. None of the above.

Accessing Databases
Using JDBC

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Accessing databases using JDBC

 ■ Create connections, create and execute basic, prepared and

callable statements, process query results and control

transactions using JDBC API

Chapter

10

340 Chapter 10 ■ Accessing Databases Using JDBC

1. How many of Connection, Driver, DriverManager, PreparedStatement, and
ResultSet are JDBC interfaces included with the JDK?

A. None

B. One

C. Two

D. Three

E. Four

F. Five

2. Which of these can replace the following line of code without changing the behavior?

void updateRecord(PreparedStatement stmt) throws SQLException {
 stmt.setString(2, null);
}

A. stmt.setNull(2);
B. stmt.setNull(2, null);
C. stmt.setNull(2, Types.VARCHAR);
D. None of the above

3. What must be the first characters of a database URL?

A. db,
B. db:
C. jdbc,
D. jdbc:
E. None of the above

4. Which is responsible for getting a connection to the database?

A. Driver
B. Connection
C. PreparedStatement
D. Statement
E. ResultSet

5. Which of these obtains a Connection?

A. Connection.getConnection(url)
B. Driver.getConnection(url)
C. DriverManager.getConnection(url)
D. new Connection(url)
E. None of the above

Chapter 10 ■ Accessing Databases Using JDBC 341

6. Which method in DriverManager is overloaded to allow passing a username
and password?

A. conn()
B. connect()
C. forName()
D. getStatement()
E. open()
F. None of the above

7. What is the output if the animals database exists and contains an empty names table?

var url = "jdbc:hsqldb:file:animals";
var sql = "SELECT count(*) FROM names";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 var rs = stmt.executeQuery()) {

 System.out.println(rs.getInt(1));
}

A. 0
B. 1
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

8. Consider the three methods execute(), executeQuery(), and executeUpdate().
Fill in the blanks: of these methods is/are allowed to run a DELETE SQL
statement while of these methods is/are allowed to run an UPDATE SQL
statement.

A. None, one

B. One, none

C. One, one

D. One, two

E. Two, two

F. Three, three

9. Suppose the pandas table has one row with the name Mei Xiang and the location DC.
What does the following code output?

var url = "jdbc:hsqldb:file:mammals";
var sql = "SELECT name FROM pandas WHERE location = 'DC'";
try (var conn = DriverManager.getConnection(url); // s1

342 Chapter 10 ■ Accessing Databases Using JDBC

 var stmt = conn.prepareStatement(sql); // s2
 var rs = stmt.executeQuery()) {

 if (rs.next())
 System.out.println(rs.getString("name"));
 else
 System.out.println("No match");
}

A. Mei Xiang
B. No match
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

10. Suppose we have a peacocks table with two columns: name and rating. What does the fol-
lowing code output if the table is empty?

var url = "jdbc:hsqldb:file:birds";
var sql = "SELECT name FROM peacocks WHERE name = ?";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "Feathers");
 stmt.setString(2, "Nice");

 boolean result = stmt.execute(); // s2

 System.out.println(result);
}

A. false
B. true
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

Chapter 10 ■ Accessing Databases Using JDBC 343

11. Suppose we have an empty bunny table with two columns: name and color. What is the state
of the table after running this code?

var url = "jdbc:hsqldb:file:rabbits";
var sql = "INSERT INTO bunny(name, color) VALUES (?, ?)";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "Daisy");
 stmt.setString(2, "Brown");

 stmt.executeUpdate();

 stmt.setString(1, "Cinna");
 stmt.setString(2, "Brown");

 stmt.executeUpdate();
}

A. It has one row.

B. It has two rows, and the color is Brown in both.

C. The code does not compile due to line s1.

D. The code does not compile due to another line.

E. The code throws an exception at runtime.

12. Suppose cats is an empty table. Where can conn.rollback() be inserted so that the
table remains empty?

try (var conn = DriverManager.getConnection(url)) {
 String insert = "INSERT INTO cats VALUES (? ,?)";
 try (var stmt = conn.prepareStatement(insert,
 ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_READ_ONLY)) {

 stmt.setInt(1, 1);
 stmt.setString(2, "Kitty");
 stmt.executeUpdate();
 // line x
 }
 // line y
 conn.commit();
}

344 Chapter 10 ■ Accessing Databases Using JDBC

A. Line x
B. Line y
C. Either line x or y
D. None of the above

13. Given the books table in the figure and the following method, which option prints the value
379?

title
character vararg(255)

Beginning Java
Advanced Java

379
669

num_pages
integer

void printNumPages(Connection conn) throws SQLException {
 var sql = """
 SELECT *
 FROM books
 WHERE title = 'Beginning Java'""";
 var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery();
 if(rs.next())
 System.out.print();
}

A. rs.getInt(1)
B. rs.getInt(2)
C. rs.getInteger(1)
D. rs.getInteger(2)

14. Given the books table in the previous question and the following code, which lines would
you add to successfully insert a row? (Choose two.)

var url = "jdbc:hsqldb:file:library";
var sql = "INSERT INTO books (title,num_pages) VALUES(?,?)";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE)) {

 // INSERT CODE HERE

 stmt.executeUpdate();
}

Chapter 10 ■ Accessing Databases Using JDBC 345

A. stmt.setObject(0, "Intermediate Java");
B. stmt.setObject(1, "Intermediate Java");
C. stmt.setObject(1, 500);
D. stmt.setObject(2, 500);

15. Given the books table from the previous two questions and the following method, which
option prints Advanced Java?

void printTitle(Connection conn) throws SQLException {
 var sql = """
 SELECT title
 FROM books
 WHERE num_pages > 500""";
 var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery();
 if(rs.next())
 System.out.print();
}

A. rs.getString()
B. rs.getString("0")
C. rs.getString("1")
D. rs.getString("title")

16. Suppose we have a stored procedure named summon that has one OUT parameter named
superpower that always returns the value fly. Fill in the blank so that the output is fly.

var sql = "{call summon(?)}";
try (var conn = DriverManager.getConnection(url);
 var cs = conn.prepareCall(sql)) {

 cs. (1, Types.VARCHAR);
 var rs = cs. ();

 System.out.println(cs.getString("superpower"));
}

A. registerOutParameter and execute
B. registerOutParameter and executeQuery
C. setOutParameter and execute
D. setOutParameter and executeQuery
E. None of the above

346 Chapter 10 ■ Accessing Databases Using JDBC

17. Suppose cats is an empty table. Where can conn.rollback(sp) be inserted so that
exactly one row is in the table?

try (var conn = DriverManager.getConnection(url)) {
 conn.setAutoCommit(false);
 String insert = "INSERT INTO cats VALUES (?,?)";
 Savepoint sp = null;
 try (var stmt = conn.prepareStatement(insert)) {
 stmt.setInt(1, 1);
 stmt.setString(2, "Kitty");
 stmt.executeUpdate();
 // line x
 }
 sp = conn.setSavepoint();
 try (var stmt = conn.prepareStatement(insert)) {
 stmt.setInt(1, 2);
 stmt.setString(2, "Beverly");
 stmt.executeUpdate();
 // line y
 }
 conn.commit();
}

A. Line x
B. Line y
C. Either line x or y
D. The code does not compile.

E. The code throws an exception.

18. Assuming the animals database exists and contains one empty table named names, what is
the output of the following?

var url = "jdbc:hsqldb:file:animals";
var sql = "SELECT * FROM names";
try (var conn = new Connection(url); // s1
 var stmt = conn.prepareStatement(sql); // s2
 var rs = stmt.executeQuery()) { // s3
 if (rs.next())
 System.out.println(rs.getString(1));
 }
}

Chapter 10 ■ Accessing Databases Using JDBC 347

A. The code terminates successfully without any output.

B. The code does not compile due to line s1.

C. The code does not compile due to line s2.

D. The code does not compile due to line s3.

E. None of the above.

19. What is the correct order to close database resources?

A. Connection then PreparedStatement then ResultSet
B. Connection then ResultSet then PreparedStatement
C. PreparedStatement then Connection then ResultSet
D. PreparedStatement then ResultSet then Connection
E. ResultSet then PreparedStatement then Connection
F. None of the above

20. Assuming the animals database exists and contains one empty table named names, what is
the output of the following?

var url = "jdbc:hsqldb:file:animals";
var sql = "SELECT * FROM names";
try (var conn = DriverManager.getConnection(url); // s1
 var stmt = conn.prepareStatement(sql); // s2
 var rs = stmt.executeQuery()) { // s3

 if (rs.next())
 System.out.println(rs.getString(1));
 }
}

A. The code terminates successfully without any output.

B. The code does not compile due to line s1.

C. The code does not compile due to line s2.

D. The code does not compile due to line s3.

E. None of the above.

21. Suppose we have a bunny table with two columns: name and color. What does the following
code output if the table is empty?

var url = "jdbc:hsqldb:file:rabbits";
var sql = "SELECT count(*) FROM bunny WHERE color = ? and name = ?";

348 Chapter 10 ■ Accessing Databases Using JDBC

try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "White");

 try (var rs = stmt.executeQuery()) { // s2
 if (rs.next())
 System.out.println(rs.getInt(1));
 }
}

A. 0
B. 1
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

22. Suppose the pandas table has one row with the name Mei Xiang and the location DC.
What does the following code output?

var url = "jdbc:hsqldb:file:mammals";
var sql = "SELECT name FROM pandas WHERE location = ?";
try (var conn = DriverManager.getConnection(url); // s1
 var stmt = conn.prepareStatement(sql)) { // s2

 stmt.setString(1, "DC");
 try (var rs = stmt.executeQuery()) {
 if (rs.next())
 System.out.println(rs.getString("name"));
 else
 System.out.println("No match");
 } }

A. Mei Xiang
B. No match
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

Chapter 10 ■ Accessing Databases Using JDBC 349

23. Suppose we have a stored procedure named increment that has one INOUT parameter named
num. The num parameter always returns a number 1 larger than the one passed in. Which
options fill in the blank so the output is 7? (Choose two.)

var sql = "{call increment(?)}";
try (var conn = DriverManager.getConnection(url);
 var cs = conn.prepareCall(sql)) {

 // Input parameter
 cs. (1, 6);

 // Output parameter
 cs. (1, Types.VARCHAR);
 var rs = cs.execute();

 System.out.println(cs.getString("num"));
}

A. registerInParameter
B. registerInOutParameter
C. registerOutParameter
D. setInt
E. setInOutParameter
F. setOutParameter

24. Which is true if the animals database exists and contains an empty names table?

var url = "jdbc:hsqldb:file:animals";
var sql = "SELECT COUNT(*) FROM names";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql,
 ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_READ_ONLY);

 var rs = stmt.executeQuery()) {

 rs.next(); // r1
 System.out.println(rs.getInt(1)); // r2
}

A. The code compiles and prints 0 without error.

B. The code compiles and prints 1 without error.

C. The code does not compile.

D. The code compiles but throws an exception at runtime on line r1.

E. The code compiles but throws an exception at runtime on line r2.

350 Chapter 10 ■ Accessing Databases Using JDBC

25. Suppose we have an empty bunny table with two columns: name and color. What is the state
of the table after running this code?

var url = "jdbc:hsqldb:file:rabbits";
var sql = "INSERT INTO bunny(name, color) VALUES (?, ?)";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "Hoppy");
 stmt.setString(2, "Brown");

 stmt.executeUpdate();

 stmt.setString(1, "Daisy");

 stmt.executeUpdate();
}

A. Only one row has the color Brown set.

B. It has two rows and the color is Brown in both.

C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

26. Suppose cats is an empty table. How many rows are in this table when the code
has completed?

try (var conn = DriverManager.getConnection(url)) {
 conn.setAutoCommit(false);
 String insert = "INSERT INTO cats VALUES (? ,?)";
 try (var stmt = conn.prepareStatement(insert)) {
 stmt.setInt(1, 1);
 stmt.setString(2, "Kitty");
 stmt.executeUpdate();
 }
 var sp = conn.setSavepoint();
 conn.rollback();
 try (var stmt = conn.prepareStatement(insert)) {
 stmt.setInt(1, 2);
 stmt.setString(2, "Beverly");
 stmt.executeUpdate();
 }
 conn.commit();
}

Chapter 10 ■ Accessing Databases Using JDBC 351

A. Zero

B. One

C. Two

D. The code does not compile.

E. The code throws an exception.

27. Which is true of a PreparedStatement?

A. It has a method to change the bind variable to a different character other than the ?
character.

B. It can be used only for SELECT statements.

C. It can be used only for UPDATE statements.

D. All of these are true.

E. None of these are true.

28. Suppose we have a peacocks table with two columns: name and rating. What does the fol-
lowing code output if the table is empty?

var url = "jdbc:hsqldb:file::birds";
var sql = "SELECT name FROM peacocks WHERE name = ?";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "Feathers");

 System.out.println(stmt.executeUpdate()); // s2
}

A. false
B. true
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

29. Which of the following statements about Connection methods are true? (Choose two.)

A. rollback() is ignored while autocommit mode is set to false.

B. rollback() is ignored while autocommit mode is set to true.

C. When not in autocommit mode, calling setAutoCommit(true) causes the data to be
immediately committed.

D. When not in autocommit mode, calling setAutoCommit(true) creates a SavePoint.

E. When not in autocommit mode, calling setAutoCommit(true) rolls back any out-
standing changes.

F. When not in autocommit mode, calling setAutoCommit(true) throws an exception.

352 Chapter 10 ■ Accessing Databases Using JDBC

30. What is the most likely outcome of this code if the bunny table is empty?

var url = "jdbc:hsqldb:file:rabbits";
var sql = "INSERT INTO bunny(name, color) VALUES (?, ?)";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.createStatement()) {

 stmt.setString(1, "Hoppy");
 stmt.setString(2, "Brown");

 stmt.executeUpdate(sql);
}

A. One row is in the table.

B. Two rows are in the table.

C. The code does not compile.

D. The code throws a SQLException.

Implementing
Localization

THE OCP EXAM TOPICS COVERED IN THIS
PRACTICE TEST INCLUDE THE FOLLOWING:

 ✓ Implementing Localization

 ■ Implement localization using locales, resource bundles, parse

and format messages, dates, times, and numbers including

currency and percentage values

Chapter

11

354 Chapter 11 ■ Implementing Localization

1. Which of the following are considered locales? (Choose three.)

A. Cultural region

B. Local address

C. City

D. Time zone region

E. Political region

F. Geographical region

2. What is the result of the following?

LocalDateTime pi = LocalDateTime.of(2022, 3, 14, 1, 59);
var formatter = DateTimeFormatter.ofPattern("M.ddhhmm");
System.out.println(formatter.format(pi));

A. 2.140159
B. 3.140159
C. 59.140102
D. 59.140103
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

3. Assuming the key green is in all five of the files referenced in the options, which file will the
following code use for the resource bundle?

Locale.setDefault(new Locale("en", "US"));
var rb = ResourceBundle.getBundle("Colors", new Locale("fr"));
System.out.print(rb.getString("green"));

A. Colors_default.properties
B. Colors.properties
C. Colors_en.properties
D. Colors_US.properties
E. Colors_en_US.properties

4. Assuming the following method is called with a double value of 1_900_000.0, which
values are printed? (Choose two.)

public void payBill(double t) {
 var nf1 = NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.LONG);
 var nf2 = NumberFormat.getCompactNumberInstance();

 System.out.println(nf1.format(t));
 System.out.println(nf2.format(t));
}

Chapter 11 ■ Implementing Localization 355

A. 1M
B. 1.9 million
C. 2M
D. 1.900M
E. 2 million
F. 1 million

5. What is the output of the following code snippet?

var d = LocalDateTime.parse("2022- 01- 21T12:00:00",
 DateTimeFormatter.ISO_LOCAL_DATE);
System.out.print(d.format(DateTimeFormatter.ISO_LOCAL_TIME));

A. 00:00:00
B. 12:00:00
C. 2022- 01- 21
D. 2022- 01- 22
E. The code does not compile.

F. An exception is thrown at runtime.

6. Fill in the blank with the option that allows the code snippet to compile and print a message
without throwing an exception at runtime.

var x = LocalDate.of(2022, 3, 1);
var y = LocalDateTime.of(2022, 3, 1, 5, 55);
var f = DateTimeFormatter.ofPattern("MMMM' at 'h' o'clock'");
System.out.print();

A. f.formatDate(x)
B. f.formatDate(y)
C. f.format(x)
D. f.format(y)
E. The code does not compile regardless of what is placed in the blank.

F. None of the above.

7. What does the following program print?

import java.time.*;
import java.time.format.*;

public class PolarBear {
 public static void main(String[] args) {
 LocalDate polarBearDay = LocalDate.of(2022, 2, 27);

356 Chapter 11 ■ Implementing Localization

 var formatter = DateTimeFormatter.ofPattern("yyyy dd MMM");
 System.out.println(polarBearDay.format(formatter));
 } }

A. 2022 27 Jan
B. 2022 27 Feb
C. 2022 Jan 27
D. 2022 Feb 27
E. None of the above

8. Which of the following are valid locale formats? (Choose two.)

A. hi
B. IN_hi
C. hi_IN
D. HI_IN
E. in_hi
F. IN

9. Assuming the key indigo is in all five of the files referenced in the options, which file will
the following code use for the resource bundle?

Locale loc = new Locale("fr", "CH");
Locale.setDefault(new Locale("it", "CH"));
ResourceBundle rb = ResourceBundle.getBundle("Colors", loc);
rb.getString("Indigo");

A. Colors_default.properties
B. Colors_en_US.properties
C. Colors_CH.properties
D. Colors_en.properties
E. Colors_es.properties
F. None of the above

10. For currency, the United States uses the $ symbol, the UK uses the £ symbol, and Germany
uses the € symbol. Given this information, what is the expected output of the following
code snippet?

Locale.setDefault(Locale.US);
Locale.setDefault(Category.FORMAT, Locale.GERMANY);
System.out.print(NumberFormat.getCurrencyInstance(Locale.UK)
 .format(1.1));

Chapter 11 ■ Implementing Localization 357

A. $1.10
B. 1,10€
C. £1.10
D. The code does not compile.

E. An exception is thrown at runtime.

F. The output cannot be determined without knowing the locale of the system where it will
be run.

11. Which correctly fills in the blank to print 2022- 01- 15?

LocalDate hatDay = LocalDate.of(2022, Month.JANUARY, 15);
DateFormatter f = DateFormatter.ISO_DATE;
System.out.println();

A. f.format(hatDate)
B. hatDay.format(f)
C. Both of the above

D. Neither of the above

12. Given the following four properties files, what does this code print?

Cars_en.properties

engine=engine
horses=241

engine=moteur
country=earth
road=highway

country=France
road=autoroute

country=US
horses=45

Cars.properties

Cars_en_US.properties Cars_fr_FR.properties

Locale.setDefault(new Locale("en"));
var rb = ResourceBundle.getBundle("Cars",
 new Locale("de", "DE"));
var r1 = rb.getString("engine");
var r2 = rb.getString("horses");
var r3 = rb.getString("country");
System.out.print(r1+ " " + r2 + " " + r3);

A. null null null
B. engine 241 US
C. moteur 45 US
D. engine 241 earth
E. moteur 241 earth
F. An exception is thrown at runtime.

358 Chapter 11 ■ Implementing Localization

13. Given the four properties files in Question 12, what does this code print?

Locale.setDefault(new Locale("en", "US"));
var rb = ResourceBundle.getBundle("Cars",
 new Locale("fr", "FR"));
var s1 = rb.getString("country");
var s2 = rb.getString("horses");
var s3 = rb.getString("engine");
System.out.print(s1+ " " + s2 + " " + s3);

A. France null engine
B. France 241 moteur
C. France 45 moteur
D. France 241 engine
E. France 45 engine
F. An exception is thrown at runtime.

14. Given the four properties files in Question 12, what does this code print?

Locale.setDefault(new Locale("ja","JP"));
var rb = ResourceBundle.getBundle("Cars",
 new Locale("fr", "FR"));
var t1 = rb.getString("engine");
var t2 = rb.getString("road");
var t3 = rb.getString("country");
System.out.print(t1+ " " + t2 + " " + t3);

A. moteur autoroute France
B. engine autoroute France
C. engine highway France
D. moteur highway France
E. moteur highway US
F. An exception is thrown at runtime.

15. Which of the following correctly define a Locale instance? (Choose three.)

A. Locale.get("it")
B. new Locale("it")
C. Locale.get(Locale.ITALIAN)
D. new Locale.Builder().setLanguage("it").build()
E. Locale.of("it")
F. Locale.ITALIAN

Chapter 11 ■ Implementing Localization 359

16. Assuming the key turquoise is in all five of the files referenced in the options, which file
will the following code use for the resource bundle?

Locale loc = new Locale("zh", "CN");
Locale.setDefault(new Locale("en", "US"));
ResourceBundle rb = ResourceBundle.getBundle("Colors", loc);
rb.getString("turquoise");

A. Colors_en.properties
B. Colors_CN.properties
C. Colors.properties
D. Colors_default.properties
E. Colors_en_CN.properties
F. None of the above

17. What format pattern would you pass to a DateTimeFormatter so it creates hour and
minute output such as 02:33?

A. HH:MM
B. HH:mm
C. hh:MM
D. hh:mm
E. None of the above

18. Assuming the following method is called with a double value of 123_456.789, which
value is printed?

public void printReceipt(double t) {
 var formatter = NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.SHORT);
 System.out.print(formatter.format(t));
}

A. 123,456.789
B. 123.456 thousand
C. 123.456K
D. 124K
E. 123 thousand
F. 123K

360 Chapter 11 ■ Implementing Localization

19. For what values of pattern will the following print <02.1> <06.9> <10,00>?
(Choose two.)

String pattern = " ";
var message = DoubleStream.of(2.1, 6.923, 1000)
 .mapToObj(v - > new DecimalFormat(pattern).format(v))
 .collect(Collectors.joining("> <"));
System.out.print("<" + message + ">");

A. ##,00.##
B. ##,00.#
C. 0,00.#
D. #,00.#
E. 0,00.0
F. #,##.#

20. Which of the following are not valid Locale formats? (Choose two.)

A. nl_BE
B. fr_CA
C. uk_ua
D. CR
E. no
F. ro_RO

21. What is the result of running this code?

12: LocalDate pieDay = LocalDate.of(2022, Month.JANUARY, 23);
13: LocalTime midnight = LocalTime.of(0, 0);
14: LocalDateTime pieTime = LocalDateTime.of(pieDay, midnight);
15:
16: DateTimeFormatter f = DateTimeFormatter
17: .ofLocalizedDate(FormatStyle.SHORT);
18: f.format(pieDay);
19: f.format(pieTime);
20: f.format(midnight);

A. The code runs successfully.

B. The code throws an exception on line 18.

C. The code throws an exception on line 19.

D. The code throws an exception on line 20.

E. The code does not compile.

Chapter 11 ■ Implementing Localization 361

22. For currency, the United States uses the $ symbol, the UK uses the £ symbol, and Germany
uses the € symbol. Given this information, what is the expected output of the following
code snippet?

Locale.setDefault(Locale.US);
Locale.setDefault(Category.FORMAT, Locale.GERMANY);
Locale.setDefault(Category.DISPLAY, Locale.UK);
System.out.print(NumberFormat.getCurrencyInstance()
 .format(6.95));

A. $6.95
B. 6,95 €
C. £6.95
D. The code does not compile.

E. An exception is thrown at runtime.

F. The output cannot be determined without knowing the locale of the system where it will
be run.

23. What is the output of the following code snippet?

var x = LocalDate.of(2022, 3, 1);
var y = LocalDateTime.of(2022, 1, 1, 2, 55);
var f = DateTimeFormatter.ofPattern("'yyyy- MM'");
System.out.print(f.format(x) + " " + f.format(y));

A. 2022- 03 2022- 01
B. 2022- 01 2022- 03
C. 2022- 02 2022- 00
D. yyyy- MM yyyy- MM
E. The code does not compile.

F. An exception is thrown at runtime.

24. Given the following two properties files, what does the loadPod() method output?

container.properties
name=generic
number=2

container_en.properties
name=Ship
type=container

void loadPod() {
 new Locale.Builder()

362 Chapter 11 ■ Implementing Localization

 .setLanguage("en")
 .setRegion("US").build();
 var rb = ResourceBundle.getBundle("container");
 String name = rb.getString("name");
 String type = rb.getString("type");
 System.out.print(name + " " + type);
}

A. Ship container
B. generic container
C. generic null
D. The output cannot be determined without knowing the locale of the system where it will

be run.

E. An exception is thrown at runtime.

F. None of the above.

25. Given the two properties files from Question 24, what does the following method output?

void loadContainer() {
 Locale.setDefault(new Locale("en"));
 var rb = ResourceBundle.getBundle("container");
 String name = rb.getString("name");
 String type = rb.getString("type");
 System.out.print(name + " " + type);
}

A. Ship container
B. generic container
C. generic null
D. The output cannot be determined without knowing the locale of the system where it will

be run.

E. An exception is thrown at runtime.

F. None of the above.

26. Given the two properties files from Question 24, what does the following method output?

void loadControlPlane() {
 Locale.setDefault(new Locale("en_US"));
 var rb = ResourceBundle.getBundle("container");
 String name = rb.getString("name");
 String type = rb.getString("type");
 System.out.print(name + " " + type);
}

Chapter 11 ■ Implementing Localization 363

A. Ship container
B. generic container
C. generic null
D. The output cannot be determined without knowing the locale of the system where it will

be run.

E. An exception is thrown at runtime.

F. None of the above.

27. Which correctly fills in the blank to print 2022- 01- 15?

LocalDate hatDay = LocalDate.of(2022, Month.JANUARY, 15);
DateTimeFormatter f = DateTimeFormatter.ISO_DATE;
System.out.println();

A. f.format(hatDay)
B. hatDay.format(f)
C. f.formatDate(hatDay)
D. hatDay.formatDate(f)
E. f.format(hatDay) and hatDay.format(f)
F. f.formatDate(hatDay) and hatDay.formatDate(f)

28. Assuming the Forest.properties file is the only resource file available, what is the
output of calling the hike() method?

Forest.properties
trees=evergreen {0}
animals=squirrels

static void hike() {
 Locale.setDefault(new Locale.Builder()
 .setLanguage("en").build());
 var rb = ResourceBundle
 .getBundle("Forest", new Locale("fr"));
 System.out.print(MessageFormat.format("trees","pretty"));
}

A. trees
B. trees pretty
C. trees {0}
D. trees null
E. The code does not compile.

F. An exception is thrown at runtime.

364 Chapter 11 ■ Implementing Localization

29. What does the following print?

import java.time.*;
import java.time.format.*;

public class Cat {
 public static void main(String[] args) {
 LocalDate catDay = LocalDate.of(2022, 10, 29);
 var formatter = DateTimeFormatter
 .ofPattern("Holiday: yyyy dd MMM");
 System.out.println(catDay.format(formatter));
 } }

A. Holiday: 2022 29 Sept
B. Holiday: 2022 29 Oct
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

30. Which of the following is not an expected output printed by the following code?

double p = 1_909.2;
var nf1 = NumberFormat.getCompactNumberInstance(Locale.getDefault());
var nf2 = NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.SHORT);
var nf3 = NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.LONG);
System.out.println(nf1.format(p));
System.out.println(nf2.format(p));
System.out.println(nf3.format(p));

A. 1909.2
B. 2K
C. 2 thousand
D. All of the above will be printed.

E. None of the above, as the code does not compile.

Practice Exam 1

This chapter contains 50 questions and is designed to simulate a real
1Z0- 829 exam. While previous chapters were focused on a specific
set of objectives, this chapter covers all of the objectives on the
exam. We recommend you take this exam only after you score well
on the questions in the individual chapters.

For this chapter, you should try to simulate the real exam expe-
rience as much as possible. This means setting aside 90 minutes of
uninterrupted time to complete the test, as well as not looking at
any reference material while taking the exam. If you don’t know an
answer to a question, complete it as best you can and move on to
the next question, just as you would on a real exam.

Remember, the exam permits writing material, such as a white-
board. If you do not have a whiteboard handy, you can just use
blank sheets of paper and a pencil. If you do well on this test, then
you are hopefully ready to take the real exam. With that said,
good luck!

Chapter

12

366 Chapter 12 ■ Practice Exam 1

1. What is the result of the following?

import java.util.stream.*;
public class StreamOfStreams {
 public static void main(String[] args) {
 var result =
 Stream.of(getNums(9, 8), getNums(22, 33)) // c1
 .flatMap(x - > x) // c2
 .map((a, b) - > a - b) // c3
 .filter(x - > !x.isEmpty()) // c4
 .get();
 System.out.println(result);
 }
 private static Stream<Integer> getNums(int num1, int num2) {
 return Stream.of(num1, num2);
 } }

A. The code compiles and outputs 1.

B. The code compiles and outputs 8.

C. The first compiler error is on line c1.

D. The first compiler error is on line c2.

E. The first compiler error is on line c3.

F. The first compiler error is on line c4.

2. Which statements about the following class are correct? (Choose two.)

package knowledge;
class InformationException extends Exception {}
public class LackOfInformationException
 extends InformationException {
 public LackOfInformationException() { // t1
 super("");
 }
 public LackOfInformationException(String s) { // t2
 this(new Exception(s));
 }
 public LackOfInformationException(Exception c) { // t3
 super();
 }
 public String getMessage() throws ArithmeticException {
 return "lackOf";
 } }

Chapter 12 ■ Practice Exam 1 367

A. LackOfInformationException compiles without issue.

B. The constructor declared at line t1 does not compile.

C. The constructor declared at line t2 does not compile.

D. The constructor declared at line t3 does not compile.

E. The getMessage()method does not compile because it is an invalid override.

F. LackOfInformationException is a checked exception.

3. Which of the following are valid code comments in Java? (Choose three.)

A. /** Insert */ in next method **/
B. /****** Find the kitty cat */
C. // Is this a bug?
D. $ Begin method - performStart() $
E. /*** TODO: Call grandma ***/
F. # Updated code by Patti

4. Suppose the pandas table has one row with the name Mei Xiang and the location DC. What
does the following code output?

var url = "jdbc:hsqldb:file:mammals";
var sql = "SELECT name FROM pandas WHERE location = ?";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql); // s1
 stmt.setString(1, "DC");
 var rs = stmt.executeQuery()) {

 if (rs.next())
 System.out.println(rs.getString("name")); // s2
 else
 System.out.println("No match");
}

A. Mei Xiang
B. No match
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

5. What does the following code print?

// Hare.java
package com.animal;

368 Chapter 12 ■ Practice Exam 1

public class Hare {
 void init() {
 System.out.print("init- ");
 }
 protected void race() {
 System.out.print("hare- ");
 } }

// Tortoise.java
package com.animal;
public class Tortoise {
 protected void race(Hare hare) {
 hare.init(); // x1
 hare.race(); // x2
 System.out.print("tortoise- ");
 }
 public static void main(String[] args) {
 var tortoise = new Tortoise();
 var hare = new Hare();
 tortoise.race(hare);
 } }

A. init- hare- tortoise
B. init- hare
C. The first line with a compiler error is line x1.

D. The first line with a compiler error is line x2.

E. The code does not compile due to a different line.

F. The code throws an exception.

6. Which of the following lambda expressions can be passed to a method that takes
IntUnaryOperator as an argument? (Choose three.)

A. v - > {System.out.print(“Hello!”); return 2%1;}
B. (Integer w) - > w.intValue()
C. (int j) - > (int) 30L
D. (int q) - > q / 3.1
E. (long x) - > (int) x
F. z - > z

Chapter 12 ■ Practice Exam 1 369

7. Which of the following is a valid method name in Java? (Choose two.)

A. _____
B. %run
C. check- Activity
D. $Hum2
E. sing\\3
F. po#ut

8. Which of the following is true of this module declaration?

1: module com.mammal {
2: exports com.mammal.cat;
3: exports com.mammal.mouse to com.mice;
4: uses com.animal;
5: }

A. The first line that fails to compile is line 1.

B. The first line that fails to compile is line 2.

C. The first line that fails to compile is line 3.

D. The first line that fails to compile is line 4.

E. The code compiles.

9. How many lines fail to compile?

class Roller<E extends Wheel> {
 public void roll(E e) { }
}
class Wheel { }
class CartWheel extends Wheel { }

public class RollingContest {
 Roller<CartWheel> wheel1 = new Roller<CartWheel>();
 Roller<Wheel> wheel2 = new Roller<CartWheel>();
 Roller<? extends Wheel> wheel3 = new Roller<CartWheel>();
 Roller<? extends Wheel> wheel4 = new Roller<Wheel>();
 Roller<? super Wheel> wheel5 = new Roller<CartWheel>();
 Roller<? super Wheel> wheel6 = new Roller<Wheel>();
}

A. One

B. Two

370 Chapter 12 ■ Practice Exam 1

C. Three

D. Four

E. Five

F. Six

10. Given the following, what can we infer about subtypes of First, called Chicken and Egg?
(Choose two.)
public sealed interface First permits Chicken, Egg { }

A. Chicken and Egg must be interfaces.

B. Chicken and Egg can be classes or interfaces.

C. Chicken and Egg must be located in a file other than First.

D. Chicken and Egg must be located in the same file as First.

E. Chicken and Egg must be located as nested classes of First.

F. Chicken and Egg may be located in the same file or a different file as First.

11. What is the output of the following?

var listing = new String[][] { { "Book", "34.99" },
 { "Game", "29.99" }, { "Pen", ".99" } };
System.out.println(listing.length + " " + listing[0].length);

A. 2 2
B. 2 3
C. 3 2
D. 3 3
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

12. What does the following do?

public class Player {
 interface Basket {
 boolean needToAim(double angle);
 }
 static void prepare(double angle, Basket t) {
 boolean ready = t.needToAim(angle); // k1
 System.out.println(ready);
 }
 public static void main(String[] args) {
 prepare(45, d => d > 5 || d < - 5); // k2
 } }

Chapter 12 ■ Practice Exam 1 371

A. It prints true.

B. It prints false.

C. It doesn’t compile due to line k1.

D. It doesn’t compile due to line k2.

E. It doesn’t compile due to another line.

13. What does ServiceLocator.load(ChocolateLab.class) return?

A. Collection
B. List
C. Stream
D. None of the above

14. What is the output of the following when run as java EchoFirst.java seed flower plant?

import java.util.*;

public class EchoFirst {
 public static void main(String[] args) {
 var result = Arrays.binarySearch(args, args[0]);
 System.out.println(result);
 } }

A. 0
B. 1
C. 2
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. The output is not guaranteed.

15. Which is part of the module service and has a requires directive?

A. Consumer

B. Service locator

C. Service provider

D. Service provider interface

E. None of the above

16. Starting with DoubleBinaryOperator and going downward, fill in the values for the table. The
method signature refers to the abstract method associated with each functional interface.

Functional Interface # Parameters in Method Signature

DoubleBinaryOperator

LongToIntFunction

ToLongBiFunction

372 Chapter 12 ■ Practice Exam 1

Functional Interface # Parameters in Method Signature

IntSupplier

ObjLongConsumer

A. 1, 0, 0, 0, 2
B. 1, 2, 1, 0, 1
C. 2, 1, 0, 1, 2
D. 2, 1, 1, 0, 1
E. 2, 1, 2, 0, 2
F. 3, 0, 2, 1, 1

17. What is the result of the following?

import java.time.*;
import java.time.format.*;
public class PiDay {
 public static void main(String[] args) {
 LocalDateTime pi = LocalDateTime.of(2022, 3, 14, 1, 59);
 DateTimeFormatter formatter = DateTimeFormatter
 .ofPattern("m.ddhh'MM'");
 System.out.print(formatter.format(pi));
 } }

A. 3.140159
B. 3.1401MM
C. 59.140103
D. 59.1401MM
E. None of the above

18. Suppose cats is an empty table. How many rows are in this table when the code has
completed?

10: try (var conn = DriverManager.getConnection(url)) {
11: conn.setAutoCommit(false);
12: String insert = "INSERT INTO cats VALUES (? ,?)";
13:
14: var sp1 = conn.setSavepoint();
15: try (var stmt = conn.prepareStatement(insert)) {
16: stmt.setInt(1, 1);
17: stmt.setString(2, "Kitty");
18: stmt.executeUpdate();

Chapter 12 ■ Practice Exam 1 373

19: }
20: var sp2 = conn.setSavepoint();
21: conn.rollback(sp1);
22: try (var stmt = conn.prepareStatement(insert)) {
23: stmt.setInt(1, 2);
24: stmt.setString(2, "Beverly");
25: stmt.executeUpdate();
26: }
27: conn.rollback(sp2);
28: conn.commit();
29: }

A. Zero

B. One

C. Two

D. The code does not compile.

E. The code throws an exception.

19. Given the following class structure, what are valid ways to create a Spinner instance inside
the bake() method? (Choose three.)

public class Kitchen {
 class Mixer {
 class Spinner {}
 }
 public void bake() {
 // INSERT CODE HERE
 } }

A. var a = new Kitchen().new Mixer().new Spinner();
B. Mixer.Spinner b = Mixer.new Spinner();
C. var c = new Spinner();
D. var d = new Mixer().new Spinner();
E. Kitchen.Mixer.Spinner e = new Kitchen().new Mixer().new Spinner();
F. Spinner f = new Kitchen().new Mixer().new Spinner();

20. Which sets of lines can be removed without stopping the code from compiling and while
printing the same output? (Choose three.)

14: String race = "";
15: outer:
16: do {
17: inner:

374 Chapter 12 ■ Practice Exam 1

18: do
19: {
20: race += "x";
21: }
22: while (race.length() <= 4);
23: } while (race.length() < 4);
24: System.out.println(race);

A. Lines 15 and 17

B. Lines 16 and 23

C. Lines 17, 18, and 22

D. Line 17

E. Line 22

F. Line 23

21. How many of these module declarations are valid?

module com.apple { exports com.apple; }
module com.4apple { requires com.apple;}
module com.apple4 { declares com.apple; }
module com.apple- four { }
module com.apple$ {}

A. None

B. One

C. Two

D. Three

E. Four

F. Five

22. Assuming - g:vars is used when the code is compiled to include debug information, what is the
output of the following code snippet?

51: Double tea = null;
52: Object coffee = (Integer)null;
53: String juice = "";
54: if(coffee instanceof Integer x) {
55: System.out.println(x.intValue());
56: } else if (tea < juice.length()) {
57: System.out.println(tea);
58: }

Chapter 12 ■ Practice Exam 1 375

A. A NullPointerException naming tea in the stack trace

B. A NullPointerException naming coffee in the stack trace

C. A NullPointerException naming juice in the stack trace

D. A NullPointerException naming tea and coffee in the stack trace

E. None of the above

23. What is the minimum number of requires directives that need to be removed to break the
cyclic dependency?

module com.animal {
 exports com.animal;
 requires com.plant;
}
module com.plant {
 exports com.plant;
 requires com.animal;
}
module com.worm {
 exports com.worm;
 requires com.animal;
 requires com.plant;
}
module com.hedgehog {
 exports com.hedgehog;
 requires com.animal;
 requires com.plant;
}

A. None, as there is no cyclic dependency

B. 1

C. 2

D. 3

E. 4

24. Which of the following lambda expressions can be inserted into both blanks while still allow-
ing the application to compile? (Choose three.)

package spooky;
import java.util.function.*;
abstract class Phantom {
 public void bustLater(DoubleConsumer buster, double value) {

376 Chapter 12 ■ Practice Exam 1

 buster.accept(value);
 }
}
public class Ghost extends Phantom {
 public void bustNow(Consumer<Double> buster, double value) {
 buster.accept(value);
 }
 void call() {
 var value = 10.0;
 bustNow(, value);
 bustLater(, value);
 } }

A. System.out::print
B. a - > {System.out.println(a.intValue());}
C. g - > {System.out.println();}
D. u - > System.out.println((long)u)
E. v - > System.out.print(v)
F. w - > System.out::println

25. Which statements best describe the result of executing this code? (Choose two.)

package nyc;
public class TouristBus {
 public static void main(String... args) {
 var tour = new String[] {
 "Downtown", "Uptown", "Brooklyn" };
 var times = new String[] { "Day", "Night" };

 for (int i = 0, j = 0; i < tour.length; i++, j++)
 System.out.println(tour[i] + " " + times[j]);
 } }

A. The println() causes one line of output.

B. The println() causes two lines of output.

C. The println() causes three lines of output.

D. The code terminates successfully.

E. The code throws an exception at runtime.

26. What is the output of the following application?

package rope;
import java.util.concurrent.*;
public class Jump {
 private static void await(CyclicBarrier b) {

Chapter 12 ■ Practice Exam 1 377

 try { b.await(); } catch (Exception e) {}
 }
 public static void main(String[] chalk) {
 ExecutorService s = Executors.newFixedThreadPool(4);
 final var b = new CyclicBarrier(4,
 () - > System.out.print("Jump!"));
 for(int i=0; i<10; i++)
 s.execute(() - > await(b));
 s.shutdown();
 } }

A. Jump! is printed once, and the program exits.

B. Jump! is printed twice, and the program exits.

C. The code does not compile.

D. The output cannot be determined ahead of time.

E. A deadlock is produced at runtime.

F. None of the above.

27. Which statements about try- with- resources are true? (Choose two.)

A. Any resource used must implement Closeable.

B. If more than one resource is used, then the order in which they are closed is the reverse
of the order in which they were created.

C. If the try block and close() method both throw an exception, the one thrown by the try
block is suppressed.

D. Neither a catch nor a finally block is required.

E. The close() method of the resources must throw a checked exception.

28. What is the result of calling the following method?

public static void printLength() {
 record Earthworm(int length) {
 Earthworm {
 length = 4;
 }
 }
 var worm = new Earthworm(6);
 System.out.println(worm.length());
}

A. Earthworm does not compile because records are not allowed inside methods.

B. Earthworm does not compile because record fields are immutable.

C. Earthworm does not compile because length is not allowed as a field.

D. The code does not compile for another reason.

E. 4
F. 6

378 Chapter 12 ■ Practice Exam 1

29. What is the output of the following application?

package homework;
import java.util.*;
import java.util.stream.*;
public class QuickSolution {
 public static int findFast(Stream<Integer> s) {
 return s.findAny().get();
 }
 public static int findSlow(Stream<Integer> s) {
 return s.parallel().findFirst().get();
 }

 public static void main(String[] pencil) {
 var s1 = List.of(1,2,3,4,5).stream();
 var s2 = List.of(1,2,3,4,5).stream();
 int val1 = findFast(s1);
 int val2 = findSlow(s2);
 System.out.print(val1 + " " + val2);
 } }

A. 1 1
B. 3 1
C. The answer cannot be determined until runtime.

D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. None of the above.

30. Which statements are correct about the following text block? (Choose three.)

var cute = """
 otter\
 pup \s
 play
 "toy"
 """;

A. There are no whitespace characters between otter and pup.

B. There are one or more whitespace characters between otter and pup.

C. There is exactly one whitespace character between pup and play.

D. There are exactly two whitespace characters between pup and play.

E. There are exactly three whitespace characters between pup and play.

F. Adding escape characters to the quotes around toy changes the value of the text block.

G. Adding escape characters to the quotes around toy does not change the value of the
text block.

Chapter 12 ■ Practice Exam 1 379

31. What is the output of the following program?

public class Ghost {
 private final String name;
 public Ghost() {
 this(null);
 this.name = "Casper";
 }
 public Ghost(String n) {
 name = "Boo";
 }
 public static void main(String[] sound) {
 var d = new Ghost("Space");
 System.out.println(d.name);
 } }

A. Casper
B. Boo
C. Space
D. The code does not compile.

E. The answer cannot be determined with the information given.

F. None of the above.

32. Which method can fill in the blank that would cause the program to consistently print Tie!
10 times?

import java.util.concurrent.*;
import java.util.concurrent.locks.*;
public class TieShoes {
 private volatile Lock shoes = new ReentrantLock();
 public void tie() {
 try {
 if (shoes.) {
 System.out.println("Tie!");
 shoes.unlock();
 }
 } catch (Exception e) {}
 }
 public static void main(String... unused) {
 var gate = new TieShoes();
 for (int i = 0; i < 10; i++) {
 var t = new Thread(() - > gate.tie());
 t.start();
 t.interrupt();
 } } }

380 Chapter 12 ■ Practice Exam 1

A. lock()
B. tryLock()
C. tryLock(10)
D. The code does not compile regardless of what is placed in the blank.

E. None of the above.

33. What is the output of the following program?

var bed = List.of((short)2,(short)5);
var pillow = bed.parallelStream().reduce(0,
 (a,b) - > b.doubleValue() + a.doubleValue(),
 (c,d) - > d.doubleValue() + c.doubleValue());
System.out.println(pillow);

A. 0
B. 0.0
C. 7
D. 7.0
E. The code does not compile.

F. None of the above.

34. What is the output of the following application?

package woods;
interface Plant {
 default String grow() { return "Grow!"; }
}
interface Living {
 public default String grow() { return "Super Growing!"; }
}
public class Tree implements Plant, Living { // m1
 public String grow() { return super.Plant.grow(); }
 public static void main(String[] leaves) {
 Plant p = new Tree(); // m2
 System.out.print(((Living)p).grow()); // m3
 } }

A. Grow!
B. Super Growing!
C. It does not compile because of line m1.

D. It does not compile because of line m2.

E. It does not compile because of line m3.

F. None of the above.

Chapter 12 ■ Practice Exam 1 381

35. How many lines of the following interface do not compile?

15: public interface Piano {
16: String type = "Grand";
17: void play();
18: public static int getNumberOfKeys() {
19: return type.equals("Grand") ? 88 : 61;
20: }
21: private static void printPianoInfo() {
22: play();
23: System.out.println("Key Count: "+getNumberOfKeys());
24: }
25: default void tune() {
26: play();
27: printPianoInfo();
28: } }

A. Zero

B. One

C. Two

D. Three

E. Four

F. None of the above

36. Assume the file system is accessible, /flower/rose.txt exists, and the other two direc-
tories /garden and /nursery do not exist. What is the expected result after executing the
following code snippet?

Files.createDirectories(Path.of("/garden"));
Files.createDirectory(Path.of("/nursery"));

Files.move(Path.of("/flower/rose.txt"),
 Paths.get("/garden"), StandardCopyOption.REPLACE_EXISTING);
Files.move(new File("/garden/rose.txt").toPath(),
 Paths.get("/nursery"), StandardCopyOption.ATOMIC_MOVE);

A. There is a file at /nursery/rose.txt.

B. There is a file at /flower/rose.txt.

C. The code does not compile.

D. The first move() statement throws an exception.

E. The second move() statement throws an exception.

F. None of the above.

382 Chapter 12 ■ Practice Exam 1

37. What is the output of the following?

String chicken = "hen";

int numEggs = switch (chicken) {
 "hen" - > 3;
 default - > 0;
};

System.out.println(numEggs);

A. 0
B. 3
C. 30
D. The code does not compile.

38. Given the following three class declarations, which sets of access modifiers can be inserted,
in order, into the following blank lines that would allow all of the classes to compile?
(Choose three.)

// Alarm.java
package wake;
public class Alarm {
 static int clock;
 long getTime() {return clock;}
}

// Coffee.java
package wake;
public class Coffee {
 private boolean bringCoffee() {
 return new Alarm().clock<10;
 }
}

// Snooze.java
package sleep;
public class Snooze extends wake.Alarm {
 private boolean checkTime() { return getTime()>10;}
}

Chapter 12 ■ Practice Exam 1 383

A. package (blank) and package (blank)

B. package (blank) and protected
C. protected and package (blank)

D. protected and protected
E. private and public
F. public and public

39. How many times does this code print [2, 7, 8]?

1: import java.util.*;
2: import java.util.stream.*;
3:
4: public class RemoveMe<T> {
5: private List<T> values;
6: public RemoveMe(T... values) {
7: this.values = Arrays.stream(values)
8: .collect(Collectors.toList());
9: }
10: public void remove(T value) {
11: values.remove(value);
12: }
13: public static void main(String[] args) {
14: var integer = new RemoveMe<Integer>(2, 7, 1, 8);
15: var longs = new RemoveMe<Long>(2L, 7L, 1L, 8L);
16: integer.remove(1);
17: longs.remove(1L);
18:
19: System.out.println(integer.values);
20: System.out.println(longs.values);
21:
22: var values = new ArrayList<Integer>();
23: values.add(2);
24: values.add(7);
25: values.add(1);
26: values.add(8);
27: values.remove(1);
28: System.out.println(values);
29: } }

384 Chapter 12 ■ Practice Exam 1

A. Zero

B. One

C. Two

D. Three

E. The code does not compile.

F. The code compiles but throws an exception.

40. What is the result of executing the following code snippet?

var name = "Desiree";
int _number = 694;
boolean profit$$$;
System.out.println(name + " won. "
 + _number + " profit? " + profit$$$);

A. The declaration of name does not compile.

B. The declaration of _number does not compile.

C. The declaration of profit$$$ does not compile.

D. The println() statement does not compile.

E. The code compiles and runs successfully.

F. The code compiles and throws an exception at runtime.

41. Which are true of the following? (Choose two.)

public class Hippo {
 private static void hippo(short num1, short num2) {
 System.out.println("shorts");
 }
 private static void hippo(int... nums) {
 System.out.println("varargs");
 }
 private static void hippo(Integer num1, Integer num2) {
 System.out.println("Integers");
 }
 private static void hippo(long num1, long num2) {
 System.out.println("longs");
 }
 public static void main(String... args) {
 hippo(1, 5);
 } }

Chapter 12 ■ Practice Exam 1 385

A. It outputs Integers.

B. It outputs longs.

C. It outputs shorts.

D. It outputs varargs.

E. If the method originally called by hippo() were commented out, the code would output
Integers.

F. If the method originally called by hippo() were commented out, the code would
output longs.

G. If the method originally called by hippo() were commented out, the code would
output shorts.

H. If the method originally called by hippo() were commented out, the code would output
varargs.

42. In most of the United States, daylight saving time ends on November 6, 2022 at 02:00 and
we repeat that hour. What is the output of the following?

var localDate = LocalDate.of(2022, 10, 6);
var localTime = LocalTime.of(1, 0);
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);
var offset = z.getOffset();

for (int i = 0; i < 6; i++)
 z = z.plusHours(1);

System.out.println(z.getHour() + " "
 + offset.equals(z.getOffset()));

A. 5 false
B. 5 true
C. 6 false
D. 6 true
E. 7 false
F. 7 true
G. The code does not compile.

H. The code compiles but throws an exception at runtime.

43. What is the result of executing the Clownfish program?

package ocean;
class BubbleException extends Exception {}
abstract class Fish {

386 Chapter 12 ■ Practice Exam 1

 Fish getFish() {
 throw new RuntimeException("fish!");
 } }
public final class Clownfish extends Fish {
 public final Clownfish getFish() throws BubbleException {
 throw new RuntimeException("clown!");
 }
 public static void main(String[] bubbles) throws Exception {
 final var v = (Fish)new Clownfish();
 Clownfish f = v;
 f.getFish();
 System.out.println("swim!");
 } }

A. The code compiles and prints swim!.

B. The code compiles and prints fish!.

C. The code compiles and prints a stack trace.

D. One line of the program does not compile.

E. Two lines of the program do not compile.

F. None of the above.

44. What is the output of the following code?

var sum = 0.0;
sum = sum + Math.round(11.2);
sum = sum + Math.ceil(8.1);
sum = sum + Math.abs(sum);

System.out.println(sum);

A. 39
B. 39.0
C. 40
D. 40.0
E. 41
F. 41.0
G. None of the above

45. Given the following classes, what is the output of the Watch program?

1: class SmartWatch extends Watch {
2: private String getType() { return "smart watch"; }
3: public String getName() {

Chapter 12 ■ Practice Exam 1 387

4: return getType() + ",";
5: }
6: }
7: public class Watch {
8: private String getType() { return "watch"; }
9: public String getName(String suffix) {
10: return getType() + suffix;
11: }
12: public static void main(String[] args) {
13: Watch watch = new Watch();
14: Watch smartWatch = new SmartWatch();
15: System.out.print(watch.getName(","));
16: System.out.print(smartWatch.getName(""));
17: } }

A. smart watch,smart watch
B. smart watch,watch
C. watch,smart watch
D. watch,watch
E. The code does not compile.

F. None of the above.

46. Assuming the heart.txt and romance.txt files are accessible within the file system with the
contents shown, what is the output of the code snippet?

// heart.txt
happy

// romance.txt
Hapless

12: var x = Path.of("heart.txt");
13: var y = Paths.get("romance.txt");
14: var v = Files.mismatch(x, y);
15: System.out.println(v);

A. - 1
B. 0
C. 2
D. 3
E. 4
F. The code does not compile.

388 Chapter 12 ■ Practice Exam 1

47. What is the result of the following code?

// Hopper.java
package com.animals;
public class Hopper {
 protected void hop() {
 System.out.println("hop");
 }
}

// Grasshopper.java
package com.insect;
import com.animals.Hopper;
public class Grasshopper extends Hopper {
 public void move() {
 hop(); // p1
 }
}

// HopCounter.java
package com.animals;
import com.insect.Grasshopper;
public class HopCounter {
 public static void main(String[] args) {
 var hopper = new Grasshopper();
 hopper.move(); // p2
 hopper.hop(); // p3
 } }

A. The code prints hop once.

B. The code prints hop twice.

C. The first compiler error is on line p1.

D. The first compiler error is on line p2.

E. The first compiler error is on line p3.

48. Given the following class, how many lines contain compilation errors?

1: import java.io.*;
2: class StungException extends Exception {}
3: class Suit implements Closeable {
4: public void close() throws IOException {}
5: }

Chapter 12 ■ Practice Exam 1 389

6: public class BeeCatcher {
7: public static void main(String[] b) throws IOException {
8: var s = new Suit();
9: var t = new Suit();
10: try (s; t) {
11: throw new StungException();
12: } catch (StungException | Exception e) {
13: s = null;
14: } finally {
15: } } }

A. One

B. Two

C. Three

D. Four

E. None. The code compiles as is.

49. Which of the following can fill in the blank to print out just the number 161?

import java.util.*;
import java.util.stream.*;
record Runner(int numberMinutes) { }
public class Marathon {
 public static void main(String[] args) {
 var match = Optional.ofNullable(161); // line z
 var runners = Stream.of(new Runner(183),
 new Runner(161), new Runner(201));
 var opt = runners.map(Runner::numberMinutes)
 ;
 } }

A.

.filter(m - > match.get().equals(m))

.peek(System.out::println)

.count()

B.

.filter(m - > match.get().equals(m))

.peek(System.out::println)

.max()

390 Chapter 12 ■ Practice Exam 1

C.

.peek(System.out::println)

.filter(m - > match.get().equals(m))

.count()

D.

.peek(System.out::println)

.filter(m - > match.get().equals(m))

.max()

E. The code does not compile due to line z.

F. None of the above.

50. How many lines of the following application contain compilation errors?

1: package percussion;
2:
3: interface MakesNoise {}
4: abstract class Instrument implements MakesNoise {
5: public Instrument(int beats) {}
6: public void play() {}
7: }
8: public class Drum extends Instrument {
9: public void play(int count) {}
10: public void concert() {
11: super.play(5);
12: }
13: public static void main(String[] beats) {
14: MakesNoise mn = new Drum();
15: mn.concert();
16: } }

A. The code compiles and runs without issue.

B. One

C. Two

D. Three

E. Four

F. None of the above

Practice Exam 2

Like Chapter 12, this chapter contains 50 questions and is designed
to simulate a real 1Z0- 829 exam. Ready with your scratch paper
and 90 minutes? Good luck!

Chapter

13

392 Chapter 13 ■ Practice Exam 2

1. Which statements about the following application are true? (Choose two.)

package party;
import java.util.concurrent.*;
public class Plan {
 ExecutorService s = Executors.newScheduledThreadPool(10);
 public void planEvents() {
 Runnable r1 = () - > System.out.print("Check food");
 Runnable r2 = () - > System.out.print("Check drinks");
 Runnable r3 = () - > System.out.print("Take out trash");
 s.scheduleWithFixedDelay(r1,1,TimeUnit.HOURS); // g1
 s.scheduleAtFixedRate(r2,1,1000,TimeUnit.SECONDS); // g2
 s.execute(r3); // g3
 s.shutdownNow();
 } }

A. Line g1 does not compile.

B. Line g2 does not compile.

C. Line g3 does not compile.

D. All of the lines of code compile.

E. The code terminates properly at runtime.

F. The code hangs indefinitely at runtime.

G. The code throws an exception at runtime.

2. Assuming the current locale uses dollars ($) and the following method is called with a double
value of 960_010, which of the following values are printed? (Choose two.)

public void print(double t) {
 System.out.print(NumberFormat.getCompactNumberInstance().format(t));

 System.out.print(
 NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.SHORT).format(t));

 System.out.print(NumberFormat.getCurrencyInstance().format(t));
}

A. 960K
B. 9M
C. 9.6M
D. $960,010.00
E. $960,000.00
F. 900 thousand
G. 9 million

Chapter 13 ■ Practice Exam 2 393

3. Suppose we have a peacocks table with two columns: name and rating. What does the fol-
lowing code output if the table is empty?

var url = "jdbc:hsqldb:file:birds";
var sql = "SELECT name FROM peacocks WHERE name = ?";
try (var conn = DriverManager.getConnection(url);
 var stmt = conn.prepareStatement(sql)) { // s1

 stmt.setString(1, "Feathers");

 try (var rs = stmt.executeQuery()) { // s2
 while (rs.hasNext()) {
 System.out.println(rs.next());
 }
 }
}

A. false
B. true
C. The code does not compile due to line s1.

D. The code does not compile due to line s2.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

4. What is the output of the following?

1: import static java.util.stream.Collectors.*;
2: import java.util.*;
3: public record Goat(String food) {
4: public static void main(String[] args) {
5: var goats = List.of(
6: new Goat("can"),
7: new Goat("hay"),
8: new Goat("shorts"),
9: new Goat("hay"));
10:
11: goats.stream()
12: .collect(groupingBy(Goat::food))
13: .entrySet()
14: .stream()
15: .filter(e - > e.getValue().size() == 2)
16: .map(e - > e.getKey())
17: .collect(partitioningBy(e - > e.isEmpty()))

394 Chapter 13 ■ Practice Exam 2

18: .get(false)
19: .stream()
20: .sorted()
21: .forEach(System.out::print);
22: } }

A. canshorts
B. hay
C. hayhay
D. shortscan
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

5. What is the output of the following application?

abstract class TShirt {
 abstract int insulate();
 public TShirt() {
 System.out.print("Starting...");
 }
}
public class Wardrobe {
 abstract class Sweater extends TShirt {
 int insulate() {return 5;}
 }
 private void dress() {
 final class Jacket extends Sweater { // v1
 int insulate() {return 10;}
 };
 final TShirt outfit = new Jacket() { // v2
 int insulate() {return 20;}
 };
 System.out.println("Insulation:"+outfit.insulate());
 }

 public static void main(String... snow) {
 new Wardrobe().dress();
 } }

A. Starting...Insulation:20
B. Starting...Insulation:40
C. The code does not compile because of line v1.

D. The code does not compile because of line v2.

E. The code does not compile for a different reason.

Chapter 13 ■ Practice Exam 2 395

6. Which of the following use generics and compile without warnings? (Choose two.)

A. List<String> a = new ArrayList();
B. List<> b = new ArrayList();
C. List<String> c = new ArrayList<>();
D. List<> d = new ArrayList<>();
E. List<String> e = new ArrayList<String>();
F. List<> f = new ArrayList<String>();

7. Which of the following statements about performing a concurrent reduction are correct?
(Choose two.)

A. If a collector is used, it must have the unordered characteristic.

B. The stream must operate on thread- safe collections.

C. If the reduce() method is used with a lambda expression, then it should be stateful.

D. The stream must inherit ParallelStream<T>.

E. The stream must be parallel.

F. If a collector is used, it must have the concurrent characteristic.

8. What is the output of the following application?

package tax;
public class Accountant {
 public void doTaxes() throws Throwable {
 try {
 throw new NumberFormatException();
 } catch (ClassCastException
 | ArithmeticException e) { // p1
 System.out.println("Math");
 } catch (IllegalArgumentException | Exception f) { // p2
 System.out.println("Unknown");
 } }
 public static void main(String[] numbers) throws Throwable {
 try {
 new Accountant().doTaxes();
 } finally {
 System.out.println("Done!");
 } } }

A. Math
B. Unknown
C. Unknown followed by Done!
D. The code does not compile due to line p1.

E. The code does not compile due to line p2.

F. None of the above.

396 Chapter 13 ■ Practice Exam 2

9. How many lines contain a compiler error?

1: public record Bee(boolean gender, String species) {
2: Bee {
3: this.gender = gender;
4: this.species = species;
5: }
6: Bee(boolean gender) {
7: this(gender, "Honeybee");
8: }
9: @Override public String getSpecies() {
10: return species;
11: }
12: @Override public String toString() {
13: return species;
14: } }

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

10. What is a possible output of the following?

var trainDay = LocalDate.of(2022, 5, 14);
var time = LocalTime.of(10, 0);
var zone = ZoneId.of("America/Los_Angeles");
var zdt = ZonedDateTime.of(trainDay, time, zone);

var instant = zdt.toInstant();
instant = instant.plus(1, ChronoUnit.YEARS);
System.out.println(instant);

A. 2022- 05- 14T10:00- 07:00[America/Los_Angeles]
B. 2022- 05- 14T17:00:00Z
C. 2023- 05- 14T10:00- 07:00[America/Los_Angeles]
D. 2023- 05- 14T17:00:00Z
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

Chapter 13 ■ Practice Exam 2 397

11. Which of the following are valid functional interfaces? (Choose two.)

A.

interface CanClimb {
 default void climb() {}
 static void climb(int x) {}
}

B.

interface CanDance {
 int dance() { return 5; }
}

C.

interface CanFly {
 abstract void fly();
}

D.

interface CanRun {
 void run();
 static double runFaster() {return 2.0; }
}

E.

interface CanSwim {
 abstract Long swim();
 boolean test();
}

12. Which are true of jlink? (Choose two.)

A. Only the modules specified by - - add- modules are included in the runtime image.

B. At least the modules specified by - - add- modules are included in the runtime image.

C. Only the modules with a requires directive in the module- info file are included in the
runtime image.

D. Only the modules with a requires directive in the module- info file and their transitive
dependencies are included in the runtime image.

E. The output is a directory.

F. The output is a ZIP file.

398 Chapter 13 ■ Practice Exam 2

13. What is the output of the following?

var builder = new StringBuilder("Leaves growing");
do {
 builder.delete(0, 5);
} while (builder.length() > 5);
System.out.println(builder);

A. Leaves growing
B. ing
C. wing
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

14. What is the output of the following application?

1: package fruit;
2: enum Season {
3: SPRING(1), SUMMER(2), FALL(3), WINTER(4);
4: public Season(int orderId) {}
5: }
6: public class PickApples {
7: public static void main(String... orchard) {
8: final Season s = Season.FALL;
9: switch(s) {
10: case Season.FALL:
11: System.out.println("Time to pick!");
12: default:
13: System.out.println("Not yet!");
14: } } }

A. Time to pick!
B. Time to pick! followed by Not yet!
C. One line of code does not compile.

D. Two lines of code do not compile.

E. Three lines of code do not compile.

F. The code compiles but prints an exception at runtime.

15. Which are equivalent to this switch statement that takes an int value for numEggs?
(Choose two.)

boolean hasEggs;
switch (numEggs) {
 case 0 : hasEggs = true; break;
 default : hasEggs = false; break;
}
System.out.print(hasEggs);

Chapter 13 ■ Practice Exam 2 399

A.

boolean hasEggs = switch (numEggs) {
 case 0 - > true
 default - > false
};
System.out.print(hasEggs);

B.

boolean hasEggs = switch (numEggs) {
 case 0 - > true;
 default - > false;
};
System.out.print(hasEggs);

C.

boolean hasEggs = switch (numEggs) {
 case 0 - > return true;
 default - > return false;
};
System.out.print(hasEggs);

D.

boolean hasEggs = switch (numEggs) {
 case 0 - > {yield true};
 default - > {yield false};
};
System.out.print(hasEggs);

E.

boolean hasEggs = switch (numEggs) {
 case 0 - > {yield true;}
 default - > {yield false;}
};
System.out.print(hasEggs);

F.

boolean hasEggs = switch (numEggs) {
 case 0 - > {return true;}
 default - > {return false;}
};
System.out.print(hasEggs);

400 Chapter 13 ■ Practice Exam 2

16. Which of the following changes, when applied independently, will print the same result as the
original implementation? (Choose two.)

10: long sum = IntStream.of(4, 6, 8)
11: .boxed()
12: .parallel()
13: .mapToInt(x - > x)
14: .sum();
15: System.out.print(sum);

A. Change the type on line 10 to double.

B. Change the type on line 10 to int.

C. Change line 11 to unboxed().

D. Remove line 11.

E. Remove line 12.

F. Remove line 13.

17. How many objects are eligible for garbage collection immediately before the end of the
main() method?

public class Tennis {
 public static void main(String[] game) {
 String[] balls = new String[1];
 int[] scores = new int[1];
 balls = null;
 scores = null;
 } }

A. None

B. One

C. Two

D. Three

E. The code does not compile.

F. None of the above.

18. What is true about the following?

import java.util.*;
public class Yellow {
 public static void main(String[] args) {
 List list = Arrays.asList("Sunny");
 method(list); // c1
 }

Chapter 13 ■ Practice Exam 2 401

 private static void method(Collection<?> x) { // c2
 x.forEach(a - > {}); // c3
 } }

A. The code doesn’t compile due to line c1.

B. The code doesn’t compile due to line c2.

C. The code doesn’t compile due to line c3.

D. The code compiles and runs without output.

E. The code compiles but throws an exception at runtime.

19. What is true of the equals() method in this record?

public record Coin(boolean heads) {
 public boolean equals(Object obj) {
 if (! (obj instanceof Coin coin)) {
 return false;
 }
 return heads == coin.heads;
 } }

A. It returns true when passed in a null.

B. It throws an exception when passed a Boolean instead of a Coin.

C. It does not compile due to the instanceof.

D. It does not compile because equals() is not allowed to be implemented in a record.

E. None of the above.

20. Which message does the following application print?

package ranch;
public class Cowboy {
 private int space = 5;
 private double ship = space < 2 ? 3L : 10.0f; // g1
 public void printMessage() {
 if(ship>1) {
 System.out.print("Goodbye!");
 } if(ship<10 && space>=2) // g2
 System.out.print("Hello!");
 else System.out.print("See you again!");
 }
 public static final void main(String... stars) {
 new Cowboy().printMessage();
 } }

402 Chapter 13 ■ Practice Exam 2

A. Hello!
B. Goodbye!
C. See you again!
D. It does not compile because of line g1.

E. It does not compile because of line g2.

F. None of the above.

21. What is the result of compiling and running the following application?

package names;
import java.util.*;
import java.util.function.*;
interface ApplyFilter {
 void filter(List<String> input);
}
public class FilterBobs {
 static Function<String,String> first = s - >
 {System.out.println(s); return s;};
 static Predicate second = t - > "bob".equalsIgnoreCase(t);
 public void process(ApplyFilter a, List<String> list) {
 a.filter(list);
 }
 public static void main(String[] contestants) {
 final List<String> people = new ArrayList<>();
 people.add("Bob");
 people.add("bob");
 people.add("Tina");
 people.add("Louise");
 final FilterBobs f = new FilterBobs();
 f.process(q - > {
 q.removeIf(second);
 q.forEach(first);
 }, people);
 } }

A. It prints two lines.

B. It prints three lines.

C. One line of code does not compile.

D. Two lines of code do not compile.

E. Three lines of code do not compile.

F. The code compiles but prints an exception at runtime.

Chapter 13 ■ Practice Exam 2 403

22. How many of the following variable declarations compile?

1: import java.util.*;
2: public class ListOfList {
3: public void create() {
4: List<?> n = new ArrayList<>();
5:
6: List<? extends RuntimeException> o
7: = new ArrayList<Exception>();
8:
9: List<? super RuntimeException> p
10: = new ArrayList<Exception>();
11:
12: List<T> q = new ArrayList<?>();
13:
14: List<T extends RuntimeException> r
15: = new ArrayList<Exception>();
16:
17: List<T super RuntimeException> s
18: = new ArrayList<Exception>();
19: } }

A. None

B. One

C. Two

D. Three

E. Four

F. Five

23. What is the result of running the following program?

1: package fun;
2: public class Sudoku {
3: static int[][] game;
4: public static void main(String args[]) {
5: game[3][3] = 6;
6: Object[] obj = game;
7: obj[3] = 'X';
8: System.out.println(game[3][3]);
9: } }

404 Chapter 13 ■ Practice Exam 2

A. 6
B. X
C. The code does not compile.

D. The code compiles but throws a NullPointerException at runtime.

E. The code compiles but throws a different exception at runtime.

F. The output is not guaranteed.

24. Which commands can include the following output? (Choose two.)

JDK Internal API Suggested Replacement
sun.misc.Unsafe See http://openjdk.java.net/jeps/260

A. jdeps sneaky.jar
B. jdeps –j sneaky.jar
C. jdeps –s sneaky.jar
D. jdeps - - internals sneaky.jar
E. jdeps - jdkinternals sneaky.jar
F. jdeps - - jdk- internals sneaky.jar

25. Assuming the following class is concurrently accessed by numerous threads, which statement
about the CountSheep class is correct?

package fence;
import java.util.concurrent.atomic.*;
public class CountSheep {
 private static AtomicInteger counter = new AtomicInteger();
 private Object lock = new Object();
 public synchronized int increment1() {
 return counter.incrementAndGet();
 }
 public static synchronized int increment2() {
 return counter.getAndIncrement();
 }
 public int increment3() {
 synchronized(lock) {
 return counter.getAndIncrement();
 } } }

A. The class is thread- safe only if increment1() is removed.

B. The class is thread- safe only if increment2() is removed.

C. The class is thread- safe only if increment3() is removed.

D. The class is already thread- safe.

E. The class does not compile.

F. The class compiles but may throw an exception at runtime.

http://openjdk.java.net/jeps/260

Chapter 13 ■ Practice Exam 2 405

26. How many lines of the main method fail to compile?

10: public class Transport {
11: static interface Vehicle {}
12: static class Bus implements Vehicle {}
13:
14: public static void main(String[] args) {
15: Bus bus = new Bus();
16:
17: System.out.println(null instanceof Bus);
18: System.out.println(bus instanceof Vehicle);
19: System.out.println(bus instanceof Bus);
20: System.out.println(bus instanceof ArrayList);
21: System.out.println(bus instanceof Collection);
22: } }

A. None

B. One

C. Two

D. Three

E. Four

F. Five

27. What is the output of the following application?

package fly;
public class Helicopter {
 public int adjustPropellers(int length, String[] type) {
 length++;
 type[0] = "LONG";
 return length;
 }
 public static void main(String[] climb) {
 final var h = new Helicopter();
 var length = 5;
 var type = new String[1];
 length = h.adjustPropellers(length, type);
 System.out.print(length + "," + type[0]);
 } }

406 Chapter 13 ■ Practice Exam 2

A. 5,LONG
B. 6,LONG
C. 5,null
D. 6,null
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

28. What does the following output?

var dice = new LinkedList<Integer>();
dice.offer(3);
dice.offer(2);
dice.offer(4);
System.out.print(dice.stream().filter(n - > n != 4));

A. 2
B. 3
C. [3 2]
D. The code does not compile.

E. None of the above.

29. How many of these classes cause a compiler error?

final class Chimp extends Primate { }
non- sealed class Bonabo extends Primate { }
final class Gorilla { }
public abstract sealed class Primate permits Chimp, Bonabo {
 abstract String getName();
}

A. Zero

B. One

C. Two

D. Three

E. Four

30. Which statements are true about the requires directive? (Choose two.)

A. Changing it to a requires direct directive is always allowed.

B. Changing it to a requires direct directive is never allowed.

C. Changing it to a requires direct directive is sometimes allowed.

D. Including requires java.base is allowed, but redundant.

E. Including requires java.base is never allowed.

F. Including requires java.base is sometimes needed to change the meaning of a file.

Chapter 13 ■ Practice Exam 2 407

31. Which of the following are true right before the transformation() method ends?
(Choose two.)

public static void transformation() {
 String state1 = new String("ice");
 String state2 = new String("water");
 String state3 = new String("mist");

 state1 = state2;
 state2 = state3;
 state3 = state1;
}

A. No objects are eligible for garbage collection.

B. One object is eligible for garbage collection.

C. Two objects are eligible for garbage collection.

D. No objects are guaranteed to be garbage collected.

E. One object is guaranteed to be garbage collected.

F. Two objects are guaranteed to be garbage collected.

32. Suppose we have a peacocks table with two columns: name and rating. What does the fol-
lowing code output if the table is empty?

8: var url = "jdbc:hsqldb:file:birds";
9: var sql = "SELECT name FROM peacocks WHERE name = ?";
10: try (var conn = DriverManager.getConnection(url);
11: var stmt = conn.prepareStatement(sql,
12: ResultSet.TYPE_FORWARD_ONLY,
13: ResultSet.CONCUR_READ_ONLY)) {
14:
15: stmt.setString(1, "Feathers");
16:
17: try (var rs = stmt.execute()) {
18: System.out.println(rs.next());
19: }
20: }

A. false
B. true
C. The code does not compile due to lines 10–13.

D. The code does not compile due to lines 17–18.

E. The code does not compile due to another line.

F. The code throws an exception at runtime.

408 Chapter 13 ■ Practice Exam 2

33. Which two numbers does the following code print? (Choose two.)

10: int numWorms = 0;
11: ++numWorms;
12: System.out.println(numWorms++);
13: int mask = ~numWorms;
14: System.out.println(mask);

A. 1
B. 2
C. 3
D. - 1
E. - 2
F. - 3

34. Bill wants to create a program that reads all of the lines of all of his books using NIO.2.
Unfortunately, Bill may have made a few mistakes writing his program. How many lines of
the following class contain compilation errors?

1: package bookworm;
2: import java.io.*;
3: import java.nio.file.*;
4: public class ReadEverything {
5: public void readFile(Path p) {
6: try {
7: Files.readAllLines(p)
8: .parallel()
9: .forEach(System.out::println);
10: } catch (Exception e) {}
11: }
12: public void read(Path directory) throws Exception {
13: Files.walk(directory)
14: .filter(p - > File.isRegularFile(p))
15: .forEach(x - > readFile(x));
16: }
17: public static void main(String[] b) throws IOException {
18: Path p = Path.get("collection");
19: new ReadEverything().read(p);
20: } }

Chapter 13 ■ Practice Exam 2 409

A. None. Bill’s implementation is correct.

B. One

C. Two

D. Three

E. Four

F. Five

35. Fill in the blank with the pair that compiles and runs without throwing any exceptions.
(Choose three.)

var x = new ArrayDeque<>();
x.offer(18);
x. ();
x. ();

A. peek, peek
B. peekFirst, peekLast
C. poll, poll
D. pop, pop
E. remove, remove
F. removeFirst, removeLast

36. What is the output of the following?

public class InitOrder {
 { System.out.print("1"); }
 static { System.out.print("2"); }

 public InitOrder() {
 System.out.print("3");
 }
 public static void callMe() {
 System.out.print("4");
 }
 public static void main(String[] args) {
 callMe();
 callMe();
 System.out.print("5");
 } }

410 Chapter 13 ■ Practice Exam 2

A. 1223445
B. 2445
C. 22445
D. 223445
E. 2233445
F. None of the above

37. Which of the following exceptions need to be handled or declared by the method in which
they are thrown? (Choose two.)

A. FileNotFoundException
B. ArithmeticException
C. IOException
D. BigProblem
E. IllegalArgumentException
F. RuntimeException

38. Given that FileNotFoundException is a subclass of IOException and Long is a subclass of
Number, what is the output of the following application?

package materials;
import java.io.*;
class CarbonStructure {
 protected long count;
 public abstract Number getCount() throws IOException; // q1
 public CarbonStructure(int count) { this.count = count; }
}
public class Diamond extends CarbonStructure {
 public Diamond() { super(15); }
 public Long getCount() throws FileNotFoundException { // q2
 return count;
 }
 public static void main(String[] cost) {
 try {
 final CarbonStructure ring = new Diamond(); // q3
 System.out.print(ring.getCount()); // q4
 } catch (IOException e) {
 e.printStackTrace();
 } } }

A. null
B. 15
C. It does not compile because of line q1.

Chapter 13 ■ Practice Exam 2 411

D. It does not compile because of line q2.

E. It does not compile because of line q3.

F. It does not compile because of line q4.

G. The class compiles but produces an exception at runtime.

39. Which of the following are valid Locale formats? (Choose two.)

A. iw
B. UA
C. it_ch
D. JA_JP
E. th_TH
F. ES_hn

40. Which are true statements about the majority of steps in migrating to a modular application?
(Choose two.)

A. In a bottom- up migration, automatic modules turn into named modules.

B. In a bottom- up migration, named modules turn into automatic modules.

C. In a bottom- up migration, unnamed modules turn into named modules.

D. In a top- down migration, automatic modules turn into named modules.

E. In a top- down migration, named modules turn into automatic modules.

F. In a top- down migration, unnamed modules turn into named modules.

41. What is the result of the following?

import java.util.*;
public class Museums {
 public static void main(String[] args) {
 String[] array = {"Natural History", "Science", "Art"};
 List<String> museums = Arrays.asList(array);
 museums.remove(2);
 System.out.println(museums);
 } }

A. [Natural History, Science]
B. [Natural History, Science, Art]
C. The code does not compile.

D. The code compiles but throws an exception at runtime.

42. Which of the following statements about nested classes are correct? (Choose three.)

A. An anonymous class can declare that it implements multiple interfaces.

B. All nested classes can contain constant variables.

412 Chapter 13 ■ Practice Exam 2

C. A local class can declare that it implements multiple interfaces.

D. A member inner class cannot contain static methods.

E. A static nested class can contain static methods.

F. A local class can access all local variables prior to its declaration within a method.

43. What is the output of the following?

var list = Arrays.asList("flower", "seed", "plant");
Collections.sort(list);
Collections.reverse(list);

var result = Collections.binarySearch(list,
 list.get(0), Comparator.reverseOrder());
System.out.println(result);

A. 0
B. 1
C. 2
D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. The output is not guaranteed.

44. Which two options when inserted independently can fill in the blank to compile the code?
(Choose two.)
javac mods - d birds com- bird/*.java *.java
A. - cp
B. - m
C. - p
D. - classpath
E. - - classpath
F. - - module- path

45. What is the result of calling this method?

16: void play() {
17: record Toy(String name){ }
18:
19: var toys = Stream.of(
20: new Toy("Jack in the Box"),
21: new Toy("Slinky"),
22: new Toy("Yo- Yo"),
23: new Toy("Rubik's Cube"));

Chapter 13 ■ Practice Exam 2 413

24:
25: var spliterator = toys.spliterator();
26: var batch1 = spliterator.trySplit();
27: var batch2 = spliterator.trySplit();
28: var batch3 = spliterator.trySplit();
29:
30: batch1.forEachRemaining(System.out::print);
31: }

A. Toy[name=Jack in the Box]
B. Toy[name=Slinky]
C. Toy[name=Yo- Yo]
D. Toy[name= Rubik's Cube]
E. Toy[name=Jack in the Box]Toy[name=Slinky]
F. Toy[name=Yo- Yo]Toy[name=Rubik's Cube]
G. No output is printed.

H. An exception is thrown.

46. How many lines of the following application need to be changed to make the code compile?

1: package castles;
2: import java.io.*;
3: public class Palace {
4: public void openDrawbridge() throws Exception {
5: try {
6: throw new Exception("Problem");
7: } catch (IOException e) {
8: throw new IOException();
9: } catch (FileNotFoundException e) {
10: try {
11: throw new IOException();
12: } catch (Exception e) {
13: } finally {
14: System.out.println("Almost done");
15: }
16: } finally {
17: throw new RuntimeException("Unending problem");
18: } }
19: public static void main(String[] moat)
20: throws IllegalArgumentException {
21: new Palace().openDrawbridge();
22: } }

414 Chapter 13 ■ Practice Exam 2

A. None. The code compiles and produces a stack trace at runtime.

B. One

C. Two

D. Three

E. Four

F. Five

47. How many lines need to be changed to make this code compile?

1: public class Massage {
2: var name = "Sherrin";
3: public void massage(var num) {
4: var zip = 10017;
5: var underscores = 1_001_7;
6: var _ = "";
7: } }

A. Zero

B. One

C. Two

D. Three

E. Four

48. How many of these variables are true?

var lol = "lol";
var moreLols = """
 lol
""";
var smiley = lol.toUpperCase() == lol;
var smirk = lol.toUpperCase() == lol.toUpperCase();
var blush = lol.toUpperCase().equals(lol);
var cool = lol.toUpperCase().equals(lol.toUpperCase());
var wink = lol.toUpperCase().equalsIgnoreCase(lol);
var yawn = lol.toUpperCase().equalsIgnoreCase(
 lol.toUpperCase());
var sigh = lol.equals(moreLols);

A. One

B. Two

C. Three

D. Four

E. Five

F. Six

G. None. The code does not compile.

Chapter 13 ■ Practice Exam 2 415

49. Which of the following are valid lambda expressions? (Choose three.)

A. () - > {}
B. (Double adder) - > {int y; System.out.print(adder);

return adder;}
C. (Long w) - > {Long w=5; return 5;}
D. (int count, vote) - > count*vote
E. dog - > dog
F. name - > {name.toUpperCase()}

50. What can fill in the blank so the play() method can be called from all classes in the
com.mammal.eland package, but not the com.mammal.gopher package?

package com.mammal;
public class Enrichment {
 void play() {}
}

A. Leave it blank

B. private
C. protected
D. public
E. None of the above

Practice Exam 3

Chapter 14 is the third and final practice exam chapter in the book.
Make sure you have 90 minutes and scratch paper before you start.
Good luck on both this chapter and the real exam!

Chapter

14

418 Chapter 14 ■ Practice Exam 3

1. Which of the following are true about Java operators and statements? (Choose three.)

A. Both right- hand sides of the ternary expression are evaluated at runtime.

B. A switch statement may contain at most one default statement.

C. The post- increment operator (++) returns the value of the variable before the addition is
applied.

D. The logical operators (|) and (||) are interchangeable, producing the same results at
runtime.

E. The complement operator (!) operator may be applied to numeric expressions.

F. An assignment operator returns a value that is equal to the value of the expression being
assigned.

2. What is the output of the following?

public class Legos {
 public static void main(String[] args) {
 var ok = true;
 if (ok) {
 var sb = new StringBuilder();
 sb.append("red");
 sb.deleteCharAt(0);
 sb.delete(1, 1);
 }
 System.out.print(sb);
 } }

A. r
B. e
C. ed
D. red
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

3. Which line of code belongs in a service locator?

A. ServiceLoader<Mouse> sl = ServiceLoader.load(Mouse.class);
B. ServiceLoader<Mouse> sl = ServiceLoader.loader(Mouse.class);
C. ServiceLoader<Mouse> sl = ServiceLoader.lookup(Mouse.class);
D. ServiceLocator<Mouse> sl = ServiceLoader.load(Mouse.class);
E. ServiceLocator<Mouse> sl = ServiceLoader.loader(Mouse.class);
F. ServiceLocator<Mouse> sl = ServiceLoader.lookup(Mouse.class);

Chapter 14 ■ Practice Exam 3 419

4. What is the result of the following?

1: import java.util.function.*;
2: public class Ready {
3: private static double getNumber() {
4: return .007;
5: }
6: public static void main(String[] args) {
7: Supplier<double> s = Ready::getNumber;
8: double d = s.get();
9: System.out.println(d);
10: } }

A. 0
B. 0.007
C. The code does not compile due to line 7.

D. The code does not compile due to line 8.

E. The code does not compile for another reason.

5. What is the output of executing the following code snippet?

var e = Executors.newSingleThreadExecutor();
Runnable r1 = () - > Stream.of(1,2,3).parallel();
Callable r2 = () - > Stream.of(4,5,6).parallel();

Future<Stream<Integer>> f1 = e.submit(r1); // x1
Future<Stream<Integer>> f2 = e.submit(r2); // x2

var r = Stream.of(f1.get(),f2.get())
 .flatMap(p - > p) // x3
 .parallelStream() // x4
 .collect(
 Collectors.groupingByConcurrent(i - > i%2==0));
System.out.print(r.get(false).size()
 +" "+r.get(true).size());

A. 3 3
B. 2 4
C. One of the marked lines (x1, x2, x3, x4) does not compile.

D. Two of the marked lines (x1, x2, x3, x4) do not compile.

E. Three of the marked lines (x1, x2, x3, x4) do not compile.

F. None of the above.

420 Chapter 14 ■ Practice Exam 3

6. Which can fill in the blank so this code outputs true?

import java.util.function.*;
import java.util.stream.*;
public class HideAndSeek {
 public static void main(String[] args) {
 var hide = Stream.of(true, false, true);
 Predicate<Boolean> pred = b - > b;
 var found = hide.filter(pred). (pred);
 System.out.println(found);
 } }

A. Only anyMatch
B. Only allMatch
C. Both anyMatch and allMatch
D. Only noneMatch
E. Both noneMatch and anyMatch
F. The code does not compile with any of these options.

7. Suppose you have a consumer that calls the lion() method within a Lion service. You have
four distinct modules: consumer, service locator, service provider, and service provider
interface. If you add a parameter to the lion() method, how many of the modules require
recompilation?

A. Zero

B. One

C. Two

D. Three

E. Four

8. What is the output of the following application?

package music;
interface DoubleBass {
 void strum();
 default int getVolume() {return 5;}
}
interface BassGuitar {
 void strum();
 default int getVolume() {return 10;}
}
abstract class ElectricBass implements DoubleBass, BassGuitar {
 @Override public void strum() {System.out.print("X");}
}

Chapter 14 ■ Practice Exam 3 421

public class RockBand {
 public static void main(String[] strings) {
 final class MyElectricBass extends ElectricBass {
 public int getVolume() {return 30;}
 public void strum() {System.out.print("Y");}
 } } }

A. X
B. Y
C. The application completes without printing anything.

D. ElectricBass is the first class to not compile.

E. RockBand is the first class to not compile.

F. None of the above.

9. Which condition is most likely to result in invalid data entering the system?

A. Deadlock

B. Livelock

C. Resource not found

D. Out of memory error

E. Race condition

F. Starvation

10. Which statements are correct? (Choose two.)

A. A Comparable implementation is often implemented by a lambda.

B. A Comparable object has a compare() method.

C. The compare() and compareTo() methods have the same contract for the return value.

D. It is possible to sort the same List using different Comparator implementations.

E. Two objects that return true for equals() will always return 0 when passed to
compareTo().

11. Which lines fail to compile?

package armory;
import java.util.function.*;
interface Shield {
 void protect();
}
class Dragon {
 int addDragon(Integer count) {
 return ++count;
 } }

422 Chapter 14 ■ Practice Exam 3

public class Sword {
 public static void main(String[] knight) {
 var dragon = new Dragon();
 Function<Shield, Sword> func = Shield::protect; // line x
 UnaryOperator<Integer> op = dragon::addDragon; // line y
 } }

A. Only line x
B. Only line y
C. Both lines x and y
D. The code compiles.

12. What option names are equivalent to - p and - cp on the javac command? (Choose two.)

A. - - module- path and - classpath
B. - - module- path and - class- path
C. - - module- path and - - class- path
D. - - path and - classpath
E. - - path and - class- path
F. - - path and - - class- path

13. What is the minimum number of lines that need to be changed or removed to make this
method compile?

11: public void colors() {
12: var yellow = "";
13: yellow = null;
14:
15: var red = null;
16:
17: var blue = "";
18: blue = 1;
19:
20: var var = "";
21: var = "";
22:
23: var pink = 1;
24: }

A. Zero

B. One

C. Two

D. Three

Chapter 14 ■ Practice Exam 3 423

E. Four

F. Five

14. What is the output of the following application?

package ballroom;
public class Dance {
 public static void swing(int... beats)
 throws ClassCastException {
 try {
 System.out.print("1"+beats[2]); // p1
 } catch (RuntimeException e) {
 System.out.print("2");
 } catch (Exception e) {
 System.out.print("3");
 } finally {
 System.out.print("4");
 } }
 public static void main(String[] music) {
 new Dance().swing(0,0); // p2
 System.out.print("5");
 } }

A. 145
B. 1045
C. 24, followed by a stack trace

D. 245
E. The code does not compile because of line p1.

F. The code does not compile because of line p2.

15. What is the output of the following application?

1: interface HasHue {String getHue();}
2: enum COLORS implements HasHue {
3: red {
4: public String getHue() {return "FF0000";}
5: }, green {
6: public String getHue() {return "00FF00";}
7: }, blue {
8: public String getHue() {return "0000FF";}
9: }
10: private COLORS() {}

424 Chapter 14 ■ Practice Exam 3

11: }
12: class Book {
13: static void main(String[] pencils) {}
14: }
15: final public class ColoringBook extends Book {
16: final void paint(COLORS c) {
17: System.out.print("Painting: " + c.getHue());
18: }
19: final public static void main(String[] crayons) {
20: new ColoringBook().paint(green);
21: } }

A. Painting: 00FF00
B. Exactly one line of code does not compile.

C. Exactly two lines of code do not compile.

D. Three or more lines of code do not compile.

E. The code compiles but prints an exception at runtime.

F. None of the above.

16. Which of the following methods can run without error for a SQL query that returns a count
of matching rows?

private static void choices(PreparedStatement ps,
 String sql) throws SQLException {
 try (var rs = ps.executeQuery()) {
 System.out.println(rs.getInt(1));
 } }

private static void moreChoices(PreparedStatement ps,
 String sql) throws SQLException {
 try (var rs = ps.executeQuery()) {
 rs.next();
 System.out.println(rs.getInt(1));
 } }

private static void stillMoreChoices(PreparedStatement ps,
 String sql) throws SQLException {
 try (var rs = ps.executeQuery()) {
 if (rs.next())
 System.out.println(rs.getInt(1));
 }
 } }

Chapter 14 ■ Practice Exam 3 425

A. moreChoices()
B. stillMoreChoices()
C. choices() and stillMoreChoices()
D. moreChoices() and stillMoreChoices()
E. All three methods

F. None of the above

17. In most of the United States, daylight saving time ends on November 6 at 02:00 and we
repeat that hour. What is the output of the following?

var localDate = LocalDate.of(2022, Month.NOVEMBER, 6);
var localTime = LocalTime.of(1, 0);
var zone = ZoneId.of("America/New_York");
var z = ZonedDateTime.of(localDate, localTime, zone);
var offset = z.getOffset();

for (int i = 0; i < 6; i++)
 z = z.plusHours(1);

System.out.print(z.getHour() + " "
 + offset.equals(z.getOffset()));

A. 5 false
B. 5 true
C. 6 false
D. 6 true
E. 7 false
F. 7 true
G. The code does not compile.

H. The code compiles but throws an exception at runtime.

18. What is the output of the Light program?

package physics;
class Wave {
 public int size = 7;
}
public class Light extends Wave {
 public int size = 5;
 public static void main(String... emc2) {
 Light v1 = new Light();
 var v2 = new Light();

426 Chapter 14 ■ Practice Exam 3

 Wave v3 = new Light();
 System.out.println(v1.size+","+v2.size+","+v3.size);
 } }

A. 5,5,5
B. 5,5,7
C. 5,7,7
D. 7,7,7
E. The code does not compile.

F. None of the above.

19. Suppose we have a stored procedure named update_data that has one IN parameter
named data. Which fills in the blank so the code runs without error?

String sql = "{call update_data(?)}";
try (Connection conn = DriverManager.getConnection(url);
 Statement cs = conn.prepareCall(sql)) {

 cs. (1, 6);
 var rs = cs.execute();
}

A. registerInParameter
B. registerIntParameter
C. registerInputParameter
D. setIn
E. setInt
F. setInteger
G. None of the above

20. What are possible outputs of this code? (Choose two.)

import java.time.LocalDate;
public class Animal {
 private record Baby(String name, LocalDate birth) { }
 public static void main(String[] args) {
 LocalDate now = LocalDate.now();
 var b1 = new Baby("Teddy", now);
 var b2 = new Baby("Teddy", now);
 System.out.println((b1 == b2) + " " + b1.equals(b2));
 System.out.println(b1);
 } }

Chapter 14 ■ Practice Exam 3 427

A. false false
B. false true
C. true false
D. true true
E. Baby[name=Teddy, birth=2022- 05- 21]
F. Baby@1d81eb93

21. What is the output of calling the following method?

public void countPets() {
 record Pet(int age) {}
 record PetSummary(long count, int sum) {}

 var summary = Stream.of(new Pet(2), new Pet(5), new Pet(8))
 .collect(Collectors.teeing(
 Collectors.counting(),
 Collectors.summingInt(Pet::age)));
 System.out.println(summary);
}

A. PetSummary[count=1, sum=3]
B. PetSummary[count=1, sum=15]
C. PetSummary[count=3, sum=3]
D. PetSummary[count=3, sum=15]
E. The code does not compile due to the teeing() call.

F. The code does not compile since records are defined inside a method.

G. The code does not compile for another reason.

22. Given the following, what can we infer about subtypes of First, called Chicken and Egg?
(Choose two.)

public sealed class First { }

A. Chicken and Egg must be classes.

B. Chicken and Egg can be classes, interfaces, enums, or records.

C. Chicken and Egg must be located in a file other than First.

D. Chicken and Egg must be located in the same file as First.

E. Chicken and Egg must be located as nested classes of First.

F. Chicken and Egg may be located in the same file or a different file as First.

428 Chapter 14 ■ Practice Exam 3

23. Which of the following statements about try/catch blocks are correct? (Choose two.)

A. A catch block can never appear after a finally block.

B. A try block must be followed by a catch block.

C. A finally block can never appear after a catch block.

D. A try block must be followed by a finally block.

E. A try block can have zero or more catch blocks.

F. A try block can have more than one finally block.

24. What is the result of compiling and executing the following application?

package reptile;
public class Alligator {
 static int teeth;
 double scaleToughness;
 public Alligator() {
 this.teeth++;
 }
 public void snap(int teeth) {
 System.out.print(teeth+" ");
 teeth- - ;
 }
 public static void main(String[] unused) {
 new Alligator().snap(teeth);
 new Alligator().snap(teeth);
 } }

A. 0 1
B. 1 1
C. 1 2
D. 2 2
E. The code does not compile.

F. The code compiles but produces an exception at runtime.

G. The answer cannot be determined ahead of time.

25. Fill in the blank to make this code compile:

String cheese = ServiceLoader.stream(Mouse.class)
 .map()
 .map(Mouse::favoriteFood)
 .findFirst()
 .orElse("");

Chapter 14 ■ Practice Exam 3 429

A. Mouse.get()
B. Mouse::get
C. Provider.get()
D. Provider::get
E. None of the above

26. Which lines can fill in the blank that would allow the code to compile? (Choose two.)

abstract public class Exam {
 boolean pass;
 protected abstract boolean passed();
 class JavaProgrammerCert extends Exam {
 private Exam part1;
 private Exam part2;

 }
}

A.

boolean passed() {
 return part1.pass && part2.pass;
}

B.

boolean passed() {
 return part1.passed() && part2.passed();
}

C.

private boolean passed() {
 return super.passed();
}

D.

public boolean passed() {
 return part1.passed() && part2.passed();
}

E.

public boolean passed() {
 return part1.pass && part2.pass;
}

430 Chapter 14 ■ Practice Exam 3

F.

public boolean passed() {
 return super.passed();
}

27. How many of these lines print false?

23: var smart = """
24: barn owl\n\n
25: wise
26: """;
27: var clever = """
28: barn owl\n\n
29: wise
30: """;
31: var sly = """
32: barn owl\n\n
33: wise""";
34:
35: System.out.println(smart.equals(smart.indent(0)));
36: System.out.println(smart.equals(smart.strip()));
37: System.out.println(smart.equals(smart.stripIndent()));
38:
39: System.out.println(clever.equals(clever.indent(0)));
40: System.out.println(clever.equals(clever.strip()));
41: System.out.println(clever.equals(clever.stripIndent()));
42:
43: System.out.println(sly.equals(sly.indent(0)));
44: System.out.println(sly.equals(sly.strip()));
45: System.out.println(sly.equals(sly.stripIndent()));

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

G. Six or more

H. The code does not compile.

Chapter 14 ■ Practice Exam 3 431

28. Which are true statements about interfaces and abstract classes? (Choose three.)

A. Abstract classes offer support for single inheritance, while interfaces offer support for
multiple inheritance.

B. All methods in abstract classes are implicitly public, while interfaces can use various
access modifiers for their methods and variables, including private in some cases.

C. Both abstract classes and interfaces can have abstract methods.

D. Both abstract classes and interfaces can have public constructors.

E. Interfaces can only extend other interfaces, while abstract classes can extend both
abstract and concrete classes.

F. Unlike abstract classes, interfaces can be marked final.

29. Fill in the blanks: The operators +=, ______, ______, _______, _______, and - - are listed in
increasing or the same level of operator precedence. (Choose two.)

A. ^, *, =, ++
B. %, *, /, &&
C. =, +, /, *
D. ^, *, ==, ++
E. *, /, %, ++

F. <=, >=, !=, !

30. Given the following two classes in the same package, which constructors contain compiler
errors? (Choose three.)

public class Big {
 public Big(boolean stillIn) {
 super();
 } }
public class Trouble extends Big {
 public Trouble() {}
 public Trouble(int deep) {
 super(false);
 this();
 }
 public Trouble(String now, int... deep) {
 this(3);
 }
 public Trouble(long deep) {
 this("check", deep);
 }
 public Trouble(double test) {
 super(test>5 ? true : false);
 } }

432 Chapter 14 ■ Practice Exam 3

A. public Big(boolean stillIn)
B. public Trouble()
C. public Trouble(int deep)
D. public Trouble(String now, int... deep)
E. public Trouble(long deep)
F. public Trouble(double test)

31. What is the output of the following code snippet?

11: Path x = Paths.get(".","song","..","/note");
12: Path y = Paths.get("/dance/move.txt");
13: x.normalize();
14: System.out.println(x.resolve(y));
15: System.out.println(y.resolve(x));

A.

/./song/../note/dance/move.txt
/dance/move.txt

B.

/dance/move.txt
/dance/move.txt/note

C.

/dance/move.txt
/dance/move.txt/./song/../note

D.

/note/dance/move.txt
../dance/move.txt/song

E. The code does not compile.

F. The code compiles but an exception is thrown at runtime.

32. How many lines does this code output?

import java.util.*;
public class PrintNegative {
 public static void main(String[] args) {
 List<Integer> list = new ArrayList<>();
 list.add(- 5);
 list.add(0);
 list.add(5);
 list.removeIf(e - > e < 0);
 list.forEach(x - > System.out.println(x));
 } }

Chapter 14 ■ Practice Exam 3 433

A. One

B. Two

C. Three

D. None. It doesn’t compile.

E. None. It throws an exception at runtime.

33. What is the result of the following?

public static void main(String[] args) {
 var list = Arrays.asList("0", "1", "01", "10");

 Collections.reverse(list);
 Collections.sort(list);
 System.out.println(list);
}

A. []
B. [0, 01, 1, 10]
C. [0, 01, 10, 1]
D. [0, 1, 01, 10]
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

34. What is the result of the following?

var dice = new TreeSet<Integer>();
dice.add(6);
dice.add(6);
dice.add(4);

dice.stream()
 .filter(n - > n != 4)
 .forEach(System.out::println)
 .count();

A. It prints just one line.

B. It prints one line and then the number 3.

C. There is no output.

D. The code does not compile.

E. The code compiles but throws an exception at runtime.

434 Chapter 14 ■ Practice Exam 3

35. How many objects are eligible for garbage collection at the end of the main() method?

package store;
public class Shoes {
 static String shoe1 = new String("sandal");
 static String shoe2 = new String("flip flop");
 public void shopping() {
 String shoe3 = new String("croc");
 shoe2 = shoe1;
 shoe1 = shoe3;
 }
 public static void main(String... args) {
 new Shoes().shopping();
 } }

A. None

B. One

C. Two

D. Three

E. The code does not compile.

F. None of the above.

36. Which of the following are true? (Choose two.)

20: int[] crossword [] = new int[10][20];
21: for (int i = 0; i < crossword.length; i++)
22: for (int j = 0; j < crossword.length; j++)
23: crossword[i][j] = 'x';
24: System.out.println(crossword.size());

A. One line needs to be changed for this code to compile.

B. Two lines need to be changed for this code to compile.

C. Three lines need to be changed for this code to compile.

D. If the code is fixed to compile, none of the cells in the 2D array have a value of 0.

E. If the code is fixed to compile, half of the cells in the 2D array have a value of 0.

F. If the code is fixed to compile, all of the cells in the 2D array have a value of 0.

37. Which of the following can fill in the blank to output sea lion, bald eagle?

String names = Stream.of(
 "bald eagle", "pronghorn", "puma", "sea lion")

 .collect(Collectors.joining(", "));
System.out.println(names);

Chapter 14 ■ Practice Exam 3 435

A.

.filter(s - > s.contains(" "))

.collect(Collectors.toSet())

.stream()

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.flatMap(List::stream)

.sorted(Comparator.reverseOrder())

B.

.filter(s - > s.contains(" "))

.collect(Collectors.toUnmodifiableSet())

.stream()

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.flatMap(List::stream)

.sorted(Comparator.reverseOrder())

C.

.collect(Collectors.toUnmodifiableSet())

.stream()

.collect(Collectors.groupingBy(s - > s.contains(" ")))

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.map(List::stream)

.sorted(Comparator.reverseOrder())

D.

.collect(Collectors.toSet())

.stream()

.collect(Collectors.groupingBy(s - > s.contains(" ")))

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.flatMap(List::stream)

.sorted(Comparator.reverseOrder())

436 Chapter 14 ■ Practice Exam 3

E.

.filter(s - > s.contains(" "))

.collect(Collectors.toUnmodifiableSet())

.stream()

.collect(Collectors.groupingBy(s - > s.contains(" ")))

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.map(List::stream)

.sorted(Comparator.reverseOrder())

F.

.collect(Collectors.toUnmodifiableSet())

.stream()

.collect(Collectors.groupingBy(s - > s.contains(" ")))

.entrySet()

.stream()

.filter(e - > e.getKey())

.map(Entry::getValue)

.map(List::stream)

.sorted(Comparator.reverseOrder())

38. What is the output of the following code snippet?

LocalDate dogDay = LocalDate.of(2022,8,26);

var x = DateTimeFormatter.ISO_DATE;
System.out.println(x.format(dogDay));

var y = DateTimeFormatter.ofPattern("Dog Day: dd/MM/yy");
System.out.println(y.format(dogDay));

var z = DateTimeFormatter.ofPattern("Dog Day: dd/MM/yy");
System.out.println(dogDay.format(z));

A. 2022- 07- 26 and Dog Day: 26/07/22
B. 2022- 07- 25 and Dog Day: 25/07/22
C. 2022- 08- 26 and Dog Day: 26/08/22
D. The code does not compile.

E. An exception is thrown at runtime.

F. None of the above.

Chapter 14 ■ Practice Exam 3 437

39. How many of the following lines contain a compiler error?

long min1 = 123.0, max1 = 987L;
final long min2 = 1_2_3, max2 = 9 8 7;
long min3 = 123, int max3 = 987;
long min4 = 123L, max4 = 987;
long min5 = 123_, max5 = _987;

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

40. Fill in the blanks: Using ________ and ________ together allows a variable to be accessed
from any class, without requiring an instance variable.

A. class, static
B. default, public
C. final, package (no modifier)

D. protected, instance
E. public, static
F. None of the above

41. Which of the following sequences can fill in the blanks so the code prints - 1 0 2?

char[][] letters = new char[][] {
 new char[] { 'a', 'e', 'i', 'o', 'u'},
 new char[] { 'a', 'e', 'o', 'u'} };

var x = Arrays. (letters[0], letters[0]);
var y = Arrays. (letters[0], letters[0]);
var z = Arrays. (letters[0], letters[1]);

System.out.print(x + " " + y + " " + z);

A. compare, mismatch, compare
B. compare, mismatch, mismatch
C. mismatch, compare, compare
D. mismatch, compare, mismatch
E. None of the above

438 Chapter 14 ■ Practice Exam 3

42. What is the output of the following application? Assume the file system is available and able
to be written to and read from.

package boat;
import java.io.*;
public class Cruise {
 private int numPassengers = 1;
 private transient String schedule = "NONE";
 { numPassengers = 2; }
 public Cruise() {
 this.numPassengers = 3;
 this.schedule = "Tropical Island";
 }

 public static void main(String... p) throws Exception {
 final String f = "ship.txt";
 try (var o = new ObjectOutputStream(
 new FileOutputStream(f))) {
 Cruise c = new Cruise();
 c.numPassengers = 4;
 c.schedule = "Casino";
 o.writeObject(c);
 }
 try (var i = new ObjectInputStream(
 new FileInputStream(f))) {
 Cruise c = i.readObject();
 System.out.print(c.numPassengers + "," + c.schedule);
 } } }

A. 2,NONE
B. 3,null
C. 4,Casino
D. 4,null
E. One line would need to be fixed for this code to run without throwing an exception.

F. Two lines would need to be fixed for this code to run without throwing an exception.

43. How many lines does the following program output?

class Coin {
 enum Side { HEADS, TAILS };
 public static void main(String[] args) {
 var sides = Side.values();
 for (var s : sides)

Chapter 14 ■ Practice Exam 3 439

 for (int i=sides.length; i>0 ; i- =2)
 System.out.print(s+" "+sides[i]);
 System.out.println();
 }
}

A. One

B. Two

C. Four

D. The code does not compile.

E. The code compiles but throws an exception at runtime.

F. The code compiles but enters an infinite loop at runtime.

44. What is the minimum number of lines that need to be removed to make this code compile
and be able to be implemented as a lambda expression?

@FunctionalInterface
public interface Play {
 public static void baseball() {}
 private static void soccer() {}
 default void play() {}
 void fun();
 void game();
 void toy();
}

A. 1

B. 2

C. 3

D. 4

E. The code compiles as is.

45. What is the output of this code?

10: var m = new TreeMap<Integer, Integer>();
11: m.put(1, 4);
12: m.put(2, 8);
13:
14: m.putIfAbsent(2, 10);
15: m.putIfAbsent(3, 9);
16:
17: m.replaceAll((k, v) - > k + 1);
18:
19: m.entrySet().stream()

440 Chapter 14 ■ Practice Exam 3

20: .sorted(Comparator.comparing(Entry::getKey))
21: .limit(1)
22: .map(Entry::getValue)
23: .forEach(System.out::println);

A. 1
B. 2
C. 3
D. 4
E. The code does not compile.

F. The code compiles but prints something else.

46. Given the following three property files, what does the following method output?

toothbrush.properties
color=purple
type=generic

toothbrush_es.properties
color=morado
type=lujoso

toothbrush_fr.properties
color=violette

void brush() {
 Locale.setDefault(new Locale.Builder()
 .setLanguage("es")
 .setRegion("MX").build());
 var rb = ResourceBundle.getBundle("toothbrush",
 new Locale("fr"));
 var a = rb.getString("color");
 var b = rb.getString("type");
 System.out.print(a + " " + b);
}

A. morado null
B. violette generic
C. morado lujoso
D. violette null
E. The code does not compile.

F. An exception is thrown at runtime.

Chapter 14 ■ Practice Exam 3 441

47. Which options, when inserted into the blank, allow this code to compile? (Choose three.)

import java.io.*;
class Music {
 void make() throws IOException {
 throw new UnsupportedOperationException();
 } }
public class Sing extends Music {
 public void make() {
 System.out.println("do- re- mi- fa- so- la- ti- do");
 } }

A. throws FileNotFoundException
B. throws NumberFormatException
C. throws Exception
D. throws SQLException
E. throws Throwable
F. Placing nothing in the blank

48. Given the application shown here, which lines do not compile? (Choose three.)

package furryfriends;
interface Friend {
 protected String getName(); // h1
}
class Cat implements Friend {
 String getName() { // h2
 return "Kitty";
 } }
public class Dog implements Friend {
 String getName() throws RuntimeException { // h3
 return "Doggy";
 }
 public static void main(String[] adoption) {
 Friend friend = new Dog(); // h4
 System.out.print(((Cat)friend).getName()); // h5
 System.out.print(((Dog)null).getName()); // h6
 } }

A. Line h1
B. Line h2
C. Line h3
D. Line h4
E. Line h5
F. Line h6

442 Chapter 14 ■ Practice Exam 3

49. What is the output of the following?

1: package reader;
2: import java.util.stream.*;
3: public class Books {
4: public static void main(String[] args) {
5: IntStream pages = IntStream.of(200, 300);
6: long total = pages.sum();
7: long count = pages.count();
8: System.out.println(total + "- " + count);
9: } }

A. 2- 2
B. 200- 1
C. 500- 0
D. 500- 2
E. The code does not compile.

F. The code compiles but throws an exception at runtime.

50. _______________ modules are on the classpath, while ____________ modules never contain a
module- info file.

A. Automatic, named

B. Automatic, unnamed

C. Named, automatic

D. Named, unnamed

E. Unnamed, automatic

F. Unnamed, named

Answers to Review
Questions

Appendix

444 Appendix ■ Answers to Review Questions

Chapter 1: Handling Date, Time, Text,
Numeric and Boolean Values

1. A. The Duration class is used to reflect an amount of time using small units like minutes.
Since it just uses units of time it does not involve time zones. The LocalTime class contains
units of hours, minutes, seconds, and fractional seconds. The LocalDateTime class contains
all the data in a LocalTime and adds on a year, month, and date. Since none of the three
classes listed includes a time zone, option A is correct.

2. B. This is a valid text block. Since the closing triple quotes (""") are on a new line, the code
prints the three lines of text followed by a blank line and option B is the answer.

3. A, C. An identifier name must begin with a letter, currency symbol (such as $), or underscore
(_). Numbers are permitted only for subsequent characters. Therefore, option C is not a valid
variable name. Additionally, an identifier may not be a single underscore, making option A an
invalid variable name.

4. A. A Period is measured in days, weeks, months, or years. A Duration is measured in
smaller units like minutes or seconds. Only Duration has a getSeconds() method, mak-
ing option A correct.

5. C. On a normal night, adding three hours to 1 a.m. makes it 4 a.m. However, this date
begins daylight saving time. This means we add an extra hour to skip the 2 a.m. hour. This
makes later contain 05:00 instead of 04:00 and the offset changes. Therefore, the code
prints 5 false, and option C is correct.

6. A. In a ternary expression, only one of the two right- most expressions is evaluated. Since
meal>6 is false, tip- - is evaluated, and tip++ is skipped. The result is that tip is
changed from 2 to 1, making option A the correct answer. The value of total is 7, since the
post- decrement operator was used on tip, although you did not need to know this to solve
the question.

7. C. LocalDate allows passing the month as an int or Month enum parameter. However,
Month.MARCH is an enum. It cannot be assigned to an int variable, so the declaration of
month does not compile, and option C is correct.

8. E. Trick question. There is no reverse method on the String class. There is one on the
StringBuilder class. Therefore, the code does not compile, and option E is correct.

9. D. A StringBuilder is mutable, so the length is 2 after line 6 completes. The
StringBuilder methods return a reference to the same object, so you can chain method
calls. Therefore, line and anotherLine refer to the same object. This means that line 7
prints true. Then on line 9, both references point to the same object of length 2, and option
D is correct.

Chapter 1: Handling Date, Time, Text, Numeric and Boolean Values 445

10. C. While there is no 2 a.m. on the clock that night, Java adjusts the time to 3 a.m. automat-
ically and changes the time zone. It does not throw an exception, so option D is incorrect.
Option B is a valid time, since any value after the time adjustment is just a normal time on
the clock. Since both options A and B are valid times, option C is the correct answer.

11. A. Since the closing triple quotes (""") are at the beginning of the line, there is no incidental
whitespace. By contrast, there is essential whitespace before both green and yellow, mak-
ing option A correct.

12. B. This code is tricky because only int values are passed in. However, the parameters passed
to ceil() and pow() are implicitly cast to double since those two methods take double
parameters and return a double result. The max() method returns an int, giving us
option B.

13. B. Line 12 creates a Period representing a year, six months, and three days. Adding this to
waffleDay gives us the year 2023, the month of September, and a day of 28. This new date
is stored in later on line 13 and represents September 28, 2023. Line 14 has no effect, as
the return value is ignored. Line 17 checks that you know that isBefore() returns false
if the value is an exact match. Since thisOne is an exact match but thatOne is a whole day
before, the output is false true, making option B correct.

14. A, C, E. Options A, C, and E are correct because they all operate on boolean values.
Options B and D operate on numbers. Option F is not an operator, although it is used to
indicate an annotation.

15. D. Duration is supposed to be used with objects that contain times. While it has an
ofDays() method, this is a convenience method to represent a large number of seconds.
This means that calling Duration.ofDays(1) is fine. However, this code throws an
UnsupportedTemporalTypeException when you try to pass it to the minus() method
on LocalDate, making option D correct. Note that the question asks about a possible result
rather than the definitive result because the format of dates varies by region.

16. A. A String is immutable, so a different object is returned on line 6. The object
anotherLine points to is of length 2 after line 6 completes. However, the original line
reference still points to an object of length 1. Therefore, option A is correct.

17. D. Both byte and short do not compile since they do not store values with decimal points.
Next, note that 3.14 is automatically a double. It requires casting to float or writing
3.14f to be assigned to a float. Since only double compiles, option D is the answer.

18. G. This question is tricky. It appears to be about daylight saving time. However, the result of
z.plusHours(1) is never stored in a variable or used. Since ZonedDateTime is immu-
table, the time remains at 01:00. The code prints out 1 true, making none of these correct
and option G the answer.

19. C. The bitwise complement operator (~) inverts all bits in the number. You can calculate this
by negating the number and subtracting one, which is - 9 in this case. Applying the bitwise
complement operator twice gives you the original number, which is 8. Therefore, option C is
the answer.

446 Appendix ■ Answers to Review Questions

20. B. The charAt() and length() methods are declared on both String and
StringBuilder. However, the insert() method is declared only on a StringBuilder
and not a String. Therefore, option B is correct.

21. D. There are three overloads for LocalTime.of(). Options A, B, and C are all valid over-
loads. Option D is not because Java only allows passing one fractional second parameter.
Java does support nanoseconds, but not the further granularity of picoseconds.

22. A, E, F. The triple quotes (""") are the text block syntax. Option A is correct, as only the
two quotes around "kitten" are output. The \n gives a blank line since it is at the end of
the line. The last line is also blank, making option E correct. Finally, option F is correct, as \s
preserves trailing whitespace.

23. A, B. Option A is correct and lists the operators in the same or increasing level of operator
precedence. In option B, the three operators actually have the same operator precedence, so
it is correct. Option C is incorrect, as division (/) has a lower precedence than the decre-
ment operator (- -). Option D is incorrect because the logical complement operator (!) has
a higher order of precedence than the other two operators. Option E lists the operators in
the correct order, but they don’t fit within not equals (!=) and the increment operator (++)
as listed in the question. In particular, the compound addition operator (+=) and the short-
circuit logical operator (&&) have a lower precedence than the not equals operator (!=).
Finally, option F is incorrect because the relational operator (<) does not fit between the mul-
tiplication operator (*) and the division operator (/) in order of precedence.

24. C. The LocalDate class represents a date using year, month, and day fields. There is a
getYear() method to get the year. The Period class holds units of years, months, and
days. It has a getYears() method. There is not a date/time class called ZonedDate.
There is a class called ZonedDateTime, which does have a getYear() method. Since only
LocalDate and Period have a method to get the year, option C is correct.

25. E. The diagram represents all cases where apples or oranges is true, but bananas is
false, making option E correct. Option A is close but is correct only if the top overlapping
portion of apples and oranges was filled in. For fun, you should try to draw the diagrams
that would represent the other answers.

26. B. The first thing to notice is that this is a LocalTime object. Since there is no date compo-
nent, options C and D are incorrect. Four parameters are passed to this LocalTime method.
The first three are the hour, minute, and second. The fourth is nanoseconds, which are frac-
tions of a second. While you aren’t expected to do calculations with nanoseconds, you should
know that a fraction of a second is at the end of the output. Option A is incorrect because .4
is 40 percent of a second. That’s far larger than 4 nanoseconds. Therefore, option B is correct.

27. B. Since StringBuilder is mutable, each call to append adds to the value. When calling
print, toString() is automatically called, and 333 806 1601 is output. Therefore,
option B is correct.

28. A. Option A does not compile because Java does not allow declaring different types as
part of the same declaration. The other three options show various legal combinations of
combining multiple variables in the same declarations with optional default values.

Chapter 1: Handling Date, Time, Text, Numeric and Boolean Values 447

29. A. The ChronoUnit enum contains values for various measures of time, including HOURS,
so option A is correct.

30. D, F. Options D and F are correct since only the stripIndent() and stripTrailing()
methods exist.

31. D. Adding three hours to 13:00 makes it 16:00. While this date happens to be the start of
daylight saving time, the change occurs at 2 a.m. This code uses 13:00, which is 1 p.m. Since
the calculation does not cross 2 a.m., the fact that it is the date that starts daylight saving
time is irrelevant. Option D is correct because the hour is 16 and there is no offset.

32. C. The trim() method returns a String with all leading and trailing white space removed.
In this question, that’s the seven- character String: ":) - (:". Options A and B are
incorrect because they do not remove the first blank space in happy. Option D is incorrect
because it does not remove the last character in happy. Therefore, option C is correct.

33. C. Underscores are allowed between any two digits in a numeric literal, causing num4 to fail
to compile. Additionally, underscores are not allowed adjacent to a decimal point, causing a
compiler error in num2. Since two lines have errors, option C is the correct answer.

34. B. This code correctly subtracts a day from montyPythonDay. It then outputs a
LocalDateTime value. Option A is incorrect because it omits the time. Option B is correct
because it represents one day earlier than the original date and includes a time in the output.

35. A, F. The parseLong() method returns a long. Since this is a primitive, we cannot call a
method on it. Therefore, it does not compile, and option A is one answer. By contrast,
valueOf() returns a Long wrapper class and gives the desired output, which is option F.

36. A. The code compiles, so option D is incorrect. The input to the constructor is ignored, mak-
ing the assignment of end to be 4. Since start is 2, the subtraction of 2 from 4 results in
the application printing 2, followed by 5, making option A the correct answer.

37. D. February has 28 or 29 days, depending on the year. There is never a February 31. Java
throws a DateTimeException when you try to create an invalid date, making option D
correct.

38. A. This is a valid text block. Since the closing triple quotes (""") are on the same line as
the text, the code prints the three lines of text without adding a blank line and option A is
the answer.

39. E. Line 4 creates a String of length 5. Since String is immutable, line 5 creates a new
String with the value 1 and assigns it to builder. Remember that indexes in Java begin
with 0, so the substring() method is taking the values from the fifth element through the
end. Since the first element is the last element, there’s only one character in there. Then line
6 tries to retrieve the second indexed element. Since there is only one element, this gives a
StringIndexOutOfBoundsException, and option E is correct.

40. E. In the first time change of the year, clocks “spring ahead” and skip the 02:00–03:00
hour entirely. This means 1:59 is followed by 03:00 on March 13, 2022. By contrast, July
4 is a normal day and 01:59 is followed by 02:00. In the second time change of the year,

448 Appendix ■ Answers to Review Questions

clocks “fall back” and repeat an hour, so 01:59 is followed by 01:00. Granted, you can’t tell
whether this is the first or second 01:59 from the image. If this information is relevant to a
question’s context, the question will specify this fact. In this case, 03:00, 02:00, 02:00 is not a
choice. Option E is the answer.

41. E. The bitwise complement operator (~) works on numeric types, not a boolean. Since the
code does not compile, option E is correct.

42. F. An Instant represents a specific moment in time using GMT. Since there are no time
zones included, options A and C are incorrect. This code correctly adds one day to the
instant. It includes the date, making option F correct.

43. D. The code compiles and runs without issue, making option E incorrect. In this example,
partA is the integer division of the two numbers. Since 3 does not divide 11 evenly, the
result is rounded down to 3. The variable partB is the remainder from the first expression,
which is 2. The results are added together, resulting in the expression 3 * 5, or 15, and
making option D correct.

44. G. The methods on Math are static. Since the class cannot be instantiated, the code does
not compile and the answer is option G.

45. E. Make sure to pay attention to date types. This code attempts to add a month to a
LocalTime value. There is no plusMonths() method on LocalTime, so option E is
correct.

46. B, F. The original sample prints false, followed by george likes bananas with a
trailing space. Options B and F are correct because isBlank() and strip() work the
same way as the originals. The key difference is that the replacements can handle an extended
range of whitespace characters.

47. D. Calling the constructor and then insert() is an example of method chaining. However,
the sb.length() call is a problem. The sb reference doesn’t exist until after the chained
calls complete. Just because it happens to be on a separate line doesn’t change when the refer-
ence is created. Since the code does not compile, option D is correct.

48. C. While parentheses are recommended for ternary operations, especially embedded ones,
they are not required, so option D is incorrect. The first expression evaluates to 10 >= 10,
so the first branch of the ternary operation is selected, and "Leftovers" can be eliminated.
The expression in the second ternary operation evaluates to 3 <= 2, which is false, so
"Salad" is selected, and option C is correct.

49. C. Line 12 creates a Period representing three days. Period objects do not chain, so only
the last method call, which is ofDays(3), is used in determining the value. Adding three
days sets later to March 28, 2022. Line 14 has no effect, as the return value is not assigned.
March 28, 2022 is before both thisOne and thatOne, so option C is correct.

50. D. The simplest way of writing the numbers to be evaluated is (1+1)*(1+2). These two
pairs of parentheses must remain so that the addition gets done before the multiplication and
the answer remains 6. The two pairs around the numbers and the additional pair around the
whole expression are redundant, giving us option D. Remember, the println() method call
still requires a set of parentheses.

Chapter 1: Handling Date, Time, Text, Numeric and Boolean Values 449

51. A. Since String is immutable, each call to concat() returns a new object with the new
value. However, that return value is ignored, and the teams variable never changes in value.
Therefore, it stays as 694, and option A is correct.

52. B. While char has a wrapper class, it is Character rather than Char. Therefore, option B
is the answer.

53. B. This code begins by correctly creating four objects. It then adds a month to date. Since
these classes are immutable, this does not affect the value of iceCreamDay. Therefore,
iceCreamDay remains in July. Since months count from one, option B is correct.

54. C. Line 7 prints 18 due to the 16 letters, one blank space, and one newline character. Line
8 prints 21 since it indents each of the two lines by a single character and normalizes the
output by adding a line break to the end. Line 9 prints 19 because it does not change the
indentation, but still adds the normalizing line break. Line 10 requests decreasing the inden-
tation by 1. Since there isn’t any indentation in the original value, this behaves the same way
as line 9, printing 19. Option C is correct because lines 9 and 10 print the same number.

55. C. First, bool and Bool are not valid Java types. They should be boolean and Boolean,
respectively. Next, objects are allowed to have a null reference while primitives cannot.
Since Integer and String are objects, those lines compile. Finally, the line with int is a
primitive, so assigning null to it does not compile. Therefore, option C is correct.

56. D. This is not a valid text block, as the text starts on the same line as the opening triple
quotes ("""). Therefore, option D is correct.

57. A. These classes are immutable. They use a static factory method to get the object refer-
ence rather than a constructor. This makes options B and D incorrect. Further, there is not a
ZonedDate class. There is a ZonedDateTime class. As a result, option C is incorrect, and
option A is the answer.

58. D. Lines 18 and 20 treat the \n as a newline and print two lines. By contrast, line
19 sees \\n as literal text and prints a single line. Line 21 also prints two lines since
translateEscapes() turns \\n into the newline escape character. Since three of these
print two lines, option D is the answer.

59. A. In the first expression, height > 1 is true. Since it uses the logical operator (|), which
evaluates both sides, the right side is still executed, resulting in length being assigned a
value of 2 and w assigned a value of true. In the second expression, only the right- hand side
of the expression is evaluated, so x is assigned a value of 2, and length is unchanged. The
last expression evaluates to 2 % 2, which is 0, so z is assigned a value of true and option
A is correct.

60. E. Both backslashes on line 13 can be removed since this is a text block. Additionally, the
second and third backslashes on line 14 can be removed. The first one must be retained since
there are three quotes in a row. Since four backslashes can be removed, option E is correct.

61. B. The first line of code correctly creates a LocalDate object representing March 3, 2022.
The second line adds two days to it, making it March 5. It then subtracts a day, making it
March 4. Finally, it subtracts yet another day, ending at March 3. The outcome of all this is
that we have two dates that have the same value, and option B is correct.

450 Appendix ■ Answers to Review Questions

62. A. Line 3 creates an empty StringBuilder. Line 4 adds three characters to it. Line 5
removes the first character, resulting in ed. Line 6 deletes the characters starting at position
1 and ending right before position 2, which removes the character at index 1, which is d. The
only character left is e, so option A is correct.

63. D. Line 36 does not compile because Character is not a numeric type and therefore
doesn’t supply a byteValue() method. All the other lines compile, making option D the
answer. Note that line 37 throws an exception since this is not a valid double value, but it
does compile. Additionally, line 35 runs successfully and evaluates to false, since Boolean
is accommodating.

64. D. Options A and B are not true if the String is "deabc". Option C is not true if the
String is "abcde". Option D is true in all cases.

65. C. An Instant represents a specific moment in time using GMT. Since LocalDateTime
does not have a time zone, it cannot be converted to a specific moment in time. Therefore,
the toInstant() call does not compile, and option C is correct.

66. C. The whitespace to the left of the closing triple quotes (""") is incidental whitespace.
Additionally, there is essential whitespace before yellow, making option C correct.

67. E. The code compiles, so option F is incorrect. The first expression evaluates to
true & false, which sets carrot to false. The next expression resolves to
true ? true : false, which results in broccoli being set to true. The last expres-
sion reduces to false ^ false, which sets potato to false. Therefore, option E is the
correct output.

68. C. Normally, adding an hour would result in 02:00 in the same time zone offset of - 05:00.
Since the hour is repeated, it is 01:00 again. However, the time zone offset changes instead.
Therefore, option C is correct.

69. D. Line 4 creates a StringBuilder of length 5. Pay attention to the substring()
method in StringBuilder. It returns a String with the value 321. It does not change the
StringBuilder itself. Then line 6 retrieves the element at index 1 from that unchanged
value, which is 4. Therefore, option D is correct.

70. D. Since sum is a double, we can rule out options A, C, and E. Now tracking the code,
min() returns 3. The floor() method finds the next lowest non- fractional number, which
is 1.0, and turns sum into 4.0. Finally, the round() method rounds up, which is 6, and
turns sum into 10.0. Therefore, option D is correct.

Chapter 2: Controlling Program Flow

1. A, E. The code compiles fine, making option A correct. Note that the length() method
takes advantage of pattern matching to avoid a cast. Only the call with "penguins" has a
matching type because it is a String. It enters the if statement, giving us option E.

2. B, F. A switch statement supports the primitive types byte, short, char, and int and
the wrapper classes Character, Byte, Short, and Integer. It also supports String

Chapter 2: Controlling Program Flow 451

and enumerated types. Finally, it permits var if it can be resolved to one of the previous
types. Floating- point types like float and double are not supported; therefore, option B
is correct. Object is also not supported since it could include any class, making option F
correct as well.

3. A, B. Option A is correct because the compiler knows all possible values have been
addressed. Option B is also correct because switch expressions only need to be complete if
returning a value. We can rule out options C and E because a Boolean is not allowed in a
switch. We can further rule out option D because Byte does not allow this shortcut.

4. E. The code does not compile because parentheses, (), are used instead of braces, {}, mak-
ing option E the correct answer.

5. F. When getting this type of question, the best approach is to write down the values of
the variables. Both start out as 0 on line 10. On the first iteration of the loop, n becomes
1, while m remains 0, so the clause in the if statement doesn’t run. In the switch state-
ment, the value of m remains 0, so it matches the first case. Since there is no break, the
default block is also executed, and n is incremented twice and is now 3. Finally, m is incre-
mented to 1.

On the second iteration of the loop, m goes from 1 to 2, and n goes from 3 to 6. On the third
iteration, m goes from 2 to 3, and n goes from 6 to 8. On the fourth iteration m is 3 and the
continue is executed with only n increasing in value by 1. This pattern continues with
the loop never terminating, while n continues to increase by 1. Since the execution does not
complete, option F is the correct answer.

6. F. We can eliminate options B and C, as both of these are legal. Also, semicolon usage is fine
within the switch expression, so option D is incorrect. The switch expression returns
values of two different types, double and int, but since they both can be implicitly cast to
the same type, double, option A is incorrect. This makes option F the answer.

7. B, D, E. A for- each loop accepts arrays and classes that implement java.lang.Iterable,
such as List. For these reasons, options B, D, and E are correct. Option A is incorrect
because it is a primitive value. Options C and F are incorrect because StringBuilder and
String do not implement Iterable.

8. C, D. A default statement inside a switch statement is optional and can be placed in any
order within the switch’s case statements, making options A and B incorrect and option
C correct. Option D is also correct because a default statement does not take a parameter
value. Options E and F are incorrect rules about switch statements.

9. A. A while loop requires a boolean condition. While singer is a variable, it is not a
boolean. Therefore, the code does not compile, and option A is correct.

10. F. Line 24 is incorrect because break is not permitted here. Line 25 is incorrect because
there should be a semicolon (;) after true. Line 26 does not compile as yield needs to be
in a block. Line 27 is not allowed because you can’t mix switch expression and switch
statement syntax. Line 28 is the only branch that is correct. Finally, line 29 is missing the
closing semicolon. This gives us five compiler errors and option F.

452 Appendix ■ Answers to Review Questions

11. A, F. A traditional for loop gives you full control over the order of iteration. This means
you can iterate through the array backward or forward. By contrast, with a for- each loop,
the iteration order is determined for you. With an array, this means starting with index 0.
Options A and F match this scenario.

12. A, D. Since pattern matching uses flow scoping and n cannot be guaranteed to exist,
the statement with || does not compile, making option A one answer. The other answer
is option D, since primitives cannot be used with instanceof. If the blank contained
Integer n &&, the output would be zero.

13. D. This code does not compile because it has two else statements as part of a single if
statement. Notice that the second if statement is not connected to the last else statement.
For this reason, option D is the correct answer.

14. A, E. The code compiles as is. Due to the break statement on line 27, the loop executes only
once. It prints a single x, which means option A is the first correct answer. While the label on
line 24 is present with lines 25 and 28 removed, it no longer points to a loop. This causes the
code to not compile, and option E is the other correct answer.

15. B. This code is correct. The default case is optional since there is no return value assigned.
Since this is a switch expression, rather than a switch statement, the cases do not fall
through and option B is the answer.

16. A, D. The method prints the elements of the array in the reverse order in which they
are defined. Option A correctly accomplishes this using a different starting value for the
loop. Options B and F do not compile, as they do not use the correct syntax in a for- each
loop. Option C compiles and runs without issue, but prints the items in their natural
ordering, as opposed to the reverse ordering. Option D is correct, as it increments in
positive order but reverses the output within the body of the for loop. Finally, option E
is incorrect. The first element read is circus[circus.length+1], which results in an
ArrayIndexOutOfBoundsException.

17. C. The first time through the loop, type is 1, and plastic- is output. The break
statement then terminates the loop, with end bring printed. If the break keyword were
removed, then this would be an infinite loop because type is not incremented between loop
executions.

18. F. The code does not compile because the switch statement is missing the case keyword
for each value.

19. A. First, determine whether the if statement’s expression is executed. The expression 8 % 3
evaluates to 2. The right- hand side of the expression is evaluated next, since + has a higher
precedence than >. Since 2 > 2 is false, the expression triceratops++ is not called.
Notice there are no braces, {}, in the if statement. Despite the triceratops–– line being
indented, it is not part of the if statement. Therefore, triceratops–– is always executed,
resulting in a value of 2 for triceratops and making option A the correct answer.

20. F. The value of a case statement must be a constant, a literal value, or a final variable.
Since red is missing the final attribute, no variable type allows the code to compile, mak-
ing option F the correct answer. If the final modifier were added to the declaration of red,

Chapter 2: Controlling Program Flow 453

then int or var would be correct. The other options use types that are incompatible with
switch statements or with colorOfRainbow.

21. C, D. The code does not compile because of the else block. Since no variable named c is in
scope, option C is one of the answers. The other answer is option D since the first if block is
executed.

22. D. Line 15 does not compile because the post- decrement operator can be applied only to var-
iables, not values. Line 16 also does not compile because the label LOOP is out of scope after
line 15. Finally, line 18 does not compile because trick is declared within the do/while
loop and is out of scope after line 17. For these reasons, option D is the correct answer.

23. C. If the code follows the arrow, then it prints each letter once, breaking out of the inner
loop on every iteration. Since a break without a label applies to the innermost structure,
break and break numbers are equivalent, and both of these two are correct answers.
Likewise, continue and continue numbers are equivalent although wrong in this case
since they resume operation of the inner loop. That leaves break letters and continue
letters. In this case, break letters stops the outer loop after printing just one letter, so
it is incorrect. On the other hand, continue letters exits the inner loop and returns con-
trol to the outer loop, which is the desired behavior. Since three statements are correct, option
C is correct.

24. B. The code compiles without issue, so options D and E are incorrect. A var can be used in a
switch statement, provided the underlying type resolves to a supported switch type. Next,
notice there are no break statements. Once the matching case statement, 30, is reached, all
remaining case statements will be executed. The eaten variable is increased by 1, then 2,
then reduced by 1, resulting in a final value of 2, making option B the correct answer.

25. A, D, F. A while loop and do/while loop both require a boolean expression, making
options A and D correct and options B and E incorrect. Option C is incorrect because a for-
each statement requires an assignment type and an object to iterate on. Option F is correct
and shows a traditional for loop with no arguments.

26. C. Methods m() and n() do not compile because date is not in scope in the else block.
Methods o() and q() do not compile due to the missing parentheses when negating
instanceof. Methods p() and r() do compile, which makes option C the answer.

27. C. Option A goes through five indexes on the iterations: 0, 1, 2, 3, and 4. Option B also goes
through five indexes: 1, 2, 3, 4, and 5. Option D goes through five iterations as well, from 0
to 4. However, option C goes through six iterations since the loop condition is at the end of
the loop. Therefore, it is not like the others, and option C is the correct answer.

28. B. On the first iteration of the loop, stops[++count] evaluates to stops[1], while also
setting count to 1. Since stops[1] is Monroe and it has six characters, the break is
reached, and the loop stops. For this reason, 1 is printed, making option B correct.

29. C. The statement if(jumps) evaluates to if(0), and since 0 is not a boolean value, the
code does not compile. Java requires boolean expressions in if statements, making option
C the correct answer.

454 Appendix ■ Answers to Review Questions

30. B. The initializer, which is alpha, runs first. Then Java checks the condition, which is beta,
to see whether loop execution should start. Since beta returns false, the loop is never
entered, and option B is correct.

31. B. On the first iteration of the loop, the if statement executes and prints inflate- . Then
the loop condition is checked. The balloonInflated variable is true, so the loop
condition is false, and the loop completes and done is printed.

32. B, D, E. A switch expression is more compact and does not allow fall through. This makes
options D and E correct. The final answer is option B, because either can use multiple values.

33. B. Options A and C print one line if numChipmunks is 1, 2, or 3. Option B does not behave
the same way if numChipmunks is 1 or 2. There is no break statement, so the case state-
ments fall through, and more than one statement will be printed.

34. A, C, D. A do/while loop requires a body, making option A correct. Options B and E
are incorrect, as both types of while loops can be exited early with a return statement.
Both also require a conditional expression, making option C correct. What distinguishes a
do/while loop from a while loop is that it executes its body at least once, making option D
correct and option F incorrect.

35. B. Option B is correct since a comma is allowed to separate values in Java 17. Option A is
incorrect because the enum type Season is not used within a case statement. If it were just
case WINTER:, then it would compile. Option C does not compile because a pipe (|) is
not valid syntax in a case statement. Option D is incorrect because - > is used instead of :.
Option E is incorrect because FALL is not defined in the list of values for the enum Season.

36. B. In a traditional for loop, only one initialization type is allowed to be specified. If more
than one variable is supplied, then they are separated by a comma. Therefore, options A, C,
and D do not compile. Options B and E both compile, although only option B prints a single
line at runtime. Option E instead prints two lines since nycTour is of size 3 and times is
of size 2.

37. B, D. The code does not compile because obj is never cast to a String. Since this is the
only error, option B is one answer. Removing that line due to the compiler error also removes
the println() statement, so option D is the other answer.

38. C. The braces on lines 12 and 27 are required because they comprise the method body. The
braces on lines 24 and 26 are required because a switch statement needs braces regardless
of how many case statements are inside. Finally, the braces on lines 18 and 21 are required
because the else has two statements inside.

The braces on lines 14 and 23, 15 and 22, and 16 and 18 are all optional because there is
only one statement inside. Since there are three pairs, option C is correct.

39. B. The method prints the elements of the list in the order in which they are defined. Option
A is incorrect and prints the first element repeatedly. Option B is correct and prints the ele-
ments using a for- each loop. Options C and E are incorrect because the first element that’s
read results in an ArrayIndexOutOfBoundsException. Finally, option D is incorrect
because the entire list is printed each time.

Chapter 3: Utilizing Java Object- Oriented Approach 455

40. D. The code snippet compiles, making options A, B, and C incorrect. Notice that the inner
for- each loop does not use braces, {}, so the break statement applies to the outer loop only.
On the first iteration of the outer loop, the inner loop prints 17_JDK and 17_Java. Then,
the break statement is encountered, and the outer loop is terminated, making option D
correct.

Chapter 3: Utilizing Java
Object- Oriented Approach

1. E. An enum must declare its values before any members. For this reason, lines 2 and 3
are reversed. Line 5 is missing parentheses required for a record declaration. Line 6 is not
allowed, as records do not allow instance variables. Line 8 is incorrect because only static
initializers, not instance initializers, are allowed in records. Since there are at least four lines
that contain errors, option E is correct.

2. C, E, G. A sealed subclass must be declared final, sealed, or non- sealed, making
options C, E, and G correct.

3. F. The program does not compile because Story is marked final, which means it cannot
be extended by Adventure, making option F correct. If the final modifier were removed,
the rest of the code would compile and print 93 at runtime.

4. C, F. A class can start with a comment, an optional package statement, or an import state-
ment if there is no package statement. It cannot start with a variable definition or method
declaration, since those cannot be declared outside a type. Therefore, options C and F are
correct.

5. C, E. An abstract method cannot include the final or private modifier. If a method
contained either of these modifiers, then no concrete subclass would ever be able to override
it with an implementation. For these reasons, options A and B are incorrect. Option D is also
incorrect because the default keyword applies to concrete interface methods, not abstract
methods. Option F is incorrect because there is no concrete modifier. That leaves options C
and E as the correct answers. The protected, package, and public access modifiers can
each be applied to abstract methods.

6. D. On line 5, the variable trees is assigned a value of 5f. On line 6 it is added to an
int value, which is promoted to float. The program then prints 15.0, making option
D correct. Although accessing a static variable with an instance reference is not recom-
mended, it is allowed on line 6.

7. E. The public access modifier allows access to members in the same class, package, sub-
class, or even classes in other packages, whereas the private modifier allows access only
to members in the same class. Therefore, the public access modifier allows access to every-
thing the private access modifier does, and more, making option E the correct answer.
Options A, B, C, and D are incorrect because the first term is a more restrictive access
modifier than the second term.

456 Appendix ■ Answers to Review Questions

8. F. There is no modifier that can prevent a default method from being overridden in a class
implementing an interface, making option F correct.

9. B. Notice in this question that main() is not a static method; therefore, it can access
both class and instance variables. It can also access the local variable args. Since there are
two class variables, two instance variables, and one local variable available, option B is the
correct answer.

10. B, D. Option A is incorrect because new cannot be used to declare a type. Option C is incor-
rect because null is a literal and cannot be used as the return type. Options E and F are
incorrect because a void method cannot return a value. That leaves options B and D as the
correct answers. Note that 10 can be returned as an int or implicitly promoted to a long,
without issue.

11. C, E. Trick question! Options A, B, and D are not even constructors. Options A and B are
static methods, whereas option D is a method that happens to have the same name as the
class. Option C is the only valid constructor. As for the output, the key is that Java uses “pass
by value” to send object references to methods. Since the Phone reference p was reassigned
in the first line of the sendHome() method, any changes to the p reference were made to a
new object. In other words, no changes in the sendHome() method affected the object that
was passed in. Therefore, the value of size was the same before and after the method call.
In this program, this.size is initialized with a default value of 0 and never changed, mak-
ing option E the other correct answer.

12. C, F. Options A and E are incorrect because the new keyword before Pterodactyl is
required to create an instance of the member inner class Pterodactyl using a member
of the outer class Dinosaur. Option B is incorrect, as this is not a valid way to instantiate
a member inner class. Option C is correct and relies on the dino instance variable for the
outer class instance. Option D would be correct if Dino were changed to the correct class
name, Dinosaur. Finally, option F is correct and relies on the fact that roar() is an in-
stance method, which means there’s an implicit instance of the outer class Dinosaur avail-
able. The Dinosaur. prefix is optional, though.

13. C. Both objects are instances of the class Laptop. This means the overridden startup()
method in the Laptop class gets called both times thanks to polymorphism, making option
C correct.

14. E. The static initializer is only run once, so faster is printed exactly once. The drive()
method is called twice, printing two lines each. Therefore, the program prints five lines, and
option E is correct.

15. B, D, F. Option A is incorrect as methods cannot be marked final within an interface.
Interfaces support static methods that are marked public or private, making options
B and D correct and option E incorrect. Option F is correct and the lack of an access
modifier makes the method implicitly public, not package, making option C incorrect.

16. A. While the permits clause is optional for sealed classes with subclasses in the same file,
the extends clause in each subclass is not. For this reason, Mercury, Venus, and Earth
do not compile. Mars also does not compile. When the permits clause is specified, all sub-
classes must be listed. For this reason, option A is correct.

Chapter 3: Utilizing Java Object- Oriented Approach 457

17. E. The first woof() method does not compile because bark is a primitive, not an object,
and does not have a toString() method. The main() method also does not compile
because it is static and all of the woof() methods require an instance of Canine. Since
these two lines do not compile, option E is the correct answer.

18. C. A local variable is effectively final when its primitive value or object reference does not
change after it is initialized, making option C the correct answer. Note that option D is incor-
rect because any change to the variable after it is initialized disqualifies it for being consid-
ered effectively final.

19. C. The sell() method is declared final in the Vegetable class. The Turnip class then
attempts to override this method, resulting in a compilation error and making option C the
correct answer.

20. D. The case statements incorrectly use the enum name as well as the value, such as
DaysOff.ValentinesDay. Since the type of the enum is determined by the value of the
variable in the switch statement, the enum name is not allowed and causes a compilation
error when used. For this reason, option D is correct.

21. D. Records are implicitly final and cannot be extended. For this reason, the Panda decla-
ration does not compile. Setting a value on this.name is not permitted in a compact con-
structor, although the constructor parameter name may be reassigned. The rest of the code
compiles without issue. Since two lines don’t compile, option D is correct.

22. B, E. There is no that keyword, so options A and D are incorrect. Option B is correct,
as this can access all members declared within the class. Option C is incorrect, as only
inherited members can be accessed. For example, private members declared in a parent
class cannot be accessed using super. Option E is correct, as this allows access to mem-
bers declared in the class and those inherited from a parent. Finally, option F is incorrect, as
static methods do not have access to this or super references.

23. D. A class can implement an interface, not extend it, ruling out options A, B, and C. Classes
do extend an abstract class, ruling out option F. Finally, an interface can only extend
another interface, making option D the correct answer.

24. B. Three instances of Chicken are created on lines 8–10. On line 11, the value of eggs in
the first two instances is set to 2, while the third instance has a value of 3. On line 12, the
original instance that was pointed to by c2 (with an eggs value of 2) is dereferenced and
eligible for garbage collection. The c1 and c2 variables now both point to the same instance
with an egg value of 2. Finally, on line 13, the eggs value for c3 is changed from 3 to
null. For this reason, option B is correct.

25. C. Java does not allow multiple inheritance, so having one class implement two interfaces
that both define the same default method signature leads to a compiler error, unless the
class overrides the method. In this case, the talk(String...) method defined in the
Performance class is an overloaded method, not an overridden one, because the signa-
tures do not match. Therefore, the Performance class does not compile, making option C
correct.

458 Appendix ■ Answers to Review Questions

26. B. First off, Pump is not a functional interface. The toString() method will be overridden
by any class inheriting the interface (via lang.lang.Object), so it does not count as an
abstract method. On the other hand, Bend is a functional interface and contains one abstract
method. The code compiles and prints 5.0 bent! at runtime, making option B correct.
Using an instance variable to call a static method, r.apply() in the main() method, is
permitted but discouraged.

27. B. If the variables are public, the class is not encapsulated because callers have direct access
to them. This rules out options C and D. Having private methods doesn’t allow the callers
to use the data, making option A an undesirable answer. Option B is correct and the classic
definition of encapsulation where the data is not exposed directly. Option E is close, but the
question asks for the broadest access allowed.

28. B. Option B is correct because mutability means the state can change, and immutability
means it cannot. The other options are invalid. In option C, rigidity is not a common
programming term.

29. C. The stroke() method is static, which means it cannot access the instance method
breath() on line k2, making option C correct.

30. D. The Hammer class is a subclass of the Tool class. The repair() method can be declared
in the Hammer subclass with a different return type because the parent method is not inher-
ited. For these reasons, options A and C are incorrect. On the other hand, the use() method
has package- level access in Tool, with the overridden version in Hammer reducing the visi-
bility to private. This is an invalid override, making option D correct. The rest of the lines
compile without issue.

31. F. Methods cannot be both abstract and final, making option A incorrect. Abstract
interface methods are always public, making option C incorrect. Finally, options B, D, and
E list modifiers that can’t be applied to methods. Therefore, option F is the answer.

32. A. While both objects are instances of Bush, we are not calling methods in this example.
Virtual method invocation works only for methods, not instance variables. For instance var-
iables, Java looks at the type of the reference and calls the appropriate variable based on the
reference. Based on the reference types of the three variables (Plant, Bush, Plant), option
A is correct.

33. G. The code compiles, so options E and F are incorrect. Remember that the permits clause
is optional if the sealed subclasses are in the same file. Given the class declaration, exactly
four subclasses inherit from Organ. The Stomach class is non- sealed, though, which
means the larger program could define additional classes in the same package that extend
Stomach and inherit Organ. For this reason, option G is correct.

34. D. Java classes are defined in this order: package statement, import statements, class
declaration. That makes option D the only correct answer. Note that not all of these state-
ments are required. For example, a class may not have a package statement, but if it does, it
must come first in the file.

Chapter 3: Utilizing Java Object- Oriented Approach 459

35. A, D, F. The code does compile as is, making option A correct. Removing private on line
2 would not cause a compiler error in the main() method, making option D correct. Option
F is the final correct answer because a static type such as an enum can be defined in both
inner and static nested classes.

36. B, F. A static method can access static variables, but not instance variables. The
getNumRakes() method does not compile, so option B is correct. The main() method
calls the constructor, which outputs a. Then the main method calls the run() method. The
run() method calls the constructor again, which outputs a again. Next, the run() method
calls the Sand() method, which happens to have the same name as the constructor. This out-
puts b. Therefore, option F is correct.

37. C. While an anonymous class can extend another class or implement an interface, it cannot
be declared abstract since it has no class name. For this reason, option C is correct. The
other classes may be declared abstract since they have a class name.

38. C, E, F. The public access modifier is the broadest, making options E and F correct.
Package access limits references to those in the same package. The protected access
modifier adds on subclass access, making option C correct.

39. C. Java does not allow multiple variables to be declared in the same statement using a local
variable type inference. Lines x3 and x4 both have compiler errors. Since the question asks
about the first line with a compiler error, option C is the answer.

40. E. All four members of the Telephone interface are implicitly public, making option E
correct. Only private and private static interface methods are not public, and they
must be explicitly marked private.

41. C. The new keyword is used to call the constructor for a class and instantiate an instance
of the class, making option C correct. A primitive cannot be created using the new keyword,
so option B is incorrect. Dealing with references happens after the object created by new is
returned. The other options are invalid.

42. B. From within a method, an array or varargs parameter is treated the same. However, there
is a difference from the caller’s point of view. A varargs parameter can receive either an array
or individual values, making lines 19 and 20 compile. However, an array parameter can take
only an array, which permits line 23 but prevents line 22 from compiling. Both lines 21 and
24 compile because null can be passed to a method taking an array or a vararg parameter.
Since there is only one line that doesn’t compile, option B is the answer.

43. E. By definition, you cannot change the value of an instance variable in an immutable class.
There are no setter methods, making option A incorrect. While option B would allow you
to set the value, the class would no longer be immutable. Option C is incorrect because that
would not modify the original instance. Option E is correct. If you are an advanced devel-
oper, you might know that you can use reflection to change the value. Don’t read into ques-
tions like this on the exam. Reflection isn’t on the exam, so you can pretend it doesn’t exist.

44. E. This code is already a functional interface and compiles without any changes, making
option E correct. The Play interface has a single abstract method: fun(). The other
methods have a method body, which shows they are not abstract.

460 Appendix ■ Answers to Review Questions

45. F. Both of these descriptions refer to variable and static method hiding, respectively, mak-
ing option F correct. Only instance methods can be overridden, making options A and B
incorrect. Options C, D, and E are also incorrect because replacing and masking are not real
terms in this context.

46. C, D. Records can be declared with any access modifier and included as nested classes, mak-
ing option A incorrect. A record cannot extend other classes, but it can implement interfaces,
making option B incorrect and option C correct. A record can contain multiple construc-
tors, but at most one compact constructor since a compact constructor does not take any
arguments. For this reason, option D is correct and option E is incorrect. Finally, option F is
incorrect. A developer could define a record with a mutable field such as an ArrayList and
accidentally expose it for direct modification.

47. F. This class is a good example of encapsulation. It has a private instance variable and
is accessed by a public method. No changes are needed to encapsulate it, and option F is
correct.

48. F. The declarations of the local classes Robot and Transformer compile without issue.
The only compilation problem in this program is the last line of the main() method. The
variable name is defined inside the local class and not accessible outside class declaration
without a reference to the local class. Due to scope, this last line of the main() method does
not compile, making option F the correct answer. Note that the first part of the print()
statement in the main() method, if the code compiled, prints GiantRobot.

49. C. The Bottle class includes a static nested class Ship that must be instantiated in a
static manner. Line w2 uses an instance of Bottle to instantiate the Ship. Therefore, line
w2 does not compile, and option C is the correct answer.

50. E. The instance variables, constructor, instance and static initializers, and method declara-
tions can appear in any order within a class declaration, making option E correct.

51. A. Remember that the default initialization of a boolean instance variable is false, so
outside is false at line p1. Therefore, this(4) will cause rope to be set to 5, while
this(5) will cause rope to be set to 6. Since 5 is the number we are looking for, option
A is correct, and option C is incorrect. Option B is also incorrect. While the statement does
create a new instance of Jump, with rope having a value of 5, that instance is nested, and
the value of rope does not affect the surrounding instance of Jump that the constructor
was called in. Option D is also incorrect. The value assigned to rope is 4, not the target 5.
Options E and F do not compile because the superclass is Object, which does not have a
constructor taking an int.

52. B, E. Option A is true because encapsulation improves security because instance variables
cannot be accessed directly. Implementing encapsulation prevents internal attributes of a class
from being modified directly, so option D is a true statement. By preventing access to internal
attributes, we can also maintain class data integrity between elements, making option C a
true statement. Option F is also a true statement about encapsulation, since well- encapsulated
classes are often easier to use. Encapsulation makes no guarantees about performance and
concurrency, making option B one of the answers. Option E is the other answer because it
describes immutability, not encapsulation.

Chapter 3: Utilizing Java Object- Oriented Approach 461

53. C. Option A is allowed because the turnOn() method is public and can be called from
anywhere. Options B and D are allowed since the method is in the same class, which is
always allowed! Option E is allowed because Tent and Blanket are in the same package.
The Phone class cannot access the wash() method in the Blanket class because it is in a
different package, making option C correct.

54. C. The display() method has protected access. This means it can be accessed by in-
stance methods in the same package and any subclasses. There are no subclasses in this
example, so we only need to count the classes in the same package. Option C is correct
because Flashlight and Phone are in the package.

55. B, D. While Java does not allow a class to extend more than one class, it does allow a class
to implement any number of interfaces. Multiple inheritance is, therefore, only allowed via
interfaces, making option B correct. Interfaces can extend other interfaces, making option D
the other correct answer. The other statements are incorrect.

56. B, D, E. Immutable objects are ones that are not modified after they are created. Immutable
objects can have public constructors. There is no need to change the access modifier to
private, making option A incorrect. All instance variables should be private in an immu-
table class to prevent subclasses and classes within the package from modifying them outside
the class, making option B correct and option C incorrect. They should not have any setter
methods, making option D correct. The class should also either be marked final or contain
final methods to prevent subclasses from altering the behavior of the class, making option
E correct. Finally, option F is incorrect as String is immutable, so a defensive copy is not
required. Note that if species were a mutable type, like List, a defensive copy would be
required.

57. E. The main() method attempts to define an anonymous class instance but fails to provide
the class or interface name, or use the new keyword. The right- hand side of the assignment
to the seaTurtle variable should start with new CanSwim(). For this reason, option E is
the correct answer. If the code were corrected with the proper declaration, then the program
would output 7 at runtime.

58. E. The Puppy class does not declare a constructor, so the default no- argument constructor is
automatically inserted by the compiler. What looks like a constructor in the class is actually
a method that has a return type of void. Therefore, the line in the main() method to create
the new Puppy(2) object does not compile, since there is no constructor capable of taking
an int value, making option E the correct answer.

59. B. The method signature has package, or default, access; therefore, it is accessible to classes
in the same package, making option B the correct answer.

60. D. First, both CanBurrow and HasHardShell compile as functional interfaces since
they contain exactly one abstract method, although only the latter uses the optional
@FunctionalInterface annotation. The declarations of these two interfaces, along with
the abstract class Tortoise, compile without issue, making options A, B, and C
incorrect. The class DesertTortoise inherits two abstract methods, one from the
interface CanBurrow and the other from the abstract parent class Tortoise. Since the
class implements only one of them and the class is concrete, the class declaration of
DesertTortoise fails to compile, making option D the correct answer.

462 Appendix ■ Answers to Review Questions

61. C. The interface declarations compile without issue. When inheriting two default methods
with the same signature, the Tower class is required to override both methods even if the
class is marked abstract. For this reason, line m3 is the first line that does not compile, and
option C is correct. Note that there is no possible overridden method that can fulfill both
inherited default methods since the return types are not covariant.

62. F. The height variable is declared within the if statement block. Therefore, it cannot be
referenced outside the if statement, and the code does not compile, making option F correct.
The rest of the code is correct.

63. A, E, F. Java supports three types of comments: single- line (//), multiline (/* */), and Java-
doc (/** **/), making options A, E, and F correct. The other options may be comments in
other languages, but not in Java.

64. A, C, F. An abstract method is one that will be implemented by a subclass. For this
reason, it cannot be combined with final or private, as both prevent a method from
being overridden, making options B and D incorrect. An abstract method can also not
be marked static, since static members belong to the class level, not an instance, mak-
ing option E incorrect. Options A, C, and F are the correct answers. Note that marking a
private method final has no practical implication, although it is allowed.

65. F. The class data, stuff, is declared public, allowing any class to modify the stuff vari-
able and making the implementation inherently unsafe for encapsulation. Therefore, there are
no values that can be placed in the two blanks to ensure the class properly encapsulates its
data, making option F correct. Note that if stuff were declared private, options A, B, C,
and D would all be correct. Encapsulation does not require any specific method names, just
that the internal attributes are protected from outside access, which all of these sets of values
do achieve. Option E is incorrect because classes cannot define default methods.

66. C. The second row is incorrect, as private methods belong to an instance, not the class.
The fourth row is also incorrect, as default methods require a method body. The rest of the
rows are correct, making option C correct.

67. D. The super() statement is used to call a constructor in the parent class, while super is
used to reference a member of the parent class. The this() statement is used to call a con-
structor in the current class, while this is used to reference a member of the current class.
For these reasons, option D is the correct answer.

68. F. A sealed class can only be extended by a class with a final, non- sealed, or sealed
modifier, making option F correct. The permits clause is optional if the subclasses are
within the same file. Option A is incorrect because nonsealed is not a keyword. Options B
and C are incorrect because they are missing one of the required modifiers. Options D and E
are incorrect because records and interfaces cannot extend a class.

69. B. Line 14 calls the method on line 8 since it is a Watch object. That returns watch, making
option A incorrect. Line 15 calls the method on line 3 since it is a SmartWatch object and
the method is properly overridden. That returns smart watch, so option B is the answer,
and option C is incorrect.

Chapter 3: Utilizing Java Object- Oriented Approach 463

70. F. The Cinema class defines a constructor that takes a String value, which means the com-
piler does not insert the default no- argument constructor. Therefore, it is not available in the
Movie constructor, and an explicit constructor must be called with super(). Since this is
not done, the Movie constructor does not compile, making option F the correct answer.

71. D. This class does not implement Serializable, so option A is incorrect. This code is well
encapsulated because the instance variables are private. The algae and wave variables
are immutable because they are marked final and there are no methods that can change
them. The getAlgae() method creates a defensive copy, preventing direct access to the
algae object. Finally, the sun variable is initialized to 0 and cannot be changed after its
creation. The setSun() method is missing a this reference, so the assignment sun = sun
assigns the method parameter sun to itself. For these reasons, the class is immutable, and
option D is correct.

72. E. Local variable type inference requires a value so that the type can be inferred. The var
color; statement without a value is not allowed, making option E the answer.

73. A. If the program is called with a single input south, then south would be printed at run-
time. If the program is called with no input, then the compass array would be of size zero
and an ArrayIndexOutOfBoundsException would be thrown at runtime. Finally, if the
program is called with a string that does not match one of the values in Direction, then an
IllegalArgumentException would be thrown at runtime. The only result not possible is
WEST, since the enum value is in lowercase, making option A the correct answer.

74. C. A class cannot contain two methods with the same method signature, even if one is
static and the other is not. Therefore, the code does not compile because the two declara-
tions of playMusic() conflict with one another, making option C the correct answer.

75. A, E, F. First, the return types of an overridden method must be covariant, making option
A correct. They can be the same, but it is not required, making option C incorrect. Next,
the access modifier must be the same as or broader than the child method, making option
B incorrect, and option F correct. Option D is incorrect as an overridden method is not
required to throw a checked exception declared in the parent version of the method. If it does
declare a checked exception, it cannot be new or broader than the ones declared in the super-
class, making option E correct.

76. D. A private non- static interface method may only be accessed from other private
or default methods declared within the interface. Lines 15 and 21 do not compile because
the private method is called within static methods. Line 26 does not compile because
a private interface method cannot be called in a method outside the interface declaration.
Since these three lines do not compile, option D is correct.

77. A. The code compiles without issue. Line 2 declares an overloaded constructor, while line 5
declares a compact constructor. Line 8 creates a new method. The beats value can then be
accessed from getBeats() or beats(), the latter of which is provided by the compiler.
When the code runs, the compact constructor is called and the input parameter is replaced
with 10, making option A correct.

464 Appendix ■ Answers to Review Questions

78. B, D, E. Interface variables are implicitly public, static, and final, making options B,
D, and E correct. The words const and constant aren’t modifiers, so options A and F are
incorrect. Option C is also incorrect. Variables cannot be declared as abstract in interfaces,
nor in classes.

79. B. Integer is the name of a class in Java. While it is bad practice to use the name of a class
as your local variable name, it is legal. Therefore, k1 does compile. It is not legal to use a
reserved word as a variable name. All of the primitives including int are reserved words.
Therefore, k2 does not compile, and option B is the answer. Lines k4 and k5 don’t compile
either, but the question asks about the first line to not compile.

80. C. The code compiles and runs without issue, so options A and B are incorrect. The question
relies on your ability to understand variable scope. The today variable has local scope to
the method in which it is executed. The tomorrow variable is re- declared in the method,
but the reference used on line y is to the instance variable with a value of 10. Finally, the
yesterday variable is static. While using an instance reference to access a static vari-
able is not recommended, it does not prevent the variable from being read. The result is line y
evaluates and prints 31 (20 + 10 + 1), making option C the correct answer.

81. E. If an enum contains anything other than a list of values, then a semicolon (;) must follow
the list of values. The Snow enum includes a method, so there must be a semicolon after the
last value, FLURRY. For this reason, the code does not compile, and option E is correct. If the
semicolon was added, then the code would compile and print 0 Sunny at runtime, with the
overridden toString() replacing the default value of FLURRY.

82. A. Option A is the correct answer because the first line of a constructor could be this() or
super(), making it an invalid statement. Option B is a true statement because the compiler
will insert the default no- argument constructor if one is not defined. Option C is also a true
statement, since zero or more arguments may be passed to the parent constructor, if the par-
ent class defines such constructors. Option D is also true. The value of a final instance var-
iable must be set when it is declared in an initialization block or in a constructor.

83. E. If only the com.mammal class needed access, option A would be correct. Access modifiers
cannot be used to grant access to a list of packages. The Java Platform Module Framework
can do this, but it is not an option in this question. Therefore, option E is correct.

84. B. The super.getWeight() method returns 3 from the variable in the parent class, as
polymorphism and overriding do not apply to instance variables. The this.height call
returns the value of the variable in the current class, which is 4. For these reasons, option B is
correct.

85. B, E. The key here is understanding which of these features of Java allow one developer to
build their application around another developer’s code, even if that code is not ready yet.
For this problem, an interface is the best choice. If the two teams agree on a common inter-
face, one developer can write code that uses the interface, while another developer writes
code that implements the interface. Assuming neither team changes the interface, the code
can be easily integrated once both teams are done. For these reasons, option B is correct.
Interfaces expose methods using the public keyword, making option E the other answer.

Chapter 3: Utilizing Java Object- Oriented Approach 465

86. F. The code compiles, even if the blank is replaced with a constant value, making option E
incorrect. Note that the class correctly overrides both inherited default methods. While it
is possible to call a specific inherited default method, even when it has been overridden, it
requires calling super, which is not accessible from the static method main(). For these
reasons, options A, B, C, and D do not work either, making option F correct.

87. B. An enum declaration itself cannot be marked abstract, nor can any of its values, but
its methods can be marked abstract, making option B the correct answer. Note that if an
enum contains an abstract method, then every enum value must include an override of this
abstract method.

88. C. The static initializer is run only once. The static method is run twice since it is called
twice. Therefore, three lines are printed, and option C is correct. The instance initializer block
is never run because the Cars class is never constructed.

89. D. An accessor (or getter) in a record is defined without a get prefix. For this reason, the
declaration of getFirstName() is invalid because it includes an @Override annotation
and there is no such method inherited. Since the code does not compile, option D is correct.
For the exam, you don’t need to know how to create annotations but you need to know
when the common ones are incorrectly used. If the annotation were removed, then the code
would print null at runtime.

90. C. Dot notation is used for both reading and writing instance variables, assuming they are in
scope. It cannot be used for referencing local variables, making option C the correct answer.
It is possible that bar is a static variable, although accessing it in this manner is not
recommended.

91. A, D, E. The reference type of unknownBunny must be Bunny or a supertype of Bunny,
including any abstract classes, concrete classes, or interfaces that Bunny inherits. For this
reason, options A and E are correct, and option C is incorrect. Option B is incorrect. Since it
already points to an instance of Bunny, casting it to a Bunny reference is allowed. Option
D is trivially true. If the reference types of both are the same, then they can call the same in-
stance members. Option F is incorrect, as casting is required to access members declared in
Bunny that are not defined in Object.

92. C, E. Methods marked private or static are never inherited, so options A, B, and D are
incorrect. Interface methods cannot be final, so option F is incorrect. That leaves default
and abstract methods, which are both inherited by classes implementing the interface,
making options C and E correct.

93. C. The code does compile, so option E is incorrect. A functional interface is required to have
exactly one abstract method. In both interfaces, that is roar(). The toString() and
hashCode() method signatures match those from Object. Since they are provided to all
subclasses, they are not considered abstract. Since roar() is the only abstract method,
both are functional interfaces, making option C the answer.

94. C, E. To call a constructor, you must use the new keyword, making option E correct. It
cannot be called as if it was a normal method. This rules out options A and B. Further, option
D is incorrect because the parentheses are required. Option C is correct, as var may be used
as a variable name.

466 Appendix ■ Answers to Review Questions

95. B. To a call an instance method, you can use the this prefix. The class name is not
included, ruling out the last three methods. A method may contain at most one
varargs parameter, and it must appear as the last argument in the list. For this reason, the
sing_do() method is the only method using varargs that compiles. The sing() method
also compiles but the question asked for the public methods. Therefore, option B is
the answer.

96. B. The code compiles without issue. The first print() statement refers to level declared
in the Deeper class, so 5 is printed. The second and third print() statements actually
refer to the same value in the Deep class, so 2 is printed twice. The prefix Matrix. is
unnecessary in the first of the two print() statements and does not change the result. For
these reasons, option B is the correct answer.

97. D. A sealed subclass must have a final, sealed, or non- sealed modifier. For this
reason, Second compiles. A record is implicitly final, so Hour also compiles. Micro
compiles since it extends a non- sealed class. Minute is the only one that does not com-
pile since an interface is implicitly abstract and is missing sealed or non- sealed,
making option D correct.

98. A. The play() method is overridden in Violin for both MusicCreator and
StringInstrument, so the return type must be covariant with both. Long is a subclass
of Number, and therefore, it is covariant with the version in MusicCreator. Since it
matches the type in StringInstrument, it can be inserted into the blank, and the code
would compile. Integer is not a subclass of Long used in StringInstrument and
would cause the code to not compile. Number is compatible with the version of the method
in MusicCreator but not with the version in StringInstrument. For these reasons,
Long is the only class that allows the code to compile, making option A the correct answer.

99. E. The IsoRightTriangle class is abstract; therefore, it cannot be instantiated
on line g3, making option E correct. If the abstract modifier were removed from the
IsoRightTraingle declaration, then the rest of the code would compile and print irt
at runtime.

100. F. The private static method wagTail() attempts to access an instance- based
default method chaseTail(), which results in a compiler error, making option F
correct. While buryBone() is not used, it does not result in a compiler error, making
option D incorrect. Overridden methods are permitted to declare new unchecked excep-
tions, and since IllegalArgumentException is unchecked, the override is allowed,
making option E incorrect.

101. E. While you can suggest to the JVM that it might want to run a garbage collection cycle,
the JVM is free to ignore your suggestion. Option B is how to make this suggestion. Since
garbage collection is not guaranteed to run, option E is correct.

102. D. The access modifier of strength is protected, meaning subclasses and classes within
the same package can modify it. Changing the value to private would improve encapsu-
lation by making the Protect class the only one capable of directly modifying it. For these
reasons, option D is correct.

Chapter 3: Utilizing Java Object- Oriented Approach 467

103. A, D. A lambda can reference any instance variable, static variable, or lambda param-
eter that is in scope, making option A correct. Lambdas require local variables and
method parameters to be effectively final in order to use them, making option D the other
correct answer.

104. B. An immutable class must not allow the state to change. In the Faucet class, the caller
has a reference to the List being passed in and can change the size or elements in it. Simi-
larly, any class with a reference to the object can get the List by calling getPipes() and
make these changes. The Faucet class is not immutable. The Spout class shows how to
fix these problems and is immutable, making option B correct.

105. A, C, E. Option A is correct and returns true since Coral inherits Friendly from
its superclass Animal. Option B is false, as using null with the instanceof oper-
ator always returns false. Options C and E are both correct and return true because
all classes inherit Object, even those that don’t explicitly extend it. Option D is false
because Fish does not inherit the Friendly interface. Finally, option F does not compile,
as Dolphin is abstract and cannot be instantiated directly.

106. B. While it is not recommended to change the value of an enum after it is created, it is
legal. Each enum value has its own copy of numDays. This means the setter changes it for
CHICKEN, but not for PENGUIN. Therefore, option B is correct. Both calls on CHICKEN
print the updated value of 20, while PENGUIN retains the original 75.

107. B. Line 3 does not compile, as a method with a body within an interface must be explicitly
marked static, default, or private, making option B correct. The rest of the lines
compile without issue.

108. E. The type of the variable in the switch statement is the enum Currency, but the case
statements use int values. While the enum class hierarchy does support an ordinal()
method, which returns an int value, the enum values cannot be compared directly
with int values. For this reason, the Bank class does not compile, making option E the
correct answer.

109. B, G. A record can contain many of the same members as a class, such as static initial-
izers, static methods, nested classes, and constructors. Instance variables and initial-
izers cannot be declared inside a record, as this could break immutability, making options
B and G correct. Option A is incorrect, as provided methods, such as hashCode() or
toString(), may be overridden in the record declaration.

110. A. The f in 4.0f means the type is a float, making option A correct. Local variable type
inference chooses an exact match rather than using autoboxing to choose Float. Note that
option D does not compile, as the compiler won’t perform a numeric promotion to double
and then autobox to Double at the same time.

111. B. A class can trivially be assigned to a superclass reference variable but requires an explicit
cast to be assigned to a subclass reference variable. For these reasons, option B is correct.

112. D. A functional interface may have any number of static, default, private static,
or private methods. It can have only one qualified abstract method, though, making
option D correct.

468 Appendix ■ Answers to Review Questions

113. D. This class has poor encapsulation since the age variable is public. This means that a
developer could modify the body of main() to change the value of mandrill.age to any
integer value, making option D correct.

114. C. All three references point to the String object "lion" by the end of the main()
method. This makes the other two String objects eligible for garbage collection and
makes option C correct.

115. B, F. A functional interface has exactly one abstract method. This includes inherited
methods. If Panther has a single abstract method, Cub is a functional interface if it
does not add any more abstract methods. This matches option B. However, if Panther
has two abstract methods, there is no code in Cub that can make it a functional inter-
face, and option F is the other answer.

116. B. When the main() method instantiates the object, line 2 first runs and sets the variable
using the declaration. Then the instance initializer on line 6 runs. Finally, the constructor
runs. Since the constructor is the last of the three to run, that is the value set when we print
the result, so option B is correct.

117. C. An abstract method cannot define a body, meaning the declaration of
getNumberOfRings() is invalid and option C is correct. The rest of the code compiles
without issue. While the compiler will prevent cycles within overloaded constructors, it does
not do so for methods, meaning option F is incorrect.

118. B, F. The type is determined based on the value at initialization. It can be null at this
point, but only if type information is provided such as (String)null. It can be assigned
null later, making option B correct. Both primitives and objects can be used with var,
making option F correct.

119. A. The protected modifier allows access by any subclass or class that is in the same
package; therefore, option A is the correct answer.

120. C. The main() method defines a local class Oak that correctly extends Tree, a static
nested class. The method getWater() is not permitted to read the local variable water,
though, since it is not final or effectively final, making option C correct. If the last line of
the method were removed, then the program would compile and print 8.

121. B, D. A class can implement multiple interfaces, making option B correct. An interface can
also extend multiple interfaces, making option D correct as well.

122. D. The method looks like a setter or mutator method. However, it is incorrectly imple-
mented since the method is missing a this reference and doesn’t actually change the value.
Therefore, option D is correct.

123. A, C, F. Option A is correct and option B is incorrect because this() calls another con-
structor in the same class. Option C is correct because this() without parameters is the
default constructor and is not inserted automatically by the compiler if another constructor
is present. Options D and E are both incorrect because only one of super() or this()
can be used from the same constructor. Finally, option F is correct, as super() or this()
must come first in a constructor.

Chapter 3: Utilizing Java Object- Oriented Approach 469

124. E. The code compiles and runs without issue, so option A is incorrect. The question
involves understanding the value and scope of each variable at the print() statement.
The variables feet and tracks are locally scoped and set to 4 and 15, respectively,
ignoring the value of tracks of 5 in the instance of the class. Finally, the static variable
s.wheels has a value of 1. The result is that the combined value is 20, making option E
the correct answer.

125. C, F. Line m3 does not compile because isDanger() is an invalid method override. An
overridden method may not throw a broader checked exception than it inherits. Since
Exception is a superclass of Problem, the code does not compile, and option C is
correct. Line m6 does not compile because the return type of isDanger() is void, which
cannot be assigned to a variable, making option F also correct.

126. C, E, F. Top- level classes can be set only with public and package access, making option
A incorrect. On the other hand, member inner classes can be set with any of the four access
levels, making option D incorrect. Both types of classes can be declared with a final or
abstract modifier, making option B incorrect and option F correct. Both can also include
constructors, making option C correct. Finally, option E is correct and one of the primary
features of inner classes.

127. A. Option A is the only correct answer, as a class declaration is the only required compo-
nent in a Java class file. Note that we said a Java class file here; Java also allows interfaces,
annotations, modules, records, and enums to be defined in a file. A class file may have a
single package statement or any number of import statements. Neither is required.

128. B. On line 9, all three objects have references. The elena and zoe objects have a direct
reference. The janeice object is referenced through the elena object. On line 10, the
reference to the janeice object is replaced by a reference to the zoe object. Therefore,
the janeice object is eligible to be garbage collected, and option B is correct. Note that
elena still holds the reference to the original zoe object.

129. D. Both the Drive and Hover interfaces define a default method getSpeed() with
the same signature but different return types. The Car class implements both interfaces,
which means it inherits both default methods. Since the compiler does not know which
one to choose, the Car class must override the default method. Since it does not, the
code does not compile and option D is correct. Note that in this case it is not possible to
write a method that inherits both default methods since the return values cannot be
made covariant.

130. C, D. On line 10, we are passing a float. Since there is no exact match, Java attempts to
promote the primitive type to double before trying to wrap it as a Float, making option
D correct. On line 11, the value 2 is first cast to a byte. It is then increased by one using
the addition + operator. The addition + operator automatically promotes all byte and
short values to int. Therefore, the value passed to choose() in the main() method is
an int. The choose(int) method is called, returning 5 and making option C the other
correct answer.

131. D. Line 3 does not compile because printColor() is marked final and cannot be over-
ridden. Line 5 does not compile because the toSpectrum() method is marked abstract
and must be overridden by each enum value. Finally, line 6 does not compile because enum
constructors are implicitly private. For these three reasons, option D is correct.

470 Appendix ■ Answers to Review Questions

132. E. The getEqualSides() method is not overridden on line x1, since it is private in
the parent class and not inherited. For this reason, line x1 compiles. On the other hand, the
override of getEqualSides() in Square is invalid. A static method cannot override
a non- static method and vice versa. For this reason, option E is the correct answer. The
rest of the lines compile without issue.

133. A. Since only one package needs access and it is the same package the class is in, option A
is correct. Using protected would permit access from other classes within the package,
but allow subclasses in other packages to access it as well.

134. D. A concrete class is not allowed to have abstract methods, but the other two types are.
This makes the second row in the first column incorrect. All three types are allowed to have
static final constants, making the whole second column correct. In the last column,
there are two errors. An abstract class can have a constructor, but an interface cannot.
Note that an abstract class cannot be instantiated. Instead, it requires a subclass. This
gives us a total of three incorrect cells, making option D the answer.

135. C, D, F. A class extending a sealed class must be declared final, sealed, or
non- sealed, making option F correct. Option C and D are also correct, as a sealed or
non- sealed subclass may also be marked with any access modifiers. The other modifiers
are invalid or cannot be applied to a class declaration.

136. B, C, E. A functional interface must have exactly one abstract method, which is option
B. There are no restrictions on the number of private or static methods, which make
options C and E also correct.

137. C. The contents instance variable is marked final, which means it must be set as part
of object initialization. Since it is not, the Gift class cannot be instantiated and the class
does not compile. For this reason, option C is correct. The setContents() method also
does not compile since a final instance object cannot be set in an instance method after
the class has been initialized.

138. D. Line 3 does not compile because the method is not marked default, static, or
private. Line 7 does not compile because the return type is int, and the fly() method
does not return a value. Line 9 does not compile because Bird is a final class and cannot
be extended. For these reasons, option D is correct.

139. D. This example deals with polymorphism since the methods are being called on the object
instance. Since both objects are of type FlemishRabbit, HOP is printed twice, and option
D is the correct answer.

140. B, D, E. Underscores (_) are permitted in identifiers with the exception of a single under-
score, making option A incorrect. Currency symbols, such as the dollar sign ($), are
allowed, but no other symbols are allowed, making option C incorrect. Numbers are
allowed, but not as the first character. Therefore, option F is incorrect. The rest of the
options are valid class names, making the answer options B, D, and E correct. Note that
class names begin with an uppercase letter by convention, but this is not a requirement.

Chapter 3: Utilizing Java Object- Oriented Approach 471

141. A. The code compiles without issue. Java allows methods to be overridden, but not vari-
ables. Therefore, marking them final does not prevent them from being reimplemented
in a subclass. Furthermore, polymorphism does not apply in the same way it would
to methods as it does to variables. In particular, the reference type determines the ver-
sion of the secret variable that is selected, making the output 2.0 and option A the
correct answer.

142. C. Java is a pass- by- value language, which means changes made to the name reference
in the slalom() method are not passed back to main(). Therefore, myName stays as
Rosie, allowing us to eliminate options B and D. Setting the racer object to null in the
slalom() method doesn’t change the mySkier reference in main(), allowing us to elim-
inate option A. Likewise, since speed was assigned a new object, changes do not affect
mySpeed in the main() method. Finally, the value of age in the Ski object does change
to 18, as this was applied before the reference was changed. For these reasons, option C is
correct.

143. A. Member inner classes can now include static non- final members. Despite the
unusual references in the main() method, the code is valid and does compile. The
Penguin.this.volume value in the chick() method refers to the value defined at the
Penguin instance level. Therefore, the code prints Honk(1)! at runtime, making option A
correct.

144. E. Records include useful overrides of the toString() method that include all attributes
with both their name and value. For this reason, option E is correct. Note that if Fruit
were a class instead of a record, then option A would be a possible output since it uses the
version defined in Object.

145. B. The code compiles, even if the blank is replaced with a constant char value, mak-
ing option E incorrect. Note that the class correctly overrides both inherited default
methods. It is possible to access a default method, even if it is overridden in the class,
but requires using the super keyword properly. Option B demonstrates the correct syntax,
while the other samples do not compile. Note that option D would not be correct even if
there were only one inherited default method.

146. C. Option A is incorrect because the keywords static and import are reversed. The
Closet class uses the method getClothes() without a reference to the class name
Store; therefore, a static import is required. For this reason, option B is incorrect since
it is missing the static keyword. Option D is also incorrect since static imports are
used with members of the class, not a class name. Finally, option C is the correct answer
since it properly imports the method into the class using a static import.

147. B. The drive() method in the Car class does not override the private version in the
Automobile class since the method is not visible to the Car class. Therefore, the final
attribute in the Automobile class does not prevent the Car class from implementing a
method with the same signature. The drive() method in the ElectricCar class is a
valid override of the method in the Car class, with the public access modifier expanding
access in the subclass. In the main() method, the object created is an ElectricCar, even
if it is assigned to a Car or Automobile reference. Due to polymorphism, the method
from the ElectricCar will be invoked, making option B the correct answer.

472 Appendix ■ Answers to Review Questions

148. A, D, F. Option A is correct, as sealed classes may be extended by other sealed classes. In an
unnamed module, the sealed class and its subclasses must be within the same package, mak-
ing option B incorrect and option F correct. Option C is incorrect, as sealed classes can con-
tain nested classes. Option D is also correct, as a sealed class can be declared abstract.
Finally, option E is incorrect, as a sealed class cannot be declared final, or there would be
no way to declare a subclass for it.

149. A. The code compiles, so option F is incorrect. The Music class is loaded, and the static
initializers are executed in order, with re- fa- being printed first. Next, the first line of the
main() method is executed, printing ti- . The second line of the main() method creates a
Music object, with the instance initializers being called first, printing do- mi- . Finally, the
no- argument constructor is executed, and so- is printed last, making option A correct.

150. D. All of the options attempt to create an instance using an anonymous class that extends
Sky. Option A is incorrect because when you create an anonymous class, you do not
specify a name. Even if there was a Sunset class, the declaration of an anonymous class
can only extend or implement one type directly. Since it would already extend Sunset, it
cannot specify Sky at the same time. Option B is incorrect because Sky is abstract and
cannot be instantiated directly. Option C is incorrect because it is missing a semicolon (;) at
the end. Option D is the correct answer. Remember that all nested classes can have static
variables.

151. E. The code may look complicated, but it does not compile for a simple reason. The
abstract read() method defined in Book cannot have a method body. Since it does,
the code does not compile, and option E is correct.

152. C. While using null with instanceof compiles, it always returns false. The other two
instanceof calls show that instanceof can be used with both classes and interfaces.
They both return true since Bus implements Vehicle, making option C correct.

153. D. The first row is incorrect as the private modifier is required for private interface
methods. The second row is correct. The third row is also incorrect because the static
modifier is required, not optional, for static interface methods. The public modifier is
optional, though, as the static method is implicitly public without it. The last row is
incorrect as the abstract modifier can be implied if the method does not declare a body.
Since three rows contain an error, option D is correct.

154. D. A final instance variable must be assigned a value when it is declared, in an instance
initializer or by a constructor. The Dwarf(String) constructor does not assign a value
since it already contains a local variable called name. For this reason, this constructor does
not compile, and option D is correct. If the assignment in the constructor were changed to
this.name, then the program would compile and print Sleepy.

155. C. The AddNumbers interface is a valid functional interface. While it includes both
static and default methods, it includes only one abstract method, the precise
requirement for it to be considered a functional interface, making option D incorrect. The
class compiles and prints 8 at runtime, making option C correct.

Chapter 3: Utilizing Java Object- Oriented Approach 473

156. B. There is no such thing as package or pseudo variables, so options A and E are incorrect.
Option C is incorrect as the variable is only in scope within a specific instance of the class.
Option D is also incorrect as the variable is only in scope for a single method or block that
it is defined in. Option B is the only correct answer as class variables are in scope within the
program.

157. D. The super() statement is used to call a constructor in a parent class, while the
this() statement is used to call a constructor in the same class, making option D correct
and option C incorrect. Options A, B, E, and F are incorrect because they are not built- in
functionality in Java.

158. C, D. The default no- argument constructor is inserted by the compiler whenever a class,
abstract or concrete, does not declare any constructors. For this reason, option A is incor-
rect and option D is correct. Even if a parent class does not declare a no- argument con-
structor, the child class can still declare one, making option B incorrect. If the parent class
does not declare a no- argument constructor (and none is inserted by the compiler), then the
child class must declare at least one constructor, making option C correct. Without a con-
structor call, inserting the default no- argument constructor into the child class would lead
to a compiler error on the implicit super() call. Finally, options E and F are incorrect, as a
child class of a parent with a no- argument constructor is free to declare or not declare any
constructors.

159. B. The hop() method has protected access, which allows subclasses to call it. Both the
move() method and main() method are allowed to call hop() since Grasshopper is a
subclass. The code runs without error and prints hop twice, making option B the answer.

160. A. This code is not a functional interface because it has three abstract methods: fun(),
game(), and toy(). Removing two of these three methods would cause the code to com-
pile. However, there is no requirement that the code be a functional interface. Since it only
needs to compile, removing the @FunctionalInterface annotation would also cause
the code to compile. Option A is correct since it is the minimum number of lines that can be
removed and have the code compile.

161. A. An immutable class must not allow the state to change. The Flower class does this
correctly. While the class isn’t final, the getters are, so subclasses can’t change the value
returned. The Plant class lacks this protection, which makes it mutable. Option A is
correct.

162. C. The speak() method has private access, which does not allow code outside the class
to call it. Therefore, option C is the answer.

163. E. The sell() method does not compile because it does not return a value if both of the
if statements’ conditional expressions evaluate to false. While logically it is true that
price is either less than 10 or greater than or equal to 10, the compiler does not know
that. It just knows that if both if statements evaluate to false, then it does not have a
return value; therefore, it does not compile. For this reason, option E is correct.

164. E. Options A and C do not compile, as they are invalid ways of accessing a member var-
iable. Options B and D both compile but print 100 at runtime, since they reference the
speed variable defined in the Engine class. Option E is the correct answer, accessing the
speed variable in the Racecar class and printing 88 at runtime.

474 Appendix ■ Answers to Review Questions

165. B, C, F. A static initializer can create instances of any class it has access to, so option A is
incorrect. It can assign values to static final variables, specifically ones that have not
been assigned a value already, so option B is correct. A static initializer is executed when
the class is first loaded, not when an object is created or loaded, making option C correct,
and options D and E incorrect. If the classes are never loaded, then they will not be exe-
cuted, making option F correct.

166. D. The class is loaded first, with the static initialization block called and 1 is printed.
When the BlueCar is created in the main() method, the superclass initialization happens
first. The instance initialization blocks are executed before the constructor, so 32 is out-
putted next. Finally, the object is created with the instance initialization blocks again being
called before the constructor, outputting 45. The result is that 13245 is printed, making
option D the correct answer.

167. D. The code compiles, so options E and F are incorrect. Remember that the permits
clause is optional if the sealed subclass is in the same file. Given the class declarations, all
six nested subclasses inherit Fish. While Fish does include the non- sealed classes Nemo
and Dory as descendants, they are marked private, which means they can’t be extended
outside the Fish class. Since it states the Fish class is unmodified, there are at most six
subclasses of Fish, making option D correct.

168. B. Recall that this refers to an instance of the current class. Therefore, any superclass of
Canine can be used as a return type of the method. Since Canine inherits both Pet and
Object, they can also be used as the return type. Note that these are all covariant with
the inherited version from the Pet interface. Only List is incompatible, making option B
correct.

169. D. The static method getDrink() attempts to access an instance- based private
method buyPopcorn() that results in a compiler error, making option D correct. The rest
of the code compiles without issue.

170. C. An instance method can access both instance variables and static variables. Both
methods compile, and option C is correct.

171. A. As ugly as the class looks, it does compile, making option A correct. Lines 2–4 each
defines an instance method since they each have a name and return type. There is no rule
saying you cannot define a method with the same name as the class, although it is consid-
ered bad style. The main() method calls the default no- argument constructor on line 6,
inserted by the compiler. Finally, line 7 calls the method declared on line 2, which again
calls the no- argument constructor inserted by the compiler.

172. C. This method has package access, which means only classes in the same package can
access it. In our case, these are the Red and Blue classes, making option C correct.

173. D. This variable has protected access, which means code in the same package can access
it in addition to subclasses. There are two classes in the com.color package and one class
that subclasses it, making option D the answer.

174. B, D. Option A is incorrect because static methods cannot call instance methods directly.
Options B and D are correct and are the primary reasons to create a static interface
method. Options C and E are incorrect and describe attributes of a default method.
Option F applies only to private static interface methods, not public ones.

Chapter 3: Utilizing Java Object- Oriented Approach 475

175. D. When overriding a method, a new or broader checked exception cannot be declared.
The getNumStudents() method in HighSchool is an invalid override since it declares
FileNotFoundException, which is not declared in the parent method. Since this is the
only line that does not compile, option D is correct. Note that an abstract method can be
overridden with a final method, as shown with getNumTeachers().

176. C. Having one class implement two interfaces that both define the same default method
signature leads to a compiler error unless the class overrides the default method. In this
case, the Sprint class overrides both walk() methods correctly; therefore, the code com-
piles without issue, and option C is correct. Note that the return types of the two default
methods are different, but the overridden method uses a return type that is covariant
with both.

177. A. Interface methods without bodies are implicitly abstract and public. Therefore,
both of these methods have the same signature. This means a class implementing them must
implement a single wriggle() method, and option A is correct.

178. C. A functional interface is required to have exactly one abstract method. In none
of the interfaces does the default method count as an abstract method. Lion and
Tiger are not functional interfaces since they contain two abstract methods. In both
of these interfaces, roar() is abstract. The equals(Lion) method is similar to
the equals(Object) in Object but is not an override of that method. Similarly,
the toString() method in Tiger is also an abstract method. While there is a
toString() method in Object, it does not take any parameters. On the other hand,
Bear is a valid functional interface because it contains exactly one abstract method, mak-
ing option C correct.

179. B. The gold variable is marked final, which means it must be set either when it is
declared or in a static initializer, as shown on line 17. It cannot be modified by a
static method, though, so line 15 does not compile. Since this is the only line that does
not compile, option B is correct. Line 8 compiles because the static method is modifying
the local variable scaly, not the instance variable of the same name. Line 12 also compiles.
While accessing a static variable via an instance is not recommended, it is allowed.

180. B, D, E. An immutable class can have public constructors, so option A is incorrect.
Options B, D, and E are correct and make up the requirements for an immutable class.
Option D can be fulfilled by making the class final or marking the methods final.
Option C is incorrect because instance variables can be declared with a value or set by an
instance initializer. Option F is also incorrect. While it is common to mark instance vari-
ables final, as long as there is no way for them to be changed after the constructor is exe-
cuted, the class can still be considered immutable.

181. E. The code does not compile because the constant variable circumference does not
declare a value, making option E correct. Remember that all variables within interfaces
are implicitly static and final, so they must be initialized with a value when they are
declared. The rest of the lines of code compile without issue. Note that while the static
method leaveOrbit() cannot access the instance- based default method getCircum-
ference() directly, it can through the reference variable earth.

476 Appendix ■ Answers to Review Questions

182. B. The code compiles, making options E and F incorrect. The record uses a compact con-
structor to set the same parameter twice, replacing the value passed into the constructor.
The parameter isn’t final, so this is allowed. At runtime, the code prints today’s date,
making option B correct.

183. F. Trick question! Overloaded methods is correct in the first part of the sentence, but none
of the answers is correct in the second part of the sentence. Remember, overridden methods
can have covariant return types. They do not need to be the same. For this reason, option F
is the correct answer.

184. D. This class creates a final instance toy variable, but it is assigned a value twice. First,
it is assigned a value in an instance initializer and then in a constructor. For this reason, the
second line of the constructor does not compile, and option D is correct. The first line of
the constructor, in which a static variable is referenced from an instance variable, is per-
mitted but discouraged.

185. C. Lines 15–17 create the three objects. Lines 18–19 change the references, so orange
and banana point to each other. Lines 20–21 wipe out two of the original references. This
means the object with name as x is inaccessible. Option C matches this scenario.

186. C. Option A is incorrect because Java inserts a no- argument constructor only if there are
no other constructors in the class. Option B is incorrect because the parent can have a
default no- argument constructor, which is inserted by the compiler and accessible in the
child class. Option D is incorrect. A class that contains two no- argument constructors will
not compile because they would have the same signature. Finally, option C is correct. If a
class extends a parent class that does not include a no- argument constructor, the default no-
argument constructor cannot be automatically inserted into the child class by the compiler.
Instead, the developer must explicitly declare at least one constructor and explicitly define
how the call to the parent constructor is made.

187. C. Building and House are both properly declared inner classes. Any House object can
be stored in a Building reference, making the declarations for b2, b3, and b4 compile.
The declaration for h3 is also correct. It so happens that b2 is a House object, so the
cast works. The declaration of h2 is a problem, though. While the cast itself is fine, a
Building cannot be stored in a House reference, which means the assignment fails to
compile. Option C is correct and is the only line with a compiler error in this code. Note
that if the declaration of h2 were removed, the declaration of b3 would produce a
ClassCastException at runtime.

188. E. This main() method declares an anonymous class that implements the Tasty interface.
Interface methods are public, whereas the override in the anonymous class uses package
access. Since this reduces the visibility of the method, the declaration of eat() on line 9
does not compile. Next, the declaration of the apple object must end with a semicolon (;)
on line 12, and it does not. For these two reasons, the code does not compile, and option E
is the correct answer. Note that if these two issues were corrected, then the correct answer
would be option C because the code does not actually call the eat() method; it just
declares it.

Chapter 3: Utilizing Java Object- Oriented Approach 477

189. B. Java supports only a single return data type or void. Therefore, it is not possible to
define a functional interface that returns two data types, making option A incorrect. While
many of the built- in functional interfaces use generics, functional interfaces that use prim-
itives certainly exist, making option B the correct answer. Option C is incorrect because a
functional interface that takes no values and returns void is possible. In fact, Runnable
is one such example. Option D is also incorrect, since IntFunction<R> takes a primitive
argument as input and a generic argument for the return type.

190. C. The init() method is accessible only from the same package. Since Tortoise is in
a different package, the method is not available, and option C is correct. Line x2 does not
compile either since Tortoise is in a different package and not a subclass. However, the
question asks about the first line.

191. A. The code does not contain any compilation errors, making option A correct. While
an abstract class cannot be marked final, a concrete class extending it can be. Like-
wise, a concrete method overriding an abstract one can also be marked final. In the
ParkVisit class, the getValue() method accesses the effectively final variables width
and fun. Finally, a class can override a method that it inherits from both an interface and
an abstract class, provided the method signatures are compatible.

192. E. The Evergreen class does not compile because there is no default access modifier
keyword that can be applied to methods in a class. The Bush class does not compile
because leaves has package access and Bush is in a different package. Since both classes
do not compile, option E is the correct answer.

193. F. While sealed classes are similar to enums, they cannot be used in switch statements like
enums in Java 17. For this reason, the main() method does not compile, making option F
correct. The two subclass declarations compile without issue.

194. B. Marking an interface method private improves the encapsulation of the class, making
option B correct. Options A and D are incorrect as static methods cannot be overridden,
regardless if they are marked private. Option C is incorrect, as adding private to a
method reduces the visibility of the method. Options E and F are flat-out wrong.

195. E. Since a constructor call is not the first line of the RainForest() constructor, the com-
piler inserts the no- argument super() call. Since the parent class, Forest, does not define
a no- argument constructor, the RainForest() constructor does not compile, and option
E is correct.

196. B. First, the color variable defined in the instance and set to red is ignored in the method
printColor(). Since local scope overrides instance scope, option A is incorrect. The value
of color passed to the printColor() method is blue, but that is lost by the assignment
of purple, making option B the correct answer and option C incorrect. Options D and E
are incorrect as the code compiles and prints a value.

197. E. The play() method is overridden in Saxophone for both Horn and Woodwind, so the
return type must be covariant with both. Object and Number do not work, because nei-
ther is a subclass of Integer or Short. As stated in the question text, both Integer and
Short extend Number directly, so neither can be a subclass of the other. Therefore, nothing
can fill in the blank that would allow this code to compile, and option E is correct.

478 Appendix ■ Answers to Review Questions

198. A, B, C. Options A, B, and C are correct statements about abstract classes. Option D is
incorrect as Java allows a class to extend only one class directly, abstract or otherwise.
Option E is incorrect, as a class can implement or inherit an interface. Option F is also
incorrect as classes can only extend classes, and interfaces can only extend interfaces.

199. C. The code does not compile. First, the enum list is not terminated with a semicolon (;),
which is required when an enum includes anything beyond just the list of values. Second,
the access modifier of TRUE’s implementation of getNickName() is package, but the
abstract method signature has a protected modifier. Since package access is a more
restrictive access than protected, the override is invalid, and the code does not compile.
For these two reasons, option C is the correct answer. Note that the value variable is not
final or properly encapsulated and can therefore be modified by callers outside the enum.
This is permitted but considered a poor practice.

200. E. The hop() method has protected access, which allows subclasses to call it, making
line p1 correct. The HopCounter class is allowed to call the move() method because it is
public. However, it is not allowed to call the hop() method since it is referencing a sub-
class, but not in one. Therefore, option E is the answer.

201. B, C. Only interfaces can contain default methods, making option B correct. Interfaces
cannot contain protected methods, making option C the other correct answer.

202. B, E. Options A and D would not allow the class to compile because two methods in
the class cannot have the same name and arguments, but a different return value.
Option C would allow the class to compile, but it is not a valid overloaded form of our
findAverage() method since it uses a different method name. Options B and E are
correct overloaded versions of the findAverage() method, since the name is the same
but the arguments are different. While new checked exceptions are not permitted for over-
ridden methods, they are allowed for overloaded methods. Option F is incorrect because the
method is overridden, not overloaded, and the visibility of the inherited method cannot be
reduced.

203. A, E. Options A and E are correct since method names may include the underscore (_)
character as well as currency ($) symbols. Note that there is no rule that requires a method
to start with a lowercase character; it is just a practice adopted by the community. Options
B and F are incorrect because the hyphen (-) and pound (#) characters may not be part of
a method name. Option C is incorrect since new is a reserved word in Java. Finally, option
D is incorrect. A method name must start with a letter, a currency ($) symbol, or an under-
score (_) character.

204. C. A functional interface must include exactly one abstract method, either by inher-
itance or declared directly. It may also have any number, including zero, of default or
static methods. For this reason, both parts of option D are incorrect. The first part
of option A is incorrect because more than one abstract method disqualifies it as a
functional interface. The first part of option B is incorrect because the method must be
abstract. Finally, option C is the correct answer. The first part of the sentence defines
what it means to be a functional interface. The second part refers to the optional
@FunctionalInterface annotation. It is considered a good practice to add this
annotation to any functional interfaces you define because the compiler will
report a problem if you define an invalid interface that does not have exactly one
abstract method.

Chapter 3: Utilizing Java Object- Oriented Approach 479

205. F. The code compiles, even if the blank is replaced with a constant int value, making
option E incorrect. The private method play() declared in the Sport interface is not
accessible in the Game class. For this reason, option F is correct.

206. E. The code does not compile because two of the constructors contain a cyclic reference to
each other. The MoreMusic(int) constructor calls this(null), which only matches
the MoreMusic(String) constructor. Then, the MoreMusic(String) constructor calls
this(9), which only matches the MoreMusic(int) constructor. The compiler notices
this circular dependency and does not allow the code to compile, making option E correct.

207. A. Both classes compile without issue, and the Hug program prints kitty - 5.0, making
option A the answer. In the Kitten class, all of the variables have package access as the
access modifiers are commented out. Also, there is no age variable since the entire line is
commented out.

208. A. The code compiles without issue. The main() method creates an instance of an anon-
ymous class of Ready. Calling r.first retrieves the static variable within Ready,
printing 2 on line n3. On line n4, there is no reference so the static variable of GetSet
is called, printing 10. For these reasons, option A is correct.

209. D. The init() method is accessible from any class. The race() method is available to
a subclass in a different package, but only if it is inherited. In particular, this.race()
would compile on line x2. Since the method is being executed on an arbitrary instance of
Hare, though, it is not accessible. For this reason, line x2 does not compile and option D is
correct.

210. E. A record cannot include an abstract method, so the transform() declaration does
not compile. A record is implicitly final and it cannot be used in an anonymous class decla-
ration, so the main() method does not compile. You also cannot pass a value, null, to an
anonymous class declaration. For these reasons, option E is correct.

211. E. The Story class does not compile since a static method cannot call an instance
method. The Movie class does not compile because it tries to instantiate a Story object,
which is abstract. Since neither class compiles, option E is correct.

212. C. The Rotorcraft class includes an abstract method, but the class itself is not
marked abstract. Only interfaces and abstract classes can include abstract methods.
Since the code does not compile, option C is the correct answer. If the abstract method
were removed, then the code would compile and produce a ClassCastException on the
first line of the main() method at runtime.

213. D. The Super class is marked final, which means it cannot be used as the supertype of
an anonymous class. For this reason, line 6 does not compile, and option D is correct. The
rest of the lines compile without issue.

214. B. The code compiles without issue. The reference r.go.first refers to the value in the
GetSet instance, which is 5. The r.go.second actually refers to a static variable
accessed via an instance reference. In this case, DEFAULT_VALUE is accessible within
GetSet and resolves to 10. For this reason, option B is correct.

480 Appendix ■ Answers to Review Questions

215. A, D. The static class variables cannot be used with var since they are not local vari-
ables. Therefore, options E and F are incorrect. Options A and D are correct because string
concatenation is used here instead of addition, due to "" + at the start of the expression.

216. F. The code does not compile, as the constructor calls on the first four lines of the main()
method are missing the new keyword. For this reason, option F is correct. If the missing
new keywords were added to each line, then the code would compile, and three Gems
objects would be available for garbage collection.

217. B. The code does not compile, so option A is incorrect. The first method, Stars(), looks
like a no- argument constructor, but since it has a return value of void, it is a method, not
a constructor. Since only constructors can call super(), the code does not compile due to
this line. The only constructor in this class, which takes an int value as input, performs a
pointless assignment, assigning a variable to itself. While this assignment has no effect, it
does not prevent the code from compiling. Finally, the main() method compiles without
issue since we just inserted the full package name into the class constructor call. This is how
a class that does not use an import statement could call the constructor. Since the method
is in the same class, and therefore the same package, it is redundant to include the package
name but not disallowed. Because only one line causes the class to fail to compile, option B
is correct.

218. A. Although the casting is a bit much, the object in question is a SoccerBall. Since
SoccerBall extends Ball and implements Equipment, it can be explicitly cast to any
of those types, so no compilation error occurs. At runtime, the object is passed around
and, due to polymorphism, can be read using any of those references since the underlying
object is a SoccerBall. In other words, casting it to a different reference variable does not
modify the object or cause it to lose its underlying SoccerBall information. Therefore,
the code compiles without issue, and option A is correct.

219. F. The question may appear to be about method overriding, but it is in fact about member
inner classes. In fact, all of the method overrides are valid in this class. The code does not
compile because the charge() method is static (even though it is called on an instance),
which means it requires an instance to instantiate a member of the member inner class
MyTrunk. For this reason, the call to new MyTrunk() does not compile, and option F is
correct.

220. D. Lines 3 and 4 do not compile because the returned values of double and long are not
compatible with int. Lines 6 through 8 compile without issue, since each method takes
a different set of input arguments. The first line of the main() method does not compile
either, making option D correct. The no- argument version of the nested() method does
not return a value, and trying to output a void return type in the print() method doesn’t
compile.

221. D. Line 18 compiles because neither type is specified for the lambda parameters. Lines
19 and 22 compile because the lambda parameters use a type or var consistently. These
are the three lines that compile, making option D correct. Lines 20 and 21 do not compile
because var must be used for all parameters in a lambda if it is used for any.

Chapter 3: Utilizing Java Object- Oriented Approach 481

222. C. This example deals with method signatures rather than polymorphism. Since the hop()
methods are static, the precise method called depends on the reference type rather than
the actual type of the object. Since the first reference is Rabbit, the first value printed is
hop. The second reference actually is FlemishRabbit, so HOP is printed, and option C is
the answer.

223. A. The code starts by creating a list of three elements. On line 16, it removes two elements
and then removes the final one on line 19. Line 17 prints [9], although this is not an
answer choice. Line 20 prints an empty list, making option A the correct answer. Note that
num is effectively final so can be used in a lambda.

224. B. The code successfully defines a local variable inside the lambda. The lambda returns
baby each time it is executed. Since we have a List, all three are output, and option B is
the correct answer.

225. B. This class does not implement Serializable, so option A is incorrect. This code is
well encapsulated because the instance variables are private. While the instance variable
references do not change after the object is created, the contents of fauna can be modified,
so it is not immutable. For these reasons, option B is correct.

226. E. While the compact constructor declaration is valid, the overloaded constructor decla-
ration is not. An overloaded record constructor must begin with an explicit call to another
constructor via this(). Even if a call were added, such as this("B", 10f), the con-
structor would not compile since record fields are final and cannot be set twice. For this
reason, option E is correct.

227. B. The Dress type is declared as a class, not an interface. For this reason, it cannot
contain the default method getSize(), making option B correct. The rest of the
methods compile within the class declaration without issue.

228. C, E. Options A and B are incorrect and describe properties of default interface methods.
Option C is correct and one of the primary reasons to add a private interface method.
Option D is not a property of private interface methods. Option E is also correct, as
private interface methods are not exposed to classes implementing the interface. Option
F is a nonsensical statement.

229. C. The permits clause is optional if the subclasses are contained within the same
file. When provided, though, all of the subclasses must be specified. Since Toast and
IceCream are not listed, they do not compile. Since only Lollipop and Treat compile,
option C is correct. Note that if the permits clause were removed, then all of the classes
would compile.

230. A. A static import is used to import static members of another class. Option A is the
correct way to import the static members of a class. Options C and D reverse the key-
words static and import, while option B incorrectly imports a class, which cannot be
imported via a static import.

482 Appendix ■ Answers to Review Questions

Chapter 4: Handling Exceptions

1. B. The throws keyword is used in method declarations, whereas the throw keyword is
used to send an exception to the surrounding process, making option B the correct answer.
The catch keyword is used to handle exceptions. There is no throwing keyword in Java.

2. C. The class does not compile because in line r2, curly braces, {}, are used instead of paren-
theses, (), in the try- with- resources statement, making option C the correct answer. If this
line was fixed to use parentheses, (), then the rest of the class would compile without issue
and print This just in! at runtime.

3. E. To throw an exception with the throw keyword, an existing or new exception must be
provided. In this case, the new keyword is missing in front of Exception() in the think()
method. It is treated as a method call that does not exist, and this line does not compile, mak-
ing option E correct. If the new keyword were added, though, the line would still not com-
pile, as the checked exception is not handled or declared within the think() method.

4. A, C. The correct order of blocks is try, catch, and finally. For a traditional
try/catch block at least one catch or finally must be used. In addition, multiple
catch blocks are allowed, although at most one finally block is allowed. For these rea-
sons, options A and C are correct and the rest are incorrect.

5. C. With a helpful NullPointerException, the program will print the variable that trig-
gered the exception. In this case, the first exception is when lumiere is unboxed to an int
on line 16, making option C correct. Note that only one NullPointerException can be
thrown at a time, making option E incorrect.

6. B. The code compiles just fine. The toss() method creates an array with one element, but
tries to read the second element. This triggers an ArrayIndexOutOfBoundsException,
which is caught by the catch block in the main() method. At runtime, Caught! is printed,
making option B correct.

7. E. The code does not compile because s is defined within the try- with- resources block. It is
out of scope by the time it reaches the catch and finally blocks, making option E correct.

8. D. The Exception class contains multiple constructors, including one that takes
Throwable, one that takes String, and a no- argument constructor. The first
WhaleSharkException constructor compiles, using the Exception constructor that
takes a String. The second WhaleSharkException constructor also compiles. The two
statements, super() and new Exception(), actually call the same constructor in the
Exception class, one after another. The last WhaleSharkException compiles, with the
compiler inserting the default no- argument constructor super(), because it exists in the
Exception class. For these reasons, all of the constructors compile, and option D is the
correct answer.

9. D. The application first enters the try block and prints W. It then throws an
ArrayIndexOutOfBoundsException, which is caught by the first catch block since
ArrayIndexOutOfBoundsException is a subclass of RuntimeException, printing
X. The exception is then rethrown, but since there isn’t a separate try/catch block around
it, it does not get caught by the second catch block. Before printing the stack trace, though,
the finally block is called, and Z is printed. For these reasons, option D is correct.

Chapter 4: Handling Exceptions 483

10. C, F. While Exception and RuntimeException are commonly caught in Java appli-
cations, it is not recommended that Error and Throwable (which includes Error) be
caught. An Error often indicates a failure of the JVM, which cannot be recovered from. For
these reasons, options C and F are correct, and options A and D are incorrect. Options B and
E are class names that are not part of the standard Java API.

11. E. A variable declared before the start of a try- with- resources statement may be used if it
is final or effectively final. Since g is modified after it is set, it is neither; therefore, the
class does not compile, and option E is correct. If the last line of the main() method were
removed, then the code would compile and print 2459 at runtime.

12. C. Since IOException and Exception are checked exceptions, ColoringException
and WritingException are checked exceptions. Further, CursiveException is also
checked since it extends a checked exception. By contrast, IllegalStateException is an
unchecked exception. This means that DrawingException and SketchingException
are also unchecked, and option C is the answer.

13. C. The code does not compile because the variable v is used twice in the main() method,
both in the method declaration and in the catch block, making option C the correct answer.
If a different variable name were used in one of the locations, the program would compile
and print complete. Note that while an exception is created inside the turnOn() method,
it is not thrown.

14. B, C, D. When more than one resource is used in a try- with- resources statement, they are
closed in the reverse order in which they are declared, making option A incorrect. Option B
is correct and describes how resources are listed. Option C is also correct and describes how
suppressed exceptions are handled. Option D is the third correct answer, as final or effec-
tively final resources may be used in try- with- resources statements. Option E is incorrect,
as resources are separated by semicolons, not commas. Option F is also incorrect, as catch
blocks are optional for try- with- resources statements.

15. A. The program compiles without issue, so option D is incorrect. The narrower
SpellingException and NullPointerException, which inherit from
Exception, are correctly presented in the first catch block, with the broader Exception
being in the second catch block. The if statement evaluates to true, and a new
SpellingException instance is created, but it is not thrown because it is missing the
throw keyword. For this reason, the try block ends without any of the catch blocks being
executed. The finally block is then called, making Done! the only line printed. For this
reason, option A is the correct answer.

16. A, D, F. Any class that inherits Exception but not RuntimeException is a checked
exception and must be handled or declared. For this reason, option F is trivially correct.
Options A and D are also checked exceptions. Options B and E are incorrect since they
inherit RuntimeException. Finally, option C is incorrect as Error inherits Throwable
but not Exception.

17. D. The finally block of the snore() method throws a new checked exception on line x2,
but there is no try- catch block around it to handle it, nor does the snore() method declare
any checked exceptions. For these reasons, line x2 does not compile, and option D is the
correct answer. Note that line x1 compiles because it is rethrowing an unchecked exception.

484 Appendix ■ Answers to Review Questions

18. E. The ProblemException class compiles without error. However, the
MajorProblemException class has, well, a major problem. The constructor attempts to
call a superclass constructor with a String parameter, but the ProblemException class
only has a constructor with an Exception parameter. This causes a compiler error, making
option E correct.

19. B, D. First, option A is an incorrect statement, because the AutoCloseable interface does
not define a default implementation of close(). Next, the close() method should
be idempotent, which means it is able to be run multiple times without triggering any side
effects. For this reason, option B is correct. After being run once, future calls to close()
should not change any data. Option D is correct, and option C is incorrect because the
close() method is fully capable of throwing exceptions if there is a problem. In fact, the
signature of the method in AutoCloseable throws a checked Exception. Option E is
incorrect because the return type of close() is void, which means no return value can be
returned.

20. D. Option D is the correct model. The class RuntimeException extends Exception,
and both Exception and Error extend Throwable. Finally, like all Java classes, they
all inherit from Object. Notice that Error does not extend Exception, even though we
often refer to these generally as exceptions.

21. F. The classes MissingMoneyException and MissingFoodException do not extend
any exception classes; therefore, they cannot be used in a method declaration. The code does
not compile regardless of what is placed in the blank, making option F correct.

22. B, D. Closeable extends AutoCloseable, making option B correct and option A incor-
rect. The close() method in AutoCloseable throws Exception, while the close()
method in Closeable throws IOException, making option E incorrect. Since
IOException is a subclass of Exception, both close() methods can throw an
IOException, making option C incorrect. On the other hand, Exception is not a
subclass of IOException. For this reason, the close() method in a class that implements
Closeable cannot throw an instance of the Exception class, because it is an invalid over-
ride using a broader exception type. This makes option D the correct answer. Finally, the
return type for both is void, making option F incorrect.

23. B, F. Option A does not compile because a multi- catch expression uses a single variable, not
two variables. Since the TideException is handled and neither exception class is a subtype
of the other, option B is correct. Option C does not compile because the compiler notices
that it is not possible to throw a checked IOException in this try block. Option D does
not compile because multi- catch blocks cannot contain two exceptions in which one is a sub-
class of the other. If it did, one of the two exceptions would be redundant. Option E does not
compile because the checked TideException is not handled or declared by the surf()
method. Remember, Error and Exception are not subclasses of each other, although they
both inherit Throwable. Option F is correct because TideException is a subclass of
Exception, so both are handled by Exception.

24. B, C. Option A is incorrect. You should probably seek help if the computer is on fire!
Options B and C are correct answers, as invalid or missing data/resources should be expected
of most programs. Option D is incorrect because code that does not compile cannot run and

Chapter 4: Handling Exceptions 485

therefore cannot throw any exceptions. Option E is incorrect; finishing sooner is rarely con-
sidered a problem. Option F is incorrect because an Error is thrown in this situation, and it
should not be caught, as the JVM cannot usually recover from this scenario. Option G is also
incorrect. While it is possible to throw an exception if a search fails, it is not recommended
and options B and C are better options.

25. A. The program compiles, making options D and E incorrect. At runtime, line 12 is executed,
calling the play() method. Line 5 then throws an exception that is immediately caught on
line 6. Line 7 throws a new unchecked exception that is not caught by the program, with
this exception being thrown to the caller, and making option A correct. In this case, line 13 is
never executed. Even though the stack trace for the exception may include information about
the cause, only one exception is actually thrown to the caller.

26. D. The code does not compile due to an invalid override of the operate() method. An
overridden method must not throw any new or broader checked exceptions than the method
it inherits. While both IOException and Exception are checked exceptions, Exception
is broader than IOException. For this reason, the declaration of operate() in Heart
does not compile, and option D is correct.

27. A, B. Option A is correct and is one of the primary motivations for using a try- with- resources
statement. Option B is also correct, although it is recommended that you let the try- with-
resources statement automatically close the resource. The catch blocks are run after the
declared resources have been closed, making option C incorrect. Options D and E are both
incorrect, as a try- with- resources statement is compatible with Closeable or AutoClose-
able. A try- with- resources statement can be used with a finally block, making option F
incorrect.

28. A. The application compiles and runs, printing Meow at runtime and making option A
correct. The override in Lion is valid, as overridden methods are free to declare new
unchecked exceptions.

29. D. The code compiles without issue. It first prints Tracking from the try block. Upon the
completion of the try block, the close() method is called, and Thunder is printed. No
exception is thrown so the catch block is skipped. In the finally block, Storm gone is
printed, followed by Thunder. Since four lines were printed, option D is correct. Although it
is not recommended to close a resource twice, it is allowed.

30. C. Error is a terrible name for an exception since it is a built- in class. However, it is legal.
Next, _X is also a bad choice, but it is a valid exception, as Java identifiers can begin with
underscores. By contrast, 2BeOrNot2Be does not compile because identifiers are not
allowed to begin with a number. NumberException is not a valid exception, because it uses
generics and the parent class does not. Finally, Worry is not an exception, because it is an
interface. Since only two are valid exceptions, option C is the answer.

31. C. ClassCastException is a subclass of RuntimeException, so it must appear first in
any related catch blocks. For this reason, option C is correct.

32. D. The openDrawbridge() method declares a checked exception that is not handled or
declared in the main() method where it is called. For this reason, line p3 does not com-
pile, and option D is correct. The rest of the lines do not contain any compiler errors. If the

486 Appendix ■ Answers to Review Questions

main() method were changed to declare Exception, then the class would compile and
print Opening!Walls at runtime.

33. B. The code compiles and runs without issues. The try block throws a
ClassCastException. Since ClassCastException is not a subclass of
ArrayIndexOutOfBoundsException, the first catch block is skipped. For the second
catch block, ClassCastException is a subclass of Throwable so that block is exe-
cuted. Afterward, the finally block is executed, and then control returns to the main()
method with no exception being thrown. The result is that 1345 is printed, making option B
the correct answer.

34. E. With a helpful NullPointerException, the program will print the variable that trig-
gered the exception. In this case, the first exception is on line 42. The Integer value of
null is unboxed to an int, but since this fails, a NullPointerException is thrown at
runtime. Since the exception happens on the right side of the assignment, the name of the
variable printed is null, making option E correct.

35. A. The application compiles without issue and prints Hello, making option A the correct
answer. The ReadSign and MakeSign classes are both correctly implemented, with both
overridden versions of close() dropping the checked exceptions. The try- with- resources
statement is also correctly implemented for two resources and does not cause any compila-
tion errors or runtime exceptions. Note that the semicolon (;) after the second resource dec-
laration is optional.

36. E. The try block is entered and 2 is printed, followed by an exception. Upon completion
of the try block, the resources are closed in the reverse order in which they are declared,
printing 8 followed by 1. Next, the catch block executes, printing 3, followed by the
finally block printing 4. For these reasons, option E is correct.

37. D. A multi- catch block cannot contain two exception types in which one inherits from the
other. Since RuntimeException inherits Exception, RuntimeException is redundant.
For this reason, the code does not compile, and option D is correct.

38. D. In the try block, the code prints 1 and throws an exception. The catch block success-
fully handles it by printing 2 and throwing another exception. Both the inner and outer
finally blocks run printing 3 and 4, respectively. Then the stack trace for the exception
thrown by the inner try block is printed. For this reason, option D is correct.

39. C. The code compiles without issue. Line 8 calls the compute() method, which throws a
NullPointerException on line 4. This is caught in the main() method on line 9, since
NullPointerException is a subclass of RuntimeException, printing zero followed
by rethrowing to the caller and making option C correct.

40. F. The UnsupportedOperationException class is an unchecked exception that is a
direct child of RuntimeException. For this reason, we can eliminate any answer that does
not inherit from RuntimeException, including options A and E. Options C and
D are close, but UnsupportedOperationException is a direct subclass of
RuntimeException. Option B is incorrect because RuntimeException is a subclass,
not a superclass, of Exception. The correct diagram would be to reverse option B and put
RuntimeException at position 1 and Exception at position 2. Since this is not available,
option F is correct.

Chapter 4: Handling Exceptions 487

41. E. The close() method in each of the resources throws an Exception, which must be
handled or declared in the main() method. The catch block supports TimeException,
but it is too narrow to catch Exception. Since there are no other catch blocks present and
the main() method does not declare Exception, the try- with- resources statement does
not compile, and option E is the correct answer. If the catch block were modified to handle
Exception instead of TimeException, the code would compile without issue and print
3215 at runtime, closing the resources in the reverse order in which they were declared.

42. B, D, E. Checked exceptions are commonly used to notify or force a caller to deal with an
expected type of problem, such as the inability to write a file to the file system and give them
the opportunity to recover without terminating the program. For these reasons, options B, D,
and E are correct. Option A is incorrect as a corrupted JVM is likely an Error that cannot
be recovered from. Option C is also incorrect, as some problems should result in the applica-
tion terminating. Finally, option F is incorrect and is ideally never the motivation for adding
a checked exception to a method signature!

43. D. First off, lines w1 and w2 compile without issue. On line w3, the multi- catch block can
contain two exceptions, provided they are not subtypes of each other. Since one is a checked
Exception and the other is an Error, line w3 compiles without issue. Line w4 contains
a compilation error. Since FileNotFoundException is a subclass of the already caught
IOException, it is not reachable on line w4, making option D correct.

44. A, B, F. Since IOException and SQLException are checked exceptions, Happy and
Grumpy are checked exceptions, respectively, making options A and F correct. Since Dopey
inherits Grumpy, option B is also a checked exception. Options C and D are unchecked
exceptions because those classes inherit RuntimeException. Option E is also an
unchecked exception because all Error classes are unchecked.

45. E. The code compiles without issue, so option D is incorrect. First off, the override of
getDuckies() in Ducklings is valid, as checked exceptions can be dropped (but not
added). The key here is noticing that count, an instance variable, is initialized with a value
of 0. The getDuckies() method ends up computing 5/0, which leads to an unchecked
ArithmeticException at runtime, making option E the correct answer.

46. B, D, F. An IllegalArgumentException is an unchecked exception. It can be handled
or declared in the method in which it is defined, although it is optional and not required. For
this reason, options B, D, and F are correct, and options A and C are incorrect. Option E is
incorrect, as there is no requirement where in a method this exception can be thrown.

47. D. While a catch block is permitted to include an embedded try- catch block, the issue here
is that the variable name e is already used by the first catch block. In the second catch
block, it is equivalent to declaring a variable e twice. For this reason, line z2 does not com-
pile, and option D is the correct answer. If a different variable name was used for either
catch block, then the code would compile without issue, printing Failed at runtime.

48. D. The declaration of IncidentReportException does not provide any constructors,
which means only the default constructor is available. Since the code attempts to pass an
IOException as a parameter, the main() method does not compile, so the correct answer
is option D.

488 Appendix ■ Answers to Review Questions

49. A, E. The try- catch block already catches Exception, so the correct answer would be the
one that is not a subtype of Exception. In this case, Error and Throwable are the only
choices that allow the code to compile, making options A and E correct.

50. D. The MissedCallException is a checked exception since it extends Exception and
does not inherit RuntimeException. For this reason, the first catch block fails to com-
pile, since the compiler detects that it is not possible to throw this checked exception inside
the try block, making option D the correct answer. Note that if MissedCallException
was changed to extend the unchecked RuntimeException class, then the code would
compile and the RuntimeException from the finally block would replace the
ArrayIndexOutOfBoundsException from the try block and Text would be in the
message to the caller.

51. A. Both IllegalArgumentException and NullPointerException inherit
RuntimeException, but neither inherits from each other. For this reason, they can be listed
in catch blocks in either order, making option A the correct statement.

52. C. While RuntimeException is broader than IllegalArgumentException, the
restriction on overriding methods applies only to checked exceptions, not unchecked excep-
tions. In other words, the code would not compile if both of the exceptions were checked.
Since they are unchecked, though, the method override is valid. The program compiles and
prints thud? at runtime, making option C correct.

53. C. The Closeable interface defines a close() method that throws IOException. The
overridden implementation of MyDatabase, which implements Closeable, declares a
SQLException. This is a new checked exception not found in the inherited method signa-
ture. Therefore, the method override is invalid, and the close() method in MyDatabase
does not compile, making option C the correct answer.

54. C. Custom exception classes may simply use the default constructor. It is also common to
override the constructors that take a single Exception or a single String, making option
C correct.

55. A. While this code looks a bit strange, it does compile. An exception can be passed to
a method or set as the return type of a method. In this case, the exception passed to the
order() method is thrown and caught on line h4. The output is just the name of the class,
making option A correct.

56. C, F. A Java application tends to only throw an Error when the application has encoun-
tered an unrecoverable error. Failure of a user to sign in or register are common occurrences,
making options A, B, and E incorrect. On the other hand, calling a method infinitely can lead
to an unrecoverable StackOverflowError, making option C correct. Option D uses the
word temporarily, meaning the network connection could come back up allowing the appli-
cation to recover. Option F is the other correct answer. Over time, failing to release database
connections could result in the application running out of available database connections or
worse, out of memory, and being unable to recover.

57. E. The code does not compile because john is declared in the try- with- resources statement
and not in scope in the finally block. For this reason, option E is correct.

Chapter 5: Working with Arrays and Collections 489

58. B. The code does compile, making options C and D incorrect. The catch block successfully
catches the OfficeException and prints the IOException passed to its constructor,
making option B the correct answer.

59. A. The code compiles without issue, making option C incorrect. In the climb() method,
two exceptions are thrown. The RuntimeException thrown in the try block is consid-
ered the primary exception, while the FallenException thrown by the close() method
is suppressed. For this reason, java.lang.RuntimeException is reported to the caller in
the main() method, and option A is the correct answer.

60. D. For this question, notice that all the exceptions thrown or caught are unchecked
exceptions. First, the ClassCastException is thrown in the try block and caught
by the second catch block since it inherits from RuntimeException, not
IllegalArgumentException. Next, a NullPointerException is thrown, but before
it can be returned the finally block is executed and a RuntimeException replaces it.
The application exits, and the caller sees the RuntimeException in the stack trace, mak-
ing option D the correct answer. If the finally block did not throw any exceptions, then
NullPointerException would be printed at runtime.

Chapter 5: Working with Arrays
and Collections

1. A. While the ArrayList is declared with an initial capacity of one element, it is free to
expand as more elements are added. Each of the three calls to the add() method adds an
element to the end of the ArrayList. The remove() method call deletes the element at
index 2, which is Art. Therefore, option A is correct.

2. B. The array brackets, [], are not allowed to appear before the type, making the lions
declaration incorrect. When using an array initializer with braces, {}, you are not allowed
to specify the size separately. The size is inferred from the number of elements listed. There-
fore, tigers and ohMy are incorrect. When you’re not using an array initializer, the size
is required. An empty array initializer is allowed. Option B is correct because only bears
is legal.

3. E. When declaring a class that uses generics, you must specify a name for the formal type
parameter. Java uses the standard rules for naming a variable or class. A question mark is not
allowed in a variable name, making options A and C incorrect. While it is common practice
to use a single uppercase letter for the type parameter, this is not required. It certainly isn’t a
good idea to use existing class names like the News class being declared here or the Object
class built into Java. However, both are allowed, making option E the correct answer.

4. B, E. Option B is one answer because line 26 does not compile. The ? wildcard cannot be
used when instantiating a type on the right side of the assignment operator. The other lines
do compile. Additionally, option E is correct because lines 28 and 29 use autoboxing. They
convert a primitive to a wrapper object, in this case Double and Integer, respectively. Line
30 is correct and does not use autoboxing. It places a null reference as the Integer object.

490 Appendix ■ Answers to Review Questions

5. C. A two- dimensional array is declared by listing both sizes in separate pairs of brackets, [].
Option C correctly shows this syntax.

6. D. The offer() method inserts an element at the end of the queue. This means the queue
contains [snowball, minnie, sugar]. The peek() method returns the element at the
front of the queue without removing it. Therefore, snowball is printed twice, but the queue
remains with three elements. This matches option D.

7. E. Notice how there is unnecessary information in this description. The fact that patrons
select books by name is irrelevant. The checkout line is a perfect example of a Queue.
You need easy access to one end of the Queue for patrons to add themselves to the queue.
You also need easy access for patrons to get off the queue when it is their turn. Since a
LinkedList is a Queue, this narrows down the answer to options D, E, and F.

The book lookup by ISBN is a lookup by key. You need a map for this. A HashMap is prob-
ably better here, but it isn’t a choice. So the answer is option E, which does include both a
Queue and a Map.

8. B. Line 8 attempts to store a String in an array meant for an int. Line 8 does not compile,
and option B is correct.

9. B. Options C and D are incorrect because the method signature is incorrect. Unlike the
equals() method, the method in Comparator<String> takes the type being compared
as the parameters when using generics. Option A is a valid Comparator<String>. How-
ever, it sorts in ascending order by length. Option B is correct. If s1 is three characters and
s2 is one character, it returns - 2. The negative value says that s1 should sort first, which is
correct, because you want the longest String first.

10. B. In Java, arrays are indexed starting with 0. Although it is unusual for the loop to start
with 1, this does not cause an error. It does cause the code to output six lines instead of seven
since the loop doesn’t cover the first array element. Therefore, option B is correct.

11. C. Java talks about the Collections Framework, but the Map interface does not actually
implement the Collection interface. TreeMap has different methods than the other
options. It cannot fill in the blank, so option C is correct. The other options compile and
print true at runtime.

12. B, F. In Java, Arrays.binarySearch() returns a positive int, representing the index of
a match if one is found. An int cannot be stored in a String variable, making option F one
of the answers. When using the correct data type and searching for seed, we find it at index
1. Therefore, option B is the other answer.

13. C. As with a one- dimensional array, the brackets, [], must be after the type, making alpha
and beta illegal declarations. For a multidimensional array, the brackets may be before and/
or after the variable name. They do not need to be in the same place. Therefore, gamma,
delta, and epsilon are correct. Finally, var can be used as a local variable but not with
array brackets after it. The code would compile if it said var zeta and it was assigned an
array of a specified type. Since three options are correct, the answer is option C.

Chapter 5: Working with Arrays and Collections 491

14. A. First, the code creates an ArrayList of three elements. Then the list is transformed into
a TreeSet. Since sets are not allowed to have duplicates, the set has only two elements.
Remember that a TreeSet is sorted, which means that the first element in the TreeSet is
3. Therefore, option A is correct.

15. D, E. Three dots in a row is a varargs parameter. While varargs is used like an array
from within the method, it can only be used as a method parameter. This syntax is not
allowed for a variable, causing a compiler error on line 5. Line 6 does not compile because
linearSort() should be sort(). On line 7, the method name is also incorrect. The
search() method should be binarySearch(). Finally, line 8 uses size() instead of
length. Since there are four errors, option D is correct. If all these errors were corrected,
original[0] would cause an exception because the array is empty. Therefore, option E is
also correct.

16. A, D, F. Line 20 does not compile for a Map because it requires two generic types. Line 23
does not compile for a Set because the elements are unordered and do not have an index.
This makes options D and F correct. Additionally, option A is correct because line 23 replaces
the second element with a new value, making chars contain [a, c]. Then line 24 removes
the first element, making it just [c]. There is only one element, but it is not the value b.

17. E. The Magazine class doesn’t implement Comparable<Magazine>. It happens to imple-
ment the compareTo() method properly, but it is missing actually writing implements
Comparable. Since TreeSet doesn’t look to see if the object can be compared until run-
time, this code throws a ClassCastException when TreeSet calls add(), so option E is
correct.

18. B. Arrays begin with an index of 0. This array is a 3×3 array, making only
indexes 0, 1, and 2 valid. All of the lines compile, but line 12 is the first to throw an
ArrayIndexOutOfBoundsException at runtime. Therefore, option B is correct.

19. D. The generic declaration on line R is valid. It sets a constraint on the generic type used
when declaring a Fur object. Lines S and T compile as they meet this constraint. However,
line U has a problem since Sat does not extend Mammal. Since this line does not compile,
option D is the answer.

20. C. Line 18 puts 3 in nums since it is the smaller value. Since a Set must have unique ele-
ments, line 19 does not add another value to nums. Line 20 adds the final value of 16. The
set has a total of two elements, 3 and 16. A HashSet does not commit to an output order,
making option C correct.

21. B. A Deque lets us add elements at both ends. The offer() method adds an element to
the back of the queue. After line 7 completes, the queue contains 18 and 5 in that order.
The push() method adds an element to the front of the queue. How rude! The element 13
pushes past everyone on the line. After line 8 completes, the queue now contains 13, 18, and
5, in that order. Then we get the first two elements from the front, which are 13 and 18,
making option B correct.

22. E, F. TreeMap and TreeSet sort as you insert elements. TreeMap sorts the keys and
TreeSet sorts the objects in the set. This makes options E and F correct. Note that
you have the option of having JellyBean implement Comparable, or you can pass a
Comparator to the constructor of TreeMap or TreeSet. Option D is trying to trick you,
as SortedArray is not a class or an interface in the Collections Framework.

492 Appendix ■ Answers to Review Questions

23. B. Array indices start with 0, making options C and D incorrect. The length attribute refers
to the number of elements in an array. It is 1 past the last valid array index. Therefore, option
B is correct.

24. B. Options D, E, and F do not compile because only a wildcard can be used here. Since the
method does not have any declared exceptions, it can only throw unchecked exceptions.
Option B is correct because it is the only one that requires the elements of coll to be
RuntimeException or any subclasses.

25. D. Options A and B show that the brackets, [], can be before or after the variable name and
produce the same array. Option C specifies the same array the long way with two arrays of
length 1. Option D is the answer because it is different from the others. It instead specifies an
array of length 1 where that element is of length 2.

26. D. Java requires having a sorted array before calling the binarySearch() method. You do
not have to call Arrays.sort to perform the sort, though. This array happens to already be
sorted, so it meets the precondition. The target string of "Linux" is the first element in the
array. Since Java uses zero- based indexing, search is 0. The Arrays.mismatch() method
returns - 1 if the arrays are the same and returns the index of the first difference if they are
not. In our example, mismatch1 is 0 because the first element differs, and mismatch2 is - 1
because the arrays are the same. This makes option D the answer.

27. D. The Comic<S> interface declares a formal type parameter. This means that a class imple-
menting it needs to specify this type. The code on line 21 compiles because the lambda refer-
ence supplies the necessary context, making option A incorrect. Option B declares a generic
class. Although this doesn’t tell us the type is Snoopy, it punts the problem to the caller of
the class. The declaration of s2 on line 22 compiles because it supplies the type, making
option B incorrect. The code on line 23 compiles because the SnoopyClass itself supplies
the type, making option C incorrect.

Option D has a problem. SnoopyClass and SnoopyComic appear similar. However,
SnoopyComic refers to S. This type parameter exists in the interface. It isn’t available in the
class because the class has said it is using Snoopy as the type. Since the SnoopyComic class
itself doesn’t compile, the line with s4 can’t instantiate it, and option D is the answer.

28. C. When implementing Comparable<Truck>, you implement the compareTo() method.
Since this is an instance method, it already has a reference to itself and only needs the item
it is comparing. Only one parameter is specified, and option C is correct. By contrast, the
Comparator<Truck> interface uses the compare() method, and the method takes two
parameters.

29. B. There is nothing wrong or tricky about this code. It correctly creates a seven- element
array. The loop starts with index 0 and ends with index 6. Each line is correctly output.
Therefore, option B is correct.

30. A, B. Options E and F are incorrect because they do not compile. List is an interface and
does not have a constructor. ArrayList has a constructor but not one that takes individual
elements as parameters. Options C and D are incorrect because List.of() creates an
immutable list. Trying to change one of its values causes an exception at runtime.

Chapter 5: Working with Arrays and Collections 493

Options A and B are correct. Since we are creating the list from an array, it is a fixed size. We
are allowed to change elements. When successfully completing this code, museums is [Art,
Science] for both solutions.

31. F. The Wash class takes a formal type parameter named T. Options A and E show the
best ways to call it. These options declare a generic reference type that specifies the type is
String. Option A uses local variable type inference, whereas option E uses the diamond
syntax to avoid redundantly specifying the type of the assignment.

Options B, C, and D show that you can omit the generic type in the reference and still have
the code compile. You do get a compiler warning, scolding you for having a raw type. But
compiler warnings do not prevent compilation. With the raw type, the compiler treats T
as if it is of type Object. That is okay in this example because the only method we call
is toString() implicitly when printing the value. Since toString() is defined on the
Object class, we are safe, and options B, C, and D work. Since all can fill in the blank,
option F is the answer.

32. B. Options A, C, and D represent 3×3 2D arrays. Option B is correct because it best repre-
sents the array in the code. It shows there are three different arrays of different lengths.

33. B, E. The goal is to write code that sorts in descending order. Option A sorts ascendingly and
option B sorts descendingly. Similarly, option C sorts ascendingly and option E sorts descend-
ingly. Option D attempts to call the reverse() method, which is not defined. Therefore,
options B and E are the answers.

34. B. When creating an array object, a set of elements or size is required. Therefore, lion and
bear are incorrect. The brackets containing the size are required to be after the type, making
ohMy incorrect. The only one that is correct is tiger, making option B the answer.

35. C. This code creates a two- dimensional array of size 1×2. Lines m1 and m2 assign values to
both elements in the inner array. Line m3 attempts to reference the second element of the
outer array. Since there is no such position, it throws an exception, and option C is correct.

36. C. All four of these return immutable collections. Options B and D take a varargs rather
than a List, returning a List<List<Integer>> and Set<List<Integer>>, respec-
tively. Option A returns a List, not a Set. Option C meets both our requirements and is
the answer.

37. C, E. The code sorts before calling the binarySearch() method, so it meets the precon-
dition for that method. The target string of "RedHat" is not found in the sorted array. If it
were found, it would be between the second and third elements. The rule is to take the neg-
ative index of where it would be inserted and subtract 1. It would need to be inserted as the
third element. Since indexes are zero- based, this is index 2. We take the negative, which is –2,
and subtract 1, giving - 3.

The target string of "Mac" is the second element in the sorted array. Since array indices begin
with 0, the second position is index 1. This makes options C and E the answer.

38. D. Line x1 returns a Set of map entries. Set does not have a getKey() method, so line x2
does not compile, and option D is the answer.

494 Appendix ■ Answers to Review Questions

39. A, C, D. The offerLast() and offer() methods insert an element at the back of the
queue, while the offerFirst() method inserts the element at the front of the queue. This
means the queue initially contains [snowball, sugar, minnie]. The poll() method
returns the element at the front of the queue and removes it. In this case, it prints snowball,
and the queue is reduced from three elements to [sugar, minnie]. Then, the
removeFirst() method removes sugar, leaving the queue containing only [minnie].
Further, the queue becomes one smaller, and 1 is printed. Therefore, options A, C, and D are
correct.

40. B. All of the variables point to a 4D array, except nums2b, which points to a 3D array. Don’t
create a 4D array in practice; it’s confusing. The options show that the brackets, [], can be
before or after the variable in any combination. Option B is the answer because nums2b
points to a 3D array. It has only three pairs of brackets before the variable and none after. By
comparison, nums2a has three pairs of brackets before the variable and the fourth pair of
brackets after.

41. C. Option E is the longest way to specify this code. Options A and D shorten it by using
the diamond operator (<>). Options A and B shorten it using var. Option C is the answer
since it does not compile because the diamond operator cannot be used on the left side of the
assignment.

42. C. The Arrays.compare() method looks at each element in turn. Since the first elements
are different, we get the result of comparing them. In this case, we get a positive number
because 3 is larger than 2 and option C is correct.

43. E. List.of() makes an immutable list. Attempting to sort throws an exception, so option
E is the answer. If we were calling Arrays.asList() instead, option C would be the
answer because it is the only option to sort ascendingly by length.

44. A. Line 13 adds excelsior to the double- ended queue. Line 14 checks if an element is
there but does not change it. Line 15 adds edwin to the front. Since line 16 removes from
the back, we are left with [edwin] and option A is the answer.

45. B. This one is tricky since the array brackets, [], are split up. This means that bools is a
3D array reference. The brackets both before and after the variable name count. For
moreBools, it is only a 2D array reference because there are only two pairs of brackets
next to the type. In other words, boolean[][] applies to both variables. Then bools gets
another dimension from the brackets right after the variable name. However, moreBools
stays at 2D, making option B correct.

46. E. A custom sort order is specified using a Comparator to sort in descending order. How-
ever, this Comparator is not passed when searching. When a different sort order is used for
searching and sorting, the result is undefined. Therefore, option E is correct.

47. C. The binarySearch() method requires a sorted array in order to return a correct result.
If the array is not sorted, the results of a binary search are undefined, making option C
the answer.

48. B, F. The <> is known as the diamond operator. Here, it works as a shortcut to avoid
repeating the generic type twice for the same declaration. On the right side of the expression,
this is a handy shortcut. Java still needs the type on the left side, so there is something to

Chapter 5: Working with Arrays and Collections 495

infer. Positions Q and S are on the right side, making option B correct. In this question, the
generic type is never specified, so it is Object. Since it is not String, option F is correct.

49. B, D. Since no arguments are passed from the command line, this creates an
empty array. Sorting an empty array is valid and results in an empty array printed
on line 6. Then line 7 attempts to access an element of the empty array and throws an
ArrayIndexOutOfBoundsException. Therefore, options B and D are correct.

50. A. The generic declaration on line R is not valid due to the question mark (?) wildcard.
While a question mark is allowed on the left side of a declaration, it is not allowed when
specifying a constraint on a class. Since line R does not compile, option A is the answer.

51. E. Line 6 assigns an int to a cell in a 2D array. This is fine. Line 7 casts to a general
Object[]. This is dangerous, but legal. Why is it dangerous, you ask? That brings us to
line 8. The compiler can’t protect us from assigning a String to the int[] because the ref-
erence is more generic. Therefore, line 8 throws an ArrayStoreException because the
type is incorrect, and option E is correct. You couldn’t have assigned an int on line 8 either
because obj[3] is really an int[] behind the scenes and not an int.

52. D. TreeSet does not allow null values because it compares the values when they are
added, leading to a NullPointerException. A HashSet does support null values,
although you can only have one since HashSet guarantees uniqueness. ArrayList and
LinkedList both support any number of null entries. Since three of the four collections
allow inserting null values, option D is correct.

53. B. Unfortunately, you do have to memorize two facts about sort order. First, numbers sort
before letters. Second, uppercase sorts before lowercase. Since the first value is 3 and the last
is three, option B is correct.

54. C. Since the brackets in the declaration are before the variable names, the variable type
boolean[][][] applies to both variables. Therefore, both bools and moreBools can
reference a 3D array and option C is correct.

55. D. Line 25 does not compile, making option D the answer. On an ArrayList, the method
to get the number of elements is size(). The length() method is used for a String or
StringBuilder. If this were fixed, the answer would be option E. Line 23 empties the
ArrayList. Then line 24 attempts to access an index that is not present.

56. C. The ? is an unbounded wildcard. It is used in variable references but is not allowed in
declarations. In a static method, the type parameter specified inside the <> is used in the
rest of the method declaration. Since it needs an actual name, options A and B are incorrect.
We need to specify a type constraint so that we can call the add() method. Regardless of
whether the type is a class or interface, Java uses the extends keyword for generics. There-
fore, option D is incorrect, and option C is the answer.

57. D. Java requires having a sorted array before calling the binarySearch() method. Since
the array is not sorted, the result is undefined, and option D is correct. It may happen that
you get 1 as the result, but this behavior is not guaranteed. You need to know for the exam
that this is undefined even if you happen to get the “right” answer.

496 Appendix ■ Answers to Review Questions

58. A. A multidimensional array is created with multiple sets of size parameters. Line 11 should
be char[] ticTacToe = new char[3][3];. Therefore, option A is the answer.

59. C. On a stream, the filter() method only keeps values matching the lambda. The
removeIf() does the reverse on a Collection and keeps the elements that do not match.
In this case, that is Austin and Boston, so option C is correct.

60. C. The names.length value is the number of elements in the array. The last
valid index in the array is one less than names.length. Therefore, the code throws an
ArrayIndexOutOfBoundsException, and option C is correct.

61. A. An ArrayList expands automatically when it is full. An array does not, making option
A the answer. The other three statements are true of both an array and an ArrayList.

62. C. The forEach() method that takes one parameter is defined on the Collection inter-
face, allowing options A and B to fill in the blank. Option C requires you to notice that only
one generic parameter is passed. A Map needs two parameters, so option C is the answer.

63. G. Options D, E, and F do not compile because a wildcard must be used here. Option A is
incorrect because coll could be any type, which doesn’t necessarily allow anything to be
added, including exceptions. Option B is incorrect because neither add() method compiles.
We could have Collection<IllegalStateException> as a parameter. That would
not allow either type to be added. Finally, option C is incorrect as the second add() method
does not compile because broader types than the generic allows are a problem when adding
to coll. Therefore, option G is the answer.

64. A, D. Lines 35–38 create a Map with three key/value pairs. Lines 40–43 sort just the values
ascendingly by year. Lines 45 and 48 show you can assign the Integer values to an int
via unboxing or an Integer directly. Line 46 shows the values are properly sorted, making
option A correct. Finally, line 48 throws an exception because sorted.size() returns 3
and the maximum index in the List is 2. This makes option D correct as well.

65. C. Arrays are indexed using numbers, not strings, making options A and B incorrect. Since
array indexes are zero- based, option C is the answer.

66. B. This code shows a proper implementation of Comparable. It has the correct method
signature. It compares the magazine names in alphabetical order. Remember that upper-
case letters sort before lowercase letters. Since Newsweek starts with uppercase, option B is
correct.

67. B. Options A and C are incorrect because a generic type cannot be assigned to another direct
type unless you are using upper or lower bounds in that statement. Now, we just have to
decide whether a lower or upper bound is correct for the T formal type parameter in Wash.
The clue is that the method calls size(). This method is available on Collection and all
classes that extend/implement it. Therefore, option B is correct.

68. D. In Java, arrays are indexed starting with 0. While it is unusual for the loop to start with 1,
this does not cause an error. What does cause an error is the loop ending at data.length,
because the <= operator is used instead of the < operator. The last array index is 6, not 7.

Chapter 5: Working with Arrays and Collections 497

On the last iteration of the loop, the code throws an
ArrayIndexOutOfBoundsException. Therefore, option D is correct.

69. C. This array has two elements, making listing.length output 2. While each array
element does not have the same size, this does not matter because we are only looking at the
first element. The first element has one. This makes option C the answer.

70. E. The addFirst() and addLast() methods are on the Deque interface. While
ArrayDeque does implement this interface, it also implements Queue. Since the q variable
is of type Queue, these methods do not compile, and option E is the answer.

71. D. The code does compile, making option A incorrect. Line 13 creates a fixed- size list. While
we are using var, the type is List<Integer>. Line 14 successfully changes the contents of
the list to [3, null, 4]. Line 15 automatically unboxes to the primitive 3. Line 16 has
a problem. The list has a null value at index 1. This cannot be unboxed to a primitive and
throws a NullPointerException. Therefore, option D is the answer.

72. F. Options A, B, D, and E call the andCompare() and thenCompare() methods, which
do not exist. Option C is missing the logic to sort descendingly, printing alpha at runtime.
This leaves option F, which correctly sorts the elements, reverses them, and prints gamma at
runtime.

73. B, C. Array indexes begin with 0. FirstName is the name of the class, not an argument. The
first argument is Wolfie, making option B correct. There is not a second argument, and the
array is of size 1, so option C is also correct.

74. C. This one is tricky. Line 11 creates an ArrayList with a generic type Object rather than
Integer. This is allowed since we aren’t trying to assign any of the values to an int or
Integer after getting them from pennies. This gives us the list [1, 2, 3, 4].

The next trick is that there are two remove() methods available on ArrayList. One
removes an element by index and takes an int parameter. The other removes an element by
value and takes an Object. On line 16, the int primitive is a better match, and the element
with index 2 is removed, which is the value of 3. At this point, we have [1, 2, 4].

Then on line 17, the other remove() method is called because we are explicitly using the
wrapper object. This deletes the object that is equal to 1, and now we have [2, 4]. This
brings us to option C as the answer.

75. C, D. The code will output 0 when the array is sorted in ascending order since flower
will be first. Option C is the most straightforward way of doing this, making it one of the
answers. Reversing the order of the variables or adding a negative sign sorts in descending
order making options A, B, E, F, and G incorrect. Doing both is a complicated way of sorting
in ascending order, making option D the other correct answer.

76. B. The elements of the array are of type String rather than int. Therefore, we use alpha-
betical order when sorting. The character 1 sorts before the character 9, alphabetically mak-
ing option A incorrect. Shorter strings sort before longer strings when all the other characters
are the same, making option B the answer.

498 Appendix ■ Answers to Review Questions

77. F. This code is correct. Line 11 correctly creates a 2D array. The next three lines correctly
assign a value to an array element. Line 15 correctly outputs 3 in a row!, making option
F correct.

78. A, D, F. Line 40 does not compile since getOrDefault() requires two parameters. This
makes option A the first answer. The rest of the code does compile. Option D is the next
answer because getOrDefault() returns the value from the map when the key is present.
Finally, option F is correct because getOrDefault() returns the second parameter when
the key is not present.

79. E. Lines 18 and 19 create a list with five elements. Line 20 makes a set with the
same five elements. Line 21 does not change the contents of the set since sets must have
unique elements. The loop on line 22 tries to delete elements but instead throws a
ConcurrentModificationException, making option E the answer.

80. C. Options D, E, and F do not compile because only a wildcard can be used here. Option C
is correct because all the types being added are of type Exception or direct subclasses.

Chapter 6: Working with Streams and
Lambda Expressions

1. F. The source is the first operation, and the terminal operation comes last, making option F
the answer. You need to know this terminology.

2. B. The lambda expression s - > true is valid, making options A, C, and D incorrect. Paren-
theses, (), are not required on the left side if there is only one variable. Braces, {}, are not
required if the right side is a single expression. Parameter data types are only required if the
data type for at least one parameter is specified; otherwise, none are required. The remaining
choice, the arrow operator, - >, is required for all lambda expressions, making option B the
correct answer.

3. C. The Supplier functional interface does not take any inputs, while the Consumer
functional interface does not return any data. This behavior extends to the primitive ver-
sions of the functional interfaces, making option C the correct answer. Option A is incorrect
because IntConsumer takes a value, while LongSupplier returns a value. Options B and
D are incorrect because Function and UnaryOperator both take an input and produce
a value.

4. A, E. The UnaryOperator and BiFunction return a generic argument, such as Double,
making options A and E correct. Option B is incorrect because all predicate functions return
boolean. Option C is incorrect because BiOperator does not exist in the java.util.
function package. The correct name is BinaryOperator. Option D is incorrect because
all consumer functions return void. Finally, option F is incorrect because BiSupplier does
not exist in the java.util.function package. Supplier functions return values, and
Java does not support methods with more than one return type.

Chapter 6: Working with Streams and Lambda Expressions 499

5. B. The stream pipeline is correct and filters all values out that are ten characters or smaller.
Only San Francisco is long enough, so c is 1. The stream() call creates a new object,
so stream operations do not affect the original list. Since the original list is still three ele-
ments, option B is correct.

6. B, C, E. Interface X is tricky. If it returned a boolean primitive, option A would be
correct, as Predicate returns a boolean. However, it returns a wrapper object, so it
has to be a Supplier, making option B the answer instead. We can tell interface Y is a
Comparator because it returns a primitive int, not an object like Integer, and inter-
face Z is a Consumer because it returns void. This makes options C and E the final two
answers.

7. C. Option A is incorrect because a pipeline still runs if the source doesn’t generate any items
and the rest of the pipeline is correct. Granted, some of the operations have nothing to do,
but control still passes to the terminal operation. Option B is incorrect because intermediate
operations are optional. Option C is the answer. The terminal operation triggers the pipeline
to run. Option D is incorrect because the code would not compile at all if the version of Java
were too old.

8. A. The LongSupplier interface does not take any input, making option D incorrect. It also
uses the method name getAsLong(). The rest of the functional interfaces all take a long
value but vary on the name of the abstract method they use. LongFunction contains
apply() and LongPredicate contains test(), making options B and C, respectively,
incorrect. That leaves us with LongConsumer, which contains accept(), making option A
the correct answer.

9. F. The correct method to obtain an equivalent sequential stream of an existing stream is
sequential(), which is inherited by any class that implements BaseStream<T>. Since
this isn’t an option, option F is correct. Note that unordered() creates a stream that can be
evaluated in any order, but it can still be processed in a sequential or parallel stream.

10. C. Since we are concatenating two infinite streams, concat() creates an infinite stream.
The limit() method turns it into a finite stream by ignoring all but the first three values of
odd. Adding 1, 3, and 5 gives us 9, making option C the answer.

11. B. Option A is incorrect because the lambda expression is missing a semicolon (;) at the
end of the return statement. Option C is incorrect because the local variable test is used
without being initialized. Option D is also incorrect. The parentheses are required on the left
side of the lambda expression when there is more than one value or a data type is specified.
Option B is the correct answer and the only valid lambda expression.

12. B, D. The second line throws a NullPointerException when you pass a null reference
to the of() method. The others compile and run successfully, making option B correct. The
first and third lines return false because they represent an empty Optional. This makes
option D the other answer.

13. D. Both are functional interfaces in the java.util.function package, making option
A true. Additionally, both lack parameters, making option B true. The major difference bet-
ween the two is that Supplier<Double> takes the generic type Double, while the other
does not take any generic type and instead uses the primitive double. For this reason,
options C and E are true statements. For Supplier<Double> in option C, remember that

500 Appendix ■ Answers to Review Questions

the returned double value can be implicitly autoboxed to Double. Option D is the correct
answer. Lambdas for Supplier<Double> can return a null value since Double is an
object type, while lambdas for DoubleSupplier cannot; they can only return primitive
double values.

14. C. The first line that contains the lambda expression will actually compile with any of the
functional interfaces listed in the options. The stream operation, though, will compile only
if ToIntFunction<Integer> is used. It requires this functional interface, which takes a
generic argument and returns int. For this reason, option C is correct. Option F is incorrect
because sum() on an IntStream returns an int, not an OptionalInt. Note that the
peek() operations in this stream have no effect.

15. E. Option A is incorrect because anyMatch() takes a Predicate and returns a boolean.
Option B is incorrect because findAny() returns an Optional, not a primitive. Option C
is incorrect because there is no first() method available as a terminal operation. Option D
is tempting because there is a min() method. However, since we are working with a Stream
(not a primitive stream like IntStream), this method requires a Comparator as a param-
eter. Therefore, option E is the answer.

16. D. Line 8 does not compile. String::new is a constructor reference. This constructor refer-
ence is equivalent to writing the lambda () - > new String(). It participates in deferred
execution. When it is executed later, it will return a String. It does not return a String on
line 8, though. The method reference is a Supplier<String>, which cannot be stored in
list. Since the code does not compile, option D is correct.

17. C. The lambda (s,p) - > s+p takes two arguments and returns a value. For this reason,
options A and B are incorrect because BiConsumer does not return any values. Option E
is also incorrect, since Function takes only one argument and returns a value. This leaves
us with options C and D, which both use BiFunction, which takes two generic arguments
and returns a generic value. Option D is incorrect because the data type of the unboxed sum
s+q is int, and int cannot be both autoboxed and implicitly cast to Double. Option C is
correct. The sum s+p is of type double, and double can be autoboxed to Double.

18. D. The word reduction is used with streams for a terminal operation, so options A, B, and C
are incorrect. Option E describes a valid terminal operation like anyMatch(), but is not a
reduction. Option D is correct because a reduction has to look at each element in the stream
to determine the result.

19. A. The filter() method either passes along a given element or doesn’t, making options
D, E, and F incorrect. The flatMap() method doesn’t pass along any elements for empty
streams. For nonempty streams, it flattens the elements, allowing it to return zero or
more elements. This makes option B incorrect. Finally, the map() method applies a one-
to- one function for each element. It has to return exactly one element, so option A is the
correct answer.

20. A, B, D. To begin with, ToDoubleBiFunction<T,U> takes two generic inputs and returns
a double value. Option A is correct because it takes an Integer and Double and returns
a Double value that can be implicitly unboxed to double. Option B is correct because
long can be implicitly cast to double. While we don’t know the data types for the input

Chapter 6: Working with Streams and Lambda Expressions 501

arguments, we know that some values, such as using Integer for both, will work. Option
C cannot be assigned and does not compile because the variable v is of type Object and
Object does not have a length() method. Option D is correct. The variable y could
be declared Double in the generic argument to the functional interface, making y/z a
double return value. Option E is not correct because the lambda only has one parameter.
Finally, option F is incorrect because the interface uses the class Double rather than primi-
tive double.

21. C. The correct method to obtain an equivalent parallel stream of an existing stream is
parallel(), which is inherited by any class that implements BaseStream<T>. For this
reason, option C is correct.

22. A. The lambda is a Function<Integer, ArrayList>. We need a constructor reference
that uses the new keyword where a method name would normally go in a method reference.
It can implicitly take zero or one parameter just like a method reference. In this case, we have
one parameter, which gets passed to the constructor. Option A is correct. Options B, C, and D
use syntax that is not supported with method references.

23. C. The average() method returns an OptionalDouble. This reflects that it doesn’t make
sense to calculate an average when you don’t have any numbers. Similarly, max() returns
an OptionalDouble because there isn’t a maximum of no number. By contrast, counting
without any numbers gives the long number 0 and summing gives the double number 0.0.
Since only two methods match the desired return type, option C is correct.

24. D, E. The BiPredicate interface takes two generic arguments and returns a boolean
value. Next, DoubleUnaryOperator and IntUnaryOperator exist and transform values
of type double and int, respectively. Last, ToLongFunction takes a generic argument
and returns a long value. That leaves options D and E, which are the answers. Remember
Object is abbreviated to Obj in the built- in functional interfaces.

25. A. The findAny() method can return the first, last, or any element of the stream, regardless
of whether the stream is serial or parallel. While on serial streams this is likely to be the first
element in the stream, on parallel streams the result is less certain. For this reason, option A
is the correct answer.

26. C. The result of the source and any intermediate operations are chained and eventually
passed to the terminal operation. The terminal operation is where a result with a type other
than stream is possible, making option C correct.

27. C. The groupingBy() collector always returns a Map (or a specific implementation class
of Map), so options D, E, and F are incorrect. The other two are definitely possible. To get
one, you can group using a Function that returns an Integer such as s.collect(
groupingBy(String::length)). To get the other, you need to group using a
Function that returns a Boolean and specify the type, such as s.collect(
groupingBy(String::isEmpty, toCollection(HashSet::new))). Therefore,
option C is correct.

28. F. The flatMap() method works with streams rather than collections. Line 18 is problem-
atic because the return value is not a stream. Since the code does not compile, option F is
correct.

502 Appendix ■ Answers to Review Questions

29. E. Since no generic type is specified, list is a LinkedList<Object>. Line w compiles
because no generic type is specified. However, Java allows you to operate on a stream only
once. The final line of code throws an IllegalStateException because the stream has
already been used up, making option E correct.

30. D. The code does not compile, so options A, B, and E are incorrect. The
IntUnaryOperator functional interface is not generic, so the argument
IntUnaryOperator<Integer> in the takeTicket() does not compile, making option
D the correct answer. The lambda expression compiles without issue, making option C incor-
rect. If the generic argument <Integer> was dropped from the argument declaration, the
class would compile without issue and output 51 at runtime, which would make option B the
correct answer.

31. A, C, E. Options A, C, and E are correct because they are the precise requirements for Java
to perform a concurrent reduction using the collect() method, which takes a Collector
argument. Recall from your studies that a Collector is considered concurrent and unor-
dered if it has the Collector.Characteristics enum values CONCURRENT and
UNORDERED, respectively. The rest of the options are not required for a parallel reduction.

32. C, E. While it is common for a Predicate to have a generic type, it is not required. How-
ever, it is treated like a Predicate of type Object if the generic type is missing. Since
startsWith() does not exist on Object, line 28 does not compile. Line 34 would be a
correct lambda declaration in isolation. However, it uses the variable s, which is already
taken by the main() method parameter. This causes a compiler error on line 34. These are
the only two compiler errors, making option C correct. If Predicate were changed to
Predicate<String> and lambda variable were changed to x, then the Consumer would
in fact print pink, making option E the other answer.

33. A. Option A is the correct answer because BiPredicate takes two generic types and
returns a primitive boolean value. Options B and E are incorrect, since CharSupplier
and TriDoublePredicate do not exist. Option C is also incorrect, since LongFunction
takes a primitive long value and returns a generic type. Finally, option D is incorrect because
UnaryOperator takes a generic type and returns a generic value.

34. B, E. An accumulator in a serial or parallel reduction should be associative and stateless. In
a parallel reduction, problematic accumulators tend to produce more visible errors. Option
A is not associative, since (a- b)- c is not the same as a- (b- c) for all values a, b, and c.
Options C and D are incorrect because they represent stateful lambda expressions, which
should be avoided especially on parallel streams. In particular, option C could return dif-
ferent results each time it is run. Option F doesn’t even compile, since the return type is a
boolean, not an Integer. That leaves us with the correct answers, options B and E. While
these accumulators may not seem useful, they are both stateless and associative, which meets
the qualifications for performing a reduction.

35. D. Options A and C do not compile because there are no isNotNull() or forEach()
methods in the Optional class. The Optional class does have an isPresent() method
that doesn’t take any parameters, making option B incorrect since it is used with a parameter.
The method returns a boolean and is commonly used in if statements. There is also an
ifPresent() method that takes a Consumer parameter and runs it only if the Optional
is nonempty. Therefore, option D is correct.

Chapter 6: Working with Streams and Lambda Expressions 503

36. B. The lambda is a Supplier<Double>. Since the random() method is static, we need
a static method reference. It uses :: to separate the class name and method name. Option
B is correct. Options A, C, and D use syntax that is not supported with method references.

37. D. Options A and B are incorrect because they are not operations in a stream pipeline. A
source and the terminal operation are required parts of a stream pipeline and must occur
exactly once. The intermediate operation is optional. It can appear zero or more times. Since
more than one falls within zero or more, option D is correct.

38. D. All of the code compiles. The first stream source has three elements. The intermediate
operations both sort the elements of this stream and then we request one from findAny().
The findAny() method is not guaranteed to return a specific element. Since we are not
using parallelization, it is highly likely that the code will print a. However, you need to
know this is not guaranteed. Additionally, the stream on line 28 prints Optional[a],
Optional[b], or Optional[c]. Since only lines 23–26 print a single character, option D
is the answer.

39. E. First, the forEach() method requires a Consumer instance. Option D can be imme-
diately discarded because Supplier<Double> does not inherit Consumer. For this same
reason, option C is also incorrect. DoubleConsumer does not inherit from Consumer.
In this manner, primitive functional interfaces cannot be used in the forEach() method.
Option A seems correct, since forEach() does take a Consumer instance, but it is missing
a generic argument. Without the generic argument, the lambda expression does not com-
pile because the expression p<5 cannot be applied to an Object. Option B is also close.
However, a Double cannot be passed to an Integer. The correct functional interface is
Consumer<Double>, and since that is not available, option E is the correct answer.

40. A. Option A is the invalid lambda expression because the type is specified for the variable
j, but not the variable k. The rest of the options are valid lambda expressions. To be a valid
lambda expression, the type must be specified for all of the variables, as in option C, or none
of them, as in options B and D.

41. B. The code compiles and runs without issue. The three- argument reduce() method
returns a generic type, while the one- argument reduce() method returns an Optional.
The concat1() method is passed an identity "a", which it applies to each element, result-
ing in the reduction to aCataHat. The lambda expression in the concat2() method
reverses the order of its inputs, leading to a value of HatCat. For these reasons, option B is
the correct answer.

42. C. Options A and B take two Double input arguments and return a Double value, making
them equivalent to each other. On the other hand, option C takes a single double value and
returns a Double value. For this reason, it is different from the other two, making option C
correct.

43. B, E. For a concurrent reduction, the underlying type should be a thread- safe collection. For
this reason, option A is incorrect and option E is correct. The streams must all be parallel,
making option B correct and option F incorrect. Options C and D are incorrect, as there is no
two- argument version of collect() within the Stream interface.

504 Appendix ■ Answers to Review Questions

44. E. Option A is the only one of the three options to compile. However, it results in no lines
being output since none of the three strings is empty. Options B and C do not even compile
because a method reference cannot have an operator next to it. Option D does not compile
because String does not have an isNotEmpty() method. Therefore, option E is correct.

45. C. The source of this stream is infinite. Sorting something infinite never finishes, so the
stream pipeline never completes and option C is the answer.

46. D. The code compiles and does not throw any exceptions at runtime, so options A and B are
incorrect. The code snippet is serial, by default, so the order is predictable, making option
F incorrect. The peek() method executes on each member of the pipeline, printing five
numbers as the elements are then collected into a List, which gives us 345. They are then
printed again, making the final output 345345 and option D correct.

47. C. The Supplier functional interface normally takes a generic argument, although generic
types are not strictly required since they are removed by the compiler. Therefore, line d1
compiles while triggering a compiler warning. On the other hand, line d2 does cause a com-
piler error, because the lambda expression does not return a value. Therefore, it is not com-
patible with Supplier, making option C the correct answer.

48. B, F. Primitive streams, like LongStream, declare an average() method that returns an
OptionalDouble object. This object declares a getAsDouble() method rather than a
get() method. Therefore, option B is correct. By contrast, the summary statistics classes
provide getters in order to access the data. The getAverage() method returns a double
and not an OptionalDouble, which makes option F correct.

49. D. Remember that all Supplier interfaces take zero parameters. For this reason, the
third value in the table is 0, making options A, C, and E incorrect. Next, DoubleConsumer
and IntFunction each take one value, double and int, respectively. On the other hand,
ObjDoubleConsumer takes two values, a generic value and a double, and returns void.
For this reason, option D is correct, and option B is incorrect.

50. F. All Consumer functional interfaces have a void return type. For this reason, the
first and last values in the table are both void, making options A, B, and C incorrect.
IntFunction takes an int and returns a generic value, ruling out option D. Finally,
LongSupplier does not take any values and returns a long value. For this reason, option E
is incorrect, and option F is correct.

51. A. The code compiles and runs without issue. The JVM will fall back to a single- threaded
process if all of the conditions for performing the parallel reduction are not met. The stream
used in the main() method is not parallel, but the groupingByConcurrent() method
can still be applied without throwing an exception at runtime. Although performance will
suffer from not using a parallel stream, the application will still process the results correctly.
Since the process groups the data by year, option A is the correct answer.

52. C. This code is almost correct. Calling two different streams is allowed. The code attempts
to use a method reference when calling the forEach() method. However, it does not use
the right syntax for a method reference. A double colon needs to be used. If the code were
changed to System.out::println, it would print two lines for each call, for a total of
four lines. Since it does not compile, option C is correct.

Chapter 6: Working with Streams and Lambda Expressions 505

53. C. First, option A does not compile since the variables p and q are reversed, making the
return type of the method and usage of operators invalid. The first argument, p, is a String
and q is an int, but the lambda expression reverses them, and the code does not com-
pile. Option B also does not compile. The variable d is declared twice, first in the lambda
argument list and then in the body of the lambda expression. The second declaration in the
body of the lambda expression causes the compiler to generate a duplicate local variable
message. Note that other than it being used twice, the expression is valid; the ternary oper-
ator is functionally equivalent to the learn() method in the BiologyMaterial class.
Option C is the correct answer since it compiles and handles the input in the same way as the
learn() method in the BiologyMaterial class. Option D compiles but does not return
the same result.

54. A, F. This code does compile. Remember that imports are implied, including the static
import for Collectors. The collector tries to use the number of characters in each stream
element as the key in a map. This works fine for the first two elements, speak and bark,
because they are of length 5 and 4, respectively. When it gets to meow, it sees another key of
4. The merge function says to use the first one, so it chooses bark for the value. Similarly,
growl is five characters, but the first value of speak is used. There are only two distinct
lengths, so option A is correct. If the stream had a null instead of "meow", then the code
would throw a NullPointerException since we need to check the length of the String
to determine which part of the Map it goes in. Since you cannot call a method on null,
option F is also correct.

55. A. Option A is correct as the source and terminal operation are mandatory parts of a stream
pipeline. Option B is incorrect because a Stream must return objects. Specialized interfaces
like IntStream are needed to return primitives. Option C is incorrect because Stream has
methods such as of() and iterate() that return a Stream. Option D is incorrect because
infinite streams are possible.

56. F. Trick question! The correct method to obtain an equivalent parallel stream of an existing
IntStream is parallel(), but for an IntStream this returns another IntStream, not
a generic Stream<T>. The correct solution would be to call boxed().parallel(), but
since this isn’t available, option F is correct.

57. A. We can rule out options C and D because they do not take any parameters, so they do
not compile. This code generates an infinite stream of integers: 1, 2, 3, 4, 5, 6, 7, etc. The
Predicate checks if the element is greater than 5. With anyMatch(), the stream pipeline
ends once element 6 is hit and the code prints true. For the allMatch() operator, it sees
that the first element in the stream does not match and the code prints false. Similarly, the
noneMatch() operator gets to the point where i is 6 and returns false because there is a
match. Therefore, option A is correct.

58. D. Option A is incorrect because it doesn’t print out any text. The peek() method is an
intermediate operation. Since there is no terminal operation, the stream pipeline is not exe-
cuted, so the peek() method is never executed, and nothing is printed. Options B and C
are incorrect because they correctly output one line using a method reference and lambda,
respectively, and don’t use any bad practices. Option D is the correct answer. It does output
one line. However, it is bad practice to have a peek() method that has side effects like mod-
ifying a variable.

506 Appendix ■ Answers to Review Questions

59. C. The lambda expression compiles without issue, making option B incorrect. The task var-
iable is of type UnaryOperator<Doll>, with the abstract method apply(). There is no
accept() method defined on that interface, therefore the code does not compile, and option
C is the correct answer.

60. D. The code compiles and does not throw any exceptions at runtime, so options A and B are
incorrect. As an element goes through the pipeline, it is printed once by the peek() method,
then once by the forEach() method. For example, 0.1 0.1 0.54 0.54 0.6 0.6 0.3
0.3 is a possible output from this code. For this reason, option D is correct.

61. B, D, F. The findAny() method is capable of returning any element of the stream regardless
of whether it is serial, parallel, ordered, or unordered. For this reason, options B, D, and F are
correct. Option C is actually invalid, as an unordered stream does not have a first element.

62. C. To begin with, Consumer uses accept(), making option A incorrect. Next, Function
and UnaryOperator use apply(), making options B and D, respectively, incorrect. Option
E is also incorrect, as there is no Producer functional interface. Finally, Supplier uses
get(), making option C the correct answer.

63. C. Option D is incorrect as the syntax is fine. Option E is incorrect because there is a
charAt() instance method. While option B is correct that the method takes an int
parameter, autoboxing would take care of conversion for us if there were no other prob-
lems. So option B is not the answer either. Option A is not true because there are con-
structor and instance method references. This method reference could be assigned to
BiFunction<String, Integer, Character>. However, it cannot be assigned to a
Function. This makes option C the correct answer.

64. B, C, D. While the second and third stream operations compile, the first does not. The
parallel() method should be applied to a stream, while the parallelStream()
method should be applied to a Collection<E>. For this reason, option A is incorrect, and
options B and C are correct. Neither the second nor the third stream operation is expected to
produce an exception at runtime, making option D correct and option E incorrect. Note that
calling parallel() on an already parallel stream is unnecessary but allowed. Finally, the
output of the second and third stream operations will vary at runtime since the streams are
parallel, making option F incorrect.

65. D. Since the code uses a BiPredicate, it takes two parameters in the test() call. The
first is the instance of String and the second is the substring value to check. Since both
parameters are passed in, we use the type of String in the method reference, making option
D the correct answer.

66. C. This code compiles. It creates a stream of Ballot objects. Then it creates a map with the
contestant’s name as the key and the sum of the scores as the value. For Mario, this is 10 +
9, or 19, so option C is correct.

67. D. The map() method can fill in the blank. The lambda converts a String to an int, and
Java uses autoboxing to turn that into an Integer. The mapToInt() method can also fill
in the blank, and Java doesn’t even need to autobox. There isn’t a mapToObject() in the
stream API. Note there is a similarly named mapToObj() method on IntStream. Since
both map() and mapToInt() work here, option D is correct.

Chapter 6: Working with Streams and Lambda Expressions 507

68. A, C. This is a correct example of code that uses a lambda. The interface has a single abstract
method. The lambda correctly takes one double parameter and returns a boolean. This
matches the interface. The lambda syntax is correct. Since it compiles, option C is correct.
Finally, option A is correct because 45 is greater than 5.

69. C. The reduction is parallel, but since the accumulator and combiner are well- behaved (state-
less and associative), the result is consistent, making option D incorrect. The identity is 1,
which is applied to every element, meaning the operation sums the values (1+1), (1+2),
and (1+3). For this reason, 9 is consistently printed at runtime, making option C correct.

70. E. The average() method returns an OptionalDouble. This interface has a
getAsDouble() method rather than a get() method, so the code does compile. However,
the stream is empty, so the optional is also empty. When trying to get the value on line 12, the
code throws a NoSuchElementException, making option E correct.

71. B, E. Options A and D are incorrect since they are missing the arrow (- >), which makes
them lambdas. Options C and F are incorrect, as they try to mix lambdas and method refer-
ences. This leaves options B and E as the answers.

72. F. Both Collectors.groupingBy() and Collectors.partitioningBy()
are useful for turning a stream into a Map. The other two methods do not exist. The
partitioningBy() method automatically groups using a Boolean key. However,
we can also have a Boolean key with groupingBy(). For example, we could write
s - > s.length() > 3. Therefore, option F is correct.

73. B. Option A is incorrect because "3" is a String, which is not compatible with the return
type int required for IntSupplier. Option B is the correct answer. Although this
will result in a divide- by- zero issue at runtime, the lambda is valid and compatible with
IntSupplier. Option C is incorrect because the lambda expression is invalid. The return
statement is allowed only inside a set of braces ({}). Finally, option D is incorrect. The
method reference is used for Consumer, not Supplier, since it takes a value and does not
return anything.

74. A. The code compiles without issue, so options C and D are incorrect. The value for distance
is 2, which based on the lambda for the Predicate will result in a true expression, and
Saved will be printed, making option A correct.

75. E. The correct method to obtain a parallel stream from a Collection<E> is
parallelStream(), making option E correct.

76. C. The filter() method takes a Predicate, which requires a boolean return type from
the lambda or method reference. The getColor() method returns a String and is not
compatible. This causes the code to not compile and option C to be the answer.

77. B, E. The generate() and iterate() sources return an infinite stream. Further, the
of() source returns a finite stream, which shows option B is one of the answers. The
limit() intermediate operation returns a finite stream. When given an infinite stream, the
map() intermediate operation keeps the infinite stream, which means option E is the other
correct answer.

508 Appendix ■ Answers to Review Questions

78. E. Like a lambda, method references use type inference. When assigned to a local variable,
var cannot be used because there is not enough information to infer the type. Because of
this, lines 17, 18, and 19 do not compile. Consumer<Object> takes a single Object
argument and does not return any data. The ArrayList and String classes do not contain
constructors that take an Object, so lines 14 and 15 do not compile either. Line 16 does
support an Object variable, since the System.out.println(Object) method exists.
For these reasons, option E is the correct answer.

79. E. Based on the reduction operation, the data types of w, y, and z are Integer, while the
data type of x is StringBuilder. Since Integer does not define a length() method,
both the accumulator and combiner lambda expressions are invalid, making option E correct.

80. C, F. The first intermediate operation, limit(1), gets rid of the null. The
partitioningBy() method returns a map with two keys, true and false, regardless
of whether any elements actually match. If there are no matches, the value is an empty list,
making option C correct. If line k is removed, the code throws a NullPointerException
since null is neither true nor false. Therefore, option F is the other answer.

81. D. The code does not compile because flatMapToInt() requires a Function with a
return value of IntStream, not Stream<Integer>, making option D correct.

82. D. A lambda expression can match multiple functional interfaces. It matches option A,
which takes a double value and returns a double value. Note that the data type of s+1
is double because one of the operands, in this case s, is double. It also matches option B
since the addition (+) operator can be used for String concatenation. Finally, it matches
option C since the int value s+1 can be implicitly cast to long. On the other hand, the
lambda expression is not compatible with UnaryOperator without a generic type. When
UnaryOperator is used without a generic argument, the type is assumed to be Object.
Since the addition operator is not defined on Object, the code does not compile due to the
lambda expression body, making option D the correct answer.

83. B, D. Applying forEachOrdered() to a parallel stream forces the terminal operation to be
performed in a single- threaded, rather than parallel, manner. For this reason, it is likely that
it will be slower, making option B correct. Intermediate operations can still take advantage of
parallel processing, since forEachOrdered() is only applied at the end of the pipeline. For
this reason, option D is also correct.

84. C, F. The code does not compile because the class should be IntSummaryStatistics,
not IntegerSummaryStatistics. This makes option C correct. The purpose of using the
summary statistics class is to avoid multiple trips through the stream pipeline, making option
F the other answer.

85. C. Both lambda and method references can accept a parameter and be executed later, ruling
out options A and D. One big difference is with a lambda like: () - > s.charAt(3). The s
variable must be final or effectively final variable in both lambdas and method references,
making option B incorrect. However, there isn’t a way to use the hard- coded number in a
method reference. Therefore, option C is a difference and the answer.

86. D. All but the last line compile and print 3, making option D the answer. The last line does
not compile because addition is not allowed on a generic stream.

Chapter 6: Working with Streams and Lambda Expressions 509

87. E. A stream pipeline is allowed to have zero or more intermediate operations. This means
both filter() and sorted() can be removed. The source and terminal operations are
required, so cannot be removed. Therefore, generate() and findFirst() must stay. The
ifPresent() call is not part of the stream pipeline. It is a method on Optional. Option E
matches the methods we can remove.

88. B, C, E. The orElseThrow() method throws a NoSuchElementException when the
Optional is empty. Since this exception is not caught, a stack trace is printed. This matches
option B. The overloaded method that takes a parameter throws the specified exception.
Since we do catch an IllegalArgumentException, the code prints the message, which is
option C. Finally, the orElse() method returns the specified string and option E is correct.

89. C. Predicate<T> is a generic interface with one method. The method signature is
boolean test(T t). Option C is the answer because the method accepts one parameter
rather than two.

90. B, C. The BiFunction interface takes two different generic values and returns a generic
value, taking a total of three generic arguments. Next, ToDoubleFunction takes
exactly one generic value and returns a double value, requiring one generic argument. The
ToIntBiFunction interface takes two generic values and returns an int value, for a total
of two generic arguments. For these reasons, options A, D, and E have the correct number of
generics. BinaryOperator<T> takes two parameters of a generic type and returns the same
type. Therefore, only one generic is needed when declaring the type. DoubleFunction<R>
takes a double value and returns a generic result, taking exactly one generic argument, not
two. This makes the answer options B and C.

91. C. To execute a parallel reduction with the collect() method, the stream or Collector
must be unordered, the Collector must be concurrent, and the stream must be parallel.
Since an unordered Set is used as the data source, the first property is fulfilled. To be a
parallel reduction, though, Collectors.groupingByConcurrent() should be used
instead of Collectors.groupingBy(). In addition, parallelStream() should be
called on the Set, instead of stream(). For these two reasons, option C is correct.

92. D. This is a correct stream pipeline. The source creates a stream of three elements. The first
operation makes a stream of one element, one. Then that single element is made uppercase
and sorted to complete the intermediate operations. Finally, the terminal operation prints
ONE, which corresponds to option D.

93. B. BinaryOperator<Long> takes two Long arguments and returns a Long value. For this
reason, option A, which takes one argument, and option D, which takes two Integer values
that do not inherit from Long, are both incorrect. Option C is incorrect because the local
variable c is re- declared inside the lambda expression, causing the expression to fail to com-
pile. The correct answer is option B because intValue() can be called on a Long object.
The result is then be cast to long, which is autoboxed to Long.

94. A. BooleanSupplier is the only functional interface that does not involve double, int,
or long, making option A the correct answer. The others do not exist in the java.util
.function package.

510 Appendix ■ Answers to Review Questions

95. D, F. Certain stream operations, such as limit() or skip(), force a parallel stream
to behave in a serial manner, so option A is incorrect and option F is correct. Option B
is also incorrect. The stream must be explicitly set to be parallel in order for the JVM to
apply a parallel operation. Option C is incorrect because parallel stream operations are
not synchronized. It is up to the developer to provide synchronization or use a concurrent
collection if required. Option D is correct. The BaseStream interface, which all streams
inherit, includes a parallel() method. Of course, the results of an operation may change
in the presence of a parallel stream, such as using a problematic (non- associative) accumu-
lator. For this reason, option E is incorrect.

96. E. The sorted() method allows an optional Comparator to be passed as a reference.
However, Comparator.reverseOrder() does not implement the Comparator inter-
face. It takes zero parameters instead of the required two. Since it cannot be used as a
method reference, the code does not compile, and option E is correct.

97. F. The mapToDouble() method compiles. However, it converts 9 into 9.0 rather than
the single digit 9. The mapToInt() method does not compile because a long cannot be
converted into an int without casting. The mapToLong() method is not available on
LongStream so it does not compile. It is available on DoubleStream, IntStream, and
Stream implementations. Since none of the options outputs the single digit 9, option F is
correct.

98. E. The code does not compile because the lambda expression p - > p*100 is not compat-
ible with the DoubleToIntFunction functional interface. The input to the functional
interface is double, meaning p*100 is also double. The functional interface requires a
return value of int, and since double cannot be implicitly cast to int, the code does not
compile, making option E the correct answer.

99. A, E. Stateful lambda expressions should be avoided with both serial and parallel streams
because they can lead to unintended side effects, making option A correct. A common way
to remove a stateful lambda expression that modifies a List is to have the stream opera-
tion output a new List. For this reason, option E is correct. Options D and F are incorrect
because, while a concurrent or synchronized list may make the stream operation thread-
safe, they are still stateful lambda expressions.

100. E. The code does not compile, making option E the answer. In particular, the call to
test() should have one parameter instead of two.

101. B. Lazy evaluation delays execution until it is needed. Option B is the only one that
matches this requirement. While option A is true, this can be done without lazy evaluation.
Option C requires parallelization rather than deferred execution. Option D is incorrect, as
losing the data is bad. Finally, pipelines are run by the computer, which does not get tired.

102. F. The distinct() and filter() methods can reduce the number of elements in
a stream but do not change the generic type, making options A and E incorrect. The
iterate() method is static and creates a new stream. It cannot be applied to an exist-
ing stream, making option B incorrect. The peek() and sorted() methods do not alter
the generic type of the stream, making options C and D incorrect. For these reasons, option
F is correct.

Chapter 6: Working with Streams and Lambda Expressions 511

103. B, F. Option B fills in the first blank because BiFunction includes the apply() method.
DoubleUnaryOperator contains the applyAsDouble() method, making option F
correct. For the exam, pay attention to methods that have a different name for primitives.

104. A. The sorted() method takes an optional Comparator as the parameter, which takes
two String parameters and returns an int. Option A is correct because the lambda
implements this interface. Option B is incorrect because the method reference doesn’t return
an int. While generate() starts with an infinite stream, the limit() intermediate oper-
ation immediately makes it finite. Finally, the distinct() intermediate operation gives us
one star instead of three.

105. D. Options A, B, and C are true statements about functional interfaces. A lambda may be
compatible with multiple functional interfaces, but it must be assigned to a functional inter-
face when it is declared or passed as a method argument. Also, a method can be created
with the return type that matches a functional interface, allowing a lambda expression to be
returned. Option D is the correct answer. Deferred execution means the lambda expression
is not evaluated until runtime, but it is compiled. Compiler errors in the lambda expression
will still prevent the code from compiling.

106. B, F. Line 25 creates a Spliterator containing four toys. Line 26 splits them into two
equal groups by removing the first half of the elements and making them available to
batch. On line 28, we remove Jack in the Box from batch passing it to a lambda
that doesn’t print anything. Line 29 prints true since Slinky is still in batch. Therefore,
option B is one of the answers. Option F is the other correct answer since Yo- Yo is the first
toy in the half that remained in the original spliterator.

107. F. We can rule out options C and D because they do not take any parameters, so
they do not compile. Further, this code generates an infinite stream of the number 1.
The Predicate checks if the element is greater than 5. This will never be true. With
allMatch(), the stream pipeline ends after checking the first element. It doesn’t match,
so the code prints false. Both anyMatch() and noneMatch() keep checking and don’t
find any matches. However, they don’t know if a future stream element will be different, so
the code executes infinitely until the process is terminated. Therefore, option F is correct.

108. D. Line 5 needs to be modified to take a second generic argument since it uses Function.
Second, the assignment statement on line 7 is missing an ending semicolon (;). Finally, the
forEach() method on line 10 needs to be commented out since it requires a Consumer,
not a Function. Alternatively, you can change Function to Consumer, add the missing
semicolon, and remove the return from the lambda. Since either of these approaches is
three changes, option D is the correct answer.

109. A, D, E. The findFirst() method always returns the first element on an ordered stream,
regardless if it is serial or parallel, making options A and E correct. Option D is also correct,
as it is free to return any element if the stream is unordered. Option C is actually invalid, as
an unordered stream does not have a first element.

110. E. The only one of these references to compile is option D. However, the original code
prints Carrying 1. The version with a method reference would just print 1. Option E is
the answer because this is not the same output.

512 Appendix ■ Answers to Review Questions

111. F. A stream cannot be used again once it is executed. Line 21 creates a stream. Line 22
creates a second stream; however, the reference is lost on line 23. Lines 23 and 24 add
intermediate operations to the stream that was created on line 21. Due to lazy evaluation,
they do not run it. Line 25 does execute the stream pipeline and prints 0. However, line
26 attempts to execute the same stream and throws an IllegalStateException. This
matches option F.

112. A, B, F. Options A and B are correct because the type may be var or omitted in a lambda.
If there are multiple parameters, all must be handled the same way. Option C is tricky but
incorrect. While a lambda can have zero parameters, a Predicate cannot. A Predicate
is defined as a type mapping to a boolean. Option D is clearly incorrect, as - > separates
the parts of a lambda. Options E and F are similar. Option E is incorrect because return is
allowed only when the braces are present. Option F is correct.

113. E. The newValue variable is locally scoped to the lambda. It is not available outside the
lambda, so the println() does not compile, and option E is the answer.

114. D. The DoubleToLongFunction interface takes a double argument and returns a
long value. Option A is compatible since the int value 1 can be implicitly cast to long,
and 2L is already a long. Option B is also compatible, since the double value 10.0*e is
explicitly cast to int then implicitly cast to long. Next, option C is compatible because
an explicit cast of the double to a long value is used. Option D cannot be assigned and is
the correct answer. Although the Double class does have a longValue() method, the left
side of the lambda expression must use the primitive double, not the wrapper Double.
This lambda expression violates the signature of the functional interface, since it allows
Double values to be sent to the interface, including those that could be null.

115. B, D. Option A is incorrect because sets are unordered. Options C and F are incorrect
because they do not compile. The correct method call is parallelStream(). Option
E is incorrect because the accumulator and combiner in the divide() method are not
well- behaved. In particular, they are not associative and in a parallel stream could produce
various results at runtime. On a serial ordered stream, though, the results will be processed
sequentially and in a predictable order, making option B correct. Option D is also correct
because the stream has only one element, so the identity is the only thing that will be
applied.

116. C. Four of the five examples print miny. Option C does not compile. The difference is that
partitioningBy() requires a Predicate that returns a boolean. When you get a
question like this on the exam, focus on the differences between the provided options.

117. D. The correct method to obtain an equivalent parallel stream of an existing stream is
parallel(), which is inherited by any class that implements BaseStream<T>, including
the primitive streams. For this reason, option D is correct.

118. B. Method references are a shorter way of writing lambdas, and all method references can
be expanded to lambdas. However, this does not apply in reverse. Consider the lambda:
() - > s.charAt(3). The number three cannot be passed to a method reference. Since
only method references can always be converted, option B is correct.

Chapter 6: Working with Streams and Lambda Expressions 513

119. D. First, options A and B are incorrect because the second functions for both return
a double or Double value, respectively. Neither of these values can be sent to a
UnaryOperator<Integer> without an explicit cast. Next, option C is incorrect. The
first functional interface Function<Double,Integer> takes only one input, but the dia-
gram shows two inputs for the first functional interface.

That leaves us with option D. The first functional interface BiFunction<
Integer,Double,Integer> takes an int, which can be implicitly autoboxed to
Integer, and a Double and returns an Integer. The next functional interface,
BinaryOperator<Integer>, takes two Integer values and returns an
Integer value. Finally, this Integer value can be implicitly unboxed and sent to
IntUnaryOperator, returning an int. Since these behaviors match our diagram, option
D is the correct answer.

120. A, B, E. The DoublePredicate interface takes a double value and returns a
boolean value. LongUnaryOperator takes a long value and returns a long value.
ToIntBiFunction takes two generic values and returns an int value. For these
reasons, options A, B, and E are correct. NullOperator, ShortSupplier, and
ToStringOperator are not built- in functional interfaces.

121. D. The lambda expression is invalid because the input argument is of type Boss, and Boss
does not define an equalsIgnoreCase() method, making option D the correct answer.
If the lambda was corrected to use s.toString() instead of s, the code would compile
and run without issue, printing [PETER, MICHAEL] at runtime and making option A the
correct answer.

122. E. Serval is not a valid interface let alone a functional interface. The cat() method
specifies an implementation, but does not have one of the modifiers that allows a body:
default, private, or static. For this reason, option E is correct.

123. A. Let’s use the process of elimination here. Comparator returns an int, causing lines
17 and 18 to not compile. Supplier does not take any parameters further, ruling out
lines 21 and 22. Predicate at least has the right number of parameters and the correct
boolean return type. However, line 19 is not correct because the parentheses are missing
around the type and variable. The parentheses can be omitted only if no type declaration is
present, making line 20 correct. Since only one of these lines of code compiles, option A is
the answer.

124. D. The code is correct, ruling out options E, F, and G. There are three Pet records and the
ages add up to 15, making option D the answer.

125. A. Option A is the answer because there is a getCount() method that returns a long
rather than a method named getCountAsLong(). Option B is incorrect because there is
in fact a getMax() method. Option C is incorrect because toString() is declared on
Object, which means it is inherited by all classes.

514 Appendix ■ Answers to Review Questions

126. A. The method reference System.out::println takes a single input and does not
return any data. Consumer<Sheep> is compatible with this behavior, making option A the
correct answer. Note that option B does not even compile because void cannot be used as
a generic argument. Similarly, option C does not take a parameter. Option D is also incor-
rect since System.out::println() does not return any data, and UnaryOperator
requires a return value.

127. C, E, F. The correct method to obtain a parallel stream of an arbitrary stream is
parallel(), while the correct method to obtain a parallel stream that operates on a
Collection is parallelStream(). For this reason, options C, E, and F are correct.
Note that option E retrieves a parallel stream of an already parallel stream, which is
allowed.

128. A, F. The code, as written, prints rabbit since it starts with the letter r. This is option
A. The prefix variable is effectively final and therefore safe to use in a lambda. Uncom-
menting line 7 changes the prefix variable, and it is no longer effectively final. Since this
causes a compiler error, option F is the other answer.

129. B. The code compiles, so options E and F are incorrect. The stream operations on
lines 12–13 reduce the stream to the values [2, 3, 4]. Line 14 then converts the
Stream<Integer> to an IntStream. On line 15, the first element of the IntStream
is skipped, so the stream has only two elements [3, 4]. On line 16–17, the IntStream
is converted to a Stream<Integer>, then a DoubleStream. Finally, on lines 18–19 the
sum of the remaining elements is calculated and printed. Since 7.0 is printed, option B is
correct.

130. B. Since the first two rows are already finite streams, boxes M and N do not require an
intermediate operation to complete, so options D, E, and F are incorrect. Box P does not
need an intermediate operation either since findFirst() will cause the stream to termi-
nate, making options A and C incorrect. Box O does need to be filled in with code such as
limit(1). This allows the code to terminate, and option B is the answer.

131. C. Since the first two rows are already finite streams, boxes M and N meet these criteria.
The last two rows can be filled in with code such as sorted(), which does not termi-
nate for an infinite stream. Therefore, neither allows the code to terminate, and option C is
the answer.

132. C. A Comparator takes two parameters, so options A and B are incorrect. Option D
doesn’t compile. When returning a value using braces, a return keyword and semicolon
are required. Option C is a correct implementation.

133. E. The anyMatch(), allMatch(), and noneMatch() methods take a Predicate as a
parameter. This code does not compile because the parameter is missing, making option E
correct.

134. B. Since the lambda references an effectively final variable, the method reference needs to
as well. Option B is a correct method reference that meets this criteria. Options A and C
use syntax that is not supported with method references. Option D is incorrect because the
Predicate passes only one value at runtime, so either the instance variable or method
parameter would need to be supplied.

Chapter 6: Working with Streams and Lambda Expressions 515

135. E. Both pred4 and pred5 are valid, as they use a type or var without final. Both
pred1 and pred3 are valid because the final modifier can only be used if a type or var
is specified. Since pred2 is missing a data type and is the only line that does not compile,
option E is the answer.

136. A. This code does compile, making options D and E incorrect. It correctly uses a
Predicate<String> and removes all the elements from names and prints out 0. There-
fore, option A is the answer.

137. B. Since it’s not a primitive stream, the underlying type is Stream<Integer>, which
means the data type of x is Integer. On the other hand, the data type of w, y, and z is
Float. Because Integer and Float both define a floatValue() method, all of the
lines compile. The code snippet prints 9.0 at runtime, making option B correct.

138. B. The flatMap() method is used to turn a stream of collections into a one- dimensional
stream. This means it gets rid of the empty list and flattens the other two. Option A is
incorrect because this is the output you’d get using the regular map() method. Option B is
correct because it flattens the elements. Notice how it doesn’t matter that all three elements
are different types of Collection implementations.

139. D. Pay attention to the data types. The forEach() method is looping through a list of
objects. This is a good example of using a lambda with list. By contrast, the Predicate
passed to removeIf() uses an Integer. Since Integer is not compatible with String,
line 8 does not compile and option D is the answer.

140. C. To start with, IntFunction<Integer> takes an int value and returns an Integer.
Line 8 takes an Integer instead of int as the input argument and is therefore not com-
patible. Line 9 is compatible, since the return type null can be used as an Integer return
type. Line 10 is also valid. An int can be autoboxed to Integer. Lines 11 and 12 do not
compile because they do not take a parameter. Since only two statements compile, option C
is the correct answer.

141. C, D, F. Using a parallel stream does not guarantee concurrent execution or a specific
number of threads, making option A incorrect. Option B is also incorrect, as stateful
lambda expressions should be avoided with all streams, serial or parallel. In fact, if a state-
ful lambda expression is used, the result of the stream may change, making option F correct
and option E incorrect. Option C is correct, as a parallel stream may improve performance.
Option D is also correct, though, as a parallel stream may add extra overhead to a stream
that is forced into a serial operation, such as when the findFirst() method is called.

142. A. The code compiles, so options D and E are incorrect. The code first splits the stream
into a Map<Boolean, List<String> based on whether the landmark contains a space.
Using the flatMap() method, it then takes the List<String> values of the Map and
reforms them as a Stream<String>. This new stream is similar to the original stream,
although with elements in a possibly different order. Finally, the groupingBy() collector
splits the stream based on whether it does not start with an "S". Since Set and Map were
used, the order may vary, but option A is one possible output.

516 Appendix ■ Answers to Review Questions

143. E. Option A doesn’t compile because the get() method on Optional doesn’t take any
parameters. Options B, C, and D do compile but print Cupcake since the Optional is not
empty. Therefore, option E is correct.

144. F. There is no source in this attempt at a stream pipeline. While a Collection does have
some of the same methods as a stream, such as forEach(), the limit() method is not
one of them, so the code as written causes a compile error. Since this error is not on line x,
option F is the answer.

145. E. The num variable is not effectively final because the value changes. This means it cannot
be used in a lambda and the code does not compile, which is option E.

146. D. There is not a stream pipeline method called sort(). There is one called sorted().
Since the code does not compile, option D is correct. If sorted() were used, then the
output would be 689.

147. A. A lambda can only implement an interface with a single abstract method, ruling out
option B. Developers can write their own functional interfaces, making option A correct.

148. C. The primitive Supplier functional interfaces, such as BooleanSupplier and
LongSupplier, do not have a get() method. Instead, they have methods such as
getAsBoolean() and getAsLong(), respectively. For this reason, the first line of the
checkInventory() method does not compile, making option C the correct answer.

149. E. The code does not compile because the collector returns a ConcurrentMap, which
requires a BiConsumer in the forEach() method. For this reason, option E is correct.

150. D. When calling Stream.concat(), we need to pass Stream references, not
IntStream. The code does not compile as written and option D is the answer.

Chapter 7: Packaging and Deploying
Java Code and Use the Java Platform
Module System

1. F. The module- info.java file is used to declare a module, making option F the answer.
You must memorize the name of this file.

2. E. The service locator contains a load() method, not an exports() method, making
option E the answer.

3. B, D. A service consists of the interface, any classes the interface references, and a way to
look up implementations of the interface. Option B covers the lookup, and option D covers
the interface itself.

Chapter 7: Packaging and Deploying Java Code and Use the Java Platform 517

4. B. A named module must be on the module path and contain a module- info file. Only
dog.bark meets this criterion, making option B the answer.

5. C. An automatic module must be on the module path but does not contain a module- info
file. Option C is correct because dog.hair matches this description.

6. E. You need to know about three types of modules for the exam: automatic, named, and
unnamed. There is no such thing as a default module. The question was trying to trick you,
and option E is correct.

7. C. An unnamed module must be on the classpath. It is rare to have a module- info file in
an unnamed module, but it is allowed. Therefore, dog.fluffy and dog.husky both meet
this criterion, making option C correct.

8. B, F. It is recommended to specify all exports directives in the module- info file. While it
is legal to use the - - add- exports option, it is not recommended, making option B correct.
You do not need to know how to use it for the exam, just that it is not a good idea. There is
no equivalent option for requires, making option F correct.

9. B. Since Java does not allow dashes in identifier names, the second and fourth declarations
are invalid. Additionally, access modifiers like public are not permitted in module declara-
tions, making the third and fourth declarations invalid. The only one that is legal is the first
declaration, so option B is correct.

10. D. The consumer is generally separate, ruling out options A, B, and C. The service provider is
decoupled from the service provider interface, ruling out option F. It is most logical to com-
bine the service locator and service provider interface because neither has a direct reference
to the service provider. Therefore, option D is correct.

11. C. The java command has an option to list all the modules that come with the JDK. Option
C is correct since that option is called - - list- modules. The other options are not
supported by the java command. Options B and E are similar to options that exist:
- - describe- module and - - show- module- resolution. But neither gives a list of all
the modules that come with the JDK.

12. D. The rules for determining the name include removing the extension and changing special
characters to periods (.). This leaves us with dog.arthur2, which is option D.

13. C. All parts of a module’s service must point to the service provider interface. This tells us
the service provider interface must be X, ruling out options A, B, and E. Now we have to
decide if Y or Z is the service provider. We can tell because nothing has a direct dependency
on the service provider. Since this makes the service provider Y, the answer is option C.

14. B. The consumer depends on the service provider interface and service locator, but not on
the service provider. Only W has two arrows starting from it, so it must be the consumer.
This rules out options C, D, and E. The service locator references the service provider inter-
face directly and the service provider indirectly, making the service locator Z and option B
the answer.

518 Appendix ■ Answers to Review Questions

15. C. A cyclic dependency is when two things directly or indirectly depend on each other. If
chicken.jar depends on egg.jar, and egg.jar depends on chicken.jar, we have
a cyclic dependency. Since only two JAR files are needed to create this situation, option C is
the answer.

16. E. The ServiceLoader class has a load() method that returns a Collection of
Provider, not a stream. Since the call to stream() is missing, option E is the answer. If the
call to stream() were added, option D would be the answer.

17. C. Each module is required to have its own module- info.java file in the root directory
of the module. For module com.ny, that is location W, and for module com.sf, that is loca-
tion Y. Therefore, option C is correct.

18. E. Options A, C, and D are incorrect because export and require are not directives in
modules. Option B is incorrect because that directive goes in the com.ny module, not the
com.sf one. Option E is correct rather than option F because the requires directive refer-
ences a module name rather than a package.

19. D. Options A and B are incorrect because export is not a directive in modules. Option
E belongs in the com.sf module, not the com.ny one. Option F is incorrect because the
requires directive should reference a module name rather than a package. Finally, option
D is the answer rather than option C because the exports directive should reference a
package name rather than a module.

20. E. The Maple class is intended to be an implementation of the Tree interface. However, this
interface needs to be accessible. This module is missing a requires nature.sapling;
statement, making option E the correct answer.

21. B. The –c option is not on the javac command. The –d option specifies the directory. The
–p option specifies the module path. Therefore, option B is correct.

22. A, C, E. The java.base module is automatically available to any module without speci-
fying it, making option A correct. Options C and E are also correct because java.desktop
and java.sql are modules supplied with the JDK. You do need to be able to identify built-
 in modules for the exam.

23. A, C. Option A is correct because a top- down migration starts by moving all the modules to
the module path as automatic modules. Then, the migration changes each module from an
automatic module to a named module, making option C the other correct answer.

24. A. Option A is correct because a consumer has two dependencies. It requires both the ser-
vice provider interface and the service locator.

25. A, C. Option A is correct, and option B is incorrect as we want to create named modules
when possible. We also need to be on the lookout for cyclic dependencies. While option
D would work, it is better to be more granular and create a third module as in option
C. Option E is incorrect because dots are used as separators in names.

26. B. The jdeps command lists information about dependencies within a module. The –s
option provides a summary of output rather than verbose output, making option B the
correct answer. There is no –d option. The jmod command is for working with JMOD files.

27. C. Option C is correct because a service provider requires the interface. It also provides
the implementation.

28. E. When running a module, the module name is listed before the slash, and the fully qualified
class name is after the slash. Option E is the only one that meets this criterion.

29. B. An unnamed module is on the classpath. While it is permitted to have a module- info
file, the file is ignored if present. An automatic module is on the module path and does not
have a module- info file. A named module is required to have a module- info file, mak-
ing option B the correct answer.

30. B. Option B is correct because a service locator uses the interface. It also requires the
service provider interface module and exports the package with the locator.

31. D. Option D is correct because the jlink command creates a Java runtime using the mod-
ules you require and have specified.

32. E. A consumer requires both the service locator and service provider interface. A service
locator and service provider interface need to have an exports statement. A service provider
needs a provides directive. Since none of them match, option E is the answer.

33. F. An unnamed module is permitted to have a module- info file, but the file is ignored
if present. An automatic module does not have a module- info file. A named module is
required to have a module- info file. Therefore, option F is correct.

34. A. A module- info file is required to start with module rather than class. Therefore, the
first line doesn’t compile, and option A is correct.

35. B. You need to know these directives: exports, requires, requires transitive,
provides, opens, and uses. Of these, only uses is in the list of candidates in the
question, which means option B is correct. Note that export and require are invalid
because they should be exports and requires, respectively.

36. D. Option D is correct because a service provider interface exposes the interface without
depending on any of the other options.

37. D, E, F. The java.base module is automatically available to any module without specifying
it. However, this question tries to trick you with option A by specifying jdk.base instead.
Similarly, java.desktop exists, but not jdk.deskop, making option C wrong. Options D,
E, and F are correct because jdk.javadoc , jdk.jdeps, and jdk.net are modules sup-
plied with the JDK. You do need to be able to recognize the names of built- in modules.

38. B, C, F. A top- down migration starts by moving all the modules to the module path as
automatic modules, making options B and F correct. A bottom- up migration moves each
module after all the modules it depends on have been migrated, making option C correct.

Chapter 7: Packaging and Deploying Java Code and Use the Java Platform 519

http://jdk.net

520 Appendix ■ Answers to Review Questions

39. B. The service locator contains a load() method, making option B correct.

40. E. Module names are permitted to be any valid variable name with the addition of dot sep-
arators (.). The only one that is problematic is com- leaf because dashes are not allowed,
making option E correct. As a reminder, numbers are permitted as long as they are not the
first character in a segment. Capital letters are discouraged but allowed.

41. A. Option A is correct because ServiceLoader allows you to make your application
extensible. A service can be added without recompiling the entire application. It is a class, but
the service provider implementation does not reference it, making options C and D incorrect.
Option B is not a feature of modules.

42. A, F. Code on the classpath has not yet been migrated to modules and can reference any code
in the application. This is true whether that code is in automatic, named, or unnamed mod-
ules, matching option A. Code on the module path operates in a stricter world and cannot
reference code on the classpath. Since unnamed modules cannot be accessed in this situation,
option F is the second answer.

43. C. Option A is incorrect because it exports the package to all modules. Option C is correct
because it limits package sharing to the com.park module. Option E is incorrect because a
package must be exported from the module that contains it. Options B and D are incorrect
because from is not valid syntax.

44. F. It is not possible to provide access outside the module while also limiting access within
the com.duck module. Options A and C are tempting because they do provide access in
com.park. However, they do not prevent the Egg class in the com.egg package from
accessing the com.duckling package. Remember that the com.egg package is in the
com.duck module, so the access cannot be restricted. Therefore, option F is correct.

45. E. The correct way to specify this is requires com.duck; requires com.bread;.
There is no way to combine two module requires statements into one. Additionally, note
that the requires statement works with a module name, not a package name. Since none of
these are correct, option E is the answer.

46. E. Only the service provider has a provides directive. Since it is not part of the service,
option E is the correct answer.

47. C. Both options A and B note that the JAR depends on the jdk.unsupported module.
However, they do not list suggested replacements. Option C is correct and option F is incor-
rect because the desired flag is - jdkinternals.

48. C. Option C is correct because only unnamed modules are on the classpath.

49. D. The service locator contains a ServiceLoader call to look up the service implemen-
tations. It takes the type of class to look up as a parameter and returns a generic, making
option D the correct answer.

50. B, D. Option B is correct because it depends on the change. If a method is added to the ser-
vice provider interface or a public method is changed, the service providers must be recom-
piled. However, if a change is made that does not affect the service provider, such as a new
static method, recompilation is not needed. Option D is also correct because return types
and parameter types are considered part of the service.

51. D. Unnamed modules are on the classpath. Option D is correct because automatic and
named modules are on the module path.

52. F. The consumer needs to depend on the shared module, making it X. The shared module
then has to be Z, and the service provider has to be Y. However, the service provider should
not know about the consumer and the dotted line in the diagram does not make sense. This
means none of the options can create a valid scenario, and option F is the answer.

53. B. Without any command- line flags, jdeps lists packages and module dependencies. The
- s flag provides a summary and omits the package name, which means option B is the
correct answer.

54. E. The - - output flag provides the desired output directory. There is no abbreviated form
for this option, making option E the answer.

55. F. The first clue is that the - m and - p options are on the java command. Beyond that, you
need to memorize the name of the - - show- module- resolution option. This makes
option F correct.

56. B. This module is a service provider interface. The only requirement is that the module
needs to export the package containing the interface. In this case, that is the
animal.insect.api.bugs package, which matches option B.

57. A, E. This module is a service provider. It needs a requires directive for the service pro-
vider interface, which is option A. It also needs a provides directive, which specifies both
the interface and implementation. Option E has both in the correct order.

58. C, F. This module is a service locator. It needs three directives: exports, requires, and
uses. The requires directive specifies the module it depends on, which is option C. The
uses directive specifies the service provider interface it references, which is option F.

59. A, B. This module is a consumer. It needs two requires directives. Option A is correct
because it represents the service provider interface. Additionally, option B is correct as it
represents the service locator. The uses directive should be in the service locator, not the
consumer.

60. A. Without any command- line flags, jdeps lists packages and module dependencies, making
option A correct. Option D will also list the packages; however, it is longer than option A.

61. C. The com.light module does not have any dependencies, so it is fine. However,
com.animal and com.plant depend on each other, giving us a cyclic dependency. Finally,
com.worm depends on all the modules but does not introduce any more problems. It will
not compile until com.animal or com.plant are fixed but is not part of the cycle itself.
Option C is correct, since only two modules are part of the cycle.

62. C. The - d option is shorthand for - - describe- module on both the jar and java
commands. Therefore, option C is correct.

63. C. The javac command takes - p for the module path rather than - m. Therefore, option C
is the correct answer.

Chapter 7: Packaging and Deploying Java Code and Use the Java Platform 521

522 Appendix ■ Answers to Review Questions

64. A. Option B is tempting because the java.lang package is available to all classes. How-
ever, the question asks about modules. Option A is the answer because the java.base
module is available to all modules. The other options are incorrect because those modules do
not exist.

65. A, B, C. The jmod command has five possible modes: create, extract, describe,
list, and hash. This makes options A, B, and C the answer.

66. A. There is no such thing as a side- to- side migration, ruling out option B. In a top- down
migration, all modules are moved to the module path first, making option C incorrect. In a
bottom- up migration, modules are moved, starting with those without dependencies. There-
fore, option A is correct.

67. C, E. In a bottom- up migration, the lowest- level modules are migrated to named modules on
the module path first. This makes option E one of the answers. The modules that remain on
the classpath are unnamed modules, making option C the other answer.

68. D. The com.magic module exports only one package. This makes the com.magic.
unicorn package accessible, but not the com.magic.dragon package. Both packages
in com.science are accessible because it is an automatic module. When a module on the
module path does not contain a module- info file, all packages are exported. This gives us
three packages that are accessible and an answer of option D.

69. A. Modules on the module path cannot access anything from the classpath, making option A
the answer.

70. E. Option E is correct as this code does compile. Although it is uncommon, a module is not
required to have any directives in the body. Similarly, module names are lowercase and have
more than one component by convention. None of these problems prevent the file from com-
piling, though.

71. E. One of the benefits of services is not having to recompile existing code when adding a
new implementation. This makes option E the answer.

72. C. The java command uses - m and - - module to supply the module name. The jdeps
command uses - s and - - summary to specify that the output should be limited. Option C
matches both of these.

73. B. A service consists of the interface, any classes the interface references, and a way to look
up implementations of the interface. It does not include the implementation. This makes
option B the answer.

74. A. Option A is correct because only jdeps uses this - s.

75. A, E. This question is tricky because the service provider code is shown, but the question
asks about the service locator, and you need to infer information about the service provider
interface. Option B is incorrect because the requires directive references a module name
rather than an interface. Option C is incorrect because we need the service provider interface
module, and it refers to the service provider module. The requires directive is option A due

to process of elimination. Option E is easier, since the uses directive works with an interface
name. Therefore, options A and E are the answers.

76. A, F. A bottom- up migration leaves unnamed modules on the classpath until they are
migrated to the module path, making option A correct and option D incorrect. A top- down
migration immediately moves all modules to the module path as automatic modules, making
options B and E incorrect. Therefore, option F is the other answer.

77. D. The ServiceLoader class has a load() method that returns a Collection of
Provider. Option D is correct because we need to convert the Provider into a Mouse.

78. B, C, E. The mammal module depends on two other modules. Since requires references
module names, options C and E are correct. The module also has one package, which is
referenced in the exports directive. This makes option B correct as well.

79. C. The transitive keyword goes after requires, ruling out all but options C and
D. Just like requires, requires transitive references a module name, narrowing it
down to option C.

80. D. Any requires directives must reference unique modules. Using the transitive key-
word does not change this requirement, making option D the answer.

81. D. There can be multiple service providers for a single service provider interface, making
option D the answer.

82. A, D, E. The java.logging, java.management, and java.naming modules exist,
making options A, D, and E correct. Option B is tempting. However, jdk.javadoc exists,
not java.javadoc. Options C and F are completely made up.

83. B, E. Option E is correct because all modules on the classpath are unnamed modules. On
the module path, we can have automatic or named modules. In this case, it is an automatic
module because there is no module- info.class at the root of the JAR. Having that file in
another directory is ignored. This makes option B the other answer.

84. A. The consumer needs to depend on the shared module, making it X. The shared module
then has to be Z, and the service provider has to be Y. This makes option A correct.

85. B, D. The method call of ServiceLoader.load() takes a parameter, making option B
correct and option A incorrect. When using a Stream, you call Provider::get, making
option D the other answer. Option C is incorrect because you don’t need to call the get()
method when using a loop.

86. B. The rules for determining the name include removing the extension, removing num-
bers, and changing special characters to periods (.). Additionally, we remove the version
information from the end, which is 1.0.0- SNAPSHOT. Finally, we normalize the duplicate
dots, which gives us option B: lizard.cricket.

87. D. The jar file format is the most common. The JMOD jmod format is used as well. There-
fore, option D is correct.

Chapter 7: Packaging and Deploying Java Code and Use the Java Platform 523

524 Appendix ■ Answers to Review Questions

88. B. Option B is correct because a service provider should not contain an exports directive.
The service locator is used to reference any implementation exposed by provides.

89. A. The com.light module is a dependency for all the other modules but does not depend
on them. Similarly, the com.animal module is a dependency for the two higher- level mod-
ules but does not depend on them. Finally, the com.plant module is a dependency for the
com.worm module but does not depend on it. While the modules are not defined in this
order, the question is about cyclic dependencies and not order of compilation. There is no
cyclic dependency, making option A correct.

90. C, E. The jdeps command outputs requires mandated java.base except when run
in summary mode, making option C correct. Since this module is an implicit dependency in
all modules, option E is also correct.

Chapter 8: Managing Concurrent
Code Execution

1. A. The code compiles, making option E incorrect. The Thread.run() method is called
instead of Thread.start(), so the program is single- threaded. The calls to interrupt()
have no effect, and nothing is printed at runtime, making option A correct. If start() were
used instead of run(), then the code would print How rude! once, as it only catches one
InterruptedException.

2. C. The code does not compile because Callable must define a call() method, not a
run() method, so option C is the correct answer. If the code was fixed to use the correct
method name, then it would complete without issue, printing XXXXXXXXXXDone! at run-
time. The f.get() call will block and wait for the results before moving on to the next iter-
ation of the for loop.

3. A, D. Option A is correct, as ExecutorService does not define nor inherit an over-
loaded method execute() that takes a Callable parameter. ExecutorService defines
two shutdown methods, shutdown() and shutdownNow(), one of which is shown in
option B. Option D is correct, as exit() does not exist and is not one of the shutdown
methods. The ExecutorService interface defines the two submit() methods shown
in options C and E. Because ExecutorService extends Executor, it also inherits the
execute(Runnable) method presented in option F.

4. F. The code compiles and runs without issue. Even though the thread- safe
AtomicBoolean is used, it is not used in a thread- safe manner. The flip() method first
retrieves the value and then sets a new value. These two calls are not executed together in an
atomic or synchronized manner. For this reason, the output could be true or false, with
one or more of the flips possibly being lost, and making option F correct.

Chapter 8: Managing Concurrent Code Execution 525

5. C. Option A is incorrect, although it would be correct if Executor were replaced with
ExecutorService. Option B is also incorrect, but it would be correct if start() were
replaced with run(). Option C is correct and is a common way to define an asynchronous
task using a lambda expression. Option D is incorrect, as Runnable does not inherit a
begin() method.

6. B. The code compiles and is thread- safe, since the call to step() is synchronized on the
same object. The calls to interrupt() have no effect because the threads are never in a
waiting state. For this reason, the output is always 10, making option B correct.

7. A. If the tryLock() method returns true, then a lock is acquired that must be released.
That means the lockUp() method actually contains two calls to lock the object and only
one call to unlock it. For this reason, the first thread to reach tryLock() obtains a lock that
is never released. For this reason, Locked! is printed only once, and option A is correct. If
the call to lock() inside the if statement were removed, then the expected output would be
to print the statement five times.

8. C, D. The class compiles and runs without throwing an exception, making option C correct
and options A, B, and F incorrect. The class defines two values that are incremented by mul-
tiple threads in parallel. The first IntStream statement uses an atomic class to update a
variable. Since updating an atomic numeric instance is thread- safe by design, the first number
printed is always 100, making option D correct. The second IntStream statement uses an
int with the pre- increment operator (++), which is not thread- safe. It is possible two threads
could update and set the same value at the same time, a form of race condition, resulting in a
value less than 500 and making option E incorrect.

9. C. CopyOnWriteArrayList makes a copy of the array every time it is modified,
preserving the original list of values the iterator is using, even as the array is modified.
For this reason, the for loop using copy1 does not throw an exception at runtime.
On the other hand, the for loops using copy2 and copy3 both throw
ConcurrentModificationException at runtime since neither allows modification
while they are being iterated upon. Finally, the ConcurrentLinkedQueue used in copy4
completes without throwing an exception at runtime. For the exam, remember that the
Concurrent classes order read/write access such that access to the class is consistent across
all threads and processes, while the synchronized classes do not. Because exactly two of the
for statements produce exceptions at runtime, option C is the correct answer.

10. C. Resource starvation is when a single active thread is perpetually unable to gain access to a
shared resource. Livelock is a special case of resource starvation, in which two or more active
threads are unable to gain access to shared resources, repeating the process over and over
again. For these reasons, option C is the correct answer. Deadlock and livelock are similar,
although in a deadlock situation the threads are stuck waiting, rather than being active or
performing any work. Finally, a race condition is an undesirable result when two tasks that
should be completed sequentially are completed at the same time.

11. A. Even though a parallel stream is used, the forEachOrdered() method forces the
stream to operate in the order of its data source. The code compiles and runs without issue,
printing 12345 every time and making option A correct. If forEach() were used instead,
then the output would vary at runtime.

526 Appendix ■ Answers to Review Questions

12. E. The class does not compile because the bosses.get() on line 8 throws a checked
InterruptedException and a checked ExecutionException, neither of which is han-
dled nor declared by the submitReports() method. For this reason, option E is correct.

13. A, B. Options C, D, E, and F are all proper ways to obtain instances of
ExecutorService. Remember that newSingleThreadExecutor() is equivalent to
calling newFixedThreadPool(int) with a value of 1. The correct answers are options A
and B, as neither of these methods exists.

14. A. The code compiles without issue but hangs indefinitely at runtime. The application defines
a thread executor with a single thread and 12 submitted tasks. Because only one thread is
available to work at a time, the first thread will wait endlessly on the call to await(). Since
the CyclicBarrier requires four threads to release it, the application waits endlessly in a
frozen condition. Since the barrier is never reached and the code hangs, the application will
never output Ready, making option A the correct answer.

15. E. Trick question! ExecutorService does not contain any of these methods. To obtain an
instance of a thread executor, you need to use the Executors factory class. For this reason,
option E is the correct answer. If the question had instead asked which Executors method
to use, then the correct answer would be option C.

16. C. Part of synchronizing access to a variable is ensuring that read/write operations are
atomic or happen without interruption. For example, an increment operation requires
reading a value and then immediately writing it. If any thread interrupts this process, then
data could be lost. In this regard, option C shows proper synchronized access. Thread 2 reads
a value and then writes it without interruption. Thread 1 then reads the new value and writes
it. The rest of the answers are incorrect because one thread writes data to the variable in bet-
ween another thread reading and writing to the same variable.

17. A, C, F. The increment operators on the first two numbers are not thread- safe, so the output
could be 100 or a number less than 100, making options A and C correct. Remember, the
volatile attribute does not guarantee thread safety. The last number printed is incre-
mented in a thread- safe manner, making option F the other correct answer.

18. F. The code compiles and runs without issue. The two methods hare() and tortoise()
are nearly identical, with one calling invokeAll() and the other calling invokeAny().
Calling the invokeAll() method causes the current thread to wait until all tasks are fin-
ished, while calling the invokeAny() method will cause the current thread to wait until
at least one task is complete. Both ExecutorService methods operate synchronously,
waiting for a result from one or more tasks, but each method call has been submitted to the
thread executor as an asynchronous task. For this reason, both methods will take about one
second to complete, and since either can finish first, the output will vary at runtime, making
option F correct. Note that this program does not terminate, since the ExecutorService is
not shut down.

19. B, D. ConcurrentSkipList does not exist as a concurrent collection, making option A
incorrect. ConcurrentSkipListSet implements the SortedSet interface, in which the
elements are kept sorted, making option B correct. ConcurrentSkipListMap implements
the SortedMap interface, in which the keys are kept sorted, making option D correct. The

Chapter 8: Managing Concurrent Code Execution 527

other options define structures that are ordered, but not sorted. Remember, if you see
SkipList as part of a concurrent class name, it means it is sorted in some way.

20. C. The code compiles without issue, so options D and E are incorrect. The f1 declaration
uses the version of submit() in ExecutorService, which takes a Runnable and returns
a Future<?>, while the f2 declaration uses an overloaded version of submit(), which
takes a Callable expression and returns a generic Future object. The call f1.get()
waits until the task is finished and always returns null, since Runnable expressions have a
void return type, so [Filing]null is printed first. The call to the f2.get() return then
prints 3.14159. For these reasons, option C is the correct answer.

21. C, D. The code compiles and runs without issue. While an AtomicLong is used, there are
two calls on this variable, the first to retrieve the value and the second to set the new value.
These two calls are not executed together in an atomic or synchronized manner. For this
reason, the incrementBy10() method is not thread- safe, and option C is correct. That
said, the code performs in single- threaded manner at runtime because the call to get() in
the main() method waits for each thread to finish. For this reason, the output is consistently
1000, making option D correct.

22. D. The synchronized block used in the getQuestion() method requires an object to
synchronize on. Without it, the code does not compile, and option D is the correct answer.

23. B. Options A, D, and E include method names that do not exist in
ScheduledExecutorService. The scheduleAtFixedRate() method creates a new
task for the associated action at a set time interval, even if previous tasks for the same
action are still active. In this manner, multiple threads working on the same action could
be executing at the same time, making option B the correct answer. On the other hand,
scheduleWithFixedDelay() waits until each task is completed before scheduling the
next task, guaranteeing at most one thread working on the action is active in the thread pool.

24. F. The application compiles, so option D is incorrect. The stroke variable is thread- safe
in the sense that no write is lost since all writes are wrapped in a synchronized method,
making option E incorrect. The issue here is that the main() method reads the value of
getStroke() while tasks may still be executing within the ExecutorService. The
shutdown() method stops new tasks from being submitted but does not wait for
previously submitted tasks to complete. Therefore, the result may output 0, 1000, or
anything in between, making option F the correct answer. If the ExecutorService method
awaitTermination() is called before the value of stroke is printed and enough time
elapses, then the result would be 1000 every time.

25. C. A race condition is an undesirable result when two tasks that should be completed
sequentially are completed at the same time. The result is often corruption of data in some
way. If two threads are both modifying the same int variable and there is no synchroniza-
tion, then a race condition can occur with one of the writes being lost. For this reason, option
C is the correct answer. Option A is the description of resource starvation. Options D and
E are describing livelock and deadlock, respectively, while option B is the potential result of
either of those events occurring.

528 Appendix ■ Answers to Review Questions

26. B. The class compiles without issue. The class attempts to create a synchronized version of a
List<Integer>. The size() and addValue() methods help synchronize the read/write
operations. Unfortunately, the getValue() method is not synchronized so the class is not
thread- safe, and option B is the correct answer. It is possible that one thread could add to the
data object while another thread is reading from the object, leading to an unexpected result.

27. D. The post- decrement operator (––) decrements a value but returns the original value.
It is equivalent to the atomic getAndDecrement() method. The pre- increment operator
(++) increments a value and then returns the new value. It is equivalent to the
incrementAndGet() atomic operation. For these reasons, option D is the correct answer.

28. F. A List instance, which inherits the Collection interface, does not have a parallel()
method. Instead, parallelStream() must be used, making option F correct. If the code
was corrected to use parallelStream(), then the first and third streams would be con-
sistently printed in the same order. Remember that the forEachOrdered() method forces
parallel streams to run in sequential order. The order of the second operation would be
unknown ahead of time, since it uses a parallel stream.

29. C. Line 13 does not compile because the execute() method has a return type of void, not
Future. Line 15 does not compile because scheduleAtFixedRate() requires four argu-
ments that include an initial delay and period value. For these two reasons, option C is the
correct answer.

30. B. When a CyclicBarrier goes over its limit, the barrier count is reset to zero. The appli-
cation defines a CyclicBarrier with a barrier limit of five threads. The application then
submits 12 tasks to a cached executor service. In this scenario, a cached thread executor
will use between five and 12 threads, reusing existing threads as they become available. In
this manner, there is no worry about running out of available threads. The barrier will then
trigger twice, printing five values for each of the sets of threads, for a total of ten W charac-
ters. For this reason, option B is the correct answer.

31. D. The application does not terminate successfully nor does it produce an exception at run-
time, making options A and B incorrect. It hangs at runtime because the CyclicBarrier
limit is 5, while the number of tasks submitted and awaiting activation is 12. This means that
two of the tasks will be left over, stuck in a deadlocked state, waiting for the barrier limit
to be reached but with no more tasks available to trigger it. For this reason, option D is the
correct answer. If the number of tasks were a multiple of the barrier limit, such as 15 instead
of 12, then the application would still hang because the ExecutorService is never shut
down, and option C would be correct. The isShutdown() call in the application finally
block does not trigger a shutdown. Instead, shutdown() should have been used.

32. B. First, the class uses a synchronized list, which is thread- safe and allows modification from
multiple threads, making option E incorrect. The process generates a stream of numbers from
1 to 5 and sends them into a parallel stream where the map() is applied, possibly out of
order. This results in elements being written to db in a random order. The stream then applies
the forEachOrdered() method to its elements, which will force the parallel stream into a
single- threaded state. At runtime, line p1 will print the results in order every time as 12345.
On the other hand, since the elements were added to db in a random order, the output of line
p2 is random and cannot be predicted ahead of time. Since the results may sometimes be the

Chapter 8: Managing Concurrent Code Execution 529

same, option B is the correct answer. Part of the reason that the results are indeterminate is
that the question uses a stateful lambda expression, which based on your studies should be
avoided!

33. C. The Lock interface does not include an overloaded version of lock() that takes a time-
out value and returns a boolean. For this reason, the code does not compile, and option
C is correct. If tryLock(long,TimeUnit) had been used instead of lock(), then the
program would have been expected to print TV Time three times at runtime.

34. B. The for loops using copy1 and copy4 both throw a ConcurrentModification
Exception at runtime, since neither allows modification while they are being iterated upon.
Next, CopyOnWriteArrayList makes a copy of the collection every time it is modified,
preserving the original list of values the iterator is using. For this reason, the for loop using
copy2 completes without throwing an exception or creating an infinite loop. On the other
hand, the loop with copy3 enters an infinite loop at runtime. Each time a new value is
inserted, the iterator is updated, and the process repeats. Since this is the only statement that
produces an infinite loop, option B is correct.

35. E. The shutdown() method prevents new tasks from being added but allows existing
tasks to finish. In addition to preventing new tasks from being added, the shutdownNow()
method also attempts to stop all running tasks. Neither of these methods guarantees any task
will be stopped, making option E the correct answer. Options C and D are incorrect because
they name methods that do not exist in ExecutorService.

36. E. The program compiles and does not throw an exception at runtime. The class attempts
to add and remove values from a single cookie variable in a thread- safe manner but fails
to do so because the deposit() and withdrawal() methods synchronize on differ-
ent objects. The instance method deposit() synchronizes on the bank object, while the
static method withdrawal() synchronizes on the static Bank.class object. Since the
compound assignment operators (+=) and (- =) are not thread- safe, it is possible for one call
to modify the value of cookies while the other is already operating on it, resulting in a loss
of information. For this reason, the output cannot be predicted, and option E is the correct
answer. If the two methods were synchronized on the same object, then the cookies vari-
able would be protected from concurrent modifications, printing 0 at runtime.

37. A. The code attempts to search for a matching element in an array using multiple threads.
While it does not contain any compilation problems, it does contain an error. Despite cre-
ating Thread instances, it is not a multithreaded program. Calling run() on a Thread runs
the process as part of the current thread. To be a multithreaded execution, it would need to
instead call the start() method. For this reason, the code completes synchronously, waiting
for each method call to return before moving on to the next and printing true at the end of
the execution, making option A the correct answer. On the other hand, if start() had been
used, then the application would be multithreaded but not thread- safe. The calls to update
foundMatch are not synchronized, and even if they were, the result might not be available
by the time print() in the main() method was called. For this reason, the result would
not be known until runtime.

530 Appendix ■ Answers to Review Questions

38. D. The forEachOrdered() method is available on streams, not collections. For this
reason, line q1 does not compile, and option D is correct. If the forEach() method were
used instead, then the code would compile with the values printed on line q1 varying at run-
time and the values printed on line q2 being consistent.

39. B, C, F. The use of the volatile attribute in this program does not have any impact, as
volatile does not guarantee thread- safety. The first operation is thread- safe because an
AtomicInteger is used, making option B correct. The second operation is not thread-
safe because ++ is used in an unsafe manner, making option C correct. The last operation is
thread- safe because it is synchronized on the same object, making option F correct.

40. B, D. The reduce() operation used is safe for both serial and parallel streams; therefore,
the output for both operations is always 11, making options B and D correct.

Chapter 9: Using Java I/O API

1. D. The code does not compile because Path.get() is not a valid NIO.2 method, making
option D correct. Either Paths.get() or Path.of() should be used instead.

2. A. The constructor for Console is private. Therefore, attempting to call new
Console() outside the class results in a compilation error, making option A the correct
answer. The correct way to obtain a Console instance is to call System.console().

3. D, F. BufferedWriter is a wrapper class that requires an instance of Writer to operate
on. Since FileOutputStream does not inherit Writer, the code does not compile, and
option D is correct. If FileWriter was used instead of FileOutputStream, then the
code would compile without issue and print 1. The try- with- resources statement closes
System.out before the catch and finally blocks are called. When the finally block
is executed, the output has nowhere to go to, which means the last value of 3 is not printed,
making option F correct.

4. F. The code does not compile. There are no createDirectory(),
createDirectories(), and delete() methods defined on the Path interface. Instead,
the NIO.2 Files class should be used. Since four lines of code do not compile, option F is
the correct answer. If the lines were corrected to use the Files class, then the application
would print an exception at line k1, as the directory already exists.

5. A, C. Generally speaking, classes should be marked with the Serializable interface
if they contain data that we might want to save and retrieve later. Options B, D, E, and F
describe the type of data that we would want to store over a long period of time. Options A
and C, though, define classes that manage transient or short- lived data. Application processes
change quite frequently, and trying to reconstruct a process is often considered a bad idea.

6. D. First, p2 is an absolute path, which means that p1.resolve(p2) just returns p2. For
this reason, options B and C are incorrect. Since p1 is a relative path, it is appended onto p2,
making option D correct and option A incorrect. Option A would be correct if
normalize() were applied.

Chapter 9: Using Java I/O API 531

7. B. Writer is an abstract class, so options A, D, and E are incorrect. Classes extend abstract
classes; they do not implement them, making option B correct. Note that InputStream,
OutputStream, and Reader are also abstract classes.

8. D. After calling createDirectories(), the directory /home is guaranteed to exist if it
does not already. The second argument of the copy() method should be the location of
the new file, not the folder the new file is placed in. Therefore, the program attempts to
write the file to the path /home. Since there is already a directory at that location, a
FileAlreadyExistsException is thrown at runtime, making option D correct.

9. E. The code does not compile because readAllLines() returns a List<String>, not a
stream, making option E the answer. If the correct method lines() was used instead, then
five lines would be printed at runtime.

10. E. The size variable is properly serialized with a value of 4. Upon deserialization, none of
the class elements that assign a value to an instance variable are run, leading to size being
deserialized as 4. Since the name variable is marked transient, this value is deserialized as
null. For these reasons, option E is correct.

11. B. The readPassword() returns a char array for security reasons. If the data was stored
as a String, it would enter the shared JVM string pool, potentially allowing a malicious
user to access it, especially if there is a memory dump. By using a char array, the data can be
immediately cleared after it is written and removed from memory. For this reason, option B is
the correct answer.

12. A. While you might not be familiar with FilterOutputStream, the diagram shows that
the two classes must inherit from OutputStream. Options B, C, and E can be eliminated
as choices since PrintOutputStream and Stream are not the name of any java.io
classes. Option D can also be eliminated because OutputStream is already in the dia-
gram, and you cannot have a circular class dependency. That leaves us with the correct
answer, option A, because BufferedOutputStream and PrintStream both extend
FilterOutputStream.

13. D. Line 15 is the first line to not compile, as relativize() is an instance method, not a
static method. Line 16 also does not compile, as size(), not length(), should be used
to retrieve a file size. Finally, line 17 does not compile because view is an attribute class, not
an attribute view. The rest of the lines do not contain any compiler errors, making option D
correct.

14. C. The code compiles and runs without issue. The first two values of the
ByteArrayInputStream are read. Next, the markSupported() value is tested. Since - 1
is not one of the possible options, we assume that ByteArrayInputStream does support
marks. Two values are read and three are skipped, but then reset() is called, putting
the stream back in the state before mark() was called. In other words, everything bet-
ween mark() and reset() can be ignored. The last value read is 3, making option C the
correct answer.

15. B. The class compiles and runs without issue, so option F is incorrect. The class defines three
variables, only one of which is serializable. The first variable, chambers, is serializable, with
the value 2 being written to disk and then read from disk. Remember, the constructors and
instance initializers are not executed when a class is deserialized. The next variable, size,

532 Appendix ■ Answers to Review Questions

is transient. It is discarded when it is written to disk, so it has the default object value of
null when read from disk. Finally, the color variable is static, which means it is shared
by all instances of the class. Even though the value was RED when the instance was serialized,
this value was not written to disk, since it was not part of the instance. The constructor call
new Valve() between the two try- with- resources blocks sets this value to BLUE, which is
the value printed later in the application. For these reasons, the class prints 2,null,BLUE,
making option B the correct answer.

16. A, D. Simplifying the path symbols, options B, C, and F become /objC/forward/
Sort.java, which applying the symbol link becomes /java/Sort.java. Option E just
becomes /java/Sort.java, without any path symbols involved. Option A is correct, as
the resolve() method concatenates the path to be /objC/bin/objC/forward/
Sort.java. Option D is also correct, as the simplified path is /objC/java/forward/
Sort.java. In both of these cases, the symbolic link /objC/forward cannot be applied.

17. D. The skip(1) method just reads a single byte and discards the value. The read()
method can be used for a similar purpose, making option D the correct answer. Option A is
incorrect because there is no jump() method defined in Reader. Options B, C, and E are
incorrect because they cannot be used to skip data, only to mark a location and return to
it later.

18. F. Trick question! The code does not compile; therefore, option F is correct. The
toRealPath() interacts with the file system, and therefore throws a checked
IOException. Since this checked exception is not handled inside the lambda expression,
the class does not compile. If the lambda expression was fixed to handle the IOException,
then the expected number of Path values printed would be six, and option C would be the
correct answer. A maxDepth value of 1 causes the walk() method to visit two total levels—
the original /flower and the files it contains.

19. D. The statements in options A, B, and C are each correct, making option D correct. If
System.console() is available, then the program will ask the user a question and print
the response to the error stream. On the other hand, if System.console() is not available,
then the program will exit with a NullPointerException. It is strongly recommended to
always check whether System.console() is null after requesting it. Finally, the user may
choose not to respond to the program’s request for input, resulting in the program hanging
indefinitely.

20. E. The code compiles, so option C is incorrect. Not all InputStream classes support the
mark() operation. If mark() is supported, then 7 is printed at runtime. Alternatively, if
mark() is not supported, then an IOException will be printed at runtime. For this reason,
option E is correct. Always remember to call markSupported() before using a mark()
operation on an InputStream.

21. A. The code compiles and runs without issue, so option G is incorrect. If you simplify the
redundant path symbols, then p1 and p2 represent the same path, /tea/hot.txt. There-
fore, isSameFile() returns true. The second output is also true because the path values
have been normalized. Finally, mismatch() sees the contents are the same, returning - 1.
For these reasons, option A is correct.

Chapter 9: Using Java I/O API 533

22. F. Serializable is a marker interface, which means it does not contain any abstract
methods that require implementation, making option F correct. The interface is only meant
to indicate the object is capable of serialization.

23. B. First, the class compiles without issue. The Files.isSameFile() method call on line
j1 first does a quick check to verify if the Path values are equivalent in terms of equals().
One is absolute, and the other is relative, so this initial test will fail. The isSameFile()
method then moves on to verify that the two Path values reference the same file system
object. Since we know the directory does not exist, the call to isSameFile() on line j1
will produce a NoSuchFileException at runtime, making option B the correct answer.

24. D. Both stream statements compile without issue, making options A, B, and C incorrect.
The two statements are equivalent to one another and print the same values at runtime. For
this reason, option D is correct. There are some subtle differences between the two methods
calls. The walk() call does not include a depth limit, but since Integer.MAX_VALUE is
the default value, the two calls are equivalent. Furthermore, the walk() statement prints
a stream of absolute paths stored as String values, while the find() statement prints a
stream of Path values. If the input p was a relative path, then these two calls would have
very different results, but since we are told p is an absolute path, the application of
toAbsolutePath() does not change the results.

25. A, E. An attribute view has the advantage of reading all of the file information on a single
trip, rather than multiple trips to the file system, making option A correct. Option B is incor-
rect because nothing guarantees it will perform faster, especially if the Files method is only
being used to read a single attribute. Option C is also incorrect because both sets of methods
have built- in support for symbolic links. Options D and F are incorrect because memory and
resource leaks are not related to reading file attribute views. Finally, option E is correct, as
NIO.2 supports file system–dependent attribute view classes.

26. C, E, F. Since you need to read primitives and String values, the InputStream classes are
appropriate. Therefore, you can eliminate options A and B since they use Reader classes.
Option D is incorrect, as this is not a java.io class. The data should be read from the file
using an FileInputStream class, buffered with an BufferedInputStream class for
performance, and deserialized into Java- accessible data types with an ObjectInputStream
class, making options C, E, and F correct.

27. B. The method compiles, so option A is incorrect. The method reads all of the elements of
a directory tree, keeping only directories. The forEach() method does not print anything,
though, making option B correct. If the lambda in the forEach() method was modified to
print something, such as s - > System.out.println(Files.isDirectory(s)), then
it would print true at least once for the coffee directory. It would then print true for each
directory within the directory tree.

28. B, F. The code compiles but the Student record does not implement Serializable.
For this reason, an exception is thrown at runtime, and option B is correct. If the purpose
is to verify all records have been read, then line p1 contains an error. The problem with the
implementation is that checking if ios.readObject() is null is not the recommended
way of iterating over an entire file. For example, the file could have been written with
writeObject(null) in between two non- null records. In this case, the reading of the file
would stop on this null value, before the end of the file has been reached. For this reason,
option F is also correct.

534 Appendix ■ Answers to Review Questions

29. A, C. The Console class contains readLine() and readPassword() methods, but not
a read() method, making option A one of the correct answers, and options D and E incor-
rect. It also contains a reader() method that returns a Reader object. The Reader class
defines a read() method, but not a readLine() method. For this reason, option C is the
other correct answer, and option B is incorrect. Recall that a BufferedReader is required
to call the readLine() method.

30. F. The relativize() method requires that both path values be absolute or relative. Based
on the details provided, p1 is a relative path, while p2 is an absolute path. For this reason,
the code snippet produces an exception at runtime, making option F the correct answer. If the
first path was modified to be absolute by dropping the leading dot (.) in the path expression,
then the output would match the values in option A.

31. E. The code compiles without issue. Even though tricks would be dropped in the
normalized path /bag/of/disappear.txt, there is no normalize() call, so
path.subpath(2,3) returns tricks on line 5. On line 6, the call to getName() throws
an IllegalArgumentException at runtime. Since getName() is zero- indexed and con-
tains only one element, the call on line 6 throws an IllegalArgumentException, mak-
ing option E the correct answer. If getName(0) had been used instead of getName(1),
then the program would run without issue and print /home/tricks.

32. A, F. The lines() method returns Stream<String>, while the readAllLines()
method returns List<String>, making option A correct and option D incorrect. Neither
method is guaranteed to be faster or slower than the other, making options B and E
incorrect. The lines() method lazily reads the file as the stream is processed, while the
readAllLines() method reads the entire file into memory at once. For this reason,
the readAllLines() method may require more memory to hold a large file, making option
F correct and option C incorrect.

33. A. First, the code compiles. The format of the String on line v1 is valid, making option
D incorrect. While System.console() throws a NullPointerException if it is
not available, System.in does not, making option E incorrect. The first part of the code
runs without issue, printing a message such as bone fetched in 1.8 seconds. The
I/O stream System.in is closed at the end of the try- with- resources block. That means
calling readLine() again results in an operation on a closed stream, which would print
an exception at runtime and make option C correct, except System.err is already closed
due to the try- with- resources block! Therefore, only one message is printed, and option A is
correct.

34. D. The Files.delete() and Files.list() declare a checked IOException that must
be handled or declared. For this reason, the code does not compile, and option D is correct.

35. B, F. All of the options compile except option E, since FileInputStream does not have
a readLine() method. A BufferedReader should be used instead. Options A and C
suffer from the same problem. If the file is not exactly a multiple of 123 bytes, then extra
information will be written to the file from the end of the data array. Option D is incor-
rect because the second argument should be an offset and the third argument should be the
number of bytes to read from the data array. Option B is correct and uses an array to read a
fixed number of bytes and then writes that exact number of bytes to the output file. Option F
is also correct, although it does not use an array. Instead, a single byte is read and written on
each iteration of the loop.

Chapter 10: Accessing Databases Using JDBC 535

36. F. The Bowl record does not implement the Serializable interface; therefore, attempting
to write the instance to disk, or calling readObject() using ObjectInputStream, will
result in a NotSerializableException at runtime. Remember, all instance members of
a class must be serializable or marked transient for the class to properly implement the
Serializable interface and be used with Java serialization. For this reason, option F is the
correct answer.

37. B. The program compiles and runs without issue, making options C and D incorrect. The
first variable, halleysComet, is created with subpath(1,5) and normalize() being
applied right away, leading to halleysComet being assigned a value of m1.meteor. The
second variable, lexellsComet, is assigned a value on line 14, but lines 15–16 do not
include an assignment operation. Since Path instances are immutable, the changes are lost.
For this reason, the two objects are not equivalent on lines 18–19, and option B is correct.

38. F. When data is deserialized, none of variable initializers, instance initializers, or constructors
is called. The class can have static initializers, but they are not called as part of deserializa-
tion. Finally, there is no restoreObject() method that is used in standard deserialization.
For these reasons, option F is correct.

39. A, B, E. The code moves a file from /nursery/sapling.seed to the new location of
/forest. For this reason, options C and D are incorrect. If there is no file or directory at
/forest, then the program completes successfully. If a file already exists at that location,
then an exception is thrown since the REPLACE_EXISTING option is not set. For these rea-
sons, options A and B are correct. Since the ATOMIC_MOVE flag is set, option E is correct,
and option F is incorrect.

40. C. The program compiles and runs without issue, making options A, D, and E incorrect.
The program uses Files.list() to iterate over all files within a single directory. For
each file, it then iterates over the lines of the file and sums them. For this reason, option
C is the correct answer. If the count() method had used Files.walk() instead of
Files.lines(), then the class would still compile and run, and option B would be the
correct answer.

Chapter 10: Accessing Databases
Using JDBC

1. E. Connection is a JDK interface for communicating with the database.
PreparedStatement and ResultSet are typically used to write queries and are also in
the JDK. Driver is tricky because you don’t write code that references it directly. However,
you are still required to know it is a JDBC interface. DriverManager is used in JDBC code
to get a Connection. However, it is a concrete class rather than an interface. Since only four
out of the five are JDBC interfaces, option E is correct.

2. C. The setNull() method requires you to pass the data type in the database. This makes
option C the answer.

536 Appendix ■ Answers to Review Questions

3. D. All JDBC URLs begin with the protocol jdbc followed by a colon as a delimiter. Option
D is the only one that does both of these, making it the correct answer.

4. A. The Driver interface is responsible for getting a connection to the database, making
option A the answer. The Connection interface is responsible for communication with the
database but not making the initial connection. The Statement interface knows how to run
the SQL query, and the ResultSet interface knows what was returned by a SELECT query.

5. C. Connection is an interface. Since interfaces do not have constructors, option D is incor-
rect. The Connection class doesn’t have a static method to get a Connection either,
making option A incorrect. The Driver class is also an interface without static methods,
making option B incorrect. Option C is the answer because DriverManager is the class
used in JDBC to get a Connection.

6. F. The DriverManager.getConnection() method can be called with just a URL. It
is also overloaded to take the URL, username, and password. Since this is not one of the
options, the answer is option F.

7. D. This code is missing a call to rs.next(). As a result, rs.getInt(1) throws a
SQLException with the message invalid cursor state. Therefore, option D is
the answer.

8. E. The execute() method is allowed to run any type of SQL statements. The
executeUpdate() method is allowed to run any type of the SQL statement that returns
a row count rather than a ResultSet. Both DELETE and UPDATE SQL statements are
allowed to be run with either execute() or executeUpdate(). They are not allowed to
be run with executeQuery() because they do not return a ResultSet. Therefore, option
E is the answer.

9. A. This code uses a PreparedStatement without bind variables (?). While it would be
better to use bind variables, this code does run. The ResultSet has one value and does
print Mei Xiang successfully. Therefore, option A is the answer.

10. F. While the table has two columns, the SQL query has only one bind variable (?). Therefore,
the code throws an exception when attempting to set the second bind variable, and option F
is correct.

11. B. This code is correct. It executes the first update to add the first row and then sets the
parameters for the second. When it updates the second time, it adds the second row. There-
fore, option B is the answer.

12. D. Since conn.setAutoCommit(false) is not called, each update is automatically com-
mitted. Therefore, there is nothing to roll back and option D is the answer.

13. B. Unlike arrays, JDBC uses one- based indexes. Since num_pages is in the second column,
the parameter needs to be 2, ruling out options A and C. Further, there is not a method
named getInteger() on the ResultSet interface, ruling out option D. Because the
proper method is getInt(), option B is the answer.

14. B, D. Since JDBC does not begin indexes with 0, option A is incorrect and option B is
correct. Similarly, the second parameter is at index 2, so option C is incorrect and option D is
the other answer. Note that setObject() can be called instead of a more specific type.

Chapter 10: Accessing Databases Using JDBC 537

15. D. Option A does not compile because you have to pass a column index or column name to
the method. Options B and C compile. However, there are no columns named 0 or 1. Since
these column names don’t exist, the code would throw a SQLException at runtime. Option
D is correct as it uses the proper column name.

16. A. Stored procedures use the registerOutParameter() method. Since this stored
procedure returns a value, we need to call execute(), making option A the answer.

17. B. The Kitty insert is before the SavePoint so it is remembered. The rollback()
method prevents the Beverly commit. When the code calls commit(), only Kitty is com-
mitted and option B is correct.

18. B. Connection is an interface rather than a concrete class. Therefore, it does not have a
constructor and line s1 does not compile. As a result, option B is the answer.

19. E. Database resources should be manually closed in the reverse order from which they
were opened. This means the ResultSet object is closed before the Statement object
and the Statement object is closed before the Connection object. This makes option E
the answer.

20. A. This code correctly obtains a Connection and PreparedStatement. It then runs a
query, getting back a ResultSet without any rows. The rs.next() call returns false, so
nothing is printed, making option A correct.

21. F. The SQL query has two bind variables, but the code sets only one. This causes a
SQLException when executeQuery() is called, making option F the answer.

22. A. This code uses a PreparedStatement and properly sets a bind variable (?). The
ResultSet has one value and does print Mei Xiang successfully. Therefore, option A is
the answer.

23. C, D. Input parameters are set in the same way as in a PreparedStatement, making
setInt() correct for the first blank and option D correct. For the second blank, stored
procedures use registerOutParameter() for output, making option C the other
correct answer.

24. A. The count(*) function in SQL always returns a number. In this case, it is the number 0.
This means line r1 executes successfully because it positions the cursor at that row. Line r2
also executes successfully and prints 0, which is the value in the row. Since the code runs suc-
cessfully, option A is the answer.

25. B. This code is correct. It executes the first update to add the first row and then sets the
parameters for the second. For the second update, only one parameter is set. The other is
reused since it was set earlier. Therefore, option B is the answer.

26. B. The Kitty insert is rolled back even though there is a savepoint since the savepoint is not
referenced. The Beverly insert is retained, making option B correct.

27. E. In JDBC, the bind variable is always a question mark (?), making option A incorrect. A
PreparedStatatement is not limited to specific types of SQL, making options B and C
incorrect as well. This makes option E the correct answer.

538 Appendix ■ Answers to Review Questions

28. F. While this code compiles, it isn’t right. Since we have a SELECT statement, we should be
calling execute() or executeQuery(). Option F is the answer because the code throws
an exception when attempting to call executeUpdate().

29. B, C. When in autocommit mode, statements are immediately committed. Since there is
nothing to roll back, option B is one of the answers. Additionally, enabling autocommit mode
triggers an immediate commit, giving us option C.

30. C. This question is trickier if you know more JDBC than is on the exam. If you know only
what is on the exam, you would assume the createStatement() method doesn’t exist.
However, it does, and stmt is a Statement object. Since setString() does not exist on
Statement, the code does not compile. This means the answer is option C regardless of
your level of knowledge of JDBC.

Chapter 11: Implementing Localization

1. A, E, F. Oracle defines a locale as a geographical, political, or cultural region, making options
A, E, and F correct. A local address and city are too granular for a locale. Also, time zones
often span multiple locales.

2. B. While it is traditional to include the year when outputting a date, it is not required. This
code correctly prints the month followed by a decimal point. After the decimal point, it prints
the day of the month followed by the hours and minutes. Happy Pi Day! For these reasons,
option B is correct.

3. E. Java starts out by looking for a properties file with the requested locale, which in this case
is the fr language. It doesn’t find it, so it moves on to the default locale, en_US, which it
does find, making option E correct.

4. C, E. A CompactNumberFormat rounds to the nearest whole number within the three- digit
range, so the first line prints 2 million, making option E correct. The second line prints
2M, since SHORT is used as the STYLE by default, making option C correct.

5. F. The code compiles but the first line throws an exception at runtime, making option F
correct. The string sent to the parse() method contains a time component, but
ISO_LOCAL_DATE is used as the formatter.

6. F. Options A and B are incorrect because formatDate() is not a valid method name in
DateTimeFormatter. Option E is incorrect because the code compiles if either option
C or D is used. Both options C and D will produce an exception at runtime, though, as the
date pattern is invalid. In particular, the apostrophe in o'clock should be escaped. Option
C is also incorrect because there is no hour value h for a LocalDate. If the pattern string
was corrected with o''clock, then option D would be correct and print March at 5
o'clock at runtime.

Chapter 11: Implementing Localization 539

7. B. LocalDate starts counting months from 1, so month 2 is February. This rules out
options A and C. The pattern specifies that the date should appear before the month, making
option B correct.

8. A, C. In Java, a locale can be represented by a language code in lowercase, or a language
and country code, with language in lowercase and country in uppercase. For these reasons,
options A and C are correct. Options B, D, and E are incorrect because the lowercase lan-
guage must be before the uppercase country. Option F is incorrect because the language is
missing.

9. F. Java starts out by looking for a properties file with the requested locale, which in this
case is the fr_CH language and country. It doesn’t find Colors_fr_CH.properties,
so it moves on to the locale with just a language code fr. It also does not find
Colors_fr.properties. It then moves on to the default locale, it_CH, checking
Colors_it_CH.properties, but there is still no match. It drops the country code and
checks it for Colors_it.properties, but still doesn’t find a match. Finally, it checks for
a Colors.properties file but since that’s not an option, it fails. The result is that a
MissingResourceException is thrown at runtime, making option F correct.

10. C. The code compiles, so option D is incorrect. In this sample, the default locale is set to US,
while the default locale format is set to GERMANY. Neither is used for formatting the value, as
getCurrencyInstance() is called with UK as the locale. For this reason, the £ symbol is
used, making option C correct.

11. D. There is a DateTimeFormatter class, but not a DateFormatter class. The
DateTimeFormatter class is used for formatting dates, times, or both. Since the provided
code does not compile, nothing can fill in the blank to make the code print 2022- 01- 15,
and option D is the answer.

12. D. The getBundle() does not find Cars_de_DE.properties or
Cars_de.properties, so it moves on to the default locale. Since Cars_en.properties
is available, it will use this file, falling back to Cars.properties if any values are not
available. Therefore, it selects engine and horses from the first file, and country from
the second file, printing engine 241 earth and making option D correct.

13. F. The getBundle() method matches Cars_fr_FR.properties. It will then fall back to
Cars_fr.properties (which does not exist) and Cars.properties if the value is not
available. For this reason, the first and third values would be France and moteur. While
the second value horses is in the default locale, it is not available if the requested locale has
been found. As a result, the code throws a MissingResourceException, making option
F the answer.

14. A. The getBundle() method matches Cars_fr_FR.properties. It will then fall
back to Cars_fr.properties (which does not exist) and Cars.properties if
the value is not available. For this reason, the first value printed is moteur from
Cars.properties, while the next two values printed are autoroute and France from
Cars_fr_FR.properties, making option A correct.

540 Appendix ■ Answers to Review Questions

15. B, D, F. There are no get() or of() methods in Locale. You can define a Locale using a
constructor, making option B correct. You can also use a Locale.Builder, making option
D correct. Finally, you can use a built- in constant, making option F correct.

16. A. Java starts out by looking for a properties file with the requested locale, which in this case
is the zh_CN language and country. It doesn’t find it, so it moves onto the locale with just a
language code zh, which it also does not find. It then moves on to the default locale en_US,
but there is still no match. It drops the country code and does find a match with en, making
option A correct.

17. D. For dates, a lowercase m means minute while an uppercase M means month. This elim-
inates options A and C. A lowercase h means hour. Therefore, option B is incorrect, and
option D is the answer.

18. F. A CompactNumberFormat rounds to the nearest whole number within the three- digit
range, so the numeric value printed is 123. Since the SHORT style is selected, the output is
123K, making option F correct.

19. B, D. Options B and D correctly print the same string value in the specified format. Option
A is incorrect because <06.92> is printed instead of <06.9>. Options C and E are incor-
rect, because (among other things) commas are printed as part of both of the first two values.
Option F is incorrect because <2.1> <6.9> is printed instead of <02.1> <06.9>.

20. C, D. In Java, a locale can be represented by a language code in lowercase, or a language
and country code, with language in lowercase and country in uppercase. Option C is invalid
because both values are lowercase. Option D is invalid because the value is in uppercase. The
rest of the options are valid locale formats.

21. D. The DateTimeFormatter is created with ofLocalizedDate(). It knows how to
format date fields but not time fields. Line 18 is fine because a LocalDate clearly has date
fields. Line 19 is also fine. Since a LocalDateTime has both date and time fields, the for-
matter just looks at the date fields. Line 20 is a problem. A LocalTime object does not have
any date fields so the formatter throws an UnsupportedTemporalTypeException, mak-
ing option D the answer.

22. B. The code compiles, so option D is incorrect. While three distinct locale values are set, the
one that is used for formatting text is Category.FORMAT. For this reason, the GERMANY
locale is used to format the data with the € symbol, making option B correct.

23. D. The date/time pattern uses single quotes to escape the date/time values, meaning the
output is yyyy- MM for all valid inputs. For this reason, option D is correct. If the single
quotes were removed, then 2022- 03 2022- 01 would be the correct output.

24. D. The method creates a resource bundle using a builder but never sets it. Since we don’t
know the default locale of the code, the answer depends on where it is executed, making
option D correct.

25. A. This code sets the default locale to English and then tries to get a resource bundle for
container. It finds the resource bundle container_en.properties as the most
specific match. Both keys are found in this file, so option A is the answer.

Chapter 12: Practice Exam 1 541

26. E. The Locale constructor that takes a single argument expects a language code, not a con-
catenation of language and region codes. Therefore, the language is set as en_us, not en,
with no region code set. Since no properties files match the language en_us, the
default container.properties is used. Since type is not found in this properties file, a
MissingResourceException is thrown at runtime.

27. E. Both LocalDate and DateTimeFormatter have a format() method. While it is
tricky, you do need to know that the format() method can be called on either object.
Therefore, option E is the answer.

28. A. The code compiles, so option E is incorrect. Java starts out by looking for a properties
file with the requested locale, which in this case is the fr language. It doesn’t find
Forest_fr.properties, so it moves onto the default locale en. It also doesn’t find
Forest_en.properties. It settles on Forest.properties without throwing an
exception, so option F is incorrect. The first argument to MessageFormat.format()
should be a pattern String value. Since trees is sent, the output of the formatting string is
trees, making option A correct. If rb.getString("trees") was passed instead of just
trees, then the output would be evergreen pretty.

29. D. The format of the pattern is incorrect. You can’t just put literal text in there without
escaping it. Most of the characters of Holiday: are not defined formatting symbols. The
code throws an IllegalArgumentException, so option D is correct.

30. E. The code does not compile because the first formatter requires both a Locale and a
Style. You can omit both values, but not one.

Chapter 12: Practice Exam 1

1. E. Line c1 correctly creates a stream containing two streams. Line c2 uses flatMap() to
create a Stream of four Integer objects. The first problem is on line c3, which tries to use
the numbers as if they are still pairs. Since we have a Stream<Integer> at that point, the
code does not compile, and option E is the answer. Line c4 does not compile either, as you
can’t call a List method on an Integer.

2. B, F. The LackOfInformationException class does not compile, making option
A incorrect. The compiler inserts the default no- argument constructor into
InformationException, since the class does not explicitly define any. Because
LackOfInformationException extends InformationException, the only con-
structor available in the parent class is the no- argument call to super(). For this reason,
the constructor defined at line t1 does not compile because it calls a nonexistent parent
constructor that takes a String value, and option B is one of the correct answers. The
other two constructors at lines t2 and t3 compile without issue, making options C and
D incorrect. Option E is also incorrect. The getMessage() method is inherited and the
override is valid because new unchecked exceptions can be declared. Option F is the other
correct answer. LackOfInformationException is a checked exception because it inherits
Exception, but not RuntimeException.

542 Appendix ■ Answers to Review Questions

3. B, C, E. Java supports three types of comments: single- line (//), multi- line (/* */), and
Javadoc (/** **/), making options B, C, and E correct. Option A contains a */ in the
middle of the expected comment, making the part after the comment Insert */ invalid.
Option D is incorrect because a dollar sign ($) is not a valid comment in Java. Finally, the
hash (#) is not a comment character in Java, so option F is incorrect.

4. E. All code in a try- with- resources declaration must implement Closeable or
AutoCloseable. The call to stmt.setString() does not meet that criterion. Since it
doesn’t compile, option E is the answer.

5. A. The init() method is accessible from the same package. The race() method is avail-
able from the same package or subclasses. Since Tortoise is in the same package, both
methods are available and option A is correct.

6. A, C, F. The IntUnaryOperator takes an int value and returns an int value. Options B
and E are incorrect because the parameter types, Integer and long, respectively, are not
int. Option B is incorrect because unboxing can be used for expressions, but it cannot be
used for parameter matching. Option D is incorrect because dividing an int by a double
value 3.1 results in q/3.1 being a double value, which cannot be converted to int
without an explicit cast. Option E is incorrect because the parameter type must match,
and long is not the same as int. The rest of the lambda expressions are valid, since they
correctly take an int value and return an int value. Therefore, options A, C, and F are
the answer.

7. A, D. Java methods must start with a letter, the dollar $ symbol, or the underscore _
character. For this reason, option B is incorrect, and options A and D are correct. Despite
how option A looks, it is a valid method name in Java. Options C, E, and F do not compile
because the symbols - , \, and # are not allowed in method names, respectively.

8. E. This is a correct module- info file. It exports the com.mammal.cat package to any
modules that want to use it. By contrast, it exports the com.mammal.mouse package to
only one other module. Finally, it demonstrates the uses directive. Since the code is correct,
option E is the answer.

9. B. The Roller class uses a formal type parameter named E with a constraint. The key to
this question is knowing that with generics, the extends keyword means any subclass or
the class can be used as the type parameter. This means both Wheel and CartWheel are
allowed. The wheel1 declaration is fine because the same type is used on both sides of the
declaration. The wheel2 declaration does not compile because generics require the exact
same type when not using wildcards. The wheel3 and wheel4 declarations are both fine
because this time there is an upper bound to specify that the type can be a subclass. By con-
trast, the super keyword means it has to be that class or a superclass. The wheel6 declara-
tion is okay, but the wheel5 one is a problem because it uses a subclass. Since wheel2 and
wheel5 don’t compile, the answer is option B.

10. B, F. Chicken and Egg may either be sub- interfaces of First or implementers of it, making
option B one of the answers. Since the permits clause is specified, Chicken and Egg may
either be in the same file or a different file than First, making option F correct. They must
not be nested since First.Chicken is not used in the permits clause.

Chapter 12: Practice Exam 1 543

11. C. This array has three elements, making listing.length output 3. It so happens that
each element references an array of the same size. But the code checks the first element and
sees it is an array of size two, making the answer option C.

12. D. The lambda syntax is incorrect. It should be - >, not =>. Therefore, option D is correct.

13. D. The load() method is on ServiceLoader, not ServiceLocator. Therefore, option
D is the answer.

14. F. The array is not sorted. It does not meet the pre- condition for a binary search. Therefore,
the output is not guaranteed and the answer is option F.

15. B. Only the service locator and service provider interface are part of the service. The service
locator has a requires directive, and the service provider interface has an exports direc-
tive, which matches option B.

16. E. DoubleBinaryOperator takes two double values and returns a double
value. LongToIntFunction takes one long value and returns an int value.
ToLongBiFunction takes two generic arguments and returns a long value.
IntSupplier does not take any values and returns an int value. ObjLongConsumer
takes one generic and one long value and does not return a value. For these reasons, option
E is the correct answer.

17. D. The code compiles and runs without issue. The m symbol represents minute, so 59 is the
first value printed, followed by a period. The next symbols, ddhh, represent day and hour in
two- digit formats, so 1401 is printed. Finally, 'MM' represents an escaped string using single
quotes, so it is printed just as MM. For these reasons, option D is correct.

18. E. When the rollback to sp1 happens on line 21, it invalidates all prior savepoints. This
causes the rollback to sp2 on line 27 to throw a SQLException and option E to be
the answer.

19. A, D, E. Mixer and Spinner are member inner classes that require an instance of Kitchen
and Mixer, respectively, to instantiate. Since bake() is defined as an instance method
of Kitchen, the Kitchen instance can be implied. For this reason, option D is correct.
Options A and E are also correct and rely on a new instance of Kitchen rather than the
implied one. Options B and C are incorrect because there is no instance of Mixer used.
Option F is incorrect because the reference type Spinner is undefined without the names of
the enclosing classes.

20. A, B, D. The unmodified code prints xxxxx, so you’re looking for options that also print this
value. Option A is correct because the labels are not referenced. Option B is correct because
the outer while is broader than the inner while. If race.length() <= 4 is true, then
race.length() < 4 must be true. The inner loop prints xxxxx, and the outer loop is
not needed. Option C is incorrect because the outer loop only prints xxxx without the inner
loop. Option D is also correct because a label is not used. Options E and F are incorrect
because you cannot remove the while portion of a do/while loop.

544 Appendix ■ Answers to Review Questions

21. C. This question is tricky because it mixes testing valid identifier names with module con-
cepts. The com.apple module is valid and demonstrates a simple module. Additionally,
the com.apple$ module is valid since $ characters are permitted in identifier names. The
com.4apple and com.apple- four modules are invalid because identifier or identifier
segments may not start with a digit nor contain a dash. The com.apple4 module is invalid
because declares is not a valid module directive. Since only two are valid, option C is
the answer.

22. A. With a helpful NullPointerException, the program will print the variable
that triggered the exception. In this case, the first exception is when tea is
unboxed to a double on line 56, making option A correct. Lines 54–55 do not throw a
NullPointerException because instanceof applied to a null value is always false,
causing line 55 to be skipped.

23. B. Modules have a cyclic dependency when they depend on each other. In this example,
com.animal and com.plant depend on each other. The other two modules depend on
com.animal and com.plant but do not participate in the cycle. If the requires direc-
tive in either com.animal or com.plant was removed, we would no longer have a cyclic
dependency. Since only one directive needs to be removed, option B is correct.

24. A, C, E. To start with, bustNow() takes a Double value, while bustLater() takes a
double value. To be compatible, the lambda expression has to be able to handle both data
types. Option A is correct, since the method reference System.out::print matches
overloaded methods that can take double or a Double. Option E is also correct, as it’s
the equivalent rewrite of option A with a lambda expression. Option B is incorrect, since
intValue() works for the Consumer<Double>, which takes Double, but not
DoubleConsumer, which takes double. For a similar reason, option D is also incorrect
because only the primitive double is compatible with this expression.

Option C is correct and results in just a blank line being printed. Finally, option F is incorrect
because of incompatible data types. The method reference code is inside of a lambda expres-
sion, which would be allowed only if the functional interface returned another functional
interface reference.

25. B, E. The first two iterations through the loop complete successfully, making option B
correct. However, the two arrays are not the same size, and the for loop only checks the
size of the first one. The third iteration throws an ArrayIndexOutOfBoundsException,
making option E correct.

26. E. The code compiles without issue. The main() method creates a thread pool of four
threads. It then submits 10 tasks to it. At any given time, the ExecutorService has
up to four threads active, which is the same number of threads required to reach the
CyclicBarrier limit. Therefore, the barrier limit is reached twice, printing Jump! twice.
While eight of the tasks have been completed, two are left running. Since no more tasks will
call the await() method, the CyclicBarrier limit is never reached, and a deadlock is
encountered at runtime, with the program hanging indefinitely. For this reason, option E is
correct.

Chapter 12: Practice Exam 1 545

27. B, D. The try- with- resources statement requires resources that implement AutoCloseable,
making option A incorrect. Option B is correct and a valid statement about how resources
are closed in try- with- resources statements. Option C is incorrect because the exception in
the try block is reported to the caller, while the exception in the close() method is sup-
pressed. Option D is the other correct answer because neither catch nor finally
is required when try- with- resources is used. Finally, option E is incorrect. While the
AutoCloseable interface does define a close() method that throws a checked exception,
classes that implement this method are free to drop the checked exception, per the rules of
overriding methods.

28. E. The code does compile. Records and classes can be defined as local types within a method.
Additionally, the compact constructor replaces the constructor parameter of length, making
option E the answer.

29. C. The class compiles and runs without issue, so options D and E are incorrect. The result
of findSlow() is deterministic and always 1. The findFirst() method returns the first
element in an ordered stream, whether it be serial or parallel. This makes it a costly opera-
tion for a parallel stream, since the stream has to be accessed in a serial manner. On the other
hand, the result of findFast() is unknown until runtime. The findAny() method may
return the first element or any element in the stream, even on serial streams. Since both 1 1
and 3 1 are possible outputs of this program, the answer cannot be determined until run-
time, and option C is the correct answer.

30. A, E, G. In a text block, a backslash (\) at the end of a line means to skip the line break.
Since there is no whitespace or line break after otter, option A is correct. Following pup
are three whitespace characters: the actual space character, the \s, and the new line, which
matches option E. Remember that \s means to preserve all whitespace at the end of the line
in addition to adding a space. Finally, escaping quotes is allowed but not required, giving us
option G.

31. D. The name instance variable is marked final and must be assigned a value exactly once
when it is declared, by an instance initializer, or by a constructor. The no- argument con-
structor calls the Ghost(String) constructor, which assigns a value of "Boo" to name.
The process returns and the constructor assigns a value of "Casper" to name. Since name is
final, it cannot be assigned a value twice. The compiler detects this error, making option D
the correct answer.

32. E. Option A is incorrect because the lock() method does not return a boolean value.
Option B allows the class to compile (making option D incorrect), but is not guaranteed to
print Tie! 10 times. Depending on the thread ordering, it may print the value one to 10
times, as some threads may get a value of false on the call to tryLock(). Since the tie()
method does not wait, the calls to interrupt() do not alter the program behavior. Option
C is incorrect because tryLock() with a time value also requires a TimeUnit parameter.
For these reasons, option E is the correct answer. Note that the volatile attribute has no
impact in this program.

546 Appendix ■ Answers to Review Questions

33. E. Since it’s not a primitive stream, the underlying type is Stream<Short>, which means
the data type of b is Short. On the other hand, the data type of a, c, and d is Integer.
Because Short and Integer both define a doubleValue() method, these statements
compile. The problem is with the return type of the two lambda expressions. The identity
is set as 0, not 0.0, so the expected return type of each lambda expression is Integer,
not Double. For this reason, neither lambda expression matches the parameters of the
reduce() method, and option E is correct.

34. F. A class can inherit two default interfaces with the same signature, so long as it cor-
rectly overrides them, which Tree does. It can also call an inherited version of the default
method within an instance method, provided it uses the proper syntax. In this case, it does
not. The correct syntax is Plant.super.grow(), not super.Plant.grow(). For this
reason, this line does not compile. Since it is the only line that does not compile, option F is
correct.

35. B. Line 22 does not compile because a static interface method cannot call an instance-
based abstract method. Since this is the only line that does not compile, option B is
correct.

36. E. The code compiles, so option C is incorrect. The first two lines successfully create direc-
tories. The first move() statement moves a file from /flower/rose.txt to /garden,
not /garden/rose.txt. There is already an empty directory there, but since the
REPLACE_EXISTING flag is provided, the /garden directory is replaced with a file.
The next move() statement throws an exception because there is no source file at
/garden/rose.txt. For this reason, option E is correct.

37. D. The switch expression is close to correct. However, the case keyword is missing before
"hen", making option D the answer. If this were resolved, option B would be correct.

38. B, D, F. The clock variable is accessed by a class in the same package; therefore, it requires
package or less restrictive access (protected and public). The getTime() method
is accessed by a subclass in a different package; therefore, it requires protected or less
restrictive access (public). Options B, D, and F conform to these rules, making them the
correct answer. Options A and C cause the Snooze class to fail to compile because the
getTime() method is not accessible outside the package, even though Snooze is a subclass
of Alarm. Option E causes the Coffee class to fail to compile because the clock variable is
only visible within the Alarm class.

39. C. Lines 14 and 15 create RemoveMe<Integer> and RemoveMe<Long> instances, respec-
tively. Since we are using generics, the method calls on lines 16 and 17 autobox the primitive
values (1 and 1L) to the Integer value 1 and Long value 1L, respectively. Therefore, the
method on line 11 removes the argument that matches this object value, and not the element
at index 1, from the two lists. These are the objects that result in [2, 7, 8]. Line 27 is
trickier. Since we are passing a primitive int, the index is used (and not an object match-
ing the value) in the call to remove().This means line 28 prints [2, 1, 8], which is not
what we are looking for. Since only lines 19 and 20 give us the desired output, option C is
the answer.

Chapter 12: Practice Exam 1 547

40. D. Variables are allowed to start with an underscore and are allowed to contain a $. There-
fore, all the variable declarations compile, making options A, B, and C incorrect. However,
the println() method refers to the uninitialized local boolean. Since local variables are
not automatically initialized, the code does not compile, and option D is correct.

41. B, E. Java picks the most specific method signature it can find in an overloading situation.
Since promotion is considered first, longs is output and option B is the answer. If that
method were removed, Java would next go to autoboxing, printing Integers and making
option E the other answer.

42. F. The date/time APIs count months starting with one rather than zero. This means
localDate is created as October 6, 2022. This is not the day that daylight saving time ends.
The loop increments the hour six times, making the final time 07:00 with no change in time
zone offset. Therefore, option F is the answer.

43. E. The Clownfish class contains an invalid override of the getFish() method. In
particular, it cannot declare any new or broader checked exceptions. Next, there is an error
in the main() method. Since v is a var, it is given a specific type based on the reference at
compile time, in this case Fish. Fish is a supertype of Clownfish, so it cannot be assigned
to a Clownfish reference without an explicit cast, resulting in a compiler error. Since the
code contains two lines that do not compile, option E is correct.

44. D. Tracking the code, round() returns 11. The ceil() method finds the next highest non-
fractional number, which is 9.0, and turns sum into 20.0. Finally, the abs() method adds
another 20.0 giving us 40.0. Therefore, option D is correct.

45. D. Line 15 calls the method on line 9 since it is a Watch object, printing watch. Line 16
uses a SmartWatch object. However, the getName() method is not overridden in
SmartWatch, since the method signature is different. Therefore, the method on line 9 gets
called again. That method calls getType(). Since this is a private method, it is not over-
ridden, and watch is printed again, making option D the correct answer.

46. B. The code compiles, so option F is incorrect. The Files.mismatch() method returns the
index of the first value that differs between the two files. Since this method is case sensitive,
the first letters h and H differ, and 0 is printed, making option B correct.

47. B. The hop() method has protected access, which allows subclasses to call it, making line
p1 compile. Additionally, code in the same package is allowed to access it, making lines p2
and p3 compile. The code compiles and runs without error, making option B the answer.

48. B. The code does not compile, so option E is incorrect. A variable declared before the start of
a try- with- resources statement may be used if it is final or effectively final. Since s is mod-
ified on line 13, it is neither; therefore, line 10 does not compile. Line 12 also does not com-
pile. In a multi- catch expression, the two classes cannot be subtypes of each other. Other than
lines 10 and 12, the rest of the code compiles, making option B correct.

49. A. Option E is incorrect since the ofNullable() method creates an Optional whether
or not the parameter is null. Options B and D are incorrect and do not compile because
max() takes a parameter to specify the logic for determining the order. Both options A and
C compile. The order of the pipeline methods matters here. Option C prints all three num-
bers since the filter() operation happens after the peek(). Option A is correct as the
methods are in the correct order.

548 Appendix ■ Answers to Review Questions

50. D. The code definitely does not compile. The first problem with this code is that the Drum
class is missing a constructor, causing the class declaration on line 8 to fail to compile. The
default no- argument constructor cannot be inserted if the superclass, Instrument, defines
only constructors that take arguments. The second problem with the code is that line 11 does
not compile, since it calls super.play(5), but the version of play() in the parent class
does not take any arguments. Finally, line 15 does not compile. While mn may be a reference
variable that points to a Drum() object, the concert() method cannot be called unless it is
explicitly cast back to a Drum reference. For these three reasons, the code does not compile,
and option D is the correct answer.

Chapter 13: Practice Exam 2

1. A, B. Lines g1 and g2 do not compile because these methods are available only in the
ScheduledExecutorService interface. Since s is of type ExecutorService, the lines
referenced in options A and B do not compile. Even if the correct reference type for s was
used, line g1 would still fail to compile because scheduleWithFixedDelay() requires
two long values, one for the initial delay and one for the period. Line g3 compiles without
issue because this method is available in the ExecutorService interface.

2. A, D. The code compiles and runs without issue. When a CompactNumberFormat instance
is requested without a style, it uses the SHORT style by default. This results in both of the first
two statements printing 960K, making option A correct. Option D is also correct, as the full
value is printed with a currency formatter without rounding.

3. E. The ResultSet interface does not have a hasNext() method. Since the code does not
compile due to a line without a comment, option E is the answer.

4. B. This code contains three stream pipelines for the price of one! Lines 11–13 are the first
pipeline. They group the four Goat instances by the type of food they eat. This creates a Map
logically similar to {hay=[hay, hay], can=[can], shorts=[shorts]}.

Lines 14–17 are the second pipeline. This one starts by only including elements that have
two matches, in our case hay. We then use the String key hay. Finally, this pipeline par-
titions the single key based on whether it has any characters, giving us {false=[hay],
true=[]}.

On line 18, we get just one of the lists leaving us with [hay]. The final pipeline is lines
19–21. It sorts the single element in an attempt to confuse you and then prints it. Therefore,
only one hay is printed, and option B is the answer.

5. D. The code does not compile because the Jacket is marked final and cannot be
extended by the anonymous class declared on line v2. Since this line doesn’t compile, option
D is correct.

Chapter 13: Practice Exam 2 549

6. C, E. The diamond operator, <>, is only allowed to be used when instantiating rather than
declaring. In other words, it can’t go on the left side of the assignment operator. Therefore,
options B, D, and F are incorrect. The remaining three options compile. However, option A
produces a warning because generics are not used on the right side of the assignment oper-
ator. Therefore, options C and E are correct. Option C is preferred over option E, since it uses
the diamond operator rather than specifying a redundant type.

7. E, F. To perform a concurrent reduction, the stream or the collector must be unordered. Since
it is possible to use an ordered collector with an unordered stream and achieve a parallel
reduction, option A is incorrect. Option B is also incorrect. While having a thread- safe collec-
tion is preferred, it is not required. Stateful lambda expressions should be avoided, whether
the stream is serial or parallel, making option C incorrect. Option D is incorrect as there is
no class/interface within the JDK called ParallelStream. Options E and F are correct
statements about performing parallel reductions.

8. E. The second catch block on line p2 does not compile. Since IllegalArgumentException
is a subclass of Exception, they cannot be used in the same multi- catch block since it is redun-
dant. For this reason, option E is correct. If the redundant exception class were removed from
line p2, then the rest of the program would compile and print Unknown followed by Done! at
runtime.

9. E. Line 2 does not compile because a compact constructor must have the same public
access as the record itself. Lines 3 and 4 do not compile because compact constructors cannot
set field values with this. They can only modify constructor parameters. The constructor on
line 6 compiles, as the access modifier does not need to match for non- compact constructors
and chained constructors. Line 9 does not compile because species() is supplied by the
record, which does not match getSpecies(). In this case, using the @Override annota-
tion triggers a compiler error. Finally, the toString() override is correct. Since four lines
do not compile, option E is the answer.

10. F. While an Instant represents a specific moment in time using GMT, Java
only allows adding or removing units of DAYS or smaller. This code throws an
UnsupportedTemporalTypeException because of the attempt to add YEARS. There-
fore, option F is correct.

11. C, D. To be a valid functional interface, an interface must declare exactly one abstract
method. Option A is incorrect, because CanClimb does not contain any abstract
methods. Next, all interface methods not marked default or static are assumed to be
abstract, and abstract methods cannot have a body. For this reason, CanDance does
not compile, making option B incorrect. Options C and D are correct answers because each
contains exactly one abstract method. Option E is incorrect because it contains two
abstract methods, since test() is implicitly abstract.

12. B, E. Options C and D are incorrect because the jlink command includes the module in
- - add- modules itself. Option A is incorrect because it also includes any dependencies and
transitive dependencies. Therefore, option B is correct. Additionally, option E is correct, as
jlink generates a directory with folders for the runtime image.

550 Appendix ■ Answers to Review Questions

13. C. On the first iteration through the loop, the first five characters are removed, and
builder becomes "s growing". Since there are more than five characters left, the loop
iterates again. This time, five more characters are removed, and builder becomes "wing".
This matches option C.

14. D. Line 4 does not compile because enum constructors cannot be public. Line 10 also
does not compile because a case statement must use an enum value without the type. In
particular, FALL is permitted, but Season.FALL is not. For these two reasons, option D is
correct.

15. B, E. The switch statement is a complicated way of checking if numEggs is 0 and assign-
ing the result to hasEggs. All the options attempt to convert it to a switch expression.
Options C and F do not compile, as they use return statements. Option A does not com-
pile because it is missing semicolons after each branch. Option D also does not compile since
it has semicolons outside the {}’s, instead of inside them. This leaves us with the answers:
options B and E.

16. B, E. The original implementation compiles and prints 18. When using an IntStream, the
sum() method returns an int. This makes option B correct, as both an int and a long
will print 18. By contrast, option A is incorrect because a double will print 18.0. Option
C is incorrect, as there is no unboxed() method available on a stream. Removing line 11
causes the code to not compile on line 13 since mapToInt() is not defined on IntStream
(the stream is already made of int values), making option D incorrect. Removing line 13
causes the code to not compile on line 14, as sum() is only defined on primitive streams, not
Stream<Integer>, making option F incorrect. Option E is the remaining correct answer.
Running operations in parallel for such a tiny list is not helpful, but it does not change
the result.

17. C. All arrays are objects regardless of whether they point to primitives or classes. That means
both balls and scores are objects. Both are set to null so they are eligible for garbage
collection. The balls array is initialized to contain all null references. There are no objects
inside. The scores array is initialized to all 0 values. Therefore, only two objects exist to be
eligible for garbage collection, and option C is correct.

18. D. This code actually does compile. Line c1 is fine because the method uses the ? wildcard,
which allows any collection. Line c2 is a standard method declaration. Line c3 looks odd,
but it does work. The lambda takes one parameter and does nothing with it. Since there is no
output, option D is correct.

19. E. This code is correct, making option E the answer. While a record provides an implemen-
tation of equals(), you are free to write your own. Due to flow scoping, coin is available
after the if statement. The instanceof handles null and incorrect classes.

20. F. The code compiles without issue, making options D and E incorrect. Applying the ter-
nary ? : operator, the variable ship is assigned a value of 10.0. Both values are implicitly
cast to double. The expression in the first if statement evaluates to true, so Goodbye is
printed. Notice that there is no else statement on line g2; therefore, the second if state-
ment is also executed, causing See you again to also be printed. Since two statements are
printed, option F is correct.

Chapter 13: Practice Exam 2 551

21. D. The code does not compile, so options A, B, and F are incorrect. The first compilation
error is in the declaration of the lambda expression for second. It does not use a generic
type, which means t is of type Object. Since equalsIgnoreCase() expects a String as
a parameter, the lambda expression does not compile. The second compilation issue is in the
lambda expression in the main() method. Notice that process() takes an ApplyFilter
instance, and ApplyFilter is a functional interface that takes a List<String> object.
For this reason, q in this lambda expression is treated as an instance of List<String>.
The forEach() method defined in Collections requires a Consumer instance, not
a Function, so the q.forEach(first) call does not compile. For these two reasons,
option D is the correct answer, since the rest of the code compiles without issue.

22. C. Lines 12–18 do not compile because neither the class nor method defines a
generic type T. The declaration on lines 6–7 does not compile because ? extends
RuntimeException cannot be assigned a broader type. This leaves us with two declara-
tions that do compile, making option C the correct answer. Line 4 compiles, since any type
of generic list can go in List<?>. The declaration on lines 9–10 also compiles because ?
super RuntimeException does allow a broader exception type.

23. D. This question appears to ask you about involved array logic. Instead, it is checking to see
if you remember that instance and class variables are initialized to null. Line 5 throws a
NullPointerException, making option D correct.

24. E, F. Options B and D are incorrect because those flags do not exist on the jdeps command.
Options A and C do exist, but do not include suggested replacements. Options E and F are
correct, as they will include a table of suggestions if any internal APIs are used in the JAR.

25. D. The code compiles, making option E incorrect. The key here is that the AtomicInteger
variable is thread- safe regardless of the synchronization methods used to access it. There-
fore, synchronizing on an instance object, as in increment1(), or on the class object, as in
increment2(), is unnecessary because the AtomicInteger class is already thread- safe.
For this reason, option D is the correct answer.

26. B. You are allowed to use null with instanceof; it just prints false. The bus variable is
both a Vehicle and a Bus, so lines 18 and 19 print true. Then it gets interesting. We know
that bus is not an ArrayList or Collection. However, the compiler only knows that
bus is not an ArrayList because ArrayList is a concrete class. Line 20 does not compile.
The compiler can’t definitively state that bus is not a Collection. Some future program
could create a subclass of Bus that does implement Collection, so this line compiles.
Therefore, only line 20 fails to compile, and option B is correct.

27. B. The application compiles and runs without issue, so options E and F are incorrect.
Java uses pass- by- value, so even though the change to length in the first line of the
adjustPropellers() method does not change the value in the main() method, the
value is later returned by the method and used to reassign the length value. The result is
that length is assigned a value of 6, due to it being returned by the method. For the second
parameter, while the String[] reference cannot be modified to impact the reference in the
calling method, the data in it can be. Therefore, the value of the first element is set to LONG,
resulting in an output of 6,LONG, making option B the correct answer.

552 Appendix ■ Answers to Review Questions

28. E. The code correctly creates a LinkedList with three elements. The stream
pipeline does compile. However, there is no terminal operation, which means
the stream is never evaluated, and the output is something like
java.util.stream.ReferencePipeline$2@404b9385. This is definitely not one of
the listed choices, so option E is correct.

29. C. The Chimp and Bonabo classes do not compile because they do not implement the
abstract getName() method. This gives us two compiler errors and the answer of option C.

30. B, D. There is no requires direct directive, making option B correct. If the
requires transitive directive were used in the answer options instead, option A would
be the answer, since it represents a superset of the functionality. Additionally, option D is
correct because java.base is implied whether you specify it or not.

31. B, D. At the end of the method, state1 and state3 both point to "water", while
state2 points to "mist". Since there are no references to "ice", it is eligible for garbage
collection, making option B correct. However, garbage collection is not guaranteed to run, so
option D is also correct.

32. D. The execute() method returns a boolean, not a ResultSet. This causes a compiler
error on line 18, which makes option D correct.

33. A, F. On line 11, numWorms is incremented to 1. Line 12 increments the value again to 2.
However, post- increment happens at the end and 1 is printed, giving us option A. On line 13,
we take the bitwise complement by negating the value and subtracting one. This results in
- 3, which is option F.

34. E. The code does contain compilation errors, so option A is incorrect. The first is on line 8.
The readAllLines() method returns a List<String>, not a Stream<String>.
While parallelStream() is allowed on a Collection, parallel() is not. Next, line
14 does not compile because of an invalid method call. The correct NIO.2 method call is
Files.isRegularFile(), not File.isRegularFile(), since the legacy File class
does not have such a method. Line 18 contains a similar error. Path is an interface, not a
class, with the correct call being Paths.get(). Finally, line 19 does not compile because
the read() method throws Exception, which is not caught or handled by the main()
method. For these four reasons, option E is the correct answer.

35. A, B, C. All of the options compile, but three throw an exception at runtime. Options A
and B are correct because peeking returns the next value or null if there isn’t one without
changing the state of the queue. Option C is correct because polling removes and returns the
next value, returning null if there isn’t one. Options D, E and F are incorrect because both
popping and removing throw a NoSuchElementException when the queue is empty. This
means these return 18 for the first call and throw an exception for the second.

36. B. This class is never instantiated, so the instance initializer never outputs 1, and the con-
structor never outputs 3. This rules out options A, D, and E. A static initializer runs only
once for the class, which rules out option C. Option B is correct because the static initial-
izer runs once printing 2, followed by the static method callMe() printing 4 twice, and
ending with the main() method printing 5.

Chapter 13: Practice Exam 2 553

37. A, C. Checked exceptions that inherit Exception but not RuntimeException
are required to be handled or declared. FileNotFoundException and
IOException are checked exceptions, which must be handled or declared, making options
A and C correct. ArithmeticException and IllegalArgumentException extend
RuntimeException, making them unchecked exceptions. Option D is also incorrect, as it
is not the name of a standard exception class in Java.

38. C. This problem appears to be about overriding a method, but in fact, it is much simpler. The
class CarbonStructure is not declared abstract. Since it contains an abstract method,
line q1 does not compile and option C is correct. If the class were declared abstract, then
it would compile and print 15 at runtime.

39. A, E. In Java, a locale can be represented by a language code in lowercase, or a language
and country code, with language in lowercase and country in uppercase. For these reasons,
options A and E are correct. Options C, D, and F are incorrect because the lowercase lan-
guage must be before the uppercase country. Option B is incorrect because the language is
missing.

40. C, D. A fully modular application has all named modules, making options B and E incorrect.
A bottom- up migration starts out with unnamed modules, making option C correct. By con-
trast, a top- down migration starts by making all modules automatic modules, making option
D correct.

41. D. When converting an array to a List, Java uses a fixed- length backed list. This means
that the list uses an array in the implementation. While changing elements to new values is
allowed, adding and removing elements is not, making option D the answer.

42. B, C, E. Options B, C, and E are valid statements about nested classes. An anonymous class
can declare only one supertype, either a class or an interface, making option A incorrect. A
member inner class can contain static methods, making option D incorrect. A local class
can access only final and effectively final local variables, making option F incorrect.

43. A. First, the list is sorted ascendingly. Then it is reversed so it is in descending order. Since
our binary search also uses descending order, we meet the pre- condition for binary search. At
this point, the list contains [seed, plant, flower]. The key is to notice that the first
element is now seed rather than flower. Calling a binary search to find the position of
seed returns 0, which is the index matching that value. Therefore, the answer is option A.

44. C, F. The javac command takes a - - module- path parameter. You need to memorize that
the short form of this option is - p. This makes options C and F the answer.

45. E. Line 25 creates a Spliterator containing four toys. Line 26 splits them into two equal
groups by removing the first half of the elements and making them available to batch1.
These get printed on line 30, making option E the answer. Note that the splits on lines 27 and
28 are meaningless since batch1 has already been split off.

46. D. Line 9 is not reachable and does not compile, since FileNotFoundException is a sub-
class of IOException, which has already been caught. Next, the local variable e is declared
twice within the same scope, with the declaration on line 12 failing to compile. Finally, the
openDrawbridge() method declares the checked Exception class, but it is not handled
or declared in the main() method on line 21. Since lines 9, 12, and 21 need to be changed
for the code to compile, option D is correct.

554 Appendix ■ Answers to Review Questions

47. D. Lines 2 and 3 do not compile because var can only be used for local variables. Line 6
does not compile because a single underscore is not permitted as a variable name. These three
compiler errors cause option D to be the answer. Lines 4 and 5 use var correctly.

48. C. The variables smiley and smirk are both false since a String should be compared
with a method rather than ==, especially when not comparing two values from the string
pool. The variable blush is also false because one value is uppercase and the other is
lowercase. The variable cool is true because both values are uppercase. The variables wink
and yawn print are true because they don’t look at the case. Finally, sigh is false because
the text block has a trailing new line. This makes option C the answer.

49. A, B, E. First, option A is a valid functional interface that matches the Runnable
functional interface. Option B is also a valid lambda expression that matches
Function<Double,Double>, among other functional interfaces. Option C is incorrect
because the local variable w cannot be declared again in the lambda expression body, since it
is already declared as a lambda parameter. Option D is also incorrect. If the data type is
specified for one variable in a lambda expression, it must be specified for all variables
within the expression. Next, option E is correct because this lambda expression matches the
UnaryOperator functional interface. Finally, option F is incorrect. The statement
name.toUpperCase() is missing a semicolon (;), which is required to terminate the
statement.

50. E. Leaving it blank gives package access. This would be the correct answer if the code we
wanted to receive access were in the same package as com.mammal. Since it is not, we would
need modules in order to restrict the access and option E is correct.

Chapter 14: Practice Exam 3

1. B, C, F. The ternary operator (? :) evaluates only one of the two right- hand expressions at
runtime, so option A is incorrect. A switch statement may contain at most one optional
default statement, making option B correct. The post- increment operator increments the
variable and returns the original value, making option C correct. The logical operator (|)
operator will evaluate both operands, while the disjunctive short- circuit (||) operator will
only evaluate the right- hand side of the expression if the left- hand side evaluates to
false. Therefore, they may produce different results if the left operand is true, and
option D is incorrect. Option E is incorrect as the complement operator (!) is applied to
boolean values. Finally, option F is correct and allows the assignment operator to be used in
a conditional expression, such as part of a loop condition.

2. E. This code does not compile because print() attempts to reference the sb variable.
However, that variable is only in scope for the if statement. Since the code does not compile,
option E is correct. If println() were inside the if statement, option C would be correct.

3. A. The service locator contains a ServiceLoader call to the load() method to look up,
which is option A.

Chapter 14: Practice Exam 3 555

4. C. You can’t use generics with a primitive, so it should be Supplier<Double>. This makes
option C the answer.

5. D. Line x1 does not compile because of an assignment and value mismatch. The r1 variable
is a Runnable expression. While there is an ExecutorService.submit() that takes
a Runnable expression, it returns Future<?>, since the return type is void. This type is
incompatible with the Future<Stream> assignment without an explicit cast, leading to a
compiler error. Next, line x4 does not compile. The parallelStream() method is found
in the Collection interface, not the Stream interface. Due to these two compilation
errors, option D is the correct answer.

6. C. The filter() method passes two of the three elements of the stream through to
the terminal operation. This is redundant, since the terminal operation checks the same
Predicate. There are two matches with the same value, so both anyMatch() and
allMatch() return true, and option C is correct.

7. D. The service provider interface clearly needs to be recompiled, since that’s where the
change occurs. The service provider also needs to be recompiled because it implements the
interface. Finally, the consumer needs to be recompiled because it calls the interface. The ser-
vice locator does not need to be recompiled, as it only knows the service provider interface
name rather than its method signature. Since three require recompilation, option D is correct.

8. D. The application does not compile, so options A, B, and C are incorrect. The
ElectricBass class does not compile, since it inherits two default methods with the
same signature. Even though the class is marked abstract, it still must override this
default method. Since ElectricBass fails to do so, option D is correct.

9. E. A race condition occurs when two threads attempt to execute the same process. If not
properly handled, it can lead to an undesirable result, such as two users both being able to
create an account with the same login. For this reason, option E is correct.

10. C, D. Option A is incorrect because Comparable is implemented in the class being com-
pared. To be useful, such a class must have instance variables to compare, ruling out a
lambda. By contrast, a Comparator is often implemented with a lambda. Option B is incor-
rect because compareTo() is the method in Comparable. Option C is correct because
these methods have different parameters but the same return type, with the same rules for
ordering elements. Option D is correct because a Comparator doesn’t need to be imple-
mented by the class being compared. It can be passed to the sort() method as a param-
eter. Option E is incorrect because comparators are not required to be consistent with the
equals() method. For example, two objects that are equivalent in terms of equals() may
be sorted differently.

11. A. The method reference on line x is supposed to define a Function. The Shield interface
does define a single abstract method. However, that method has a void return type, which
is not compatible with Function. Line y does compile since addDragon() has both a
parameter and return type. Option A is the answer, since only line x fails to compile.

12. A, C. The javac command uses - p and - - module- path to supply the module path.
There are two valid long forms of the classpath option: - classpath and - - class- path.
Options A and C match these.

556 Appendix ■ Answers to Review Questions

13. C. Line 15 does not compile because the type of a variable cannot be inferred when the value
is null. Line 18 does not compile because the type cannot be changed once the variable is
declared. In this case, an int cannot be assigned to a String variable. Since the change or
removal of these two lines allows the code to compile, option C is correct.

14. D. The code compiles without issue, so options E and F are incorrect. Note that line p2
accesses a static method using an instance reference, which is discouraged but permitted in
Java. First, a varargs int array of [0,0] is passed to the swing() method. The try block
throws ArrayIndexOutOfBoundsException, since the third element is requested, and
the size of the array is two. For this reason, the print() statement in the try block is
not executed. Next, since ArrayIndexOutOfBoundsException is a subclass of
RuntimeException, the RuntimeException catch block is executed and 2 is printed.
The rest of the catch blocks are skipped, since the first one was selected. The finally
block then executes and prints 4. Finally, control is returned to the main() method
without an exception being thrown, and 5 is printed. Since 245 is printed, option D is the
correct answer.

15. C. Line 10 does not compile because line 9 is missing a semicolon (;) at the end of it. A
semicolon is required after a list of enum values if the enum contains anything besides the list
of values. Line 20 does not compile because the enum name is missing before the enum value
green. For these two reasons, option C is correct.

16. D. The stillMoreChoices() method is a common approach to retrieve zero or one
records, which works for any SELECT statement that has an int in the first column. If
the SELECT statement has a function like count(*) or sum(*) in the first column, there
will always be a row in the ResultSet, so moreChoices() works as well. The method
choices() produces an exception at runtime regardless of the query, because rs.next()
is not called before any values are read. Therefore, option D is the answer.

17. C. This code runs the loop six times, adding an hour to z each time. However, the first time
is the repeated hour from daylight saving time. The time zone offset changes, but not the
hour. This means the hour only increments five times. Adding that to 01:00 gives us 06:00.
Since the time zone changes as well, option C is correct.

18. B. When using a variable in a subclass, Java uses the reference type to determine the variable
to use. Option A would be correct if the size variables were treated like method overriding,
since all of the objects in the main() method are instances of Light. Instead, the reference
type is used. The variables v1 and v2 are of reference type Light, so 5 is selected. Likewise,
the variable v3 is of type Wave, so 7 is used. The output is 5,5,7, making option B correct.

19. G. Options A, B, C, D, and F are decoys. However, this question is tricky because
prepareCall() returns a CallableStatement. While it can be stored in a Statement,
the setInt() method is no longer available, making option G the answer.

20. B, E. The == operator checks if two references point to the same object, which is not the case
here. By contrast, records provide a default equals() method to compare the values of all
fields. The former is false here, and the latter is true, making option B one answer. Also, a
record provides a useful toString() implementation, making option E the other answer.

Chapter 14: Practice Exam 3 557

21. E. A teeing() collector takes three parameters. Since one is missing, the code does not
compile because of the teeing() call and option E is the answer.

22. A, D. Chicken and Egg must be subclasses of First since interfaces, enums, and records
can’t extend a class. This gives us option A as one of the answers. Since the permits clause
is not specified, Chicken and Egg may or may not be nested classes, but they must be in the
same file as First. Therefore, option D is the other answer.

23. A, E. A try block can have zero or more catch blocks and zero or one finally blocks,
but must be accompanied by at least one of these blocks. For these reasons, options B, D, and
F are incorrect, and option E is correct. A finally block must appear after the last catch
block, if there are any, making option C incorrect and option A correct.

24. C. The code compiles and runs without exception, making options E and F incorrect. The
question is testing your knowledge of variable scope. The teeth variable is static in
the Alligator class, meaning the same value is accessible from all instances of the class,
including the static main() method. The static variable teeth is incremented each
time the constructor is called. Note that the constructor uses this to access a static vari-
able, which is bad practice but allowed.

Since teeth is a local variable within the snap() method, the argument value is used, but
changes to the local variable do not affect the static variable teeth. The local variable
teeth is not used after it is decremented, so the decrement operation has no meaningful
effect on the program flow or the static variable teeth. Since the constructor is called
twice, with snap() executed after each constructor call, the output printed is 1 2, making
option C the correct answer.

25. E. The ServiceLoader.load() method needs to be called to get an instance before
calling stream(). Since this call is missing, option E is correct.

26. D, E. Each option presents a potential override of the passed() method, since the method
signature is the same. Options A, B, and C are incorrect because the method reduces the vis-
ibility of the protected method version declared in the parent class. Option F is incorrect,
as the parent version of passed() is abstract and cannot be invoked. That leaves options
D and E as valid overrides of this method.

27. D. The first thing to notice is that indent(0) matches the indentation of a text block and
then normalizes line breaks. Since sly has the closing triple quotes (""") on the same line as
text, it does not have a trailing line break. Therefore, lines 35 and 39 print true while line
43 prints false.

Next, strip() gets rid of any leading or trailing whitespace. The last text block does not
have either, which means lines 36 and 40 print false, while line 44 prints true.

Finally, stripIndent() only removes incidental whitespace. None of these text blocks
has any, making lines 37, 41, and 45 print true. Since three lines print false, option D is
the answer.

28. A, C, E. Option B is incorrect as abstract classes allow any of the access modifiers. Option
D is incorrect because interfaces do not have constructors. Option F is incorrect because
neither abstract classes nor interfaces can be marked final. Options A, C, and E are true
statements.

558 Appendix ■ Answers to Review Questions

29. C, E. In option A, the assignment operator (=) incorrectly comes after the multiplication
(*) operator. In option B, the short- circuit logical operator (&&) incorrectly comes after the
division (/) operator. In option D, the equality operator (==) incorrectly comes after the mul-
tiplication (*) operator. In option F, the not equals operator (!=) incorrectly comes after the
relational operators, (<= and >=). This leaves options C and E as the correct answers. For
these answers, it may help to remember that the modulus operator (%), multiplication oper-
ator (*), and division operator (/) have the same operator precedence.

30. B, C, E. The constructors declared by options A, D, and F compile without issue. Option B
does not compile. Since there is no call to a parent constructor or constructor in the same
class, the compiler inserts a no- argument super() call as the first line of the constructor.
Because Big does not have a no- argument constructor, the no- argument constructor
Trouble() does not compile. Option C also does not compile because super() and
this() cannot be called in the same constructor. Finally, option E does not compile. There is
no matching constructor that can take a String followed by a long value.

31. C. Line 13 does not modify the value of x because Path is immutable and x is not
reassigned to the new value. On line 14, the resolve() method is called using y as the
input argument. If the parameter passed to the resolve() method is absolute, then that
value is returned, causing the first println() method call to output /dance/move.txt.
On line 15, the absolute path is concatenated with the relative path, printing
/dance/move.txt/./song/../note at runtime. For these reasons, option C is correct.

32. B. This is a correct example of using lambdas. The code creates an ArrayList with three
elements. Both lambdas are correct. The code removes any negative numbers and prints the
remaining two numbers, 0 and 5, making option B correct.

33. B. The reverse() method is just there to mislead you since sort() will reorder regardless
of the original state. Remember that String values sort alphabetically rather than by
number. Therefore, 01 sorts before 1, and option B is correct.

34. D. This code attempts to use two terminal operations, forEach() and count(). Only one
terminal operation is allowed, so the code does not compile, and option D is correct.

35. C. While shoe3 goes out of scope after the shopping() method, the "croc" object is
referenced by shoe1, and therefore cannot be garbage collected. Similarly, the "sandal"
object is now referenced by shoe2. No variables reference the "flip flop" object, so it is
eligible to be garbage collected. Finally, the Shoes object created in the main() method is
also eligible for garbage collection, since there are no saved references to it. For these reasons,
option C is correct.

36. A, E. Line 24 does not compile because arrays use length. It is ArrayList that uses
size(). All of the other lines compile, making option A correct. It is permitted to split up
the brackets, [], in the 2D array declaration on line 20. The code is also allowed to use
crossword.length as the loop condition on line 22, although this is not a good idea for
a nested array. Instead, the inner loop should reference crossword[i].length. The array
starts out with all two hundred of the cells initialized to the default value for an int of 0.
Both loops iterate starting at 0 and stopping before 10, which causes only half of the array to
be set to 'x'. The other half still has the initial default value of 0, making option E correct.

Chapter 14: Practice Exam 3 559

37. D. In options A and B, the stream pipeline attempts to call entrySet() on it. However this
method is only defined on Map, which makes these two options incorrect. Options C, E, and
F are incorrect because the second- to- last line is map(), instead of flatMap(). It doesn’t
make sense to sort the Stream generated by map() and the code does not compile. By con-
trast, option D is correct. It creates a Set of matching String objects. It then builds a map
where the key represents whether they match. Next, the code gets the list of all matching
values, turns it into a Stream, and uses flatMap() to turn it back into individual objects.
Finally, the code sorts in descending order and turns the result back into a String.

38. E. The code compiles without issue. The text Dog Day: is not properly escaped and
includes letters, such as o, which are invalid patterns. Therefore, the code prints an exception
at runtime, making option E correct. If the values were properly escaped, then option C
would be correct.

39. D. A long cannot contain a number with decimal points, preventing min1 from compiling.
When declaring multiple variables in the same statement, the type is only declared once.
Therefore, max3 does not compile. Underscores in numeric expressions are allowed as long
as they are between two digits, making the line with min5 and max5 incorrect. Since three
lines have compiler errors, the answer is option D. The L suffix is valid, as is having multiple
underscores in a row.

40. E. The public modifier allows access from the same class, package, subclass, or even classes
in other packages, while the static modifier allows access without an instance of the class.
For these reasons, option E is the correct answer. Option A is incorrect because class is
not a modifier; it is a keyword. Option B is incorrect because the default keyword is for
interface methods and switch statements, not class variables. Option C is incorrect because
final is not related to access, and package access limits to the package. Finally, option D is
incorrect because instance is not a Java keyword or modifier. Further, protected pre-
vents all classes outside the package other than subclasses from accessing the variable.

41. D. When the arrays are the same, the compare() method returns 0, while the mismatch()
method returns - 1. This narrows it down to option C or option D. When the arrays are dif-
ferent, mismatch() returns the index of the first element that is different. In our case, this is
index 2, making option D correct. By contrast, the compare() method would return a nega-
tive number if filling in the third blank since 'i' is smaller than 'o'.

42. F. The readObject() method returns an Object instance, which must be
explicitly cast to Cruise in the second try- with- resources statement. For this reason,
the code does not compile. If the explicit cast were added, the code would compile but
throw a NotSerializableException at runtime, since Cruise does not implement
the Serializable interface. For this reason, option F is correct. If both of these issues
were fixed, then the code would run and print 4,null. The schedule variable is marked
transient, so it defaults to null when deserialized, while numPassengers is assigned
the value it had when it was serialized. Remember that on deserialization, the constructors
and instance initializers are not executed.

560 Appendix ■ Answers to Review Questions

43. E. The first time the inner for loop is executed, it accesses sides[i] where i is equal to
sides.length. Since the maximum element is indexed as sides.length- 1, this results
in an IndexOutOfBoundsException, making option E correct. Also, notice that there
are no braces {} around the inner for loop; therefore, even without the exception, the
most lines this code would print would be one, since there’s only one println() statement
executed.

44. B. This code is not a functional interface because it has three abstract methods: fun(), and
game(), and toy(). Removing two of these three methods would cause the code to com-
pile, leaving it with a single abstract method. Therefore, option B is the answer.

45. B. Lines 10–12 created a map with two key/value pairs. Line 14 does not add to the map,
since the key 2 is present. Line 15 adds a third key/value to the map. At this point, the map
contains {1=4, 2=8, 3=9}. Line 17 replaces the values with one higher than the key, and
the map contains {1=2, 2=3, 3=4}. The stream on lines 19–23 goes through the map and
sorts ascendingly by key. It gets the lowest key from that sort, which is 1. Then it prints the
value that goes with that key, which is 2. This makes option B the answer.

46. B. Java starts out by looking for a properties file with the requested locale. In this case, the
requested locale is the fr language, which it finds with toothbrush_fr.properties.
For this reason, the default locale of es_MX is ignored, and the first value for color printed
is violette. Next, it looks for a value for type property. Since it doesn’t find it in the first
properties file, it checks the default toothbrush.properties, where it does find it, and
prints generic. For these reasons, option B is correct.

47. A, B, F. An overriding method cannot declare any new or broader checked exceptions than
the overridden method. For this reason, options C, D, and E are incorrect. Option A is correct
because FileNotFoundException is a narrower exception than IOException. Option
B is also correct because new unchecked exceptions are allowed. Option F is correct because
not throwing any exceptions is also permitted in overridden methods.

48. A, B, C. All of the compilation issues with this code involve access modifiers. First, interface
methods cannot be marked protected. This causes a compilation error on line h1, making
option A correct. Next, lines h2 and h3 both override the interface method to be package
access. Since this reduces the implied visibility of protected, the overrides are invalid and
neither line compiles. Therefore, options B and C are also correct. Line h4 is valid. An object
can be implicitly cast to a superclass or inherited interface. Finally, lines h5 and h6 will
compile without issue but independently throw a ClassCastException and a
NullPointerException at runtime, respectively.

49. F. When summing int primitives, the return type is also an int. Since a long is larger, you
can assign the result to it, so line 6 is correct. All the primitive stream types use long as the
return type for count(). Therefore, the code compiles, and option E is incorrect. When
actually running the code, line 7 throws an IllegalStateException because the stream
has already been used. Both sum() and count() are terminal operations, and only one
terminal operation is allowed on the same stream. Therefore, option F is the answer.

50. E. Unnamed modules are always on the classpath. Both automatic and named modules are
on the module path. Named modules always contain a module- info file, but automatic
modules never do. Option E is correct, as it meets both these criteria.

Index

Symbols
+ or += (addition operator), 8, 98, 446, 469
& (and operator), 5, 445
^ (and/or operator), 5, 445
— > (arrow operator), 212, 235, 370–371,

454, 498, 507, 543
= (assignment operator), 418–419, 431,

554–555, 558
@ (at symbol), 5, 445
\ (backslashes), 20, 378, 449, 545
? (bind variables), 351, 537
~ (bitwise complement operator), 5, 7, 14,

408, 445, 448, 552
[] (brackets), 186, 197, 200, 434, 490,

494–495, 558
{} (braces), 41–42, 150, 212, 451–452,

454–455, 482, 498
: (colons), 340, 454, 536
+= or - = (compound assignment operators),

314–315, 529
- - (decrement operator), 8, 446
/ (division operator), 8, 431, 446, 558
:: (double colon operator), 222, 228,

503, 504
$ (dollar sign), 102, 369, 384, 444, 470,

542, 547
== (equality operator), 426–427, 431,

556, 558
++ (increment operator), 8, 408, 446
/** **/ (Javadoc comments), 367, 542
! (logical complement operator), 8, 418,

446, 554
| (logical operator), 20, 449, 454
|| (logical or operator), 5, 30, 418, 445,

452, 554

% (modulus operator), 431, 558
/* */ (multiline comments), 367, 542
* (multiplication operator), 8, 431, 446, 558
! (not operator), 395, 549
!= (not equals operator), 8, 431, 446, 558
() (parentheses), 17, 150, 212, 448, 451,

482, 498
. (period), 270, 292, 332, 517, 523, 534
++ (pre/post- increment operator), 299–300,

310, 525, 528
+ (plus sign), 5, 445
- - (post- decrement operator), 3, 310, 444,

453, 528
++ (pre/post- increment operator), 418, 554
? (question mark), 182, 199, 201, 401, 489,

495, 550
< or <= or >= (relational operator), 8, 431,

446, 558
&& (short- circuit logical operator), 8, 30,

431, 446, 452, 558
/ / (single- line comments), 367, 542
""+ (string concatenation), 140, 480
?: (ternary operator), 401–402, 418,

550, 554
""" (triple quotes), 2, 4, 13, 19, 22, 430,

444–446, 447, 449–450, 557
_ (underscore), 11, 102, 133, 163–164, 369,

384, 414, 437, 444, 447, 470, 478, 485,
542, 547, 554, 559

A
abs() method, 386, 547
abstract class

abstract methods in, 138–139, 479
access modifiers, 431, 557

562 abstract methods – ArrayStoreException

compared to interfaces, 431, 557
constructors, 100, 470
extending, 55, 131, 322, 457, 478, 531
limitations, 85, 133, 459, 466, 478

abstract methods
access modifiers, 431, 458, 462, 557
within functional interfaces, 63,

112–113, 121–122, 134, 459, 473,
475, 478

implementing, 406, 552
inheritance, 69, 461, 465
limitations, 98–100, 110–111, 137–139,

381, 410–411, 439, 467, 469–470,
472, 479, 546, 552, 560

overriding, 128, 131, 465, 477, 478
private modifier, 47, 455, 458, 462
protected modifier, 455

abstract modifier, 110, 472
abstract read() method, 108–109, 472
accept() method, 213, 230–231,

499, 506
access modifiers

abstract methods, 431, 458, 462, 557
for classes, 469
commenting out, 135, 479
leaving blank, 415, 554
limitations of, 48, 78, 455, 464
package, 119, 474
private (See private modifier)
protected (See protected modifier)
public (See public modifier)

accessor, defined, 81, 465
addFirst() method, 206, 497
addition operator (+ or +=), 8, 98, 446, 469
addLast() method, 206, 497
addStationName() method, 203, 496
allMatch() method, 258, 420, 514, 555
and operator (&), 5, 445
and/or operator (^), 5, 445
anonymous classes, 67–68, 108, 127,

136–139, 461, 472, 476, 479

another- Line object, 6, 445
anyMatch() method, 258, 420, 514, 555
apply() method, 230–231, 506
args variable, 456
ArrayIndexOutOfBoundsException,

74, 152, 165, 174, 188, 203, 206, 376,
452, 454, 463, 482, 486, 488, 491,
496–497, 544

ArrayList class, 34, 182, 405, 551
arrays. See also collections

adding elements, 182, 183, 203, 489,
490, 496

array parameters, 62, 459
brackets in, 197, 494
comparing elements, 196–197, 437,

494, 559
converting to List, 411, 552
creating, 182, 190, 192, 194, 206, 370,

403, 489, 492, 493, 497, 543, 551
declaring, 434, 558
exceptions, 300, 452, 454, 525
indexing, 204, 206, 496–497
int in, 185–186, 490
loops, 206, 376, 496–497, 544
multidimensional, 183, 186, 188, 196,

200, 202, 490, 491, 494, 495, 496
removing elements, 202, 496
sorting elements, 185, 190, 191, 194,

195, 198, 199, 200, 202, 208–209,
412, 432–433, 490, 492, 493, 494,
495, 497, 552, 558

String in, 184, 185–186, 199–200,
209, 224–225, 490, 495, 497, 504

threads in, 315, 529
two- dimensional, 183, 193–194, 195,

199–200, 209, 490, 493, 495, 498
unsorted, 371, 543

Arrays.compare() method,
196–197, 494

ArrayStoreException, 199–200,
495

arrow operator (— >) – classes. See also subclasses 563

arrow operator (— >), 212, 235, 370–371,
454, 498, 507, 543

assignment operator (=), 418–419, 431,
554–555, 558

at symbol (@), 5, 445
AutoCloseable interface, 158, 160, 367,

377, 484, 542, 545
autocommit mode, 351, 538
average() method, 218, 226, 235, 501,

504, 507

B
backslashes (\), 20, 378, 449, 545
Bend interface, 56–57, 458
BiConsumer, 216, 500
BiFunction interface, 212, 216, 242, 246,

498, 500, 509, 511
binarySearch() method, 191, 198, 202,

492, 494, 495
bind variables, 341–342, 347–348,

536, 537
BiPredicate interface, 233, 506
bitwise complement operator (~), 5, 7, 14,

408, 445, 448, 552
blocks variable, 193–194, 493
boolean expressions, 36, 38, 453
boolean/Boolean data types

class, 451
default initialization, 65, 460
operators, 5, 8, 9, 395, 431, 445–446,

448, 549, 558
required conditions, 451

BooleanSupplier interface, 243,
263–264, 509, 516

bottom- up migration, 278, 286–287, 289,
411, 519, 522–523, 552

braces ({}), 41–42, 150, 212, 451–452,
454–455, 482, 498

brackets ([]), 186, 197, 200, 434, 490,
494–495, 558

break statement, 31, 32, 35, 43, 452,
453, 455

BufferedReader class, 334–335, 534
byte variable, 26, 450–451
byteValue() method, 21, 450

C
Callable parameter, 296–297, 524
case keyword, 452
case statement, 39–40, 398, 452–455,

457, 550
catch blocks, 150, 154, 160, 167–168,

170–171, 395, 482–487, 549
ceil() method, 386, 547
chaining, 448
char arrays, 324, 531
char type, 26, 449–451
Character class, 450–451
charAt() method, 7, 232, 446, 506
checked exceptions

handling, 156, 164–165, 301–302,
327–328, 410, 483, 485–486, 526,
532, 553

method signatures, 170, 487
overriding, 96, 119–120, 161–162,

171–172, 175–176, 366–367,
385–386, 441, 469, 475, 485,
487–488, 541, 547, 560

try/catch/finally, 157, 483
ChronoUnit enum parameter, 10, 447
ClassCastException, 138–139, 164,

165, 179, 188, 441, 479, 485, 486,
489, 491, 560

classes. See also subclasses
accessibility, 68, 461
anonymous, 67–68, 108, 127, 136–139,

461, 472, 476, 479
assigning, 467
concrete, 100, 121, 470, 475
creating, 47, 455, 456

564 classpath – compound assignment operators (+= or - =)

declaring, 102, 117, 118, 182, 382–383,
427, 455, 456, 460, 469, 470, 474,
489, 546, 557

defining as local types, 378, 545
exception, 159, 484
extending, 72, 100, 101, 116–117, 394,

462, 470, 474, 548
final, 67, 100, 128, 461, 470, 477
immutable, 6–7, 13, 17, 67, 87–88, 113,

122, 445, 447, 449, 459, 461, 467,
473, 475

implementing, 46–47, 455, 456
importing methods, 106, 471
inheritance, 58–59, 88, 458, 467
inner, 105, 126, 142, 373, 469, 471,

476, 480, 543
instantiation, 101, 409–410, 470, 552
interfaces, compared to, 146–147, 431,

481, 557
interfaces, multiple, 95, 120–121,

468, 475
interfaces and, 48, 55, 146–147, 456,

457, 481
local, 64, 460
member variables, 115, 473
modifiers, 100, 470
mutable, 446
nested, 59–60, 64–65, 108, 411–412,

459, 460, 472, 552
overriding methods, 128, 457, 477
polymorphism, 456
sealed, 72, 107, 129–130, 462, 472, 477
static, 59–60, 64–65, 140, 459,

460, 480
time zone, concept of, 2, 444
top- level, 469
wrapper, 1, 12, 17, 26, 447,

449, 450–451
classpath

accessing from module path, 287
long forms, 422, 555

migration, 286, 289, 520, 523
modules on, 268, 279, 281, 291, 442,

517, 519–523, 560
climb() method, 178–179, 489
close() method, 158, 160, 166, 170, 176,

377, 484, 486, 487, 488, 545
Closeable interface, 160, 176, 367, 484,

488, 542
collect() method, 220, 242, 427, 502,

509, 557
Collection interface, 203, 256, 260, 405,

496, 514, 515, 551
collections. See also arrays; List

collections; Map collections
concurrent, 306, 312,

526–527, 528–529
Deque, 189, 196, 206, 409, 491, 494,

497, 552
immutable, 195, 197, 493–494
null values in, 200, 495
parallel streams with, 236, 256,

310–311, 507, 514, 528
Set, 188, 189, 190, 195, 200, 491,

493, 495
sorting elements, 198, 494
wildcards, 401, 550

Collector argument, 220, 264, 502, 516
Collectors, 427, 557
colons (:), 340, 454, 536
command- line arguments, 199, 495
commas, 454
comments, 135, 367, 462, 479, 542
CompactNumberFormat, 359, 392,

540, 548
Comparable interface, 205, 496
Comparator, 184–185, 254, 257, 421,

490, 513, 514, 555
compare() method, 421, 437, 555, 559
compareTo() method, 192, 421, 492, 555
compound assignment operators (+= or - =),

314–315, 529

compute() method – default modifier 565

compute() method, 169, 486
concat() method, 214, 449, 499
concrete classes, 100, 121, 470, 475
concurrency, 300, 306, 308–310, 312,

314–315, 395, 404, 525–529,
549, 551

Concurrent class, 300, 404, 525, 551
Connection interface, 340, 351, 536, 538
conn.rollback() method, 343–344,

346, 536, 537
constructors

calling, 71, 82–83, 111, 157–158, 462,
465, 473, 484

compact, 76, 123–124, 145–146, 378,
396, 463, 476, 481, 545, 549

compared to methods, 68, 461
cyclic dependency, 134–135, 479
deferred execution, 216, 500
exceptions, 153, 157–158, 173, 176,

482, 484, 487–488
ignoring input to, 447
implementing, 110, 141, 464, 472, 480
lambda expressions, 217, 501
missing, 390, 548
multiple, 460
no- argument, 68, 73, 111, 118, 126,

130, 153, 366–367, 379, 431–432,
461, 463, 473, 474, 476, 477, 482,
541, 545, 558

overloaded, 76, 145–146, 463, 481
values in, 124, 476

Consumer interface, 227, 504
consumers

creating, 284, 521
defined, 270, 517
dependencies, 274, 291–292, 518, 523
recompiling, 420, 555

count(*) function, 349, 537
count() method, 218, 501
country codes, 360, 411, 540, 552
- cp option, 422, 555
createStatement() method, 352, 538

currency, formatting, 356–357, 361, 392,
539, 540, 548

currency symbols, 102, 133, 444,
470, 478

cyclic dependencies
breaking, 375, 544
constructors, 134–135, 479
JARs, 271, 274, 518
modules, 272–273, 285, 293, 375, 518,

521, 524, 544
CyclicBarrier, 302–303, 311–312,

376–377, 526, 528, 544

D
- d option, 285, 521
dashes (-), 269–270, 517
databases, 340, 341, 347–352, 424–425,

536–538, 556
dates

adding, 5, 14, 16–17, 20, 445, 448–449
formatting, 354–357, 359–361,

363–364, 372, 538–541, 543
subtracting, 5–6, 11–12, 20, 445,

447, 449
types, 448

DateTimeException, 12, 447
DateTimeFormatter, 355, 357,

359–360, 538–540
daylight savings time, 2–4, 6–7, 10–11, 13,

22, 385, 425, 444–445, 447–448, 450,
547, 556

deadlock, 312, 376–377, 528, 544
decrement operator (- -), 8, 446
default interface, 380, 546
default keyword, 129, 455, 477
default method

inheritance, 69, 457, 462, 465
overriding, 48, 380, 456, 546
using, 101, 470

default modifier

566 default statements – exception handling

functional interfaces, 467
incorrect usage, 71, 462
methods within an interface, 75–76, 89,

463, 467
default statements, 26, 28, 418, 451, 554
defensive copies, 67, 461
Deque collections, 189, 196, 206, 409,

491, 494, 497, 552
deserialization, 323–324, 336, 438, 531,

534, 559
diamond operator (<>), 196, 198, 395,

494–495, 549
direct types, 205, 496
distinct() method, 246, 510
division operator (/), 8, 431, 446, 558
dollar sign ($), 102, 369, 384, 444, 470,

542, 547
dot notation, 465
Double, 182, 212, 216, 489, 498, 500
double colon operator (::), 222, 228,

503, 504
double type, 5, 6, 26, 216, 226–227, 445,

450–451, 500, 504
DoubleBinaryOperator interface,

371–372, 543
DoublePredicate interface, 253, 513
DoubleStream, 218, 501
DoubleSupplier interface, 215, 499
DoubleUnaryOperator interface,

246, 511
do/while loop, 36, 40, 373–374, 453,

454, 543
DriverManager, 341, 536
Duration class, 2, 5–6, 444, 445

E
else statement, 34, 36–37, 452, 453
encapsulation

broad access, 458
poor/improper, 70–71, 91–92,

462, 468

proper, 64, 73–74, 86–87, 130, 145,
460, 463, 466, 477, 481

using, 460
enum, 3, 26, 78, 444, 451, 457, 464
enums

changing value of, 88–89, 467
constructors, 98–99, 398, 469, 550
defined, 59–60, 459
properties, 465
punctuation, 132, 423–424, 478, 556
valid, 423–424, 556

equality operator (==), 426–427, 431,
556, 558

equals() method, 401, 550
Error case, 154, 173–174, 177, 483, 488
escaping text, 364, 436–437, 541, 559
essential whitespace, 4, 445
Exception, 153, 167–168, 210, 482,

486, 498
Exception constructor, 153, 482
exception handling

catch blocks, 150, 154, 160, 167–168,
170–171, 395, 482–487, 549

custom, 155, 176, 483, 488
lambda expressions, 327–328, 532
method overrides, 119–120, 161–163,

166, 171–172, 175, 475, 485, 486,
487, 488

by methods, 164–165, 170, 410–411,
485–487, 552

multi- catch blocks, 160, 167–168,
170–171, 395, 484, 486–487, 549

passing to methods, 176–177, 488
try/catch/finally, 151–154, 156–157,

161, 163–168, 170, 172–175,
178–179, 241, 321, 413–414, 423,
428, 482–483, 485–489, 509, 530,
553, 556–557

try- with- resources, 150, 152–154, 156,
162, 166, 177, 321, 326, 333–334,
367, 377, 388–389, 438, 482–483,
485–486, 488, 530–532, 534, 542,
545, 547, 559

exceptions – functional interfaces 567

exceptions
checked (See checked exceptions)
constructors in, 153, 157–158, 173,

176, 482, 484, 487–488
inheritance, 156, 167–169, 175, 179,

410, 483, 486, 488, 489, 552
naming, 163–164, 485
unchecked, 86, 155, 162–163, 171, 172,

190, 466, 483, 485, 487, 492
execute() method, 311, 341, 345, 407,

528, 536, 537, 552
executeQuery() method, 341, 347–348,

536, 537
executeUpdate() method, 341, 536
Executors class, 302, 526
ExecutorService, 297, 302–303, 314,

392, 524, 526, 529, 548
exports directive, 269, 276, 279–280,

517, 519–520

F
FileAlreadyExistsException, 531
FileNotFoundException, 119–120,

170–171, 413–414, 475, 487, 553
Files class, 321–322, 530
Files methods, 330–331, 533
Files.find() method, 330, 533
Files.isSameFile() method, 330, 533
Files.lines() method, 333, 337, 534
Files.list() method, 337, 534
Files.readAllLines() method,

333, 534
Files.walk() method, 330–331, 533
filter() method, 202, 237, 246,

408–409, 496, 507, 510, 552
final modifier

classes, 67, 100, 122, 128, 461, 470,
475, 477

implementing, 84, 379, 466, 545
implicit application of, 53, 77, 457, 464

limitations, 46, 53, 98–99, 101, 139,
394, 455, 457, 458, 462, 465, 469,
470, 479, 548

try- with- resources statements, 154,
388–389, 483, 547

findAny() method, 218, 231, 378, 501,
506, 545

findFast() method, 378, 545
findFirst() method, 248, 378, 511, 545
findSlow() method, 378, 545
flatMap() method, 219, 260, 261,

434–436, 501, 515, 559
float parameter, 6, 98, 445, 469
float type, 26, 451, 467
floating- point types, 26, 451
floor() method, 23, 450
flow scoping, 401, 452, 550
for loops

commas, 454
compared to for- each, 29, 452
creating, 376, 544
executing, 38, 425, 438–439, 454,

556, 560
for- each loops, 29, 31–32, 36, 451–453
forEach() method, 203, 221–222, 228,

260, 264, 331, 402, 496, 502, 504,
515–516, 533, 551

forEachOrdered() method, 239, 316,
508, 530

formal types, 191, 193, 205, 369–370, 492,
493, 496, 542

for- reversed loops, 31–32, 452
Function, 232, 421–422, 506, 555
functional interfaces

BooleanSupplier, 243, 509
creating, 56–57, 69, 224, 458, 461, 503
default modifier, 467
defined, 112–113, 473
generic arguments, 219–220, 242,

502, 509
input arguments, 252–253, 255,

513, 514

568 @FunctionalInterface annotation – immutability

in java.util.function package,
218, 253, 501, 513

lambda expressions in, 210–213,
215–218, 223, 225–226, 228–229,
236, 239, 244–245, 246, 250, 254,
263, 402, 439, 498–501, 503–505,
507–508, 510–513, 516, 551, 560

limitations, 69, 82, 100, 461, 465, 470
methods in, 63, 110–113, 121–122,

134, 232, 246, 459, 472–473, 475,
478, 506, 511

parameters, 226–227, 258, 371–372,
504, 514, 543

primitive values, 221, 502
private modifier, 467
requirements, 121–122, 134, 475, 478
return types, 227, 504
Supplier, 225–226, 254, 263–264,

504, 513, 516
valid, 63, 127, 397, 459, 477, 549

@FunctionalInterface annotation, 69,
112–113, 134, 461, 473, 478

G
garbage collection

eligible objects, 92, 140–141, 400, 407,
434, 468, 469, 480, 550, 552, 558

forcing, 466
generic types

changing, 246, 510
extends keyword, 369–370, 542
functional interfaces, 219–220, 242,

502, 509
instantiating, 395, 549
limitations, 205, 419, 496, 555
missing, 220–221, 502
reference, 193, 493
unspecified, 219, 502

get() method, 232, 262, 263–264, 307,
506, 516, 527

get prefix, 81, 465
getAsDouble() method, 226, 504
getBundle() method, 358, 539
getColor() method, 237, 507
getName() method, 332–333, 386–387,

406, 534, 547, 552
getNumRakes() method, 60, 459
getOrDefault() method, 209–210, 498
getSeconds() method, 2, 444
GetSet instance, 139–140, 479
getTime() method, 382–383, 546
getYear() method, 446
getYears() method, 446
groupingbyConcurrent() method,

227–228, 504

H
HOURS constant, 10, 447
hyphen (-), 133, 478

I
idempotent, 158, 484
identifier names, 163–164, 374, 485, 544.

See also variables
if statement

boolean expressions in, 38, 453
compared to switch statements,

39–40, 454
executing, 33, 114–115, 452, 473
loops, 38–39, 454
variables declared in, 70, 418, 462, 554

if- else statement, 34, 401–402, 452,
453, 550

ifPresent() method, 221–222, 502
if- then statement, 21, 450
IllegalArgumentException, 74, 86,

172, 175, 179, 241, 332–333, 395,
463, 466, 487–489, 509, 534, 549

immutability

import statement – interfaces 569

classes, 6–7, 13, 17, 67, 87–88, 113,
122, 445, 447, 449, 459, 461, 467,
473, 475

collections, 195, 197, 493, 494
defined, 67, 73–74, 458, 461, 463
implementing, 87–88, 122, 467, 475
Path instances, 534, 558

import statement, 229, 455, 505
IN parameters, 426, 556
IncidentReportException case,

173, 487
increment operator (++), 8, 408, 446
incrementBy10() method, 307, 527
indentation, 449
indexing, 204, 206, 344–345, 447, 453,

496–497, 536–537
inheritance

abstract, 69, 461, 465
classes and subclasses, 58–59, 88,

458, 467
default methods, 69, 457, 462, 465
exceptions, 156, 167–169, 175, 179,

410, 483, 486, 488, 489, 552
methods, 58, 128, 458, 465, 477
models, 158–159, 484
multiple, 457, 461
no- argument constructors, 111, 473
overriding signatures, 380, 546

init() method, 127–128, 136–137,
367–368, 477, 479, 542

initializers
instance, 116, 455, 467, 474
static, 80, 107–108, 115–116,

409–410, 455–456, 465, 472,
474, 552

input parameters, 349, 537
InputStream. See I/O Streams
insert() method, 7, 446, 448
instance initializers, 116, 455, 467, 474
instance keywords, 54, 457
instance methods, 117–118, 138, 373,

460–461, 474, 479, 543

instance variables
calling based on reference, 58–59, 458
changing, 459
defined, 460
initializing, 171–172, 487
limitations, 60, 79, 437, 458, 459, 464,

467, 559
instanceof operators, 109, 405,

472, 551
Instant class, 14, 21, 448, 450
int types

compatible values, 143, 480
primitive, 442, 560
variables, 3, 5, 26, 89–90, 226–227,

444–445, 450–451, 467, 504
Integer class, 77, 204, 238, 260,

450–451, 464, 496, 508, 515
interfaces

abstract, 133, 458, 478
access levels, 62, 75–76, 459, 463
built- in, 340, 535
classes and, 48, 55, 146–147, 431, 456,

457, 481, 557
declaring, 69, 462
extending, 55, 457, 461
implementing, 158, 460, 484
implementing multiple, 95, 97–98,

120–121, 411–412, 468, 469,
475, 552

inheritance, 128, 465, 477
JDBC, 340, 535
limitations, 100, 470
methods within, 75–76, 89, 93, 100,

392, 441, 463, 467, 468, 470,
548, 560

methods without bodies, 121, 475
modifiers, 110, 472
private modifier, 110, 472
static, 51–52, 456
static methods, 89, 100, 110, 119,

381, 467, 470, 472, 474, 546
sub- interfaces, 370, 542

570 interfaces – lambda expressions

using, 79, 464
variables within, 123, 475

interfaces, functional
BooleanSupplier, 243, 509
creating, 56–57, 69, 224, 458, 461, 503
default modifier, 467
defined, 112–113, 473
generic arguments, 219–220, 242,

502, 509
input arguments, 252–253, 255,

513, 514
in java.util.function package,

218, 253, 501, 513
lambda expressions in, 210–213,

215–218, 223, 225–226, 228–229,
236, 239, 244–245, 246, 250, 254,
263, 402, 439, 498–501, 503–505,
507–508, 510–513, 516, 551, 560

limitations, 69, 82, 100, 461, 465, 470
methods in, 63, 110–113, 121–122,

134, 232, 246, 459, 472–473, 475,
478, 506, 511

parameters, 226–227, 258, 371–372,
504, 514, 543

primitive values, 221, 502
private modifier, 467
requirements, 121–122, 134, 475, 478
return types, 227, 504
Supplier, 225–226, 254, 263–264,

504, 513, 516
valid, 63, 127, 397, 459, 477, 549

interfaces, service provider, 270–271, 277,
282–283, 291, 371, 517, 519, 521,
523, 543

InterruptedException, 301–302, 526
IntFunction interface, 227, 260–261,

504, 515
IntStream interface, 252, 400, 512, 550
IntSummaryStatistics class, 239–240,

255, 508, 513
IntSupplier functional interface, 236,

371–372, 507, 543
IntUnaryOperator, 219–220, 368,

502, 542

invokeAll() method, 305–306, 526
invokeAny() method, 305–306, 526
I/O Streams, 324–326, 328–329, 331,

334–335, 336, 531, 532, 533, 534
IOException, 170–171, 173, 176,

327–328, 487, 488, 532
isBlank() method, 16, 448
isEmpty() method, 16
isNotNull() method, 221–222, 502
isPresent() method, 221–222, 502
iterations, 28, 37–38, 451, 453

J
JARs

cyclic dependencies, 271, 274, 518
modular, 287, 291, 522, 523
non- modular, 274, 518
using internal APIs in, 404, 551

java command, 270, 517
Java runtime images, 276, 519
javac command, 273, 285–286, 412, 422,

518, 521, 552, 555
Javadoc comments (/** **/), 367, 462,

542
java.lang.Error, 177, 488
JDBC interfaces, built- in, 340, 535
jdbc protocol, 340, 536
JDBC URL, 340, 536
jdeps command, 275, 280, 282, 284, 293,

404, 519–521, 524, 551
jdeps output, 286, 522
JDK, 340, 535
jlink command, 276, 282, 397, 519,

521, 549
jmod command, 275, 286, 519, 522

L
LackOfInformationException,

366–367, 541
lambda expressions

accumulators, 221, 502

language codes – lockUp() method 571

asynchronous task definition, 298, 525
compared to method references,

240, 508
deferred execution, 216, 246, 500, 511
defining local variables within, 145, 481
exception handling, 327–328, 532
functional interface implementation,

210–213, 215–218, 223, 225–226,
228–229, 236, 239, 244–245, 246,
250, 254, 263, 402, 439, 498–501,
503–505, 507–508, 510–513, 516,
551, 560

in methods, 223–224, 375–376, 380,
503, 544, 546

parameters, 143, 249, 380, 480,
512, 546

passing to methods, 243, 368, 509, 542
replacing with method references, 233,

245, 248–249, 252, 258, 506,
510–512, 514

stateful, 245, 312, 395, 510,
528–529, 549

in streams, 202, 234, 496, 506
syntax, 234, 235, 370–371, 507, 543
using method references, 222, 503
using with list, 260, 515
valid, 212, 214, 253, 256, 262–263,

415, 498, 499, 513, 514, 516, 554
variables, 220–221, 250, 467, 502, 512

language codes, 360, 411, 540, 552
lazy evaluation, 245, 249, 510, 512
length() method, 7, 26, 238, 446,

450, 508
limit() method, 214, 499
line breaks, 378, 430, 545, 557
lines() method, 333, 534
LinkedList data structure, 183, 406,

490, 552
List collections

changing elements, 206–207, 497
converting arrays to, 411, 552

creating, 182–183, 186–187, 193, 201,
208, 210, 403, 489, 491, 492–493,
495, 497, 498, 551

immutable, 197, 494
lambda expressions with, 260, 515
null values in, 200, 495
removing elements, 202, 208, 496, 497
semicolons in, 78, 464
sorting elements, 194, 197, 207, 412,

432–433, 493, 494, 497, 552, 558
updating elements, 193, 492–493

List.of() method, 197, 494
livelock, 301, 525
load() method, 268, 271–272, 278, 289,

292, 371, 516, 518, 520, 523, 543
loadPod() method, 361–362, 540
LocalDate class, 3, 5–6, 8, 355, 444, 445,

446, 539
LocalDateTime class, 2, 21, 444, 450
Locale class, 411, 552
locales

defining, 354, 358, 538, 540
formats, 356, 360, 392, 411, 539, 540,

548, 552
properties files, 356, 357–358, 359,

361–363, 440, 539, 540, 560
localization

currency formatting, 356–357, 361,
392, 539, 540, 548

date formatting, 354–357, 359–361,
363–364, 372, 538–541

number formatting, 354–355, 359–360,
538, 540

resource bundles, 359, 361–363, 540
time formatting, 355, 360–361, 372,

396, 539–540, 543, 549
using resource bundles, 354, 538

LocalTime class, 2, 8–9, 444, 446, 448
lock() method, 298–299, 313, 379–380,

525, 529, 545
lockUp() method, 298–299, 525

572 logical complement operator (!) – method signatures

logical complement operator (!), 8, 418,
446, 554

logical operator (|), 20, 418, 449,
454, 554

logical or operator (||), 5, 30, 445, 452
logical or operator/disjunctive short- circuit

operator (||), 418, 554
Long wrapper class, 12, 447
LongConsumer interface, 213, 499
LongFunction interface, 213, 499
LongPredicate interface, 213, 499
LongSupplier interface, 213, 227,

499, 504
LongToIntFunction interface,

371–372, 543
LongUnaryOperator interface, 253, 513
loops

arrays, 206, 376, 496–497, 544
breaking, 31, 32, 452
commas, 454
do/while, 36, 40, 373–374, 453,

454, 543
for (See for loops)
for- each, 28, 29, 31–32, 36, 451–453
for- reversed loops, 31–32, 452
if statement, 38–39, 454
infinite, 36, 313–314, 451, 453, 529
initialization types, 454
inner/outer, 373–374, 453, 455, 543
iterations, 37–38, 453
ordering elements, 31–32, 452
requirements of, 40, 454
while, 29, 36, 40, 373–374, 398, 451,

453–454, 543, 550

M
m() method, 36–37, 453
- m option, 288, 522
Magazine class, 188, 491
magic() method, 34–35, 243, 509

main() method
accessing variables, 456
creating threads, 376–377, 544
defining, 59–60, 459
defining classes with, 94, 136, 468, 479
exception handling, 164–165, 170,

485–486, 487
instantiating objects, 93, 107–108,

468, 472
limitations, 67–68, 79–80, 137–138,

143, 155, 457, 461, 465,
479–480, 483

passing changes, 103–104, 471
MajorProblemException, 157–158, 484
Map collections

converting streams to, 235, 507
creating, 183, 187, 195–196, 203, 204,

439–440, 490, 491, 493, 496, 560
sorting elements, 190, 204, 491, 496
working with streams, 218, 434–436,

501, 559
map() method, 234, 434–436, 506, 559
Matrix. prefix, 84, 466
max() method, 5, 218, 445, 501
member variables, 115, 473
method chaining, 448
method references

compared to lambda expressions,
240, 508

lambda expression utilization, 222, 503
replacing lambda expressions, 233,

245, 248–249, 252, 258, 506,
510–512, 514

method signatures
checked exceptions, 170, 487
completing, 201, 495
incorrect, 184–185, 490
multiple same, 75, 97–98, 133,

143–144, 420–421, 429–430, 463,
469, 478, 481, 555, 557

overloading, 384–385, 547

methods. See also specific methods – module- info file 573

parameters, 226–227, 371–372,
504, 543

signature matching, 457
methods. See also specific methods

abstract (See abstract method)
accessing, 136–137, 367–368, 479, 542
calling, 177, 388, 390, 488, 547, 548
case sensitive, 387, 547
compared to constructors, 68, 461
declaring, 150, 201, 482, 495
encapsulation, 458
exception handling by, 164–165, 170,

410–411, 485–487, 552
in functional interfaces, 110–113,

121–122, 134, 232, 246, 459,
472–473, 475, 478, 506, 511

inheritance, 58, 128, 458, 465, 477
instance, 117–118, 138, 373, 460–461,

474, 479, 543
within interfaces, 75–76, 89, 93, 100,

392, 441, 463, 467, 468, 470,
548, 560

lambda expressions in, 223–224,
375–376, 380, 503, 544, 546

naming, 133, 369, 478, 542
overloading, 341, 457, 536
passed to lambda expressions, 243, 368,

509, 542
passing exceptions to, 176–177, 488
private interface, 75–76, 147,

463, 481
side effects, 230, 505
static, 48, 448, 456, 457
static (See static methods)
synchronous operation, 305–306, 526
virtual invocation, 58–59, 458
without bodies, 121, 475

methods, overriding
abstract methods, 128, 131, 465,

477, 478

checked exceptions, 96, 119–120,
171–172, 175, 385–386, 441, 469,
475, 487–488, 547, 560

with classes, 128, 457, 477
covariant return types, 85, 463, 466
with covariant return types, 124, 131,

476, 477
declaring exceptions, 162–163, 485
default methods, 48, 69, 97–98, 456,

462, 469
implementing multiple interfaces,

120–121, 475
inherited default methods, 79–80,

106, 465, 471
instance methods, 460
limitations, 119–120, 162–163, 166,

171–172, 175, 386–387, 429–430,
475, 485–488, 547, 557

static and non- static
methods, 99, 470

throwing exceptions, 161–162, 485
migration

automatic modules, 278–279, 411,
519–520, 552

bottom- up, 278, 286–287, 289, 411,
519, 522–523, 552

named, 287, 522
top- down, 274, 289, 411, 518, 523, 552
unnamed modules, 279, 287, 289, 411,

520, 522–523, 552
min() method, 23, 450
minus() method, 5–6, 445
mismatch() method, 329, 532
MissedCallException case, 174, 488
MissingResourceException case, 539
modifiers. See specific types.
module path option, 412, 422, 552, 555
module- info file, 268–270, 272–273,

275–276, 279–280, 291, 442,
517–520, 523, 560

574 modules – numbers. See also dates

modules
automatic, 269, 278–279, 281, 291,

411, 442, 517, 519–521, 523,
552, 560

built- in, 273, 277, 291, 518, 519, 523
cyclic dependencies, 272–273, 285, 293,

375, 518, 521, 524, 544
declaring, 268, 277, 278, 369, 374, 516,

519, 520, 542, 544
default, 269, 517
defined, 269, 288, 517, 522
dependencies, 271, 274, 275, 281–282,

284, 290–292, 517, 518, 519,
521, 523

directives (See specific directives)
exposing content, 277, 282, 519, 521
file formats, 292, 523
jlink command, 276, 397, 519, 549
listing, 270, 284, 517, 521
migration implementation, 274,

278–279, 286–287, 289, 411,
518–520, 522–523, 552

named, 268, 275, 276, 281, 517,
519, 521

naming, 270, 275, 292, 517, 519, 523
recompiling, 420, 555
service locators (See service locators)
shared, 281–282, 521
unnamed, 269, 276, 279, 281, 287,

289, 291, 411, 442, 517, 519–520,
522–523, 552, 560

modulus operator (%), 431, 558
multi- catch blocks, 160, 167–168,

170–171, 395, 484, 486–487, 549
multiline comments (/* */), 367, 462, 542
multiplication operator (*), 8, 431,

446, 558
mutability, 458

N
n() method, 36–37, 453
name parameter, 457

nanoseconds, 446
nested classes, 59–60, 64–65, 108,

411–412, 459, 460, 472, 552
nested() method, 143, 480
new keyword, 82–83, 140–141, 150–151,

459, 465, 480, 482
newline, 449
newValue variable, 250, 512
NIO.2 attribute interfaces, 330–331, 533
no- argument constructors

assigning value, 379, 545
default automatically inserted, 68, 118,

130, 366–367, 431–432, 461, 474,
477, 541, 558

Exception class, 153, 482
inheritance, 111, 473
limitations, 73, 126, 431–432, 463,

476, 558
noneMatch() method, 258, 514
non- sealed modifier, 46, 58–59, 72, 84,

100, 455, 458, 462, 466, 470
non- static methods, 99, 470
NoSuchElementException, 409, 552
NoSuchFileException, 329–330, 533
not equals operator (!=), 8, 431, 446, 558
not operator (!), 395, 549
NotSerializableException, 335–336,

438, 534, 559
null

in collections, 200, 495
initializing to, 403–404, 551
limitations, 18, 449, 468
passing, 137–138, 479
using with instanceof, 109, 405,

472, 551
NullPointerException, 151, 165–166,

169, 175, 179, 200, 214, 328,
333–334, 374–375, 403–404, 441,
482, 486, 488, 489, 495, 499, 532,
534, 544, 551, 560

num variable, 262–263, 516
numbers. See also dates

in class declarations, 102, 470

numeric expressions – package access 575

currency, 356–357, 361, 392, 539,
540, 548

formatting, 354–355, 359–360,
538, 540

in identifier names, 163–164, 485
rounding, 359, 386, 540, 547
in variable names, 444

numeric expressions, 437, 559
numeric types, 21, 448, 450
num_pages, 344, 536

O
o() method, 36–37, 453
Object class, 26, 451
objects. See also Path objects;

specific objects
casting, 141–142, 480
chaining, 448
declaring, 46, 455
deserialization, 323–324, 336, 438, 531,

534, 559
eligible for garbage collection, 92,

140–141, 400, 407, 434, 468, 469,
480, 550, 552, 558

initialization, 101, 470
manipulating, 1
overriding, 72, 462
polymorphism, 102–103, 107, 141–142,

470, 471, 480
references to, 125, 476
serialization, 326, 335–336, 438,

531–532, 534, 559
ObjLongConsumer interface,

371–372, 543
ofDays() method, 5–6, 445
offer() method, 183, 189, 490, 491
offset changes, 2–3, 444
ofNullable() method, 389–390, 547
opens directive, 519
operate() method, 161–162, 485

operators. See specific operators
operators, levels of precedence, 8, 446
Optional, 262, 389–390, 516, 547
OptionalDouble, 218, 226, 501, 504
order() method, 176–177, 488
ordinal() method, 89–90, 467
OutputStream. See I/O Streams
overloading

compared to overriding, 457
constructors, 76, 145–146, 463, 481
LocalTime class, 8, 446
method signatures, 384–385, 547
methods, 341, 457, 536
valid forms, 133, 478

@Override annotation, 81, 465
overriding. See also methods, overriding

access levels, 58, 458
checked exceptions, 119–120, 171–172,

175–176, 366–367, 385–386, 441,
475, 487–488, 541, 547, 560

compared to overloading, 457
including in records, 105, 471
instance variables, 79, 464
interface signatures, 380, 546
limitations, 98–99, 102–103, 107,

469, 471
objects, 72, 462
scope, 130–131, 477
unchecked exceptions, 86, 466

P
p() method, 36–37, 453
- p option, 412, 422, 552, 555
package access

on module paths, 287, 522
private, 48, 455
protected, 119, 132, 367–368, 388,

474, 478, 542, 547
public, 48, 455
restricting, 415, 554

576 package sharing – private modifier

package sharing, 279–280, 520
package statement, 455
parallel() method, 229, 232, 256, 505,

506, 514
parallel streams

forcing to behave as serial, 243, 312,
510, 528–529

limitations, 261, 301, 515, 525
methods executed on, 218, 232, 239,

317, 501, 506, 508, 530
obtaining equivalent of existing, 214,

217, 229, 252, 256, 499, 501, 505,
512, 514

reduction, 395, 549
working with collections, 236, 256,

310–311, 507, 514, 528
parentheses, 17, 150, 212, 448, 451,

482, 498
parse() method, 355, 538
parseLong() method, 12, 447
pass- by- value, 103–104, 405–406,

471, 551
Path objects

creating, 381, 546
immutable instances, 534, 558
normalizing, 329, 432, 532, 558
reading, 327, 330–331, 332, 333–334,

335–336, 532, 533, 534
traversing, 330, 331, 408–409, 533,

534, 552
writing, 321–322, 334–335, 337,

530–531, 534
Path.of() method, 320, 323, 530, 531
Paths.get() method, 320, 530
pattern matching, 450, 452
peek() method, 183, 225, 230–231,

246, 389, 409, 490, 504–506, 510,
547, 552

perform() method, 31–32, 452
period (.), 270, 292, 332, 517, 523, 534

Period class, 2, 16–17, 444–446, 448
permits clause, 58–59, 72, 116–117, 147,

370, 456, 458, 462, 474, 481, 542
play() method, 78, 85, 99, 134, 161, 464,

466, 470, 479, 485
plus sign (+), 5, 445
plusMonths() method, 448
polymorphism, 79, 102–103, 107,

141–142, 456, 464, 470, 471, 480
post- decrement operator (- -), 3, 310, 444,

453, 528
pound (#), 133, 478
Practice Exam 1

answers and explanations, 541–548
questions, 365–390

Practice Exam 2
answers and explanations, 548–554
questions, 391–415

Practice Exam 3
answers and explanations, 554–560
questions, 417–442

Predicate interface, 241, 254, 258, 259,
509, 513, 515

PreparedStatement class, 340, 341–342,
348, 351, 536, 537

pre/post- increment operator (++), 299–300,
310, 418, 525, 528, 554

primitive types, 221, 383–384, 419, 449,
502, 546, 555. See also specific types

print(), 95–96, 469
println() method, 17, 35, 448, 453
private interface method, 75–76, 147,

463, 481
private modifier

abstract methods, 47, 455, 458, 462
cannot be overridden, 386–387, 547
compared to protected, 86–87, 466
enum constructors, 98–99, 469
functional interfaces, 467
in immutable classes, 67, 461

private static modifier – requires mandated java.base output 577

implementation, 64, 73–74, 320, 460,
463, 530

incorrect usage, 71, 462
inheritance, 465
instance- based methods, 117–118, 474
interfaces, 110, 472
limitations, 48, 114, 455, 459, 473
methods within an interface, 89, 100,

467, 470
static methods, 130, 477
using, 101, 470

private static modifier, 86, 459,
466, 467

ProblemException, 157–158, 484
protected modifier

abstract methods, 455
calling methods with, 112, 132–133,

388, 473, 478, 547
compared to package, 132, 478
compared to private, 86–87, 466
defined, 461
implied visibility, 441, 560
limitations, 458
subclass access, 459
using, 48, 99, 455, 468, 470

provides directives, 280, 283, 519,
520, 521

provides statement, 275, 519
public modifier

abstract interface methods, 458
abstract methods, 455
immutable objects, 67, 461
implicit application of, 62, 77,

459, 464
interface methods, 110, 472
limitations, 398, 550
unsafe implementation, 70–71, 462
using, 48, 64, 79, 83, 437, 455, 460,

464, 466, 559
push() method, 189, 491

Q
q() method, 36–37, 453
queries, 347, 424–425, 537, 556
question mark (?), 182, 199, 201, 401, 489,

495, 550
queues, 183, 196–197, 206, 409, 490, 494,

497, 552

R
r() method, 36–37, 453
race conditions, 309, 421, 525, 527,

555
r.apply() method, 458
read() method, 332, 534
readAllLines() method, 333, 534
Reader class, 327, 332, 532, 534
records

declaring, 46, 455, 460
defining as local types, 378, 545
equals(), 401, 550
including overrides in, 105, 471
limitations, 467
unable to extend, 457

reduce() method, 223–224, 503
reference types. See specific types
reference types, implementing, 81, 465
registerOutParameter() method,

345, 537
relational operator (< or <= or >=), 8, 431,

446, 558
relativize() method, 332, 534
remove() method, 208, 497
RemoveMe, 383–384, 546
requires directive, 283, 290–291,

371, 375, 406, 519, 521, 523,
543–544, 552

requires mandated java.base output,
293, 524

578 requires statement – Set collections

requires statement, 274, 275, 276,
518, 519

requires transitive directive, 519
resource bundles, 354, 359, 361–363,

538, 540
resource leaks, 331, 533
resource starvation, 301, 525
ResultSet interface, 393, 548
return statement, 40, 398–399, 454, 550
reverse() method, 3, 194, 432–433, 444,

493, 558
round() method, 23, 386, 450, 547
run() method, 60, 459
Runnable expression, 298, 306, 419, 525,

527, 555
Runnable functional interface, 415,

554
RuntimeException, 153–154, 156,

164, 167–169, 174–175, 179, 190,
482–483, 485–486, 488–489, 492

S
- s option, 288, 522
Sand() method, 60, 459
sb.length() method, 448
ScheduledExecutorService, 308, 311,

527, 528
sealed modifier

classes, 72, 100, 107, 129–130, 462,
470, 472, 477

subclasses, 46, 58–59, 84, 455, 458, 466
SELECT statement, 351, 538
sell() method, 457
semicolons (;)

enums, 132, 423–424, 478, 556
in lambda expressions, 214, 499
in List, 78, 464
optional, 166, 486
use of, 28, 451

sendHome() method, 456
sequential() method, 214, 499

serial streams
grouping, 227–228, 504
infinite sources, 225, 504
limitations, 261, 515
methods executed on, 218, 501
ordered, 250, 512
reduction, 317, 530

Serializable, 73–74, 145, 322, 329,
331–332, 463, 481, 530, 533

serialization, 322, 326, 335–336, 438, 530,
531–532, 534, 559

service locators
combining with service provider

interface, 270, 517
creating, 283–284, 521
defined, 268, 516
directives, 289, 371, 522–523, 543
methods on, 278, 371, 520, 543
module dependencies, 271, 517
ServiceLoader call, 281, 520
valid, 418, 554

service provider interface, 270–271, 277,
282–283, 291, 371, 517, 519, 521,
523, 543

service providers
adding, 288, 522
calling, 292–293, 524
creating, 275, 282–283, 519, 521
dependencies, 291–292, 523

ServiceLoader class, 271–272, 278, 281,
289, 292, 418, 428–429, 518, 520,
523, 554, 557

ServiceLocator class, 371, 543
services

calling, 271–272, 289, 518, 523
defined, 281, 288, 520, 522
parts of, 268, 516

Set collections
creating, 188, 189, 491
immutable, 195, 493
null values in, 200, 495
sorting elements, 190, 491

setContents() method – streams. See also parallel streams; serial streams 579

setContents() method, 101, 470
setNull() method, 340, 535
setObject() method, 344–345, 536–537
Short class, 450–451
short variable, 26, 450–451
short- circuit logical operator (&&), 8, 30,

431, 446, 452, 558
shutdown() method, 314, 529
signature matching, 457
single- line comments (/ /), 367, 462, 542
sorted() method, 243–244, 246,

510, 511
speak() method, 114, 473
Spliterator, 247, 412–413, 511, 552
SQL statements, 341, 349, 351, 536,

537, 538
SQLException, 372–373, 543
stack traces, 153–154, 168, 241, 482,

486, 509
StackOverflowError, 488
statements

callable, 344–345, 346, 536–537
order of, 458
prepared, 343, 344, 536

static classes, 59–60, 64–65, 108, 140,
459, 460, 472, 480

static imports, 106, 147–148, 471, 481
static initializers, 80, 107–108, 115–116,

409–410, 455–456, 465, 472,
474, 552

static methods
hiding, 460
immutable classes, 449
interface methods, 89, 100, 110, 119,

381, 467, 470, 472, 474, 546
keywords in, 54, 457
limitations, 57, 60, 138, 458, 459,

462, 479
marking private, 130, 477
in nested classes, 411–412, 552
overriding, 99, 470

threads, 302–303, 526
using, 80, 101, 465, 470

static modifier, 77, 122, 437, 464, 465,
467, 475, 559

static variable, 47, 60, 77, 108, 139–140,
455, 459, 464, 472, 479

stored procedures, 345, 537
Stream interface

changing generic types, 246, 510
creating, 419, 555
filtering data, 215, 237, 242, 324–325,

389–390, 500, 507, 509, 531, 547
mapping data, 217, 233, 238–239,

243–244, 366, 400, 500, 506, 508,
510, 541, 550

sorting data, 242, 246, 509, 511
source operation, 229, 505
supplying data, 230, 236, 237, 247, 413,

505, 507, 511, 553
working with data, 231, 259,

506, 515
stream pipelines

avoiding multiple trips through,
239–240, 508

creating, 212–213, 242, 262, 420, 499,
509, 516, 555

intermediate operations, 222, 240, 257,
503, 509, 514

lazy evaluation, 245, 249, 510, 512
methods, 263, 516
multiple, 393–394, 548
order of operations, 212, 498
terminal operations, 218, 406, 433, 442,

501, 552, 558, 560
streams. See also parallel streams;

serial streams
concatenation, 214, 265, 499, 516
decomposition, 261, 515
empty, 235, 507
grouping, 235, 250–251, 507, 512
infinite, 237, 507

580 String class – ternary expressions

lambda expressions in, 202, 234,
496, 506

limitations, 219, 240, 502, 508
mapping data, 229, 366, 393–394,

434–436, 439–440, 505, 541, 548,
559, 560

ordered, 378, 545
partitioning, 235, 238, 250–251, 507,

508, 512
primitive, 226, 442, 504, 560
reduction, 216, 220–221, 224, 234,

238, 242, 246, 256–257, 395, 500,
502–503, 507–510, 514, 549

sorting data, 225, 243–244, 247, 413,
439–440, 504, 510, 511, 533, 560

supplying data, 257, 514
valid, 222, 228, 503, 504

String class
in arrays, 199–200, 209, 224–225, 495,

497, 504
comparing with method, 414, 554
errors, 41, 454
immutable, 6, 13, 445, 447, 449
modifying data in, 405–406, 551
supported in switch statements,

26, 450–451
string concatenation (""+), 140, 480
String data type, 7, 73, 153, 446–447,

463, 482
StringBuilder class, 3–4, 22, 444,

446, 450
StringBuilder data type, 7, 446
StringIndexOutOfBounds

Exception, 13, 447
strip() method, 10, 16, 430, 447,

448, 557
stripIndent() method, 10, 447
stripTrailing() method, 10, 447
stroke() method, 57, 458
subclasses

non- sealed, 58–59, 458
permits clause, 147, 481
sealed, 46, 58–59, 84, 455, 458, 466

substring() method, 13, 447
sum, 23, 450
sum() method, 218, 501
Super class, 139, 479
super .getWeight() method, 79, 464
super keyword, 54, 71, 73, 106, 457,

462–463, 471
super() method, 95, 111, 141, 464, 468,

473, 480
superclass constructors, 157–158, 484
superclasses, 88, 467
Supplier functional interface, 225–226,

254, 263–264, 504, 513, 516
Supplier<Double>, 215, 499–500
switch expressions

compared to switch statements, 39,
398–399, 452, 454, 550

compiling, 28, 382, 451, 546
default statements in, 26, 28, 451
variables in, 89–90, 467

switch statements
braces, 454
case keyword, 452
compared to switch expressions, 39,

398–399, 452, 454, 550
default statements in, 28, 418,

451, 554
enum types, 457
fall through, 39–40, 454
limitations, 129–130, 418, 477, 554
supported types, 26, 450–451, 453
var type in, 26, 451, 453

synchronized method, 307–309, 527
System.console() method, 328, 532

T
tables, 343–344, 346, 350–351, 372–373,

536–537, 543
teams variable, 449
teeing() collector, 427, 557
ternary expressions, 3, 418, 444, 448, 554

ternary operator (?:) – uses directive 581

ternary operator (?:), 401–402, 418,
550, 554

text, escaping, 364, 436–437, 541, 559
think() method, 150–151, 482
this() constructors, 95, 111, 117,

145–146, 464, 468, 473, 474, 481
this keyword, 54, 71, 73–74, 457,

462, 463
Thread.run() method, 296, 524
threads

concurrency, 308–310, 312, 314–315,
404, 527–529, 551

cyclic barriers, 302–303, 311–312,
376–377, 526, 528, 544

multithreaded programs, 315, 529
order of operations, 303–304, 526
race conditions, 309, 421, 525,

527, 555
stop running tasks, 314, 529
worker, 296–297, 302–303, 305–306,

307, 524, 526, 527
thread- safe code, 297–300, 304–305,

307–310, 312, 314–317, 395, 404,
524–530, 549, 551

throw keyword, 150–151, 482
Throwable case, 154, 156, 165, 173–174,

483, 486, 488
throws keyword, 150, 482
time

daylight savings time, 2–4, 6–7, 10–11,
13, 22, 385, 425, 444–445,
447–448, 450, 547, 556

formatting, 355, 360–361, 372, 396,
538–540, 543, 549

time zones, 2, 16, 396, 425, 444, 450,
549, 556

TimeException, 170, 487
ToDoubleBiFunction interface,

217, 500–501
ToIntBiFunction interface, 253, 513
ToIntFunction interface, 215, 500
ToLongBiFunction interface,

371–372, 543

top- down migration, 274, 289, 411, 518,
523, 552

toString() method, 105, 426–427, 457,
471, 556

transform() declaration, 137–138, 479
transformation() method, 407, 552
transitive directive, 290, 523
travel() method, 42, 454
trim() method, 16, 447
triple quotes ("""), 2, 4, 8, 13, 19, 22, 430,

444–446, 447, 449–450, 557
try/catch/finally, 151–154, 156–157,

161, 163–168, 170, 172–175,
178–179, 241, 321, 413–414, 423,
428, 482–483, 485–489, 509, 530,
553, 556–557

tryLock() method, 298–299, 379–380,
525, 545

try- with- resources, 150, 152–154, 156,
162, 166, 177, 321, 326, 333–334,
367, 377, 388–389, 438, 482–483,
485–486, 488, 530–532, 534, 542,
545, 547, 559

turnOn() method, 461
two- dimensional arrays, 183, 490
type casting, 141–142, 480
type parameters, 191, 492
types. See specific types

U
UnaryOperator, 212, 498
unchecked exceptions, 86, 155, 162–163,

171, 172, 190, 466, 483, 485,
487, 492

underscore (_), 11, 102, 133, 163–164,
369, 384, 414, 437, 444, 447, 470,
478, 485, 542, 547, 554, 559

UnsupportedOperationException,
169, 486

UnsupportedTemporalTypeException,
5–6, 445

uses directive, 277, 519

582 valueOf() method – ZonedDateTime class

V
valueOf() method, 12, 447
var type

inserting without a value, 74, 463
limitations, 140, 414, 480, 554
in switch statements, 26, 451, 453
as variable name, 82–83, 465
variables with, 468

varargs parameter, 84, 187, 466, 491
variable type inference, 422–423,

467, 556
variables

accessing, 437, 456, 559
bind, 341–342, 536
declaring multiple, 61, 459
effectively final, 53, 457
encapsulation, 458
initializing, 384, 403–404, 547, 551
instance, 60, 455, 459
within interfaces, 123, 475
lambda expressions, 220–221, 250, 467,

502, 512
local, 145, 481
naming, 2, 77, 155, 384, 414, 444, 464,

483, 547, 554
nested classes, 411–412, 552
replacing in a subclass, 425–426, 556

scope, 77, 95–96, 111, 130–131, 418,
428, 434, 464, 469, 473, 477, 554,
557, 558

static, 60, 459
synchronized access, 303–304, 526

virtual method invocation, 58–59, 458
void type, 127, 143, 227, 477, 480, 504
volatile attribute, 316–317, 530

W
walk() method, 330–331, 533
while loops, 29, 36, 40, 373–374, 398,

451, 453–454, 543, 550
whitespace, 4, 22, 378, 430, 445, 447–448,

450, 545, 557
wildcards, 182, 190, 199, 201, 203, 210,

401, 489, 492, 495, 496, 498, 550
woof() method, 457
wrapper classes, 1, 12, 17, 26, 447,

449, 450–451
Writer class, 321–322, 530–531

Z
ZonedDateTime class, 6–7, 8, 445,

446, 449

Online Test Bank
To help you study for your OCP Java SE 17 Developer certification exam, register

to gain one year of FREE access after activation to the online interactive test
bank— included with your purchase of this book! All of the practice questions in
this book are included in the online test bank so you can study in a timed and

graded setting.

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1. Go to www.wiley.com/go/sybextestprep. You’ll see the “How to Register Your
Book for Online Access” instructions.

2. Click “here to register” and then select your book from the list.
3. Complete the required registration information, including answering the security

verification to prove book ownership. You will be emailed a pin code.
4. Follow the directions in the email or go to www.wiley.com/go/sybextestprep.
5. Find your book on that page and click the “Register or Login” link with it. Then

enter the pin code you received and click the “Activate PIN” button.
6. On the Create an Account or Login page, enter your username and password, and

click Login or, if you don’t have an account already, create a new account.
7. At this point, you should be in the test bank site with your new test bank listed at

the top of the page. If you do not see it there, please refresh the page or log out and
log back in.

http://www.wiley.com/go/sybextestprep
http://www.wiley.com/go/sybextestprep

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Acknowledgments
	About the Authors
	About the Technical Editor
	About the Technical Proofer
	Contents
	Introduction
	Understanding the Exam
	Who Should Buy This Book
	How This Book Is Organized
	Using the Objective-Based Chapters
	Taking the Practice Exams

	Reviewing Exam Changes
	Need More Help Preparing?
	Bonus Content
	How to Contact the Publisher

	Chapter 1 Handling Date, Time, Text, Numeric and Boolean Values
	Chapter 2 Controlling Program Flow
	Chapter 3 Utilizing Java Object-Oriented Approach
	Chapter 4 Handling Exceptions
	Chapter 5 Working with Arrays and Collections
	Chapter 6 Working with Streams and Lambda Expressions
	Chapter 7 Packaging and Deploying Java Code and Use the Java Platform Module System
	Chapter 8 Managing Concurrent Code Execution
	Chapter 9 Using Java I/O API
	Chapter 10 Accessing Databases Using JDBC
	Chapter 11 Implementing Localization
	Chapter 12 Practice Exam 1
	Chapter 13 Practice Exam 2
	Chapter 14 Practice Exam 3
	Answers to Review Questions
	Chapter 1: Handling Date, Time, Text, Numeric and Boolean Values
	Chapter 2: Controlling Program Flow
	Chapter 3: Utilizing Java Object-Oriented Approach
	Chapter 4: Handling Exceptions
	Chapter 5: Working with Arrays and Collections
	Chapter 6: Working with Streams and Lambda Expressions
	Chapter 7: Packaging and Deploying Java Code and Use the Java Platform Module System
	Chapter 8: Managing Concurrent Code Execution
	Chapter 9: Using Java I/O API
	Chapter 10: Accessing Databases Using JDBC
	Chapter 11: Implementing Localization
	Chapter 12: Practice Exam 1
	Chapter 13: Practice Exam 2
	Chapter 14: Practice Exam 3

	Index
	EULA

