OCP

Oracle’ Certified Professional
Java SE 17 Developer

STUDY
GUIDE

EXAM 1Z0-829

Includes one year of FREE access after activation to the
interactive online learning environment and study tools:

3 custom practice exams
More than 500 electronic flashcards

Searchable key term glossary

A
SCOTT SELIKOFF "
_4SYBEX
JEANNE BOYARSKY A Wiley Brand

Oracle’Certified Professional
Java SE 17 Developer

Scott Selikoff
Jeanne Boyarsky

_«SYBEX

A Wiley Brand

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

978-1-119-86458-5
978-1-119-86460-8 (ebk.)
978-1-119-86459-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at

www . copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties

with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should

be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may provide or
recommendations it may make. Further, readers should be aware the Internet Websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022932106

Trademarks: WILEY, the Wiley logo, Sybex, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Oracle and java are registered trademarks of Oracle, Inc. All other trademarks are the property

of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Cover image: © Jeremy Woodhouse/Getty Images

Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

For my mom who I love dearly: you get one penny for each page of this book
that you read.
—Scott

To the Java conference scene and its post-COVID recovery.
—Jeanne

Acknowledgments

Scott and Jeanne would like to thank numerous individuals for their contributions to this
book. Thank you to Kezia Endsley and Archana Pragash for guiding us through the process
and making the book better in many ways. Thank you to Janeice DelVecchio for being our
technical editor as we wrote this book. Janeice pointed out many subtle errors in addition

to the big ones. Thank you to Elena Felder for being our technical proofreader and finding
the errors that we managed to sneak by Janeice. And a special thank you to our copy editor
Tiffany Taylor, for finding subtle errors that everyone (including us!) missed. This book also
wouldn’t be possible without many people at Wiley, including Kenyon Brown, Pete Gaughan,
Christine O’Connor, and many others.

Scott could not have reached this point without his wife, Patti, and family, whose love
and support make this book possible. He would like to thank his twin daughters, Olivia
and Sophia, and youngest daughter, Elysia, for their patience and understanding and bring-
ing him a cup of cold brew coffee when it was “time for Daddy to work in his office!” Scott
would like to extend his gratitude to his wonderfully patient co-author, Jeanne, on this,
their eighth book. He doesn’t know how she puts up with him, but he’s glad she does and
is thrilled at the quality of books we produce. Finally, Scott would like to thank his mother,
Barbara Selikoff (a retired teacher), for teaching him the value of education, and his father,
Mark Selikoff, for instilling in him the benefits of working hard.

Jeanne would personally like to thank everyone who kept her sane during the COVID
pandemic, especially Dani, Elena, Janeice, Joslyn, Norm, Rodrigo, Scott, and Wendy, along
with the NYJavaSIG leadership team. She would also like to thank the KCDC (Kansas City
Development Conference) leadership team for holding the first in-person conference she
attended where she could test book material on unsuspecting attendees. Scott was a great co-
author, improving everything Jeanne wrote while writing his own chapters. A big thank you
to everyone at CodeRanch. com who asked and responded to questions and comments about
our books. Finally, Jeanne would like to thank all of the new programmers at
CodeRanch. com and FIRST robotics teams FRC 694 and FTC 310/479/8365 for the
constant reminders of how new programmers think.

Both Scott and Jeanne would like to give a big thank you to the readers of our books.
Hearing from all of you who enjoyed the book and passed the exam is a great feeling. We’d
also like to thank those who pointed out errors and made suggestions for improvements
to the Java 17 book. As of January 2022, the top two were Tomasz Kasprzyk and Jos
Roseboom.

http://coderanch.com
http://coderanch.com

About the Authors

Scott Selikoff is a professional software developer and author with over 20 years of expe-
rience developing full-stack database-driven systems. Skilled in a plethora of software
languages and platforms, Scott currently works as a Staff Software Engineer at Google, spe-
cializing in Architecture and Cloud Services.

A native of Toms River, New Jersey, Scott achieved his Bachelor of Arts degree from
Cornell University in Mathematics and Computer Science in 2002 after three years of study.
In 2003, he received his Master of Engineering degree in Computer Science, also from Cor-
nell University. As someone with a deep love of education, Scott has always enjoyed teaching
others new concepts. Scott is a Leader of the Garden State Java User Group, helping to facil-
itate discussions and exchange of ideas within the community. He’s also taught lectures at
multiple universities and conferences.

Scott lives in New Jersey with his loving wife, Patti; three amazing daughters, twins Olivia
and Sophia and little Elysia; a very playful dog, Georgette; and three silly cats, Snowball,
Sugar, and Minnie Mouse. In his spare time, he plays violin in the Toms River
Multigenerational Orchestra. You can find out more about Scott at www. linkedin.com/
in/selikoff or follow him on Twitter @ScottSelikoff.

Jeanne Boyarsky was selected as a Java Champion in 2019 and is a leader of the
NY]JavaSIG. She has worked as a Java developer for more than 20 years at a bank in

New York City where she develops, mentors, and conducts training. Besides being a senior
moderator at CodeRanch. com in her free time, she works on the forum code base. Jeanne
also mentors the programming division of a FIRST robotics team, where she works with stu-
dents just getting started with Java. She also speaks at several conferences each year.

Jeanne got her Bachelor of Arts degree in 2002 and her Master in Computer Information
Technology degree in 20085. She enjoyed getting her Master’s degree in an online program
while working full time. This was before online education was cool! Jeanne is also a
Distinguished Toastmaster and a Scrum Master. You can find out more about Jeanne at
www . jeanneboyarsky . com or follow her on Twitter @JeanneBoyarsky.

Scott and Jeanne are both moderators on the CodeRanch. com forums and can be
reached there for question and comments. They also co-author a technical blog called Down
Home Country Coding at www.selikoff.net.

In addition to this book, Scott and Jeanne are authors of seven best-selling Java books:

» OCA: Java 8 Programmer I Study Guide (Sybex, 2015)

» OCP: Java 8 Programmer 11 Study Guide (Sybex, 2016)

= OCA/OCP Java 8 Programmer Practice Tests (Sybex, 2017)
» OCP Java 11 Programmer I Study Guide (Sybex, 2019)

» OCP Java 11 Programmer II Study Guide (Sybex, 2020)

» OCP Java 11 Developer Complete Study Guide (Sybex, 2020)
» OCP Java 11 Practice Tests (Sybex, 2021)

They are currently in the process of writing an OCP Java 17 Developer Practice Tests
book due out later this year.

http://www.linkedin.com/in/selikoff
http://www.linkedin.com/in/selikoff
http://coderanch.com
http://www.jeanneboyarsky.com
http://coderanch.com
http://www.selikoff.net

About the Technical Editor

Janeice DelVecchio has been a professional software developer for 12 years and has had a
lifelong love of programming and computers. Editing technical books is a fun task for her
because she likes finding and fixing defects of all types. In her day job she uses a very broad
range of skills with technologies including cloud computing, process automation, advanced
unit testing, and devops. She also volunteers at CodeRanch.com, where she runs the Java
class known as the Cattle Drive. She is an expert with the Java programming language. If
you ask her which language is the best, she will tell you that languages are tools and to pick
the one that fits your use case. The first language she learned was BASIC, and one day she
hopes to learn gaming development. In her spare time, she enjoys cooking, solving puzzles,
playing video games, and raising chickens. She loves eating sushi, drinking craft beer,

and petting dogs — her guilty pleasure is 1980s pop music. She lives in Litchfield County,
Connecticut.

About the Technical Proofreader

Elena Felder got into Java development back when the language lacked even generics, and
she is delighted that the language, its tooling, and its community have continued growing
and adapting to successfully keep up with the ever-changing world. She proofread one of
Jeanne and Scott’s first Java 8 Certification Study Guide chapters for fun and ended up doing
it professionally ever since.

Contents at a Glance

Introduction

Assessment Test

Chapter 1 Building Blocks

Chapter 2 Operators

Chapter 3 Making Decisions

Chapter 4 Core APIs

Chapter 5 Methods

Chapter 6 Class Design

Chapter 7 Beyond Classes

Chapter 8 Lambdas and Functional Interfaces
Chapter 9 Collections and Generics
Chapter 10 Streams

Chapter 11 Exceptions and Localization
Chapter 12 Modules

Chapter 13 Concurrency

Chapter 14 1/0

Chapter 15 JDBC

Appendix Answers to the Review Questions

Index

xXxiil

xlv

65
101
155
219
275
345
419
463
531
591
661
721
785
863
909

963

Contents

Introduction xxiii
Assessment Test xly
Chapter 1 Building Blocks 1
Learning about the Environment 2
Major Components of Java 2
Downloading a JDK 3
Understanding the Class Structure 4
Fields and Methods 4
Comments S
Classes and Source Files 7
Writing a main() Method 8
Creating a main() Method 8
Passing Parameters to a Java Program 9
Understanding Package Declarations and Imports 11
Packages 12
Wildcards 13
Redundant Imports 13
Naming Conflicts 15
Creating a New Package 16
Compiling and Running Code with Packages 16
Compiling to Another Directory 18
Compiling with JAR Files 20
Creating a JAR File 20
Ordering Elements in a Class 21
Creating Objects 23
Calling Constructors 23
Reading and Writing Member Fields 24
Executing Instance Initializer Blocks 24
Following the Order of Initialization 25
Understanding Data Types 26
Using Primitive Types 27
Using Reference Types 29
Distinguishing between Primitives and Reference Types 30
Creating Wrapper Classes 31
Defining Text Blocks 32
Declaring Variables 34
Identifying Identifiers 35
Declaring Multiple Variables 36

X Contents

Initializing Variables 38
Creating Local Variables 38
Passing Constructor and Method Parameters 40
Defining Instance and Class Variables 41
Inferring the Type with var 41

Managing Variable Scope 45
Limiting Scope 45
Tracing Scope 46
Applying Scope to Classes 47
Reviewing Scope 48

Destroying Objects 48
Understanding Garbage Collection 48
Tracing Eligibility 49

Summary 51

Exam Essentials 52

Review Questions 54

Chapter 2 Operators 65

Understanding Java Operators 66
Types of Operators 66
Operator Precedence 67

Applying Unary Operators 69
Complement and Negation Operators 70
Increment and Decrement Operators 71

Working with Binary Arithmetic Operators 72
Arithmetic Operators 72
Numeric Promotion 75

Assigning Values 77
Assignment Operator 77
Casting Values 77
Compound Assignment Operators 81
Return Value of Assignment Operators 82

Comparing Values 83
Equality Operators 83
Relational Operators 84
Logical Operators 87
Conditional Operators 88

Making Decisions with the Ternary Operator 90

Summary 92

Exam Essentials 92

Review Questions 94

Chapter 3 Making Decisions 101

Creating Decision-Making Statements 102

Statements and Blocks 102

The if Statement 103

Chapter

q

Contents

The else Statement
Shortening Code with Pattern Matching
Applying switch Statements
The switch Statement
The switch Expression
Writing while Loops
The while Statement
The do/while Statement
Infinite Loops
Constructing for Loops
The for Loop
The for-each Loop
Controlling Flow with Branching
Nested Loops
Adding Optional Labels
The break Statement
The continue Statement
The return Statement
Unreachable Code
Reviewing Branching
Summary
Exam Essentials
Review Questions

Core APIs

Creating and Manipulating Strings
Concatenating
Important String Methods
Method Chaining
Using the StringBuilder Class
Mutability and Chaining
Creating a StringBuilder
Important StringBuilder Methods
Understanding Equality
Comparing equals() and ==
The String Pool
Understanding Arrays
Creating an Array of Primitives
Creating an Array with Reference Variables
Using an Array
Sorting
Searching
Comparing
Using Methods with Varargs
Working with Multidimensional Arrays

Xi

104
106
110
110
115
121
121
123
123
124
124
129
131
131
132
133
135
137
138
139
139
140
142

155

156
157
158
169
170
171
172
172
175
175
176
178
179
180
182
183
184
185
187
188

Xii

Chapter

Contents

5

Calculating with Math APIs
Finding the Minimum and Maximum
Rounding Numbers
Determining the Ceiling and Floor
Calculating Exponents
Generating Random Numbers
Working with Dates and Times
Creating Dates and Times
Manipulating Dates and Times
Working with Periods
Working with Durations
Period vs. Duration
Working with Instants
Accounting for Daylight Saving Time
Summary
Exam Essentials
Review Questions

Methods

Designing Methods
Access Modifiers
Optional Specifiers
Return Type
Method Name
Parameter List
Method Signature
Exception List
Method Body
Declaring Local and Instance Variables
Local Variable Modifiers
Effectively Final Variables
Instance Variable Modifiers
Working with Varargs
Creating Methods with Varargs
Calling Methods with Varargs
Accessing Elements of a Vararg
Using Varargs with Other Method Parameters
Applying Access Modifiers
Private Access
Package Access
Protected Access
Public Access
Reviewing Access Modifiers

190
190
191
191
192
192
192
193
197
199
202
204
205
206
208
209
210

219

220
221
222
224
226
226
227
227
228
228
229
230
231
232
232
233
234
234
235
235
236
237
242
242

Chapter

6

Contents

Accessing static Data
Designing static Methods and Variables
Accessing a static Variable or Method
Class vs. Instance Membership
static Variable Modifiers
static Initializers
static Imports
Passing Data among Methods
Passing Objects
Returning Objects
Autoboxing and Unboxing Variables
Overloading Methods
Reference Types
Primitives
Autoboxing
Arrays
Varargs
Putting It All Together
Summary
Exam Essentials
Review Questions

Class Design

Understanding Inheritance
Declaring a Subclass
Class Modifiers
Single vs. Multiple Inheritance
Inheriting Object
Creating Classes
Extending a Class
Applying Class Access Modifiers
Accessing the this Reference
Calling the super Reference
Declaring Constructors
Creating a Constructor
The Default Constructor
Calling Overloaded Constructors with this()
Calling Parent Constructors with super()
Initializing Objects
Initializing Classes
Initializing final Fields
Initializing Instances

xiii

243
243
244
245
248
250
251
253
253
255
256
258
259
260
261
261
261
262
263
264
265

275

276
276
278
279
279
281
281
282
283
284
286
286
287
289
292
297
297
298
300

Xiv

Chapter

Contents

7

Inheriting Members
Overriding a Method
Redeclaring private Methods
Hiding Static Methods
Hiding Variables
Writing final Methods

Creating Abstract Classes
Introducing Abstract Classes
Declaring Abstract Methods
Creating a Concrete Class
Creating Constructors in Abstract Classes
Spotting Invalid Declarations

Creating Immutable Objects
Declaring an Immutable Class
Performing a Defensive Copy

Summary

Exam Essentials

Review Questions

Beyond Classes

Implementing Interfaces
Declaring and Using an Interface
Extending an Interface
Inheriting an Interface
Inserting Implicit Modifiers
Declaring Concrete Interface Methods
Working with Enums
Creating Simple Enums
Using Enums in switch Statements
Adding Constructors, Fields, and Methods
Sealing Classes
Declaring a Sealed Class
Compiling Sealed Classes
Specifying the Subclass Modifier
Omitting the permits Clause
Sealing Interfaces
Reviewing Sealed Class Rules
Encapsulating Data with Records
Understanding Encapsulation
Applying Records
Understanding Record Immutability
Declaring Constructors
Customizing Records
Creating Nested Classes

304
305
311
311
313
314
315
315
317
318
320
321
323
323
325
326
327
330

345

346
346
348
349
351
353
361
361
363
364
367
367
368
369
370
372
372
373
374
375
377
378
381
382

Chapter

8

Contents

Declaring an Inner Class
Creating a static Nested Class
Writing a Local Class
Defining an Anonymous Class
Reviewing Nested Classes
Understanding Polymorphism
Object vs. Reference
Casting Objects
The instanceof Operator
Polymorphism and Method Overriding
Overriding vs. Hiding Members
Summary
Exam Essentials
Review Questions

Lambdas and Functional Interfaces

Writing Simple Lambdas
Looking at a Lambda Example
Learning Lambda Syntax

Coding Functional Interfaces
Defining a Functional Interface
Adding Object Methods

Using Method References
Calling static Methods
Calling Instance Methods on a Particular Object
Calling Instance Methods on a Parameter
Calling Constructors
Reviewing Method References

Working with Built-in Functional Interfaces
Implementing Supplier
Implementing Consumer and BiConsumer
Implementing Predicate and BiPredicate
Implementing Function and BiFunction
Implementing UnaryOperator and BinaryOperator
Checking Functional Interfaces

Using Convenience Methods on Functional Interfaces

Learning the Functional Interfaces for Primitives
Working with Variables in Lambdas
Listing Parameters
Using Local Variables inside a Lambda Body
Referencing Variables from the Lambda Body
Summary
Exam Essentials
Review Questions

Xv

382
386
387
389
391
392
393
395
397
397
399
401
402
404

419

420
420
422
426
426
427
429
430
430
432
433
433
434
435
436
438
439
440
441
442
443
445
446
448
449
450
451
452

Xvi Contents

Chapter 9 Collections and Generics 463
Using Common Collection APIs 464
Using the Diamond Operator 465
Adding Data 466
Removing Data 466
Counting Elements 467
Clearing the Collection 467
Check Contents 468
Removing with Conditions 468
Iterating 469
Determining Equality 470
Using the List Interface 471
Comparing List Implementations 472
Creating a List with a Factory 472
Creating a List with a Constructor 473
Working with List Methods 474
Converting from List to an Array 476
Using the Set Interface 477
Comparing Set Implementations 477
Working with Set Methods 478
Using the Queue and Deque Interfaces 479
Comparing Deque Implementations 480
Working with Queue and Deque Methods 480
Using the Map Interface 483
Comparing Map Implementations 484
Working with Map Methods 484
Calling Basic Methods 486
Iterating through a Map 487
Getting Values Safely 487
Replacing Values 488
Putting if Absent 488
Merging Data 488
Comparing Collection Types 490
Sorting Data 492
Creating a Comparable Class 492
Comparing Data with a Comparator 496
Comparing Comparable and Comparator 497
Comparing Multiple Fields 498
Sorting and Searching 500
Sorting a List 503
Working with Generics 503
Creating Generic Classes 504

Understanding Type Erasure 506

Chapter

Chapter

10

1

Contents

Implementing Generic Interfaces
Writing Generic Methods
Creating a Generic Record
Bounding Generic Types
Putting It All Together
Summary
Exam Essentials
Review Questions

Streams

Returning an Optional
Creating an Optional
Dealing with an Empty Optional

Using Streams
Understanding the Pipeline Flow
Creating Stream Sources
Using Common Terminal Operations
Using Common Intermediate Operations
Putting Together the Pipeline

Working with Primitive Streams
Creating Primitive Streams
Mapping Streams
Using Optional with Primitive Streams
Summarizing Statistics

Working with Advanced Stream Pipeline Concepts
Linking Streams to the Underlying Data
Chaining Optionals
Using a Spliterator
Collecting Results

Summary

Exam Essentials

Review Questions

Exceptions and Localization

Understanding Exceptions
The Role of Exceptions
Understanding Exception Types
Throwing an Exception
Calling Methods That Throw Exceptions
Overriding Methods with Exceptions
Printing an Exception

Recognizing Exception Classes
RuntimeException Classes
Checked Exception Classes
Error Classes

xvii

509
510
512
512
517
519
520
521

531

532
533
534
536
536
539
541
549
553
557
557
560
562
564
565
565
566
569
570
578
579
581

591

592
592
593
596
598
599
600
600
601
604
605

xviii Contents

Handling Exceptions 605
Using #ry and catch Statements 606
Chaining catch Blocks 607
Applying a Multi-catch Block 609
Adding a finally Block 611

Automating Resource Management 615
Introducing Try-with-Resources 615
Basics of Try-with-Resources 616
Applying Effectively Final 620
Understanding Suppressed Exceptions 621

Formatting Values 624
Formatting Numbers 624
Formatting Dates and Times 625
Customizing the Date/Time Format 626

Supporting Internationalization and Localization 629
Picking a Locale 630
Localizing Numbers 632
Localizing Dates 637
Specifying a Locale Category 638

Loading Properties with Resource Bundles 639
Creating a Resource Bundle 640
Picking a Resource Bundle 641
Selecting Resource Bundle Values 643
Formatting Messages 645
Using the Properties Class 645

Summary 646

Exam Essentials 647

Review Questions 648

Chapter 12 Modules 661

Introducing Modules 662
Exploring a Module 663
Benefits of Modules 664

Creating and Running a Modular Program 664
Creating the Files 665
Compiling Our First Module 666
Running Our First Module 668
Packaging Our First Module 669

Updating Our Example for Multiple Modules 669
Updating the Feeding Module 670
Creating a Care Module 670
Creating the Talks Module 672

Creating the Staff Module 674

Chapter

13

Contents

Diving into the Module Declaration
Exporting a Package
Requiring a Module Transitively
Opening a Package
Creating a Service
Declaring the Service Provider Interface
Creating a Service Locator
Invoking from a Consumer
Adding a Service Provider
Reviewing Directives and Services
Discovering Modules
Identifying Built-in Modules
Getting Details with java
Describing with jar
Learning about Dependencies with jdeps
Using the --jdk-internals Flag
Using Module Files with jmod
Creating Java Runtimes with jlink
Reviewing Command-Line Options
Comparing Types of Modules
Named Modules
Automatic Modules
Unnamed Modules
Reviewing Module Types
Migrating an Application
Determining the Order
Exploring a Bottom-Up Migration Strategy
Exploring a Top-Down Migration Strategy
Splitting a Big Project into Modules
Failing to Compile with a Cyclic Dependency
Summary
Exam Essentials
Review Questions

Concurrency

Introducing Threads
Understanding Thread Concurrency
Creating a Thread
Distinguishing Thread Types
Managing a Thread’s Life Cycle
Polling with Sleep
Interrupting a Thread
Creating Threads with the Concurrency API
Introducing the Single-Thread Executor

Xix

675
676
677
679
680
681
682
684
685
686
687
688
690
693
693
695
696
696
697
700
701
701
704
704
704
705
706
707
709
709
711
712
713

721

722
723
724
725
727
727
729
730
730

XX

Chapter

Contents

14

Shutting Down a Thread Executor
Submitting Tasks
Waiting for Results
Scheduling Tasks
Increasing Concurrency with Pools
Writing Thread-Safe Code
Understanding Thread-Safety
Accessing Data with volatile
Protecting Data with Atomic Classes
Improving Access with Synchronized Blocks
Synchronizing on Methods
Understanding the Lock Framework
Orchestrating Tasks with a CyclicBarrier
Using Concurrent Collections
Understanding Memory Consistency Errors
Working with Concurrent Classes
Obtaining Synchronized Collections
Identifying Threading Problems
Understanding Liveness
Managing Race Conditions
Working with Parallel Streams
Creating Parallel Streams
Performing a Parallel Decomposition
Processing Parallel Reductions
Summary
Exam Essentials
Review Questions

/0

Referencing Files and Directories
Conceptualizing the File System
Creating a File or Path

Operating on File and Path
Using Shared Functionality

Handling Methods That Declare IOException

Providing NIO.2 Optional Parameters
Interacting with NIO.2 Paths

Creating, Moving, and Deleting Files and Directories
Comparing Files with isSameFile() and mismatch()

Introducing I/O Streams
Understanding I/O Stream Fundamentals
Learning I/O Stream Nomenclature
Reading and Writing Files
Using I/O Streams

731
732
733
737
739
740
740
741
742
744
746
747
751
754
754
755
757
758
758
761
761
762
762
764
770
770
772

785

786
786
789
793
793
797
797
799
805
809
811
811
812
817
817

Contents

Enhancing with Files
Combining with newBufferedReader()
and newBufferedWriter()

Reviewing Common Read and Write Methods
Serializing Data

Applying the Serializable Interface

Marking Data transient

Ensuring That a Class Is Serializable

Storing Data with ObjectOutputStream and

ObjectInputStream

Understanding the Deserialization Creation Process
Interacting with Users

Printing Data to the User

Reading Input as an I/O Stream

Closing System Streams

Acquiring Input with Console
Working with Advanced APIs

Manipulating Input Streams

Discovering File Attributes

Traversing a Directory Tree

Searching a Directory
Review of Key APIs
Summary
Exam Essentials
Review Questions

Chapter 15 JDBC

Introducing Relational Databases and SQL
Identifying the Structure of a Relational Database
Writing Basic SQL Statements

Introducing the Interfaces of JDBC

Connecting to a Database
Building a JDBC URL
Getting a Database Connection

Working with a PreparedStatement
Obtaining a PreparedStatement
Executing a PreparedStatement
Working with Parameters
Updating Multiple Records

Getting Data from a ResultSet
Reading a ResultSet
Getting Data for a Column
Using Bind Variables

Calling a CallableStatement

XXi

820

822
823
824
825
827
827

828
830
832
832
833
833
834
837
838
840
843
847
848
850
851
852

863

864
866
867
868
870
870
871
873
874
875
878
881
882
882
885
887
887

XXii Contents

Appendix

Index

Calling a Procedure without Parameters
Passing an IN Parameter
Returning an OUT Parameter
Working with an INOUT Parameter
Comparing Callable Statement Parameters
Using Additional Options

Controlling Data with Transactions
Committing and Rolling Back
Bookmarking with Savepoints
Reviewing Transaction APIs

Closing Database Resources

Summary

Exam Essentials

Review Questions

Answers to the Review Questions

Chapter 1: Building Blocks

Chapter 2: Operators

Chapter 3: Making Decisions

Chapter 4: Core APIs

Chapter 5: Methods

Chapter 6: Class Design

Chapter 7: Beyond Classes

Chapter 8: Lambdas and Functional Interfaces
Chapter 9: Collections and Generics
Chapter 10: Streams

Chapter 11: Exceptions and Localization
Chapter 12: Modules

Chapter 13: Concurrency

Chapter 14: /O

Chapter 15: JDBC

888
889
889
890
891
891
892
892
894
895
895
897
898
900

909

910
913
916
921
924
927
932
936
939
942
945
949
951
955
959

963

Introduction

This book is for those looking to obtain an Oracle Certified Professional: Java SE 17
Developer or Java Foundations Certified Junior Associate title. This book is also for those
looking to gain a deeper understanding and appreciation of Java. Not only do we want you
to pass your exams, but we also want to help you to improve yourself and become a better
professional software developer.

The book provides detailed preparation for the following Oracle certification exams:

1Z0-829 Exam: Java SE 17 Developer The Developer exam covers a wide variety of
core topics in Java 17 including classes, interfaces, streams, collections, concurrency,
and modules.

1Z0-811 Exam: Java Foundations The Foundations exam is a junior-level certification
exam that contains a variety of introductory and basic Java 8 topics.

In this introduction, we start by covering important information about the various exams.
We then move on to information about how this book is structured. Finally, we conclude
with an assessment test so you can see how much studying lies ahead of you.

Understanding the Exam

At the end of the day, the exam is a list of questions. The more you know about the struc-
ture of the exam, the better you are likely to do. For example, knowing how many ques-
tions the exam contains allows you to better manage your progress and time remaining.
In this section, we discuss the details of the exam, along with some history of previous
certification exams.

Choosing Which Exam to Take

Java is now over 25 years old, celebrating being “born” in 1995. As with anything 25 years
old, there is a good amount of history and variation between different versions of Java. Over
the years, the certification exams have changed to cover different topics. The number of
exams and names of certifications have also changed.

For Java 17, Oracle has simplified things. Becoming an Oracle Certified Professional
now requires passing only one exam, not two, and there are no Java 17 upgrade exams.
Regardless of the previous certifications you hold, everyone takes the same, single Java 17
exam to become an Oracle Certified Professional.

This means your only choice is between the Java 17 OCP exam and the Java Foundations
exam. Our advice is to only take the Java Foundations exam if your employer has specifi-
cally asked you to. While it is an easier exam, it targets a very old version of Java and is not
meant for professionals who work with Java every day.

XXiv Introduction

Considering the Exam Objectives

Oracle provides a list of objectives to guide you on what to study for each exam. Each
objective defines a list of subobjectives that provide additional details about the objective.
Unfortunately, the objectives don’t encompass the full amount of material needed to

pass the exam.

So how do you know what to study? By reading this study guide, of course! We’ve spent
years studying the certification exams in all of their forms and have carefully cultivated
topics, material, and practice questions that we are confident can lead to successfully passing
the exam. More recently, we’ve worked hand-in-hand with Oracle helping to create and
refine the objectives and material for the Java 11 and Java 17 exams.

As a starting point, you should review the list of objectives presented in this introduction
and mark down the ones that are unfamiliar to you. This list, along with the Assessment Test
at the end of this introduction, will give you a rough idea of how much you are going to
need to study for the exam.

Changes to the Exams

Table I.1 shows the information about the exams at the time of publishing.

TABLE 1.1 Exam information

Exam Length # of Questions Passing Score
1Z0-829 Java SE 17 Developer 90 minutes 50 68%
1Z0-811 Java Foundations 150 minutes 75 65%

Oracle has a tendency to fiddle with the length of the exam and the passing score once it
comes out. Oracle also likes to “tweak” the exam objectives over time. It wouldn’t be a sur-
prise for Oracle to make minor changes to the exam objectives, the number of questions, or
the passing score after this book goes to print.

If there are any changes to the exam after this book is published, we will post them on the
book page of our blog:

www . selikoff.net/ocpl7

Scope of Objectives

In previous certification exams, the list of exam objectives tended to include specific topics,
classes, and APIs that you needed to know for the exam. For example, take a look at an
objective for the OCP 8 exam (1Z0-809):

http://www.selikoff.net/ocp17

Introduction XXV

» Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FileInputStream,
FileOutputStream, ObjectOutputStream, ObjectlnputStream, and PrintWriter in the
java.io package.

Now compare it with the equivalent objective for the OCP 17 exam (1Z20-829):

» Read and write console and file data using I/O Stream.

Notice the difference? The older version is more detailed and describes specific classes you
need to understand. The newer version is a lot vaguer. It also gives the exam writers a lot
more freedom to insert a new feature without having to update the list of objectives.

Choosing the Correct Answer(s)

Each exam consists entirely of multiple-choice questions. There are between four and seven
possible answers. If a question has more than one answer, the question specifically states
exactly how many correct answers there are. This book does not do that. We say Choose all
that apply to make the questions harder. This means the questions in this book are generally
harder than those on the exam. The idea is to give you more practice so you can spot the
correct answer more easily on the real exam.

Reading the Exam Code

Many of the questions on each exam are code snippets rather than full classes. Saving space
by not including imports and/or class definitions leaves room for lots of other code. You
should only focus on import statements when the question specifically asks about them.

For example, it is common to come across classes on the exam with import statements and
portions omitted, like so:

public class Zoo implements Serializable {
String name;
// Getters/Setters/Constructors omitted

In this case, you can assume that java.io.Serializable is imported and that methods
like getName () and setName (), as well as related constructors, exist. For instance, we
would expect this code to compile:

var name = new Zoo("Java Zoo").getName();

Encountering Out-of-Scope Material

When you take an €xam, you may see¢ some uestions that appear to be out Of scope. Don’t
anic! Often, these questions do not require knowin, anythin about the topic to answer the

XXVi Introduction

question. For example, after reading this book, you should be able to spot that the following
does not compile, even if you’ve never heard of the java.util.logging.Logger class.

final Logger mylLogger = Logger.getAnonymouslLogger();
myLogger = Logger.getlLogger (String.class.getName());

The classes and methods used in this question are not in scope for the exam, but the
reason it does not compile is. In particular, you should know that you cannot reassign a vari-
able marked final.

See? Not so scary, is it? Expect to see at least a few structures on the exam that you are
not familiar with. If they aren’t part of your exam preparation material, then you don’t need
to understand them to answer the question.

Reviewing Question Types

The following list of topics is meant to give you an idea of the types of questions and odd-
ities that you might come across on the exam. Being aware of these categories of questions
can help you get a higher score on an exam.

Questions with Extra Information Provided Imagine the question includes a state-
ment that XMLParseException is a checked exception. It’s fine if you don’t know
what an XMLParseException is or what XML is, for that matter. (If you are won-
dering, it is a format for data.) This question is a gift. You know the question is about
exception handling.

Questions with Embedded Questions To answer some questions on the exam, you
may have to answer two or three subquestions. For example, the question may contain
two blank lines and ask you to choose the two answers that fill in each blank. In some
cases, the two answer choices are not related, which means you’re really answering
multiple questions, not just one! These questions are among the most difficult and
time-consuming on the exam because they contain multiple, often independent, ques-
tions to answer. Unfortunately, the exam does not give partial credit, so take care when
answering questions like these.

Questions with Unfamiliar APIs If you see a class or method that wasn’t covered in
this book, assume that it works as you would expect. Some of these APIs you might
come across, such as SecurityManager, were on the Java 11 exam and are not part of
the Java 17 exams. Assume that the part of the code using that API is correct, and look
very hard for other errors.

Questions with Made-Up or Incorrect Concepts In the context of a word problem, the
exam may bring up a term or concept that does not make any sense, such as saying an
interface inherits from a class, which is not a correct statement. In other cases, the exam
may use a keyword that does not exist in Java, like struct. For these, you just have to
read carefully and recognize when the exam is using invalid terminology.

Introduction XXvii

Questions That Are Really Out of Scope When introducing new questions, Oracle
includes them as unscored questions at first. This allows the exam creators to see how
real exam takers do without impacting your score. You will still receive the number of
questions the exam lists. However, a few of them may not count. These unscored ques-
tions may contain out-of-scope material or even errors. They will not be marked as
unscored, so you still have to do your best to answer them. Follow the previous advice
to assume that anything you haven’t seen before is correct. That will cover you if the
question is being counted!

)/ Like all exams, the Oracle Certified Professional: Java SE 17 Developer

dTE or Java Foundations Certified Junior Associate certification from Oracle
is updated periodically and may eventually be retired or replaced. At
some point, after Oracle is no longer offering this exam, the old editions
of our books and online tools will be retired. If you have purchased this
book after the exam was retired or are attempting to register in the Sybex
online learning environment after the exam was retired, please know that
we make no guarantees that this exam’s online Sybex tools will be avail-
able once the exam is no longer available.

Reading This Book

It might help to have some idea about how this book has been written. This section contains
details about some of the common structures and features you find in this book, where to go
for additional help, and how to obtain bonus material for this book.

Who Should Buy This Book

If you want to obtain the OCP 17 Java programmer certification, this book is definitely for
you. If you want to acquire a solid foundation in Java and your goal is to prepare for the
exam, then this book is also for you. You’ll find clear explanations of the concepts you need
to grasp and plenty of help to achieve the high level of professional competency you need in
order to succeed in your chosen field.

This book is intended to be understandable to anyone who has a tiny bit of Java
knowledge. If you’ve never read a Java book before, we recommend starting with a book
that teaches programming from the beginning and then returning to this study guide.

This book is for anyone from high school students to those beginning their programming
journey to experienced professionals who need a review for the certification.

xxviii Introduction

How This Book Is Organized

This book is divided into 15 chapters, plus supplementary online material: a glossary of
important terms, 500+ flash cards, and three practice exams that simulate the real exam.
Unlike the exam objectives, we organize our chapters organically so that each chapter
builds on the material of the previous chapters. We also want to make things easier to learn
and remember. This means some chapters cover multiple objectives.
The chapters are organized as follows:

= Chapter 1: Building Blocks describes the basics of Java, such as how to run a program.
It covers variables such as primitives, object data types, and scoping variables. It also
discusses garbage collection.

= Chapter 2: Operators explains operations with variables. It also talks about casting and
the precedence of operators.

= Chapter 3: Making Decisions covers core logical constructs such as decision statements,
pattern matching, and loops.

= Chapter 4: Core APIs works with String, StringBuilder, arrays, and dates.

= Chapter 5: Methods explains how to design and write methods. It also introduces access
modifiers, which are used throughout the book.

= Chapter 6: Class Design covers class structure, constructors, inheritance, and initializa-
tion. It also teaches you how to create abstract classes and overload methods.

= Chapter 7: Beyond Classes introduces many top-level types (other than classes),
including interfaces, enums, sealed classes, records, and nested classes. It also covers
polymorphism.

= Chapter 8: Lambdas and Functional Interfaces shows how to use lambdas, method ref-
erences, and built-in functional interfaces.

= Chapter 9: Collections and Generics demonstrates method references, generics with
wildcards, and Collections. The Collections portion covers many common interfaces,
classes, and methods that are useful for the exam and in everyday software development.

= Chapter 10: Streams explains stream pipelines in detail. It also covers the Optional class.
If you want to become skilled at creating streams, read this chapter more than once!

= Chapter 11: Exceptions and Localization demonstrates the different types of exception
classes and how to apply them to build more resilient programs. It concludes with local-
ization and formatting, which allow your program to gracefully support multiple coun-
tries or languages.

= Chapter 12: Modules details the benefits of the new module feature. It shows how to
compile and run module programs from the command line. Additionally, it describes
services and how to migrate an application to a modular infrastructure.

= Chapter 13: Concurrency introduces the concept of thread life cycle and thread-safety.
It teaches you how to build multithreaded programs using the Concurrency API and
parallel streams.

Introduction XXix

= Chapter 14: I/O introduces you to managing files and directories using the I/O and
NIO.2 APIs. It covers a number of I/O stream classes, teaches you how to serialize data,
and shows how to interact with a user. Additionally, it includes techniques for using
streams to traverse and search the file system.

= Chapter 15: JDBC provides the basics of working with databases in Java, including
working with stored procedures and transactions.

At the end of each chapter, you’ll find a few elements you can use to prepare
for the exam:

Summary This section reviews the most important topics that were covered in the
chapter and serves as a good review.

Exam Essentials This section summarizes highlights that were covered in the chapter.
You should be able to convey the information described.

Review Questions Each chapter concludes with at least 20 review questions. You
should answer these questions and check your answers against the ones provided in the
Appendix. If you can’t answer at least 80 percent of these questions correctly, go back
and review the chapter, or at least those sections that seem to be giving you difficulty.

Y/ The review questions, assessment tests, practice exams, and other

NING code samples included in this book are not derived from the real exam
questions, so don’t memorize them! Learning the underlying topic not
only helps you pass the exam but also makes you a higher-quality pro-
grammer in the workplace—the ultimate goal of a certification.

To get the most out of this book, you should read each chapter from start to finish before
going to the chapter-end elements. They are most useful for checking and reinforcing your
understanding. Even if you’re already familiar with a topic, you should skim the chapter.
There are a number of subtleties to Java that you could easily not encounter even when
working with Java for years. For instance, the following does compile:

var $num = (Integer)null;

Even an experienced Java developer might be taken aback by this one. The exam requires
you to know these kinds of subtleties.

Conventions Used in This Book

This book uses certain typographic styles to help you quickly identify important information
and to avoid confusion over the meaning of words, such as on-screen prompts. In particular,
look for the following styles:

» [ialicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

XXX Introduction

= A monospaced font indicates code or command-line text. We often use bold to high-
light important words or methods within a code sample.

» Ttalicized monospaced text indicates a variable.

In addition to these text conventions, which can apply to individual words or entire para-
graphs, a few conventions highlight segments of text.

' A tip is something to call particular attention to an aspect of working with
P a language feature or API.
A note indicates information that’s useful or interesting. It is often
TE something to pay special attention to for the exam.
Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

@ Real World Scenario

A real-world scenario is a type of sidebar that describes a task or an example that’s particu-
larly grounded in the real world. This is something that is useful in the real world but is not
going to show up on the exam.

Getting Help

Both of the authors are moderators at CodeRanch. com. This site is a quite large and active
programming forum that is friendly toward Java beginners. It has a forum just for this exam
called Programmer Certification. It also has a forum called Beginning Java for non-exam-
specific questions. As you read the book, feel free to ask your questions in either of those
forums. It could be that you are having trouble compiling a class or are just plain confused
about something. You’ll get an answer from a knowledgeable Java programmer. It might
even be one of us!

Remember to check our book page before taking the exam. It contains any recent updates
Oracle makes to the exam.

www.selikoff.net/ocpl7

http://coderanch.com
http://www.selikoff.net/ocp17

Introduction

Interactive Online Learning Environment and Test Bank

XXxi

We’ve put together some really great online tools to help you pass the exams. The interac-
tive online learning environment that accompanies this study guide provides a test bank and

study tools to help you prepare for the exam. By using these tools, you can dramatically
increase your chances of passing the exam on your first try.

To register and gain access to this interactive online learning environment, please
visit this URL:

www . wiley.com/go/Sybextestprep

The online test bank includes the following:

Three Practice Exams ~ Many practice questions are provided throughout this book
and online, including the assessment test, which you’ll find at the end of this introduc-
tion, and the chapter tests, which include the review questions at the end of each chapter.
In addition, there are three bonus practice exams. Use these questions to test your
knowledge of the study guide material. The online test bank runs on multiple devices.

500+ Flashcards The online test bank includes two sets of flashcards specifically writ-
ten to hit you hard, so don’t get discouraged if you don’t ace your way through them

at first! They’re there to ensure that you’re really ready for the exam. And no worries—
armed with the review questions, practice exams, and flashcards, you’ll be more than
prepared when exam day comes! Questions are provided in digital flashcard format (a
question followed by a single correct answer). You can use the flashcards to reinforce

your learning and provide last-minute test prep before the exam.

Additional Resources A glossary of key terms from this book and their definitions is

available as a fully searchable PDF.

Studying for the Exam

This section includes suggestions and recommendations for how you should prepare for the
certification exam. Rather than just reading this book, we recommend writing and executing

programs as part of the study process. How you study can be just as important as what
you study.

Creating a Study Plan

Rome wasn’t built in a day, so you shouldn’t attempt to study for the exam in only one day.
Even if you have been certified with a previous version of Java, the new test includes features

and components unique to Java 12-17.

http://www.wiley.com/go/Sybextestprep

XXXii Introduction

Once you have decided to take the test, you should construct a study plan that fits with
your schedule. We recommend that you set aside some amount of time each day, even if it’s
just a few minutes during lunch, to read or practice for the exam. The idea is to keep your
momentum going throughout the exam preparation process. The more consistent you are in
how you study, the better prepared you are for the exam. Try to avoid taking a few days or
weeks off from studying, or you’re likely to spend a lot of time relearning existing material
instead of moving on to new material.

Creating and Running the Code

Although some people can learn Java just by reading a textbook, that’s not how we recom-
mend that you study for a certification exam. We want you to be writing your own Java
sample applications throughout this book so that you don’t just learn the material but
understand the material as well. For example, it may not be obvious why the following line
of code does not compile, but if you try to compile it yourself, the Java compiler tells you
the problem:

float value = 102.0; // DOES NOT COMPILE

)/ A lot of people post the question “Why doesn’t this code compile?”
,@TE on the CodeRanch.com forum. If you're stuck or just curious about a
behavior in Java, we encourage you to post to the forum. There are a lot
of nice people in the Java community standing by to help you.

SampleTest Class

Throughout this book, we present numerous code snippets and ask you whether they’ll com-
pile or not and what their output is. You can place these snippets inside a simple Java appli-
cation that starts, executes the code, and terminates. You can accomplish this by compiling
and running a public class containing a main () method and adding the necessary import state-
ments, such as the following;:

// Add any necessary import statements here
public class TestClass {
public static void main(String[] args) {
// Add test code here

// Add any print statements here
System.out.println("Hello World!");

http://coderanch.com

Introduction xxxiii

This application isn’t particularly interesting—it just outputs Hello World! and exits.
That said, you could insert many of the code snippets presented in this book in the main ()
method to determine whether the code compiles, as well as what the code outputs when it
does compile.

@ Real World Scenario

IDE Software

While studying for an exam, you should develop code using a text editor and command-
line Java compiler. Some of you may have prior experience with integrated development
environments (IDEs) such as Eclipse, IntelliJ, and Visual Studio Code. An IDE is a software
application that facilitates software development for computer programmers. Although
such tools are extremely valuable in developing software, they can interfere with your
ability to spot problems readily on an exam.

Identifying Your Weakest Link

The review questions in each chapter are designed to help you home in on those features of
the Java language where you may be weak and that are required knowledge for the exam.
For each chapter, you should note which questions you got wrong, understand why you got
them wrong, and study those areas even more. After you’ve reread the chapter and written
lots of code, you can do the review questions again. In fact, you can take the review ques-
tions over and over to reinforce your learning, as long as you explain to yourself why each
answer is correct.

“Overstudying” the Online Practice Exams

Although we recommend reading this book and writing your own sample applications mul-
tiple times, redoing the online practice exams over and over can have a negative impact in
the long run. For example, some individuals study the practice exams so much that they
end up memorizing the answers. In this scenario, they can easily become overconfident;
that is, they can achieve perfect scores on the practice exams but may fail the actual exam.

XXXiV Introduction

Applying Test-Taking Strategies

This section includes suggestions you can use when you take the exam. If you’re an experi-
enced test taker or you’ve taken a certification test before, most of this should be common

knowledge. For those who are taking the exam for the first time, don’t worry! We present a
number of practical tips and strategies to help you prepare for the exam.

Using the Provided Writing Material

Depending on your particular testing center, you may be provided with a sheet of blank
paper or a whiteboard to use to help you answer questions. In our experience, a whiteboard
with a marker and an eraser are more commonly handed out. If you sit down and you are
not provided with anything, make sure to ask for such materials. If you aren’t given an
eraser, feel free to ask for a second whiteboard page.

After first checking whether the code compiles, it is time to understand what the program
does! One of the most useful applications of writing material is tracking the state of primi-
tive and reference variables. For example, let’s say you encountered the following code snip-
pet on a question about garbage collection:

Object o = new Turtle();
Mammal m = new Monkey();
Animal a = new Rabbit();
0 =m;

In a situation like this, it can be helpful to draw a diagram of the current state of the var-
iable references. As each reference variable changes which object it points to, you erase or
cross out the arrow between them and draw a new one to a different object.

Using the writing material to track state is also useful for complex questions that involve
a loop, especially questions with embedded loops. For example, the value of a variable might
change five or more times during a loop execution. You should make use of the provided
writing material to improve your score.

While you cannot bring any outside material into an exam, you can write

,&TE down material at the start of the exam. For example, if you have trouble
remembering which functional interfaces take which generic arguments,
it might be helpful to draw a table at the start of the exam on the provided
writing material. You can then use this information to answer multiple
questions.

Introduction XXXV

Understanding the Question

The majority of questions on the exam contain code snippets and ask you to answer ques-
tions about them. For those items containing code snippets, the number-one question we rec-
ommend that you answer before attempting to solve the question is this:

Does the code compile?

It sounds simple, but many people dive into answering the question without checking
whether the code actually compiles. If you can determine whether a particular set of code
compiles and what line or lines cause it to not compile, answering the question often
becomes easy.

P not compile option, consider that question a gift. It means every line does
compile, and you may be able to use information from this question to
answer other questions!

é/ If all of the answers to a question are printed values, aka there is no Does

Applying the Process of Elimination

Although you might not immediately know the correct answer to a question, if you can
reduce the question from five answers to three, your odds of guessing the correct answer are
markedly improved. Moreover, if you can reduce a question from four answers to two, you’ll
double your chances of guessing the correct answer!

In some cases, you may be able to eliminate answer choices without even reading the
question. If you come across such questions on the exam, consider it a gift. Can you cor-
rectly answer the following question in which the application code has been left out?

1. Which line, when inserted independently at line m1, allows the code to compile?

- Code Omitted -

public abstract final int swim();
public abstract void swim();
public abstract swim();

public abstract void swim() {}

moowp

public void swim() {}

Without reading the code or knowing what line m1 is, we can eliminate three of the five
answer choices. Options A, C, and D contain invalid declarations, leaving us with options B
and E as the only possible correct answers.

XXXVi Introduction

In previous versions of the exam, the test-taking software allowed you to
A OTE eliminate an option by right-clicking on it. The option was then presented

with a strike-through line over it. Unfortunately, Oracle no longer offers

this feature, so you’ll need to use provided writing material to keep track

of option choices. Hopefully, Oracle will bring back this feature with

an update!

Skipping Difficult Questions

The exam software includes an option to “mark” a question and review all marked ques-
tions at the end of the exam. If you are pressed for time, answer a question as best you can
and then mark it to come back to later.

All questions are weighted equally, so spending 10 minutes answering five questions cor-
rectly is a lot better use of your time than spending 10 minutes on a single question. If you
finish the exam early, you have the option of reviewing the marked questions as well as all of
the questions on the exam, if you choose.

Being Suspicious of Strong Words

Many questions on the exam include answer choices with descriptive sentences rather than
lines of code. When you see such questions, be wary of any answer choice that includes
strong words such as “must,” “all,” or “cannot.” If you think about the complexities of
programming languages, it is rare for a rule to have no exceptions or special cases. There-
fore, if you are stuck between two answers and one of them uses “must” while the other uses
“can” or “may,” you are better off picking the one with the weaker word since it is a more
ambiguous statement.

Choosing the Best Answer

Sometimes you read a question and immediately spot a compiler error that tells you exactly
what the question is asking. Other times, though, you may stare at a method declaration for
a couple of minutes and have no idea what the answer is. Unlike some other standardized
tests, there’s no penalty for answering a question incorrectly versus leaving it blank. If you’re
nearly out of time or you just can’t decide on an answer, select a random option and move
on. If you’ve been able to eliminate even one answer choice, then your guess is better than

blind luck.

Answer All Questions!

You should set a hard stop at five minutes of time remaining on the exam to ensure

that you've answered each and every question. Remember, if you fail to answer a question,
you'll definitely get it wrong and lose points; but if you guess, there’s at least a chance

that you'll be correct. There’s no harm in guessing!

Introduction Xxxvii

When in doubt, we generally recommend picking a random answer that includes “Does not
compile” if available, although which choice you select is not nearly as important as making
sure that you do not leave any questions unanswered on the exam!

Getting a Good Night's Rest

Although a lot of people are inclined to cram as much material as they can in the hours
leading up to an exam, most studies have shown that this is a poor test-taking strategy.
The best thing we can recommend that you do before taking an exam is to get a good
night’s rest!

Given the length of the exam and the number of questions, the exam can be quite drain-
ing, especially if this is your first time taking a certification exam. You might come in expect-
ing to be done 30 minutes early, only to discover that you are only a quarter of the way
through the exam with half the time remaining. At some point, you may begin to panic,
and it is in these moments that these test-taking skills are most important. Just remember to
take a deep breath, stay calm, eliminate as many wrong answers as you can, and make sure
to answer every question. It is for stressful moments like these that being well rested with a
good night’s sleep is most beneficial!

Taking the Exam

So you’ve decided to take the exam? We hope so, if you’ve bought this book! In this
section, we discuss the process of scheduling and taking the exam, along with various
options for each.

Scheduling the Exam

The exam is administered by Pearson VUE and can be taken at any Pearson VUE testing
center. To find a testing center or register for the exam, go to:

certview.oracle.com

Next, choose Manage Exam at Pearson | VUE. If you have any trouble navigating the
website, see our tips at

www.selikoff.net/exam-signup

If you haven’t been to the testing center before, we recommend visiting in advance. Some
testing centers are nice and professionally run. Others stick you in a small closet with lots
of people talking around you. You don’t want to be taking the test with people complaining
about their broken laptops nearby!

http://certview.oracle.com
http://www.selikoff.net/exam-signup

XXxviii Introduction

At this time, you can reschedule the exam without penalty until up to 24 hours before.
This means you can register for a convenient time slot well in advance, knowing that you
can delay if you aren’t ready by that time. Rescheduling is easy and can be done completely
on the Pearson VUE website. This may change, so check the rules before paying.

Taking an Online Proctored Exam

Pearson VUE offers the ability to take the exam at your home or office via the OnVUE ser-
vice. You schedule a specific date and time to take it remotely from your personal or work
computer. This option is especially appealing for those who live far from a testing center or
may have health concerns about taking the exam in person.

Before scheduling an online proctored exam, we strongly recommend you review the list
of requirements on Pearson VUE’s website:

www . pearsonvue.com/oracle/onvue

We encourage you to take the exam anywhere you are comfortable and feel safe. That
said, taking an online proctored exam is a very different experience from taking an exam
at a testing center. The following highlights some aspects of the online proctored exam pro-
cess that we feel are important. Please check Pearson VUE’s website for additional details, as
these are subject to change:

* Your laptop or desktop computer must meet certain minimal requirements, must include
a camera/microphone, and must not have any additional monitors. Tablets and touch-
screens are not permitted.

» You must have a stable Internet connection (wired Ethernet recommended) and not be
behind a corporate firewall or VPN.

» You will be closely monitored live by a proctor during the entire exam, as well as being
recorded. Moving out of view of the camera, looking at your cell phone, or using the
restroom is strictly prohibited.

* Your work area must be well lit and your desk clear of all material. Prior to starting the
exam, the proctor will ask you to turn your camera around your area to ensure that no
inappropriate materials are in reach or in view.

» Writing material during the exam is provided in the form of an online digital white-
board within the exam software.

* You should take the test at a location where you can ensure privacy. No one else is per-
mitted to be in the room or see your exam. If someone does enter inadvertently, you
must tell them to leave immediately.

» The exam software monitors eye and head movements. You may get a warning message
while taking the exam if it appears you are looking away from the screen too much.

The choice between taking the exam at a testing center or at home is a personal one.
Think carefully about which is best for your needs.

http://www.pearsonvue.com/oracle/onvue

Introduction XXXiX

The Day of the Exam

The exam requires two forms of ID, including one that is government issued. See Pearson’s
list of acceptable IDs here:

www . pearsonvue.com/policies/1S.pdf

When taking the exam in person, try not to bring too much extra with you, as it will not
be allowed into the exam room. While you are allowed to check your belongings, it is better
to leave extra items at home or in the car.

You are not allowed to bring paper, your phone, and the like into the exam room with
you. Some centers are stricter than others. At one center, even tissues were taken away from
us! Most centers allow you to keep your ID and money. They watch you take the exam,
though, so don’t even think about writing notes on money.

As we mentioned earlier, the testing center will give you writing materials to use during
the exam, either scratch paper or a whiteboard. If you aren’t given these materials, remember
to ask. These items are collected at the end of the exam.

' While you cannot bring any belongings into the testing room, some
P noisy testing centers offer earplugs. If your testing center has a lot of
background noise (like cars honking or construction), it doesn’t hurt to
ask the proctor for a pair of earplugs before you start the exam.

Finding Out Your Score

As soon as you complete your exam, you find out if you passed. To get your actual score,
you’ll need to wait until you can check online. Many test-takers check their score from a
mobile device as they are walking out of the test center.

CertView usually updates shortly after you finish your exam but can take up to an hour
in some cases. In addition to your score, you’ll also see the objectives for which you got a
question wrong. Once you have passed the 120-829 exam and fulfilled the required
prerequisites, the OCP 17 title is granted within a few days.

Oracle has partnered with Credly Acclaim, which is an Open Badges
P platform. Upon obtaining a certification from Oracle, you also receive a

“badge” that you can choose to share publicly with current or prospec-
tive employers.

Objective Map

This book has been written to cover every objective on both the Developer and
Foundation exams.

http://www.pearsonvue.com/policies/1S.pdf

xI Introduction

Java SE 17 Developer (120-829)

The following table provides a breakdown of this book’s exam coverage for the Java SE 17
Developer (1Z0-829) exam, showing you the chapter where each objective or subobjective
is covered.

Exam Objective Chapter
Handling date, time, text, numeric and boolean values

Use primitives and wrapper classes including Math API, parentheses, type 1, 2,4
promotion, and casting to evaluate arithmetic and boolean expressions

Manipulate text, including text blocks, using String and 4
StringBuilder classes

Manipulate date, time, duration, period, instant and time-zone objects 4
using Date-Time API

Controlling Program Flow

Create program flow control constructs including if/else, switch statements 3
and expressions, loops, and break and continue statements

Utilizing Java Object-Oriented Approach

Declare and instantiate Java objects including nested class objects, and 1,7
explain the object life-cycle including creation, reassigning references, and
garbage collection

Create classes and records, and define and use instance and static fields and 5, 6,7
methods, constructors, and instance and static initializers

Implement overloading, including var-arg methods 5

Understand variable scopes, use local variable type inference, apply encap- 1,6,7, 8
sulation, and make objects immutable

Implement polymorphism and differentiate object type versus reference 3,6,7
type. Perform type casting, identify object types using instanceof operator
and pattern matching

Create and use interfaces, identify functional interfaces, and utilize private, 7,8
static, and default interface methods

Create and use enumerations with fields, methods and constructors 7
Handling Exceptions

Handle exceptions using try/catch/finally, try-with-resources, and multi- 11
catch blocks, including custom exceptions

Introduction

Exam Objective

Working with Arrays and Collections

Create Java arrays, List, Set, Map, and Deque collections, and add, remove,

update, retrieve and sort their elements
Working with Streams and Lambda expressions

Use Java object and primitive Streams, including lambda expressions
implementing functional interfaces, to supply, filter, map, consume,
and sort data

Perform decomposition, concatenation and reduction, and grouping and
partitioning on sequential and parallel streams

Packaging and deploying Java code and use the Java Platform
Module System

Define modules and their dependencies, expose module content including
for reflection. Define services, producers, and consumers

Compile Java code, produce modular and non-modular jars, runtime
images, and implement migration using unnamed and automatic modules

Managing concurrent code execution

Create worker threads using Runnable and Callable, manage the thread
lifecycle, including automations provided by different Executor services
and concurrent API

Develop thread-safe code, using different locking mechanisms and
concurrent API

Process Java collections concurrently including the use of parallel streams
Using Java I/O API

Read and write console and file data using I/O Streams

Serialize and de-serialize Java objects

Create, traverse, read, and write Path objects and their properties using
java.nio.file API

Accessing databases using JDBC

Create connections, create and execute basic, prepared and callable state-
ments, process query results and control transactions using JDBC API

Implementing Localization

Implement localization using locales, resource bundles, parse and
format messages, dates, times, and numbers including currency and
percentage values

Chapter

4,9

10

10,13

12

12

13

13
13
14

14
14

15

11

xlii Introduction

Java Foundations (1Z0-811)

The following table provides a breakdown of this book’s exam coverage for the Java Foun-
dations (1Z0-811) exam, showing you the chapter where each objective or subobjective
is covered.

A few topics are on the Java Foundations exam but not the 1Z0-829.

A'd-rz Those are covered here:

www.selikoff.net/java-foundations

Additionally, the objectives may be updated if Oracle updates the Java Foun-
dations exam for a later version of Java. Check our website for those updates

as well.
Exam Objective Chapter
What is Java?
Describe the features of Java 1
Describe the real-world applications of Java 1 + online
Java Basics
Describe the Java Development Kit (JDK) and the Java Runtime 1
Environment (JRE)
Describe the components of object-oriented programming 1
Describe the components of a basic Java program 1
Compile and execute a Java program 1

Basic Java Elements

Identify the conventions to be followed in a Java program
Use Java reserved words

Use single-line and multi-line comments in Java programs

Import other Java packages to make them accessible in your code

—_ = = e

Describe the java.lang package
Working with Java Data Types
Declare and initialize variables including a variable using final 1

Cast a value from one data type to another including automatic and 2
manual promotion

http://www.selikoff.net/java-foundations

Exam Objective
Declare and initialize a String variable
Working with Java Operators

Use basic arithmetic operators to manipulate data
including +, -, *,/, and %

Use the increment and decrement operators

Use relational operators including ==, !=, >, >=, <, and <=
Use arithmetic assignment operators

Use conditional operators including & &, Il, and ?

Describe the operator precedence and use of parentheses
Working with the String Class

Develop code that uses methods from the String class
Format Strings using escape sequences including %d, %n, and %s
Working with Random and Math Classes

Use the Random class

Use the Math class

Using Decision Statements

Use the decision making statement (if-then and if-then-else)
Use the switch statement

Compare how == differs between primitives and objects

Compare two String objects by using the compareTo and
equals methods

Using Looping Statements

Describe looping statements

Use a for loop including an enhanced for loop

Use a while loop

Use a do- while loop

Compare and contrast the for, while, and do-while loops

Develop code that uses break and continue statements

Introduction

Chapter

[\SIEN \S I SN S N

N N S oY)

W W W W W W

xliii

xliv Introduction

Exam Objective

Debugging and Exception Handling
Identify syntax and logic errors

Use exception handling

Handle common exceptions thrown
Use try and catch blocks

Arrays and ArrayLists

Use a one-dimensional array

Create and manipulate an ArrayList

Traverse the elements of an ArrayList by using iterators and loops
including the enhanced for loop

Compare an array and an ArrayList

Classes and Constructors

Create a new class including a main method

Use the private modifier

Describe the relationship between an object and its members

Describe the difference between a class variable, an instance variable,
and a local variable

Develop code that creates an object’s default constructor and modifies
the object’s fields

Use constructors with and without parameters
Develop code that overloads constructors
Java Methods

Describe and create a method

Create and use accessor and mutator methods
Create overloaded methods

Describe a static method and demonstrate its use within a program

Chapter

1,2,3
11
11
11

N

L L L »n

Introduction xlv

Assessment Test

Use the following assessment test to gauge your current level of skill in Java for the
170-829. This test is designed to highlight some topics for your strengths and weaknesses so
that you know which chapters you might want to read multiple times. Even if you do well
on the assessment test, you should still read the book from cover to cover, as the real exams
are quite challenging.

1. What is the result of executing the following code snippet?

41: final int scorel = 8, score2 = 3;
42: char myScore = 7;
43: var goal = switch (myScore) {

44 default -> {if(10>scorel) yield "unknown";}
45: case scorel -> "great";

46: case 2, 4, 6 -> "good";

47: case score2, 0 -> {"bad";}

48: 1;

49: System.out.println(goal);

unknown

great

good

bad

unknowngreatgoodbad

Exactly one line needs to be changed for the code to compile.

Exactly two lines need to be changed for the code to compile.

IOGMMmMOO®m>P

None of the above

2. What is the output of the following code snippet?

int moon = 9, star = 2 + 2 x 3;
float sun = star>10 ? 1 : 3;
double jupiter = (sun + moon) - 1.0f;

int mars = --moon <= 8 ? 2 : 3;

System.out.println(sun+", "+jupiter+", "+mars);

A 1, 11, 2

B. 3.0, 11.0, 2

C. 1.0, 11.0, 3

D. 3.0, 13.0, 3

E. 3.0f, 12, 2

F The code does not compile because one of the assignments requires an explicit numeric

cast.

xlvi

Introduction

Which changes, when made independently, guarantee the following code snippet prints 100 at
runtime? (Choose all that apply.)

List<Integer> data = new ArrayList<>();
IntStream.range(0,100).parallel().forEach(s -> data.add(s));
System.out.println(data.size());

Mmoo wp

Change data to an instance variable and mark it volatile.

Remove parallel() in the stream operation.

Change forEach () to forEachOrdered() in the stream operation.
Change parallel() to serial() in the stream operation.

Wrap the lambda body with a synchronized block.

The code snippet will always print 100 as is.

What is the output of this code?

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

A.
B.
C.
D.

Predicate<String> empty = String::isEmpty;
Predicate<String> notEmpty = empty.negate();

var result = Stream.generate(() -> "")
.filter(notEmpty)
.collect(Collectors.groupingBy(k -> k))
.entrySet()
.stream()
.map(Entry::getValue)
.flatMap(Collection: :stream)
.collect(Collectors.partitioningBy(notEmpty));
System.out.println(result);

It outputs {}.
It outputs {false=[], true=[]}.
The code does not compile.

The code does not terminate.

What is the result of the following program?

1: public class MathFunctions {

2:

©O© o N o b~ W

public static void addToInt(int x, int amountToAdd) {
X = X + amountToAdd;

}

public static void main(String[] args) {
var a = 15;
var b = 10;

MathFunctions.addToInt(a, b);
System.out.println(a); 13

Assessment Test xlvii

10
15
25

Compiler error on line 3

moow»

Compiler error on line 8

F. None of the above

Suppose that we have the following property files and code. What values are printed on lines
8 and 9, respectively?

Penguin.properties

name=Billy

age=1

Penguin_de.properties
name=Chilly

age=4

Penguin_en.properties

name=Willy
5: Locale fr = new Locale("fr");
6: Locale.setDefault(new Locale("en", "US"));
7: var b = ResourceBundle.getBundle("Penguin", fr);
8: System.out.println(b.getString("name"));
9: System.out.println(b.getString("age"));
Billyand 1
Billy and null
Willy and 1

Willy and null
Chilly and null

The code does not compile.

Mmoo wp

What is guaranteed to be printed by the following code? (Choose all that apply.)
int[] array = {6,9,8};
System.out.println("B" + Arrays.binarySearch(array,9));
System.out.println("C" + Arrays.compare(array,

new int[] {6, 9, 8}));
System.out.println("M" + Arrays.mismatch(array,

new int[] {6, 9, 8}));

xlviii

10.

Introduction
A. B1
B. B2
C. C-1
D. co
E. M-1
F Mo
G. The code does not compile.
Which functional interfaces complete the following code, presuming variable r exists?

(Choose all that apply.)

X = r.negate();
y = () -> System.out.println();

z = (a, b) -> a - b;

6
T:
8

BinaryPredicate<Integer, Integer>
Comparable<Integer>
Comparator<Integer>
Consumer<Integer>
Predicate<Integer>

Runnable

@MmMUooOw®®

Runnable<Integer>

Suppose you have a module named com. vet. Where could you place the following
module-info.java file to create a valid module?

public module com.vet {
exports com.vet;

}

A. At the same level as the com folder
B. At the same level as the vet folder
C. Inside the vet folder

D. None of the above

What is the output of the following program? (Choose all that apply.)

interface HasTail { private int getTailLength(); }
abstract class Puma implements HasTail {
String getTaillLength() { return "4"; }
}
public class Cougar implements HasTail {
public static void main(String[] args) {
var puma = new Puma() {};

~N o b~ W N

1.

IOGMMmMOO WP

Assessment Test

System.out.println(puma.getTaillLength());

}
public int getTailLength(int length) { return 2; }

The code will not compile because of line 1.
The code will not compile because of line 3.
The code will not compile because of line 5.
The code will not compile because of line 7.
The code will not compile because of line 10.

The output cannot be determined from the code provided.

Which lines in Tadpole.java give a compiler error? (Choose all that apply.)

// Frog.java

package animal;

public class Frog {
protected void ribbit() { }
void jump() { }

// Tadpole.java

1
2
3
4
5:
6
7
8
9

package other;
import animal.x;
public class Tadpole extends Frog {
public static void main(String[] args) {
Tadpole t = new Tadpole();
t.ribbit();
t.jump();
Frog f = new Tadpole();
f.ribbit();
f.jump () ;
Tl

Line §

Line 6

Line 7

Line 8

Line 9

Line 10

All of the lines compile.

xlix

| Introduction

12. Which of the following can fill in the blanks in order to make this code compile?

a = .getConnection(

url, userName, password);
b = a.prepareStatement(sql);
¢ = b.executeQuery();
if (c.next()) System.out.println(c.getString(l));

Connection,Driver, PreparedStatement, ResultSet
Connection, DriverManager, PreparedStatement, ResultSet
Connection, DataSource, PreparedStatement, ResultSet
Driver, Connection, PreparedStatement, ResultSet

DriverManager, Connection, PreparedStatement, ResultSet

mmOO®mP

DataSource, Connection, PreparedStatement, ResultSet

13. Which of the following statements can fill in the blank to make the code compile success-
fully? (Choose all that apply.)

Set<? extends RuntimeException> mySet = new — ();
A. HashSet<? extends RuntimeException>

B. HashSet<Exception>

C. TreeSet<RuntimeException>

D. TreeSet<NullPointerException>

E. None of the above

14. Assume that birds.dat exists, is accessible, and contains data for a Bird object. What is
the result of executing the following code? (Choose all that apply.)

1: dmport java.io.*;

2: public class Bird {

3 private String name;

4 private transient Integer age;

5:

6 // Getters/setters omitted

7

8 public static void main(String[] args) {
9 try(var is = new ObjectInputStream(
10: new BufferedInputStream(

11: new FileInputStream("birds.dat")))) {
12: Bird b = is.readObject();

13: System.out.println(b.age);

14: } 1}

15.

16.

mmOoOoO®P

Assessment Test li

It compiles and prints 0 at runtime.

It compiles and prints null at runtime.

It compiles and prints a number at runtime.

The code will not compile because of lines 9-11.
The code will not compile because of line 12.

It compiles but throws an exception at runtime.

Which of the following are valid instance members of a class? (Choose all that apply.)

mmoOoOow>®

var var = 3;

Var case = new Var();

void var() {}

int Var() { var _ = 7; return _;}
String new = "var";

var var() { return null; }

Which is true if the table is empty before this code is run? (Choose all that apply.)

var sql = "INSERT INTO people VALUES(?, ?, ?)";
conn.setAutoCommit(false);

try (var ps = conn.prepareStatement(sql,

ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE)) {

ps.setInt(1l, 1);
ps.setString(2, "Joslyn");
ps.setString(3, "NY");
ps.executeUpdate();

Savepoint sp = conn.setSavepoint();
ps.setInt(1l, 2);
ps.setString(2, "Kara");

ps.executeUpdate();

conn. ;

17.

18.

19.

mmOoOoO®P

Introduction

If the blank line contains rollback (), there are no rows in the table.

If the blank line contains rollback (), there is one row in the table.

If the blank line contains rollback (sp), there are no rows in the table.
If the blank line contains rollback(sp), there is one row in the table.
The code does not compile.

The code throws an exception because the second update does not set all the parameters.

Which is true if the contents of path1 start with the text Howdy? (Choose two.)

System.out.println(Files.mismatch(pathl,path2));

Mmoo ® >

If path2 doesn’t exist, the code prints - 1.

If path2 doesn’t exist, the code prints 0.

If path2 doesn’t exist, the code throws an exception.

If the contents of path2 start with Hello, the code prints -1.
If the contents of path2 start with Hello, the code prints 0.
If the contents of path2 start with Hello, the code prints 1.

Which of the following types can be inserted into the blank to allow the program to compile
successfully? (Choose all that apply.)

11l

Mmoo wp

1: dmport java.util.x;

2: final class Amphibian {}

3: abstract class Tadpole extends Amphibian {}
4: public class FindAllTadpoles {

5:
6
7
8
9

public static void main(String... args) {

var tadpoles = new ArraylList<Tadpole>();

for (var amphibian : tadpoles) {
tadpole = amphibian;

List<Tadpole>
Boolean
Amphibian
Tadpole
Object

None of the above

What is the result of compiling and executing the following program?

public class FeedingSchedule {
public static void main(String[] args) {
var x = 5;
var j = 0;

Assessment Test liii

5 OUTER: for (var i = 0; i < 33)
6 INNER: do {

T it

8 X++;

9: if (x> 10) break INNER;
10: X += 4;

11: jt++;

12: } while (7 <= 2);

13: System.out.println(x);

14: } }

A. 10

B. 11

C. 12

D. 17

E. The code will not compile because of line 5.
F The code will not compile because of line 6.

. When printed, which String gives the same value as this text block?

var pooh = """
"Oh, bother." -Pooh
" 9indent(1);
System.out.print(pooh);

A. "\n\"Oh, bother.\" -Pooh\n"
B. "\n \"Oh, bother.\" -Pooh\n"
C. " \"Oh, bother.\" -Pooh\n"
D. "\n\"Oh, bother.\" -Pooh"

E. "\n \"Oh, bother.\" -Pooh"
F. " \"Oh, bother.\" -Pooh"

G. None of the above

. A(n) module always contains a module-info.java file, while a(n)
module always exports all its packages to other modules.

A. automatic, named
automatic, unnamed

named, automatic

unnamed, automatic

B
(o
D. named, unnamed
E
F. unnamed, named
G

None of the above

liv

22,

23.

24.

Introduction

What is the result of the following code?

22: var treeMap = new TreeMap<Character, Integer>();
23: treeMap.put('k', 1);

24: treeMap.put('k', 2);

25: treeMap.put('m', 3);

26: treeMap.put('M', 4);

27: treeMap.replaceAll((k, v) => v + v);

28: treeMap.keySet()

29: .forkach(k -> System.out.print(treeMap.get(k)));
A. 268

B. 468

C. 2468

D. 826

E. 846

F. 8246

G. None of the above

Which of the following lines can fill in the blank to print true? (Choose all that apply.)
10: public static void main(String[] args) {

11: System.out.println(test());
12: }

13: private static boolean test(Function<Integer, Boolean> b) {
14: return b.apply(5);

15: }

A. 1i::equals(5)

B. i -> {i == 5;}

C. (i) —> 1 ==

D. (int i) -> i == 5

E. (int i) -> {return i == 5;}

FE (i) -> {return i == 5;}

How many times is the word true printed?

var sl = "Java";

var s2 = "Java";

var s3 = sl.indent(1).strip();
var s4 = s3.intern();

var sbl = new StringBuilder();
sbl.append("Ja").append("va");

25.

Assessment Test

System.out.println(sl == s2);
System.out.println(sl.equals(s2));
System.out.println(sl == s3);
System.out.println(sl == s4);
System.out.println(sbl.toString() == s1);
System.out.println(sbl.toString().equals(sl));

mmoOoOow>»

Once
Twice
Three times
Four times
Five times

The code does not compile.

What is the output of the following program?

1
2
3
4
5:
6
7
8
9

IOGMMmMOO®P

class Deer {
public Deer() {System.out.print("Deer");}
public Deer(int age) {System.out.print("DeerAge");}
protected boolean hasHorns() { return false; }
}
public class Reindeer extends Deer {
public Reindeer(int age) {System.out.print("Reindeer");}
public boolean hasHorns() { return true; }
public static void main(String[] args) {
Deer deer = new Reindeer(5);
System.out.println("," + deer.hasHorns());

11}

ReindeerDeer,false
DeerAgeReindeer,true
DeerReindeer,true
DeerReindeer,false
ReindeerDeer,true
DeerAgeReindeer,false

The code will not compile because of line 4.

The code will not compile because of line 12.

\T]

Ivi Introduction

26. Which of the following are true? (Choose all that apply.)
private static void magic(Stream<Integer> s) {
Optional o = s
filter(x -> x < 5)
Limit(3)
max((x, y) => x-y);
System.out.printin(o.get());

magic(Stream.empty()) ; runs infinitely.
magic(Stream.empty()) ; throws an exception.
magic(Stream.iterate(l, x -> x++)); runs infinitely.
magic(Stream.iterate(l, x -> x++)); throws an exception.
magic(Stream.of (5, 10)); runs infinitely.

magic(Stream.of (5, 10)); throws an exception.

@MmMUOw®»

The method does not compile.

27. Assuming the following declarations are top-level types declared in the same file, which suc-
cessfully compile? (Choose all that apply.)

record Music() {
final int score = 10;

}
record Song(String lyrics) {
Song {
this.lyrics = lyrics + "Hello World";
}
}

sealed class Dance {}
record March() {

@override String toString() { return null; }
}

class Ballet extends Dance {}

Music
Song
Dance
March
Ballet

Mmoo wp

None of them compile.

28.

29.

30.

Assessment Test lvii

Which of the following expressions compile without error? (Choose all that apply.)
A. int monday = 3 + 2.0;

double tuesday = 5_6L;

boolean wednesday = 1 > 2 ? !true;

short thursday = (short)Integer .MAX_VALUE;

long friday = 8.0L;

var saturday = 2_.0;

®mMmOOw

None of the above

What is the result of executing the following application?

final var cb = new CyclicBarrier(3,
() -> System.out.println("Clean!")); // ul
ExecutorService service = Executors.newSingleThreadExecutor();

try {
IntStream.generate(() -> 1)
Limit(12)
.parallel()

.forEach(i -> service.submit(() -> ch.await())); // u2
} finally { service.shutdown(); }

It outputs Clean! at least once.

It outputs Clean! exactly four times.

The code will not compile because of line ul.
The code will not compile because of line u2.

It compiles but throws an exception at runtime.

mmoOoOow®

It compiles but waits forever at runtime.

Which statement about the following method is true?

5: public static void main(String... unused) {

6 System.out.print("a");

7: try (StringBuilder reader = new StringBuilder()) {
8 System.out.print("b");

9 throw new IllegalArgumentException();

10: } catch (Exception e || RuntimeException e) {
11: System.out.print("c");

12: throw new FileNotFoundException();

13: } finally {

14: System.out.print("d");

15: } }

lviii

GmMmQDpoo®mP

Introduction

It compiles and prints abc.

It compiles and prints abd.

It compiles and prints abcd.

One line contains a compiler error.
Two lines contain a compiler error.
Three lines contain a compiler error.

It compiles but prints an exception at runtime.

Answers to Assessment Test lix

Answers to Assessment Test

1.

G. The question does not compile because line 44 and line 47 do not always return a value
in the case block, which is required when a switch expression is used in an assignment
operation. Line 44 is missing a yield statement when the i f statement evaluates to false,
while line 47 is missing a yield statement entirely. Since two lines don’t compile, option G
is the answer. For more information, see Chapter 3.

B. Initially, moon is assigned a value of 9, while star is assigned a value of 8. The multi-
plication operator (*) has a higher order of precedence than the addition operator (+), so it
gets evaluated first. Since star is not greater than 10, sun is assigned a value of 3, which is
promoted to 3.0f as part of the assignment. The value of jupiteris (3.0f + 9) - 1.0,
which is 11.0f. This value is implicitly promoted to double when it is assigned. In the last
assignment, moon is decremented from 9 to 8, with the value of the expression returned as 8.
Since 8 less than or equal to 8 is true, mars is set to a value of 2. The final output is 3.0,
11.0, 2, making option B the correct answer. Note that while Java outputs the decimal

for both float and double values, it does not output the f for float values. For more
information, see Chapter 2.

B, C, E. The code may print 100 without any changes, but since the data class is not thread-
safe, this behavior is not guaranteed. For this reason, option F is incorrect. Option A is also
incorrect, as volatile does not guarantee thread-safety. Options B and C are correct, as
they both cause the stream to apply the add () operation in a synchronized manner. Option
D is incorrect, as seria’l() is not a stream method. Option E is correct. Synchronization
will cause each thread to wait so that the List is modified one element at a time. For more
information, see Chapter 13.

D. First, this mess of code does compile. However, the source is an infinite stream. The filter
operation will check each element in turn to see whether any are not empty. While nothing
passes the filter, the code does not terminate. Therefore, option D is correct. For more
information, see Chapter 10.

B. The code compiles successfully, so options D and E are incorrect. The value of a cannot be
changed by the addToInt () method, no matter what the method does, because only a copy
of the variable is passed into the parameter x. Therefore, a does not change, and the output
on line 9 is 15 which is option B. For more information, see Chapter 5.

C. Java will use Penguin_en.properties as the matching resource bundle on line 7.
Since there is no match for French, the default locale is used. Line 8 finds a matching
key in the Penguin_en.properties file. Line 9 does not find a match in the
Penguin_en.properties file; therefore, it has to look higher up in the hierarchy to
Penguin.properties. This makes option C the answer. For more information, see
Chapter 11.

D, E. The array is allowed to use an anonymous initializer because it is in the same line as
the declaration. The results of the binary search are undefined since the array is not sorted.
Since the question asks about guaranteed output, options A and B are incorrect.

10.

1.

12.

13.

14.

Introduction

Option D is correct because the compare () method returns ® when the arrays are the same
length and have the same elements. Option E is correct because the mismatch () method
returns a —1 when the arrays are equivalent. For more information, see Chapter 4.

C, E, E. First, note that option A is incorrect because the interface should be BiPredicate
and not BinaryPredicate. Line 6 requires you to know that negate () is a convenience
method on Predicate. This makes option E correct. Line 7 takes zero parameters and
doesn’t return anything, making it a Runnable. Remember that Runnable doesn’t use
generics. This makes option F correct. Finally, line 8 takes two parameters and returns an
int. Option C is correct. Comparable is there to mislead you since it takes only one param-
eter in its single abstract method. For more information, see Chapter 8.

D. If this were a valid module-info. java file, it would need to be placed at the root
directory of the module, which is option A. However, a module is not allowed to use the
public access modifier. Option D is correct because the provided file does not compile
regardless of placement in the project. For more information, see Chapter 12.

C. The getTailLength() method in the interface is private; therefore, it must include
a body. For this reason, line 1 is the only line that does not compile and option C is correct.
Line 3 uses a different return type for the method, but since it is private in the interface, it
is not considered an override. Note that line 7 defines an anonymous class using the abstract
Puma parent class. For more information, see Chapter 7.

C,E, E The jump () method has package access, which means it can be accessed only

from the same package. Tadpole is not in the same package as Frog, causing lines 7

and 10 to trigger compiler errors and giving us options C and F. The ribbit () method has
protected access, which means it can only be accessed from a subclass reference or in the
same package. Line 6 is fine because Tadpo'e is a subclass. Line 9 does not compile and
our final answer is option E because the variable reference is to a Frog, which doesn’t grant
access to the protected method. For more information, see Chapter 5.

B. DataSource isn’t on the exam, so any question containing one is wrong. The key vari-
ables used in running a query are Connection, PreparedStatement, and ResultSet.
A Connection is obtained through a DriverManager, making option B correct. For more
information, see Chapter 15.

C, D. The mySet declaration defines an upper bound of type RuntimeException.

This means that classes may specify RuntimeException or any subclass of
RuntimeException as the type parameter. Option B is incorrect because Exception is a
superclass, not a subclass, of RuntimeException. Option A is incorrect because the wild-
card cannot occur on the right side of the assignment. Options C and D compile and are the
answers. For more information, see Chapter 9.

D, E. Line 10 includes an unhandled checked IOException, while line 11 includes an
unhandled checked FileNotFoundException, making option D correct. Line 12 does not
compile because is.readObject () must be cast to a Bird object to be assigned to b. It
also does not compile because it includes two unhandled checked exceptions, IOException
and ClassNotFoundException, making option E correct. If a cast operation were added
on line 12 and the main () method were updated on line 8 to declare the various checked

15.

16.

17.

18.

19.

20.

Answers to Assessment Test Ixi

exceptions, the code would compile but throw an exception at runtime since Bird does not
implement Serializabtle. Finally, if the class did implement Serializable, the program
would print null at runtime, as that is the default value for the transient field age. For
more information, see Chapter 14.

C. Option A is incorrect because var is only allowed as a type for local variables, not in-
stance members. Options B and E are incorrect because new and case are reserved words
and cannot be used as identifiers. Option C is correct, as var can be used as a method name.
Option D is incorrect because a single underscore (_) cannot be used as an identifier. Finally,
option F is incorrect because var cannot be specified as the return type of a method. For
more information, see Chapter 1.

A, D. This code is correct, eliminating options E and E. JDBC will use the existing parameter
set if you don’t replace it. This means Kara’s row will be set to use NY as the third param-
eter. Rolling back to a savepoint throws out any changes made since. This leaves Joslyn and
eliminates Kara, making option D correct. Rolling back without a savepoint brings us back
to the beginning of the transaction, which is option A. For more information, see Chapter 15.

C, E. Option C is correct as mismatch () throws an exception if the files do not exist unless
they both refer to the same file. Additionally, option F is correct because the first index that
differs is returned, which is the second character. Since Java uses zero-based indexes, this is 1.
For more information, see Chapter 14.

F. The Amphibian class is marked final, which means line 3 triggers a compiler error and
option F is correct. For more information, see Chapter 6.

C. The code compiles and runs without issue; therefore, options E and F are incorrect. This
type of problem is best examined one loop iteration at a time:

= On the first iteration of the outer loop, 7 is 0, so the loop continues.

= On the first iteration of the inner loop, i is updated to 1 and x to 6. The 1 f statement
branch is not executed, and x is increased to 10 and j to 1.

= On the second iteration of the inner loop (since j = 1 and 1 <= 2), i is updated to 2
and x to 11. At this point, the if branch will evaluate to true for the remainder of
the program run, which causes the flow to break out of the inner loop each time it
is reached.

= On the second iteration of the outer loop (since i = 2), 1 is updated to 3 and x to 12. As
before, the inner loop is broken since x is still greater than 10.

= On the third iteration of the outer loop, the outer loop is broken, as i is already not less
than 3. The most recent value of x, 12, is output, so the answer is option C.

For more information, see Chapter 3.

C. First, note that the text block has the closing """ on a separate line, which means there
is a new line at the end and rules out options D, E, and F. Additionally, text blocks don’t
start with a new line, ruling out options A and B. Therefore, option C is correct. For more
information, see Chapter 1.

Ixii

21.

22.

23.

24.

25.

26.

Introduction

C. Only named modules are required to have a module-info. java file, ruling out options
A, B, E, and E Unnamed modules are not readable by any other types of modules, ruling

out option D. Automatic modules always export all packages to other modules, making the
answer option C. For more information, see Chapter 12.

E. When the same key is put into a Map, it overrides the original value. This means that line
23 could be omitted and the code would be the same, and there are only three key/value
pairs in the map. TreeMap sorts its keys, making the order M followed by k followed by m.
Remember that natural sort ordering has uppercase before lowercase. The replaceAll()
method runs against each element in the map, doubling the value. Finally, we iterate through
each key, printing 846 and making option E correct. For more information, see Chapter 9.

C, E. Option A looks like a method reference. However, it doesn’t call a valid method, nor
can method references take parameters. The Predicate interface takes a single param-
eter and returns a boolean. Lambda expressions with one parameter are allowed to omit
the parentheses around the parameter list, making option C correct. The return state-
ment is optional when a single statement is in the body, making option F correct. Option

B is incorrect because a return statement must be used if braces are included around the
body. Options D and E are incorrect because the type is Integer in the predicate and int
in the lambda. Autoboxing works for collections, not inferring predicates. If these two were
changed to Integer, they would be correct. For more information, see Chapter 8.

D. String literals are used from the string pool. This means that s1 and s2 refer to the

same object and are equal. Therefore, the first two print statements print true. While the
indent () and strip() methods create new String objects and the third statement prints
false, the intern() method reverts the String to the one from the string pool. There-
fore, the fourth print statement prints true. The fifth print statement prints false because
toString() uses a method to compute the value, and it is not from the string pool. The
final print statement again prints true because equals () looks at the values of String
objects. Since four are true, option D is the answer. For more information, see Chapter 4.

C. The Reindeer object is instantiated using the constructor that takes an int value. Since
there is no explicit call to the parent constructor, the compiler inserts super () as the first
line of the constructor on line 7. The parent constructor is called, and Deer is printed on line
2. The flow returns to the constructor on line 7, with Reindeer being printed. Next, the
hasHorns () method is called. The reference type is Deer, and the underlying object type

is Reindeer. Since Reindeer correctly overrides the hasHorns () method, the version in
Reindeer is called, with line 11 printing , true. Therefore, option C is correct. For more
information, see Chapter 6.

B, F. Calling get () on an empty Optional causes an exception to be thrown, making
option B correct. Option F is also correct because filter () makes the Optional empty
before it calls get (). Option C is incorrect because the infinite stream is made finite by the
intermediate 1imit () operation. Options A and E are incorrect because the source streams
are not infinite. Therefore, the call to max () sees only three elements and terminates. For
more information, see Chapter 10.

27.

28.

29.

30.

Answers to Assessment Test Ixiii

C. Music does not compile because records cannot include instance variables not listed in
the declaration of the record, as it could break immutability. Song does not compile because
a compact constructor cannot set an instance variable. The record would compile if this
were removed from the compact constructor, as compact constructors can modify input
parameters. March does not compile because it is an invalid override; it reduces the visibility
of the toString() method from public to package access. Ballet does not compile
because the subclass of a sealed class must be marked final, sealed, or non-sealed.
Since the only one that compiles is Dance, option C is the answer. For more information, see
Chapter 7.

B, D. Option A does not compile, as the expression 3 + 2.0 is evaluated as a double,

and a doub'le requires an explicit cast to be assigned to an int. Option B compiles without
issue, as a Long value can be implicitly cast to a double. Option C does not compile
because the ternary operator (? :) is missing a colon (:), followed by a second expression.
Option D is correct. Even though the int value is larger than a short, it is explicitly cast to
a short, which means the value will wrap around to fit in a short. Option E is incorrect,
as you cannot use a decimal (.) with the long (L) postfix. Finally, option F is incorrect, as an
underscore cannot be used next to a decimal point. For more information, see Chapter 2.

E. The code compiles without issue. The key to understanding this code is to notice that our
thread executor contains only one thread, but our CyclicBarrier limit is 3. Even though
12 tasks are all successfully submitted to the service, the first task will block forever on the
call to await(). Since the barrier is never reached, nothing is printed, and the program
hangs, making option F correct. For more information, see Chapter 13.

F. Line 5 does not compile as the FileNotFoundException thrown on line 12 is not han-
dled or declared by the method. Line 7 does not compile because StringBuilder does not
implement AutoCloseab’le and is therefore not compatible with a try-with-resource state-
ment. Finally, line 10 does not compile as RuntimeException is a subclass of Exception
in the multi-catch block, making it redundant. Since this method contains three compiler
errors, option F is the correct answer. For more information, see Chapter 11.

Building Blocks

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Handling date, time, text, numeric and boolean values

Use primitives and wrapper classes including Math API,
parentheses, type promotion, and casting to evaluate
arithmetic and boolean expressions

v Utilizing Java Object-Oriented Approach

Declare and instantiate Java objects including nested class
objects, and explain the object life-cycle including creation,
reassigning references, and garbage collection

Understand variable scopes, use local variable type inference,
apply encapsulation, and make objects immutable

Welcome to the beginning of your journey to achieve a Java
17 certification. We assume this isn’t the first Java program-
, ming book you’ve read. Although we do talk about the basics,
we do so only because we want to make sure you have all the terminology and detail you

need for the exam. If you’ve never written a Java program before, we recommend you pick
up an introductory book on Java 8 or higher. Examples include Head First Java, 3rd Edition
(O’Reilly Media, 2022) and Beginning Programming with Java for Dummies (For Dummies,
2021). Then come back to this certification study guide.

As the old saying goes, you have to learn how to walk before you can run. Likewise, you
have to learn the basics of Java before you can build complex programs. In this chapter, we
present the basics of Java packages, classes, variables, and data types, along with the aspects
of each that you need to know for the exam. For example, you might use Java every day but
be unaware that you cannot create a variable called 3dMap or this. The exam expects you
to know and understand the rules behind these principles. While most of this chapter should
be review, there may be aspects of the Java language that are new to you since they don’t
come up in practical use often.

Learning about the Environment

The Java environment consists of understanding a number of technologies. In the following
sections, we go over the key terms and acronyms you need to know and then discuss what
software you need to study for the exam.

Major Components of Java

The Java Development Kit (JDK) contains the minimum software you need to do Java
development. Key commands include:

= javac: Converts .java source files into .class bytecode

= java: Executes the program

= jar: Packages files together

» javadoc: Generates documentation

The javac program generates instructions in a special format called bytecode that
the java command can run. Then java launches the Java Virtual Machine (JVM) before

Learning about the Environment

running the code. The JVM knows how to run bytecode on the actual machine it is on. You
can think of the JVM as a special magic box on your machine that knows how to run your
.class file within your particular operating system and hardware.

Where Did the JRE Go?

In Java 8 and earlier, you could download a Java Runtime Environment (JRE) instead of the
full JDK.The JRE was a subset of the JDK that was used for running a program but could
not compile one. Now, people can use the full JDK when running a Java program. Alterna-
tively, developers can supply an executable that contains the required pieces that would
have been in the JRE.

When writing a program, there are common pieces of functionality and algorithms that
developers need. Luckily, we do not have to write each of these ourselves. Java comes with
a large suite of application programming interfaces (APls) that you can use. For example,
there is a StringBuilder class to create a large String and a method in Collections
to sort a list. When writing a program, it is helpful to determine what pieces of your assign-
ment can be accomplished by existing APlIs.

You might have noticed that we said the JDK contains the minimum software you need.
Many developers use an integrated development environment (IDE) to make writing and
running code easier. While we do not recommend using one while studying for the exam, it
is still good to know that they exist. Common Java IDEs include Eclipse, Intelli] IDEA, and
Visual Studio Code.

Downloading a JDK

Every six months, Oracle releases a new version of Java. Java 17 came out in September
2021. This means that Java 17 will not be the latest version when you download the JDK to
study for the exam. However, you should still use Java 17 to study with since this is a Java
17 exam. The rules and behavior can change with later versions of Java. You wouldn’t want
to get a question wrong because you studied with a different version of Java!

You can download Oracle’s JDK on the Oracle website, using the same account you use
to register for the exam. There are many JDKs available, the most popular of which, besides
Oracle’s JDK, is Open]JDK.

Many versions of Java include preview features that are off by default but that you can
enable. Preview features are not on the exam. To avoid confusion about when a feature was
added to the language, we will say “was officially introduced in” to denote when it was
moved out of preview.

4 Chapter 1 = Building Blocks

CheckYour Version of Java

Before we go any further, please take this opportunity to ensure that you have the right ver-
sion of Java on your path.

javac -version

java -version

Both of these commands should include version number 17

Understanding the Class Structure

In Java programs, classes are the basic building blocks. When defining a class, you describe
all the parts and characteristics of one of those building blocks. In later chapters, you see
other building blocks such as interfaces, records, and enums.

To use most classes, you have to create objects. An object is a runtime instance of a class
in memory. An object is often referred to as an instance since it represents a single represen-
tation of the class. All the various objects of all the different classes represent the state of
your program. A reference is a variable that points to an object.

In the following sections, we look at fields, methods, and comments. We also explore the
relationship between classes and files.

Fields and Methods

Java classes have two primary elements: methods, often called functions or procedures in
other languages, and fields, more generally known as variables. Together these are called the
members of the class. Variables hold the state of the program, and methods operate on that
state. If the change is important to remember, a variable stores that change. That’s all classes
really do. It’s the programmer’s job to create and arrange these elements in such a way that
the resulting code is useful and, ideally, easy for other programmers to understand.

The simplest Java class you can write looks like this:

1: public class Animal {
2: }

Java calls a word with special meaning a keyword, which we’ve marked bold in the
previous snippet. Throughout the book, we often bold parts of code snippets to call
attention to them. Line 1 includes the public keyword, which allows other classes to use
it. The class keyword indicates you’re defining a class. Animal gives the name of the class.
Granted, this isn’t an interesting class, so let’s add your first field.

1: public class Animal {
2: String name;
3}

Understanding the Class Structure 5

The line numbers aren’t part of the program; they're just there to make

"&;TE the code easier to talk about.

On line 2, we define a variable named name. We also declare the type of that variable to
be String. A String is a value that we can put text into, such as "this is a string".
String is also a class supplied with Java. Next we can add methods.

1: public class Animal {

2: String name;

public String getName() {
return name;

}

public void setName(String newName) {
name = newName;

© o N o b~ W

}

On lines 3-5, we define a method. A method is an operation that can be called. Again,
public is used to signify that this method may be called from other classes. Next comes
the return type—in this case, the method returns a String. On lines 6-8 is another method.
This one has a special return type called void. The void keyword means that no value at all
is returned. This method requires that information be supplied to it from the calling method;
this information is called a parameter. The setName () method has one parameter named
newName, and it is of type String. This means the caller should pass in one String param-
eter and expect nothing to be returned.

The method name and parameter types are called the method signature. In this example,
can you identify the method name and parameters?

public 1int numberVisitors(int month) {
return 10;

The method name is numberVisitors. There’s one parameter named month,
which is of type int, which is a numeric type. Therefore, the method signature is
numberVisitors(int).

Comments

Another common part of the code is called a comment. Because comments aren’t executable
code, you can place them in many places. Comments can make your code easier to read.
While the exam creators are trying to make the code harder to read, they still use comments
to call attention to line numbers. We hope you use comments in your own code. There are
three types of comments in Java. The first is called a single-line comment:

// comment until end of line

6 Chapter 1 = Building Blocks

A single-line comment begins with two slashes. The compiler ignores anything you type
after that on the same line. Next comes the multiple-line comment:
/* Multiple

* line comment
*/

A multiple-line comment (also known as a multiline comment) includes anything starting
from the symbol /x until the symbol x/. People often type an asterisk (*) at the beginning of
each line of a multiline comment to make it easier to read, but you don’t have to. Finally, we
have a Javadoc comment:

[**

* Javadoc multiple-line comment
* @author Jeanne and Scott

*/

This comment is similar to a multiline comment, except it starts with /xx. This special
syntax tells the Javadoc tool to pay attention to the comment. Javadoc comments have a
specific structure that the Javadoc tool knows how to read. You probably won’t see a
Javadoc comment on the exam. Just remember it exists so you can read up on it online when
you start writing programs for others to use.

As a bit of practice, can you identify which type of comment each of the following six
words is in? Is it a single-line or a multiline comment?

/*
* [/ anteater

*/

// bear

/1l /] cat

/] [* dog x/

/* elephant x/
/*

*x [*x ferret x/
*/

Did you look closely? Some of these are tricky. Even though comments technically aren’t
on the exam, it is good to practice looking at code carefully.

Understanding the Class Structure 7

Okay, on to the answers. The comment containing anteater is in a multiline comment.
Everything between /* and */ is part of a multiline comment—even if it includes a single-line
comment within it! The comment containing bear is your basic single-line comment. The
comments containing cat and dog are also single-line comments. Everything from // to the
end of the line is part of the comment, even if it is another type of comment. The comment
containing elephant is your basic multiline comment, even though it only takes up one line.

The line with ferret is interesting in that it doesn’t compile. Everything from the first /* to
the first */ is part of the comment, which means the compiler sees something like this:

[x x[x/

We have a problem. There is an extra */. That’s not valid syntax—a fact the compiler is
happy to inform you about.

Classes and Source Files

Most of the time, each Java class is defined in its own . java file. In this chapter, the only top-
level type is a class. A top-level type is a data structure that can be defined independently
within a source file. For the majority of the book, we work with classes as the top-level type,
but in Chapter 7, “Beyond Classes,” we present other top-level types, as well as nested types.

A top-level class is often public, which means any code can call it. Interestingly, Java does
not require that the type be public. For example, this class is just fine:

1: class Animal {
2: String name;
3: }

You can even put two types in the same file. When you do so, at most one of the top-
level types in the file is allowed to be public. That means a file containing the following is
also fine:

1: public class Animal {
2 private String name;
3: }
4: class Animal2 {}
If you do have a public type, it needs to match the filename. The declaration

public class Animal2 would not compile in a file named Animal.java. In Chapter 3,
“Methods,” we discuss what access options are available other than public.

Noticing a pattern yet? This chapter includes numerous references to

‘dTE topics that we go into in more detail in later chapters. If you're an expe-
rienced Java developer, you'll notice we keep a lot of the examples and
rules simple in this chapter. Don’t worry; we have the rest of the book to
present more rules and complicated edge cases!

8 Chapter 1 = Building Blocks

Writing a main() Method

A Java program begins execution with its main () method. In this section, you learn how to
create one, pass a parameter, and run a program. The main () method is often called an entry
point into the program, because it is the starting point that the JVM looks for when it begins
running a new program.

Creating a main() Method

The main () method lets the JVM call our code. The simplest possible class with a main ()
method looks like this:

1: public class Zoo {

2: public static void main(String[] args) {
3: System.out.println("Hello World");

4. }

5: }

This code prints Hello World. To compile and execute this code, type it into a file called
Zoo.java and execute the following:

javac Zoo.java
java Zoo

If it prints Hello World, you were successful. If you do get error messages, check that
you’ve installed the Java 17 JDK, that you have added it to the PATH, and that you didn’t
make any typos in the example. If you have any of these problems and don’t know what
to do, post a question with the error message you received in the Beginning Java forum at
CodeRanch:

www . coderanch.com/forums/f-33/java

To compile Java code with the javac command, the file must have the extension .java.
The name of the file must match the name of the public class. The result is a file of bytecode
with the same name but with a . class filename extension. Remember that bytecode consists
of instructions that the JVM knows how to execute. Notice that we must omit the .class
extension to run Zoo.class.

The rules for what a Java file contains, and in what order, are more detailed than what we
have explained so far (there is more on this topic later in the chapter). To keep things simple
for now, we follow this subset of the rules:

= Each file can contain only one public class.
» The filename must match the class name, including case, and have a . java extension.
= If the Java class is an entry point for the program, it must contain a valid main () method.

Let’s first review the words in the main () method’s signature, one at a time. The keyword
public is what’s called an access modifier. It declares this method’s level of exposure to
potential callers in the program. Naturally, public means full access from anywhere in the
program. You learn more about access modifiers in Chapter 5.

http://www.coderanch.com/forums/f-33/java

Writing a main() Method 9

The keyword static binds a method to its class so it can be called by just the class name,
as in, for example, Zoo.main (). Java doesn’t need to create an object to call the main ()
method—which is good since you haven’t learned about creating objects yet! In fact, the
JVM does this, more or less, when loading the class name given to it. If a main() method
doesn’t have the right keywords, you’ll get an error trying to run it. You see static again in
Chapter 6, “Class Design.”

The keyword vo-id represents the return type. A method that returns no data returns con-
trol to the caller silently. In general, it’s good practice to use void for methods that change an
object’s state. In that sense, the main () method changes the program state from started to fin-
ished. We explore return types in Chapter 5 as well. (Are you excited for Chapter 3 yet?)

Finally, we arrive at the main () method’s parameter list, represented as an array of
java.lang.String objects. You can use any valid variable name along with any of these
three formats:

String[] args
String options[]
String... friends

The compiler accepts any of these. The variable name args is common because it hints
that this list contains values that were read in (arguments) when the JVM started. The char-
acters [] are brackets and represent an array. An array is a fixed-size list of items that are
all of the same type. The characters . .. are called varargs (variable argument lists). You
learn about String in this chapter. Arrays are in Chapter 4, “Core APIs,” and varargs are in
Chapter 5.

Optional Modifiers in main() Methods

While most modifiers, such as public and statiic, are required for main() methods,
there are some optional modifiers allowed.

public final static void main(final String[] args) {}

In this example, both final modifiers are optional, and the main () method is a valid
entry point with or without them. We cover the meaning of final methods and parameters
in Chapter 6.

Passing Parameters to a Java Program
Let’s see how to send data to our program’s main () method. First, we modify the Zoo
program to print out the first two arguments passed in:

public class Zoo {
public static void main(String[] args) {

10 Chapter 1 = Building Blocks

System.out.println(args[0]);
System.out.println(args[1]);

The code args[0] accesses the first element of the array. That’s right: array indexes begin
with 0 in Java. To run it, type this:

javac Zoo.java
java Zoo Bronx Zoo

The output is what you might expect:

Bronx
Z00

The program correctly identifies the first two “words” as the arguments. Spaces are used
to separate the arguments. If you want spaces inside an argument, you need to use quotes as
in this example:

javac Zoo.java
java Zoo "San Diego" Zoo

Now we have a space in the output:

San Diego
Z00

Finally, what happens if you don’t pass in enough arguments?

javac Zoo.java
java Zoo Zoo

Reading args[0] goes fine, and Zoo is printed out. Then Java panics. There’s no second
argument! What to do? Java prints out an exception telling you it has no idea what to do
with this argument at position 1. (You learn about exceptions in Chapter 11, “Exceptions
and Localization.”)

Zoo

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
Index 1 out of bounds for length 1
at Zoo.main(Zoo.java:4)

To review, the JDK contains a compiler. Java class files run on the JVM and therefore run
on any machine with Java rather than just the machine or operating system they happened
to have been compiled on.

Understanding Package Declarations and Imports "

Single-File Source-Code

If you get tired of typing both javac and java every time you want to try a code example,
there’s a shortcut. You can instead run

java Zoo.java Bronx Zoo

There is a key difference here. When compiling first, you omitted the . java extension
when running java. When skipping the explicit compilation step, you include this
extension. This feature is called launching single-file source-code programs and is useful for
testing or for small programs. The name cleverly tells you that it is designed for when your
program is one file.

Understanding Package Declarations
and Imports

Java comes with thousands of built-in classes, and there are countless more from developers
like you. With all those classes, Java needs a way to organize them. It handles this in a way
similar to a file cabinet. You put all your pieces of paper in folders. Java puts classes in
packages. These are logical groupings for classes.

We wouldn’t put you in front of a file cabinet and tell you to find a specific paper. Instead,
we’d tell you which folder to look in. Java works the same way. It needs you to tell it which
packages to look in to find code.

Suppose you try to compile this code:

public class NumberPicker {
public static void main(String[] args) {
Random r = new Random(); // DOES NOT COMPILE
System.out.println(r.nextInt(10));

The Java compiler helpfully gives you an error that looks like this:
error: cannot find symbol

This error could mean you made a typo in the name of the class. You double-check and
discover that you didn’t. The other cause of this error is omitting a needed import statement.
A statement is an instruction, and import statements tell Java which packages to look in for
classes. Since you didn’t tell Java where to look for Random, it has no clue.

Trying this again with the import allows the code to compile.

12 Chapter 1 = Building Blocks

import java.util.Random; // import tells us where to find Random
public class NumberPicker {
public static void main(String[] args) {
Random r = new Random();
System.out.printin(r.nextInt(10)); // a number 0-9

Now the code runs; it prints out a random number between 0 and 9. Just like arrays, Java
likes to begin counting with 0.

In Chapter 5, we cover another type of import referred to as a static

OTE import. It allows you to make static members of a class known, often
SO you can use variables and method names without having to keep spec-
ifying the class name.

Packages

As you saw in the previous example, Java classes are grouped into packages. The import
statement tells the compiler which package to look in to find a class. This is similar to how
mailing a letter works. Imagine you are mailing a letter to 123 Main Street, Apartment 9.
The mail carrier first brings the letter to 123 Main Street. Then the carrier looks for the
mailbox for apartment number 9. The address is like the package name in Java.

The apartment number is like the class name in Java. Just as the mail carrier only looks

at apartment numbers in the building, Java only looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service starts with the
top level, looking at your country first. You start reading a package name at the beginning
too. For example, if it begins with java, this means it came with the JDK. If it starts with
something else, it likely shows where it came from using the website name in reverse. For
example, com.wiley.javabook tells us the code is associated with the wiley.com web-
site or organization. After the website name, you can add whatever you want. For example,
com.wiley.java.my.name also came from wiley.com. Java calls more detailed packages
child packages. The package com.wiley.javabook is a child package of com.wiley. You
can tell because it’s longer and thus more specific.

You’ll see package names on the exam that don’t follow this convention. Don’t be sur-
prised to see package names like a.b.c. The rule for package names is that they are mostly
letters or numbers separated by periods (.). Technically, you’re allowed a couple of other
characters between the periods (.). You can even use package names of websites you don’t
own if you want to, such as com.w1iley, although people reading your code might be con-
fused! The rules are the same as for variable names, which you see later in this chapter. The
exam may try to trick you with invalid variable names. Luckily, it doesn’t try to trick you by
giving invalid package names.

http://wiley.com
http://com.wiley.java.my.name
http://wiley.com

Understanding Package Declarations and Imports 13

In the following sections, we look at imports with wildcards, naming conflicts with
imports, how to create a package of your own, and how the exam formats code.

Wildcards

Classes in the same package are often imported together. You can use a shortcut to import all
the classes in a package.

import java.util.x*; // imports java.util.Random among other things
public class NumberPicker {
public static void main(String[] args) {
Random r = new Random();
System.out.println(r.nextInt(10));

In this example, we imported java.util.Random and a pile of other classes. The * is
a wildcard that matches all classes in the package. Every class in the java.util package
is available to this program when Java compiles it. The import statement doesn’t bring in
child packages, fields, or methods; it imports only classes directly under the package. Let’s
say you wanted to use the class AtomicInteger (you learn about that one in Chapter 13,
“Concurrency”) in the java.util.concurrent.atomic package. Which import or
imports support this?

import java.util.x;
import java.util.concurrent.x;
import java.util.concurrent.atomic.x*;

Only the last import allows the class to be recognized because child packages are not
included with the first two.

You might think that including so many classes slows down your program execution, but
it doesn’t. The compiler figures out what’s actually needed. Which approach you choose is
personal preference—or team preference, if you are working with others on a team. Listing
the classes used makes the code easier to read, especially for new programmers. Using the
wildcard can shorten the import list. You’ll see both approaches on the exam.

Redundant Imports

Wait a minute! We’ve been referring to System without an import every time we printed
text, and Java found it just fine. There’s one special package in the Java world called
java.lang. This package is special in that it is automatically imported. You can type this
package in an import statement, but you don’t have to. In the following code, how many of
the imports do you think are redundant?

1: import java.lang.System;
2: dimport java.lang.x;

14 Chapter 1 = Building Blocks

import java.util.Random;
import java.util.x*;
public class NumberPicker {
public static void main(String[] args) {
Random r = new Random();
System.out.println(r.nextInt(10));

O o N o b~ W

: }
10: }

The answer is that three of the imports are redundant. Lines 1 and 2 are redundant because
everything in java. lang is automatically imported. Line 4 is also redundant in this example
because Random is already imported from java.util.Random. If line 3 wasn’t present,
java.util.* wouldn’t be redundant, though, since it would cover importing Random.

Another case of redundancy involves importing a class that is in the same package as the
class importing it. Java automatically looks in the current package for other classes.

Let’s take a look at one more example to make sure you understand the edge cases for
imports. For this example, Files and Paths are both in the package java.nio.file. The
exam may use packages you may never have seen before. The question will let you know
which package the class is in if you need to know that in order to answer the question.
Which import statements do you think would work to get this code to compile?

public class InputImports {
public void read(Files files) {
Paths.get("name");

There are two possible answers. The shorter one is to use a wildcard to import both at the
same time.

import java.nio.file.x*;

The other answer is to import both classes explicitly.
import java.nio.file.Files;
import java.nio.file.Paths;

Now let’s consider some imports that don’t work.

import java.nio.x*; // NO GOOD - a wildcard only matches
// class names, not "file.Files"

import java.nio.*.x*; // NO GOOD - you can only have one wildcard
// and it must be at the end

import java.nio.file.Paths.*; // NO GOOD - you cannot import methods
// only class names

Understanding Package Declarations and Imports 15

Naming Conflicts

One of the reasons for using packages is so that class names don’t have to be unique across
all of Java. This means you’ll sometimes want to import a class that can be found in mul-
tiple places. A common example of this is the Date class. Java provides implementations of
java.util.Date and java.sql.Date. What import statement can we use if we want the
java.util.Date version?

public class Conflicts {
Date date;
// some more code

The answer should be easy by now. You can write either import java.util.=; or
import java.util.Datej;. The tricky cases come about when other imports are present.

import java.util.x;
import java.sql.*; // causes Date declaration to not compile

When the class name is found in multiple packages, Java gives you a compiler error. In
our example, the solution is easy—remove the import java.sql.* that we don’t need. But
what do we do if we need a whole pile of other classes in the java.sql package?

import java.util.Date;
import java.sql.x*;

Ah, now it works! If you explicitly import a class name, it takes precedence over any
wildcards present. Java thinks, “The programmer really wants me to assume use of the
java.util.Date class.”

One more example. What does Java do with “ties” for precedence?

import java.util.Date;
import java.sql.Date;

Java is smart enough to detect that this code is no good. As a programmer, you’ve claimed
to explicitly want the default to be both the java.util.Date and java.sql.Date imple-
mentations. Because there can’t be two defaults, the compiler tells you the imports are
ambiguous.

If You Really Need to Use Two Classes with the Same Name

Sometimes you really do want to use Date from two different packages. When this hap-
pens, you can pick one to use in the import statement and use the other’s fully qualified
class name. Or you can drop both import statements and always use the fully qualified
class name.

public class Conflicts {
java.util.Date date;
java.sql.Date sqlDate;

16 Chapter 1 = Building Blocks

Creating a New Package

Up to now, all the code we’ve written in this chapter has been in the default package. This is
a special unnamed package that you should use only for throwaway code. You can tell the
code is in the default package, because there’s no package name. On the exam, you’ll see the
default package used a lot to save space in code listings. In real life, always name your pack-
ages to avoid naming conflicts and to allow others to reuse your code.

Now it’s time to create a new package. The directory structure on your computer is
related to the package name. In this section, just read along. We cover how to compile and
run the code in the next section.

Suppose we have these two classes:

package packagea;
public class ClassA {}

package packageb;
import packagea.ClassA;
public class ClassB {
public static void main(String[] args) {
ClassA a;
System.out.println("Got it");

When you run a Java program, Java knows where to look for those package names.
In this case, running from C: \ temp works because both packagea and packageb are
underneath it.

Compiling and Running Code with Packages

You’ll learn Java much more easily by using the command line to compile and test your
examples. Once you know the Java syntax well, you can switch to an IDE. But for the exam,
your goal is to know details about the language and not have the IDE hide them for you.

Follow this example to make sure you know how to use the command line. If you have
any problems following this procedure, post a question in the Beginning Java forum at
CodeRanch. Describe what you tried and what the error said.

www . coderanch.com/forums/f-33/java

The first step is to create the two files from the previous section. Table 1.1 shows the
expected fully qualified filenames and the command to get into the directory for the
next steps.

http://www.coderanch.com/forums/f-33/java

Understanding Package Declarations and Imports 17

TABLE 1.1 Setup procedure by operating system

Step Windows Mac/Linux

1. Create first class. C:\temp\packagea\ /tmp/packagea/ClassA.java
ClassA.java

2. Create second class. C:\temp\packageb\ /tmp/packageb/ClassB.java
ClassB.java

3. Go to directory. cd C:\temp cd /tmp

Now it is time to compile the code. Luckily, this is the same regardless of the operating
system. To compile, type the following command:

javac packagea/ClassA.java packageb/ClassB.java
If this command doesn’t work, you’ll get an error message. Check your files carefully for

typos against the provided files. If the command does work, two new files will be created:
packagea/ClassA.class and packageb/ClassB.class.

Compiling with Wildcards

You can use an asterisk to specify that you'd like to include all Java files in a directory. This
is convenient when you have a lot of files in a package. We can rewrite the previous javac
command like this:

javac packagea/*.java packageb/*x.java

However, you cannot use a wildcard to include subdirectories. If you were to write
javac *.java, the code in the packages would not be picked up.

Now that your code has compiled, you can run it by typing the following command:

java packageb.ClassB

If it works, you’ll see Got -t printed. You might have noticed that we typed ClassB
rather than ClassB.class. As discussed earlier, you don’t pass the extension when running
a program.

Figure 1.1 shows where the .class files were created in the directory structure.

18 Chapter 1 = Building Blocks

FIGURE 1.1 Compiling with packages

Compiling to Another Directory

By default, the javac command places the compiled classes in the same directory as the
source code. It also provides an option to place the class files into a different directory. The
-d option specifies this target directory.

y Java options are case sensitive. This means you cannot pass -D instead
Adﬁ'rs of -d.

If you are following along, delete the ClassA.class and ClassB. class files that
were created in the previous section. Where do you think this command will create the file
ClassA.class?

javac -d classes packagea/ClassA.java packageb/ClassB.java
The correct answer is in classes/packagea/ClassA.class. The package structure is

preserved under the requested target directory. Figure 1.2 shows this new structure.

FIGURE 1.2 Compiling with packages and directories

packagea

ClassA.java

packageb

ClassB.java
classes

packagea

packageb

ClassB.class

Understanding Package Declarations and Imports 19

To run the program, you specify the classpath so Java knows where to find the classes.
There are three options you can use. All three of these do the same thing;:
java -cp classes packageb.ClassB
java -classpath classes packageb.ClassB
java --class-path classes packageb.ClassB

Notice that the last one requires two dashes (--), while the first two require one dash (-).
If you have the wrong number of dashes, the program will not run.

Three Classpath Options

You might wonder why there are three options for the classpath. The —cp option is the
short form. Developers frequently choose the short form because we are lazy typists. The
-classpath and --class-path versions can be clearer to read but require more typing.

Table 1.2 and Table 1.3 review the options you need to know for the exam. There are
many other options available! And in Chapter 12, “Modules,” you learn additional options
specific to modules.

TABLE 1.2 Important javac options

Option Description

-cp <classpath> Location of classes needed to compile the program
-classpath <classpath>
--class-path <classpath>

-d <dir> Directory in which to place generated class files

TABLE 1.3 Important java options

Option Description

-cp <classpath> Location of classes needed to run the program
-classpath <classpath>
--class-path <classpath>

20 Chapter 1 = Building Blocks

Compiling with JAR Files

Just like the classes directory in the previous example, you can also specify the location
of the other files explicitly using a classpath. This technique is useful when the class files are
located elsewhere or in special JAR files. A Java archive (JAR) file is like a ZIP file of mainly
Java class files.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherLocationj;c:\temp\myJar.jar" myPackage.MyClass

And on macOS/Linux, you type this:
java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar" myPackage.MyClass

The period (.) indicates that you want to include the current directory in the classpath. The
rest of the command says to look for loose class files (or packages) in someOtherLocation
and within myJar . jar. Windows uses semicolons (;) to separate parts of the classpath; other
operating systems use colons.

Just like when you’re compiling, you can use a wildcard (*) to match all the JARs in a
directory. Here’s an example:

java -cp "C:\temp\directoryWithJars*" myPackage.MyClass

This command will add to the classpath all the JARs that are in directoryWithJars. It
won’t include any JARs in the classpath that are in a subdirectory of directoryWithJars.

Creating a JAR File

Some JARs are created by others, such as those downloaded from the Internet or created
by a teammate. Alternatively, you can create a JAR file yourself. To do so, you use the jar
command. The simplest commands create a jar containing the files in the current directory.
You can use the short or long form for each option.

jar -cvf myNewFile.jar .
jar --create --verbose --file myNewFile.jar .

Alternatively, you can specify a directory instead of using the current directory.
jar -cvf myNewFile.jar -C dir .

There is no long form of the —C option. Table 1.4 lists the options you need to use the jar
command to create a JAR file. In Chapter 12, you see jar again for modules.

Understanding Package Declarations and Imports

TABLE 1.4 Important jar options

21

Option Description

-C Creates a new JAR file

--create

-V Prints details when working with JAR files
--verbose

-f <fileName>
--file <fileName>

-C <directory>

JAR filename

Directory containing files to be used to create the JAR

Ordering Elements in a Class

Now that you’ve seen the most common parts of a class, let’s take a look at the correct order

to type them into a file. Comments can go anywhere in the code. Beyond that, you need to

memorize the rules in Table 1.5.

TABLE 1.5 Order for declaring a class

Element

Example Required? Where does it go?

Package declaration

import statements

Top-level type declaration

Field declarations

Method declarations

package abc; No First line in the file (excluding

comments or blank lines)

import No Immediately after the package

java.util.x; (if present)

public class C Yes Immediately after the import
(if any)

int value; No Any top-level element within
aclass

void method() No Any top-level element within

a class

22 Chapter 1 = Building Blocks

Let’s look at a few examples to help you remember this. The first example contains one of
each element:

package structure; // package must be first non-comment
import java.util.x; // import must come after package
public class Meerkat { // then comes the class
double weight; // fields and methods can go in either order

public double getWeight() {
return weight; }
double height; // another field - they don't need to be together

So far, so good. This is a common pattern that you should be familiar with. How
about this one?

/* header x/

package structure;

// class Meerkat
public class Meerkat { }

Still good. We can put comments anywhere, blank lines are ignored, and imports are
optional. In the next example, we have a problem:

import java.util.x;

package structure; // DOES NOT COMPILE
String name; // DOES NOT COMPILE
public class Meerkat { } // DOES NOT COMPILE

There are two problems here. One is that the package and import statements are
reversed. Although both are optional, package must come before import if present. The
other issue is that a field attempts a declaration outside a class. This is not allowed. Fields
and methods must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and class. Fields and
methods are easier to remember because they merely have to be inside a class.

Throughout this book, if you see two public classes in a code snippet or
ITE question, you can assume they are in different files unless it specifically
says they are in the same .java file.

Now you know how to create and arrange a class. Later chapters show you how to create
classes with more powerful operations.

Creating Objects 23

Creating Objects

Our programs wouldn’t be able to do anything useful if we didn’t have the ability to create
new objects. Remember that an object is an instance of a class. In the following sections,
we look at constructors, object fields, instance initializers, and the order in which values are
initialized.

Calling Constructors

To create an instance of a class, all you have to do is write new before the class name and
add parentheses after it. Here’s an example:

Park p = new Park();

First you declare the type that you’ll be creating (Park) and give the variable a name (p).
This gives Java a place to store a reference to the object. Then you write new Park() to
actually create the object.

Park() looks like a method since it is followed by parentheses. It’s called a constructor,
which is a special type of method that creates a new object. Now it’s time to define a con-
structor of your own:

public class Chick {
public Chick() {
System.out.println("in constructor");

There are two key points to note about the constructor: the name of the constructor
matches the name of the class, and there’s no return type. You may see a method like this
on the exam:

public class Chick {
public void Chick() { } // NOT A CONSTRUCTOR

When you see a method name beginning with a capital letter and having a return type,
pay special attention to it. It is not a constructor since there’s a return type. It’s a regular
method that does compile but will not be called when you write new Chick().

The purpose of a constructor is to initialize fields, although you can put any code in there.
Another way to initialize fields is to do so directly on the line on which they’re declared. This
example shows both approaches:

public class Chicken {
int numEggs = 12; // initialize on line
String name;

24 Chapter 1 = Building Blocks

public Chicken() {
name = "Duke"; // initialize in constructor

For most classes, you don’t have to code a constructor—the compiler will supply a
“do nothing” default constructor for you. There are some scenarios that do require you to
declare a constructor. You learn all about them in Chapter 6.

Reading and Writing Member Fields

It’s possible to read and write instance variables directly from the caller. In this example, a
mother swan lays eggs:

public class Swan {
int numberEggs; // ‘instance variable
public static void main(String[] args) {
Swan mother = new Swan();
mother.numberEggs = 1; // set variable
System.out.println(mother.numberEggs); // read variable

The “caller” in this case is the main () method, which could be in the same class or in
another class. This class sets numberEggs to 1 and then reads numberEggs directly to print
it out. In Chapter 5, you learn how to use encapsulation to protect the Swan class from hav-
ing someone set a negative number of eggs.

You can even read values of already initialized fields on a line initializing a new field:

1: public class Name {

2 String first = "Theodore";
3: String last = "Moose";

4 String full = first + last;
5: }

Lines 2 and 3 both write to fields. Line 4 both reads and writes data. It reads the fields
first and last. It then writes the field full.

Executing Instance Initializer Blocks

When you learned about methods, you saw braces ({}). The code between the braces (some-
times called “inside the braces™) is called a code block. Anywhere you see braces is a

code block.

Creating Objects 25

Sometimes code blocks are inside a method. These are run when the method is called.
Other times, code blocks appear outside a method. These are called instance initializers. In
Chapter 6, you learn how to use a static initializer.

How many blocks do you see in the following example? How many instance initializers
do you see?

1: public class Bird {
2: public static void main(String[] args) {
{ System.out.println("Feathers"); }

}
{ System.out.println("Snowy"); }

o b~ W

}

There are four code blocks in this example: a class definition, a method declaration, an
inner block, and an instance initializer. Counting code blocks is easy: you just count the
number of pairs of braces. If there aren’t the same number of open ({) and close (}) braces
or they aren’t defined in the proper order, the code doesn’t compile. For example, you cannot
use a closed brace (1) if there’s no corresponding open brace ({) that it matches written ear-
lier in the code. In programming, this is referred to as the balanced parentheses problem, and
it often comes up in job interview questions.

When you’re counting instance initializers, keep in mind that they cannot exist inside of a
method. Line 5 is an instance initializer, with its braces outside a method. On the other hand,
line 3 is not an instance initializer, as it is only called when the main () method is executed.
There is one additional set of braces on lines 1 and 6 that constitute the class declaration.

Following the Order of Initialization

When writing code that initializes fields in multiple places, you have to keep track of the
order of initialization. This is simply the order in which different methods, constructors, or
blocks are called when an instance of the class is created. We add some more rules to the
order of initialization in Chapter 6. In the meantime, you need to remember:

= Fields and instance initializer blocks are run in the order in which they appear in the file.
= The constructor runs after all fields and instance initializer blocks have run.

Let’s look at an example:

public class Chick {
private String name = "Fluffy";
{ System.out.println("setting field"); }
public Chick() {
name = "Tiny";
System.out.println("setting constructor");

~N o g b~ W N

26 Chapter 1 = Building Blocks

8: public static void main(String[] args) {
9: Chick chick = new Chick();
10: System.out.println(chick.name); } }

Running this example prints this:

setting field
setting constructor
Tiny

Let’s look at what’s happening here. We start with the main () method because that’s
where Java starts execution. On line 9, we call the constructor of Chick. Java creates a new
object. First it initializes name to "Fluffy" on line 2. Next it executes the println() state-
ment in the instance initializer on line 3. Once all the fields and instance initializers have
run, Java returns to the constructor. Line 5 changes the value of name to "Tiny", and line 6
prints another statement. At this point, the constructor is done, and then the execution goes
back to the println() statement on line 10.

Order matters for the fields and blocks of code. You can’t refer to a variable before it has
been defined:

{ System.out.println(name); } // DOES NOT COMPILE
private String name = "Fluffy";

You should expect to see a question about initialization on the exam. Let’s try one more.
What do you think this code prints out?

public class Egg {

public Egg() {
number = 5;

}

public static void main(String[] args) {
Egg egg = new Egg();
System.out.println(egg.number);

}

private int number = 3;

{ number = 45 } }

If you answered 5, you got it right. Fields and blocks are run first in order, setting number
to 3 and then 4. Then the constructor runs, setting number to 5. You see a lot more rules
and examples covering order of initialization in Chapter 6. We only cover the basics here so
you can follow the order of initialization for simple programs.

Understanding Data Types

Java applications contain two types of data: primitive types and reference types. In this sec-
tion, we discuss the differences between a primitive type and a reference type.

Understanding Data Types 27

Using Primitive Types

Java has eight built-in data types, referred to as the Java primitive types. These eight data
types represent the building blocks for Java objects, because all Java objects are just a com-
plex collection of these primitive data types. That said, a primitive is not an object in Java,
nor does it represent an object. A primitive is just a single value in memory, such as a number
or character.

The Primitive Types

The exam assumes you are well versed in the eight primitive data types, their relative sizes,
and what can be stored in them. Table 1.6 shows the Java primitive types together with their
size in bits and the range of values that each holds.

TABLE 1.6 Primitive types

Keyword Type Min value Max value Default value Example
boolean trueor false n/a n/a false true
byte 8-bit integral value -128 127 0 123
short 16-bit integral value -32,768 32,767 0 123
int 32-bit integral value -2,147483,648 2,147,483,647 0 123
long 64-bit integral value -268 263 — 1 oL 123L
float 32-bit floating-point value n/a n/a 0.0f 123.45f
double 64-bit floating-point value n/a n/a 0.0 123.456
char 16-bit Unicode value 0 65,5635 \ueooeo 'a'

Is String a Primitive?

No, it is not. That said, String is often mistaken for a ninth primitive because Java
includes built-in support for String literals and operators. You learn more about Stringin
Chapter 4, but for now, just remember it's an object, not a primitive.

28 Chapter 1 = Building Blocks

There’s a lot of information in Table 1.6. Let’s look at some key points:

= The byte, short, int, and long types are used for integer values without dec-
imal points.

» Each numeric type uses twice as many bits as the smaller similar type. For example,
short uses twice as many bits as byte does.

» All of the numeric types are signed and reserve one of their bits to cover a negative
range. For example, instead of byte covering © to 255 (or even 1 to 256) it actually
covers —128 to 127.

= A float requires the letter f or F following the number so Java knows it is a float.
Without an f or F, Java interprets a decimal value as a double.

= A long requires the letter 1 or L following the number so Java knows it is a long.
Without an 1 or L, Java interprets a number without a decimal point as an int in most
scenarios.

You won’t be asked about the exact sizes of these types, although you should have a gen-
eral idea of the size of smaller types like byte and short. A common question among newer
Java developers is, what is the bit size of boolean? The answer is, it is not specified and is
dependent on the JVM where the code is being executed.

Signed and Unsigned: short and char

For the exam, you should be aware that short and char are closely related, as both are
stored as integral types with the same 16-bit length. The primary difference is that short
is signed, which means it splits its range across the positive and negative integers. Alterna-
tively, char is unsigned, which means its range is strictly positive, including 0.

Often, short and char values can be cast to one another because the underlying data size
is the same.You learn more about casting in Chapter 2, “Operators.”

Writing Literals

There are a few more things you should know about numeric primitives. When a number is
present in the code, it is called a literal. By default, Java assumes you are defining an int value
with a numeric literal. In the following example, the number listed is bigger than what fits in
an int. Remember, you aren’t expected to memorize the maximum value for an int. The exam
will include it in the question if it comes up.

long max = 3123456789; // DOES NOT COMPILE

Understanding Data Types 29

Java complains the number is out of range. And it is—for an int. However, we don’t
have an int. The solution is to add the character L to the number:

long max = 3123456789L; // Now Java knows it is a long

Alternatively, you could add a lowercase 1 to the number. But please use the uppercase L.
The lowercase 1 looks like the number 1.

Another way to specify numbers is to change the “base.” When you learned how to count,
you studied the digits 0-9. This numbering system is called base 10 since there are 10 pos-
sible values for each digit. It is also known as the decimal number system. Java allows you to
specify digits in several other formats:

» Octal (digits 0-7), which uses the number 0 as a prefix—for example, 017.

» Hexadecimal (digits 0-9 and letters A—F/a—f), which uses 0x or 0X as a prefix—for
example, OxFF, 0xff, 0XFf. Hexadecimal is case insensitive, so all of these examples
mean the same value.

= Binary (digits 0-1), which uses the number 0 followed by b or B as a prefix—for
example, 0b10, 0B10.

You won’t need to convert between number systems on the exam. You’ll have to recog-
nize valid literal values that can be assigned to numbers.

Literals and the Underscore Character

The last thing you need to know about numeric literals is that you can have underscores in
numbers to make them easier to read:

int millionl = 1000000;
int million2 = 1_000_000;

We’d rather be reading the latter one because the zeros don’t run together. You can add
underscores anywhere except at the beginning of a literal, the end of a literal, right before a
decimal point, or right after a decimal point. You can even place multiple underscore charac-
ters next to each other, although we don’t recommend it.

Let’s look at a few examples:

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE
double notByDecimal = 1000_.00; // DOES NOT COMPILE
double annoyingButlLegal = 1_00_0.0_0; // Ugly, but compiles

double reallyUgly = 1 2; // Also compiles

Using Reference Types

A reference type refers to an object (an instance of a class). Unlike primitive types that hold
their values in the memory where the variable is allocated, references do not hold the value
of the object they refer to. Instead, a reference “points” to an object by storing the memory

30 Chapter 1 = Building Blocks

address where the object is located, a concept referred to as a pointer. Unlike other lan-
guages, Java does not allow you to learn what the physical memory address is. You can only
use the reference to refer to the object.

Let’s take a look at some examples that declare and initialize reference types. Suppose we
declare a reference of type String:

String greeting;

The greeting variable is a reference that can only point to a String object. A value is
assigned to a reference in one of two ways:

= A reference can be assigned to another object of the same or compatible type.
= A reference can be assigned to a new object using the new keyword.
For example, the following statement assigns this reference to a new object:

greeting = new String("How are you?");

The greeting reference points to a new String object, "How are you?".The String
object does not have a name and can be accessed only via a corresponding reference.

Distinguishing between Primitives and Reference Types

There are a few important differences you should know between primitives and reference
types. First, notice that all the primitive types have lowercase type names. All classes that
come with Java begin with uppercase. Although not required, it is a standard practice, and
you should follow this convention for classes you create as well.

Next, reference types can be used to call methods, assuming the reference is not null.
Primitives do not have methods declared on them. In this example, we can call a method on
reference since it is of a reference type. You can tell length is a method because it has () after
it. See if you can understand why the following snippet does not compile:

4: String reference = "hello";
5: int len = reference.length();
6: int bad = len.length(); // DOES NOT COMPILE

Line 6 is gibberish. No methods exist on len because it is an int primitive. Primitives
do not have methods. Remember, a String is not a primitive, so you can call methods like
length() on a String reference, as we did on line 5.

Finally, reference types can be assigned nul1, which means they do not currently refer to
an object. Primitive types will give you a compiler error if you attempt to assign them null.In
this example, value cannot point to null because it is of type int:

int value = null; // DOES NOT COMPILE

String name = null;

But what if you don’t know the value of an int and want to assign it to null? In that
case, you should use a numeric wrapper class, such as Integer, instead of int.

Understanding Data Types 31

Creating Wrapper Classes

Each primitive type has a wrapper class, which is an object type that corresponds to the
primitive. Table 1.7 lists all the wrapper classes along with how to create them.

TABLE 1.7 Wrapper classes

Wrapper class

Primitive type Wrapper class inherits Number? Example of creating

boolean Boolean No Boolean.valueOf(true)

byte Byte Yes Byte.valueOf((byte) 1)
short Short Yes Short.valueOf((short) 1)
int Integer Yes Integer.valueOf (1)

long Long Yes Long.valueOf (1)

float Float Yes Float.valueOf((float) 1.0)
double Double Yes Double.valueOf(1.0)

char Character No Character.valueOf('c')

There is also a valueOf () variant that converts a String into the wrapper class.
For example:

int primitive = Integer.parseInt("123");
Integer wrapper = Integer.valueOf("123");

The first line converts a String to an int primitive. The second converts a String to an
Integer wrapper class.

All of the numeric classes in Table 1.7 extend the Number class, which means they all
come with some useful helper methods: byteValue(), shortValue(), intValue(),
longValue(), floatValue(), and doubleValue (). The Boolean and Character
wrapper classes include booleanValue() and charValue(), respectively.

As you probably guessed, these methods return the primitive value of a wrapper instance,
in the type requested.

Double apple = Double.valueOf("200.99");
System.out.println(apple.byteValue()); // -56
System.out.println(apple.intValue()); // 200
System.out.printin(apple.doublevalue()); // 200.99

32 Chapter 1 = Building Blocks

These helper methods do their best to convert values but can result in a loss of preci-
sion. In the first example, there is no 200 in byte, so it wraps around to -56. In the sec-
ond example, the value is truncated, which means all of the numbers after the decimal are
dropped. In Chapter 5, we apply autoboxing and unboxing to show how easy Java makes it
to work with primitive and wrapper values.

Some of the wrapper classes contain additional helper methods for working with num-
bers. You don’t need to memorize these; you can assume any you are given are valid. For
example, Integer has:

» max(int numl, int num2), which returns the largest of the two numbers
= min(int numl, int num2), which returns the smallest of the two numbers

= sum(int numl, int num2), which adds the two numbers

Defining Text Blocks

Earlier we saw a simple String with the value "hello". What if we want to have a String
with something more complicated? For example, let’s figure out how to create a String
with this value:

"Java Study Guide"
by Scott & Jeanne

Building this as a String requires two things you haven’t learned yet. The syntax \" lets
you say you want a " rather than to end the String, and \n says you want a new line. Both
of these are called escape characters because the backslash provides a special meaning. With
these two new skills, we can write

String eyeTest = "\"Java Study Guide\"\n by Scott & Jeanne";

While this does work, it is hard to read. Luckily, Java has text blocks, also known as
multiline strings. See Figure 1.3 for the text block equivalent.

FIGURE 1.3 Text block

Start text block

—
String textBlock = """

] "Java Study Guide"

W 1by Scott & Jeanne""";

‘‘‘‘‘‘‘‘ _'_I

x End text block
Essential whitespace

Incidental whitespace

A text block starts and ends with three double quotes ("""), and the contents don’t need
to be escaped. This is much easier to read. Notice how the type is still String. This means
the methods you learn about in Chapter 4 for String work for both a regular String and
a text block.

Understanding Data Types 33

You might have noticed the words incidental and essential whitespace in the figure.
What’s that? Essential whitespace is part of your String and is important to you. Incidental
whitespace just happens to be there to make the code easier to read. You can reformat
your code and change the amount of incidental whitespace without any impact on your
String value.

Imagine a vertical line drawn on the leftmost non-whitespace character in your text
block. Everything to the left of it is incidental whitespace, and everything to the right is
essential whitespace. Let’s try an example. How many lines does this output, and how many
incidental and essential whitespace characters begin each line?

14: String pyramid = """

15: *

16: * %
17: * % *
18: llllll;

19: System.out.print(pyramid);

There are four lines of output. Lines 15-17 have stars. Line 18 is a line without any char-
acters. The closing triple " would have needed to be on line 17 if we didn’t want that blank
line. There are no incidental whitespace characters here. The closing """ on line 18 are the
leftmost characters, so the line is drawn at the leftmost position. Line 15 has two essential
whitespace characters to begin the line, and line 16 has one. That whitespace fills in the line
drawn to match line 18.

Table 1.8 shows some special formatting sequences and compares how they work in a
regular String and a text block.

TABLE 1.8 Text block formatting

Meaning in Meaning in

Formatting regular String text block

\Il n n

\Illlll n/a_lnvalld nmnn

\Il\ll\ll man nmnn

Space (at end of line) Space Ignored

\s Two spaces (\s is a space and preserves Two spaces
leading space on the line)

\ (at end of line) n/a - Invalid Omits new line on

that line

34 Chapter 1 = Building Blocks

Let’s try a few examples. First, do you see why this doesn’t compile?
String block = """doe"""; // DOES NOT COMPILE

Text blocks require a line break after the opening """, making this one invalid. Now let’s
try a valid one. How many lines do you think are in this text block?
String block = """

doe \

deer" nn ;

Just one. The output is doe deer since the \ tells Java not to add a new line before deer.
Let’s try determining the number of lines in another text block:

String block = """
doe \n
deer

mnmmmn.
)

This time we have four lines. Since the text block has the closing """ on a separate line,
we have three lines for the lines in the text block plus the explicit \n. Let’s try one more.
What do you think this outputs?

String block = """
"doe\"\"\"
\"deer\"""

.
)

System.out.print("*"+ block + "x");

The answer is

* lldoellllll
Ildeerllllll

*

All of the \" escape the ". There is one space of essential whitespace on the doe and deer
lines. All the other leading whitespace is incidental whitespace.

Declaring Variables

You’ve seen some variables already. A variable is a name for a piece of memory that stores
data. When you declare a variable, you need to state the variable type along with giving it a
name. Giving a variable a value is called initializing a variable. To initialize a variable, you
just type the variable name followed by an equal sign, followed by the desired value. This
example shows declaring and initializing a variable in one line:

String zooName = "The Best Zoo";

Declaring Variables 35

In the following sections, we look at how to properly define variables in one or mul-

tiple lines.

Identifying Identifiers

It probably comes as no surprise to you that Java has precise rules about identifier names.
An identifier is the name of a variable, method, class, interface, or package. Luckily, the rules
for identifiers for variables apply to all of the other types that you are free to name.

There are only four rules to remember for legal identifiers:

» Identifiers must begin with a letter, a currency symbol, or a _ symbol. Currency symbols

include dollar ($), yuan (¥), euro (€), and so on.

» Identifiers can include numbers but not start with them.

» A single underscore _ is not allowed as an identifier.

* You cannot use the same name as a Java reserved word. A reserved word is a special
word that Java has held aside so that you are not allowed to use it. Remember that Java
is case sensitive, so you can use versions of the keywords that only differ in case. Please

don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved words. The exam will
only ask you about ones that are commonly used, such as class and for. Table 1.9 lists all
of the reserved words in Java.

TABLE 1.9 Reserved words

abstract

case

continue

enum

for

instanceof

new

return

switch

transient

assert

catch
default
extends
goto”

int

package
short
synchronized

try

boolean
char

do

final

if
interface
private
static
this

void

break
class
double
finally
implements
long
protected
strictfp
throw

volatile

byte
const’
else
float
import
native
public
super
throws

while

* The reserved words CONSt and goto aren’t actually used in Java.They are reserved so that people com-
ing from other programming languages don’t use them by accident—and, in theory, in case Java wants to use

them one day.

36 Chapter 1 = Building Blocks

There are other names that you can’t use. For example, true, false, and null are literal
values, so they can’t be variable names. Additionally, there are contextual keywords like
module in Chapter 12. Prepare to be tested on these rules. The following examples are legal:

long okidentifier;

float $0K2Identifier;

boolean _alsoOK1d3ntifi3r;
char __SStillOkbutKnotsonices;

These examples are not legal:

int 3DPointClass; // identifiers cannot begin with a number
byte hollywood@vine; // @ is not a letter, digit, $ or _
String x$coffee; // * is not a letter, digit, $ or _
double public; // public 1is a reserved word

short _; // a single underscore 1is not allowed

camelCase and snake_case

Although you can do crazy things with identifier names, please don’t. Java has conventions
so that code is readable and consistent. For example, camel case has the first letter of each
word capitalized. Method and variable names are typically written in camel case with the
first letter lowercase, such as toUpper (). Class and interface names are also written in
camel case, with the first letter uppercase, such as ArrayList.

Another style is called snake case. It simply uses an underscore (_) to separate words.
Java generally uses uppercase snake case for constants and enum values, such as
NUMBER_FLAGS.

The exam will not always follow these conventions to make questions about identifiers
trickier. By contrast, questions on other topics generally do follow standard conventions. We
recommend you follow these conventions on the job.

Declaring Multiple Variables

You can also declare and initialize multiple variables in the same statement. How many vari-
ables do you think are declared and initialized in the following example?
void sandFence() {

String sl, s2;

String s3 = "yes", s4 = "no";

Declaring Variables 37

Four String variables were declared: s1, s2, s3, and s4. You can declare many variables
in the same declaration as long as they are all of the same type. You can also initialize any or
all of those values inline. In the previous example, we have two initialized variables: s3 and
s4. The other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam will attempt to
trick you. Again, how many variables do you think are declared and initialized in the fol-
lowing code?

void paintFence() {
int i1, i2, i3 = 0;

As you should expect, three variables were declared: 11, 72, and 3. However, only one
of those values was initialized: 73. The other two remain declared but not yet initialized.
That’s the trick. Each snippet separated by a comma is a little declaration of its own. The
initialization of i3 only applies to i3. It doesn’t have anything to do with 11 or 72 despite
being in the same statement. As you will see in the next section, you can’t actually use i1 or
92 until they have been initialized.

Another way the exam could try to trick you is to show you code like this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different types
in the same statement. The shortcut to declare multiple variables in the same statement is
legal only when they share a type.

Legal, valid, and compiles are all synonyms in the Java exam world. We
ITE try to use all the terminology you could encounter on the exam.

To make sure you understand this, see if you can figure out which of the following are
legal declarations:

4: boolean bl, b2;

5: String s1 = "1", s2;
6: double d1, double d2;
7: dnt il; dint i2;

8: 1int 1i3; 14,

Lines 4 and 5 are legal. They each declare two variables. Line 4 doesn’t initialize either
variable, and line 5 initializes only one. Line 7 is also legal. Although int does appear twice,
each one is in a separate statement. A semicolon (;) separates statements in Java. It just so
happens there are two completely different statements on the same line.

Line 6 is not legal. Java does not allow you to declare two different types in the same
statement. Wait a minute! Variables d1 and d2 are the same type. They are both of type
double. Although that’s true, it still isn’t allowed. If you want to declare multiple variables
in the same statement, they must share the same type declaration and not repeat it.

38 Chapter 1 = Building Blocks

Line 8 is not legal. Again, we have two completely different statements on the same line.
The second one on line 8 is not a valid declaration because it omits the type. When you see
an oddly placed semicolon on the exam, pretend the code is on separate lines and think
about whether the code compiles that way. In this case, the last two lines of code could be
rewritten as follows:
int i1,
int i2;
int 1i3;
i4;

Looking at the last line on its own, you can easily see that the declaration is invalid. And
yes, the exam really does cram multiple statements onto the same line—partly to try to trick
you and partly to fit more code on the screen. In the real world, please limit yourself to one
declaration per statement and line. Your teammates will thank you for the readable code.

Initializing Variables

Before you can use a variable, it needs a value. Some types of variables get this value set
automatically, and others require the programmer to specify it. In the following sections, we
look at the differences between the defaults for local, instance, and class variables.

Creating Local Variables

A local variable is a variable defined within a constructor, method, or initializer block. For
simplicity, we focus primarily on local variables within methods in this section, although the
rules for the others are the same.

Final Local Variables

The final keyword can be applied to local variables and is equivalent to declaring constants
in other languages. Consider this example:

5: final int y = 10;

6: int x = 20;

7:y = x + 10; // DOES NOT COMPILE

Both variables are set, but y uses the final keyword. For this reason, line 7 triggers a
compiler error since the value cannot be modified.

The final modifier can also be applied to local variable references. The following example
uses an int[] array object, which you learn about in Chapter 4.

5: final int[] favoriteNumbers = new int[10];
6: favoriteNumbers[0] = 10;

Initializing Variables 39

7: favoriteNumbers[1l] = 20;
8: favoriteNumbers = null; // DOES NOT COMPILE

Notice that we can modify the content, or data, in the array. The compiler error isn’t until
line 8, when we try to change the value of the reference favoriteNumbers.

Uninitialized Local Variables

Local variables do not have a default value and must be initialized before use. Furthermore,
the compiler will report an error if you try to read an uninitialized value. For example, the
following code generates a compiler error:

4: public int notvalid() {

5: int y = 10;

6: int x;

7 int reply = x + y; // DOES NOT COMPILE
8: return reply;

9: }

The y variable is initialized to 10. By contrast, x is not initialized before it is used in the
expression on line 7, and the compiler generates an error. The compiler is smart enough to
recognize variables that have been initialized after their declaration but before they are used.
Here’s an example:

public 1int valid() {
int y = 10;
int x; // x is declared here
X = 3; // x is initialized here
int z; // z is declared here but never initialized or used
int reply = x + y;
return reply;

In this example, x is declared, initialized, and used in separate lines. Also, z is declared
but never used, so it is not required to be initialized.
The compiler is also smart enough to recognize initializations that are more complex. In
this example, there are two branches of code:
public void findAnswer (boolean check) {
int answer;
int otherAnswer;
int onlyOneBranch;
if (check) {
onlyOneBranch = 13
answer = 13

40 Chapter 1 = Building Blocks

} else {
answer = 23
}
System.out.println(answer);
System.out.println(onlyOneBranch); // DOES NOT COMPILE

The answer variable is initialized in both branches of the 1 f statement, so the com-
piler is perfectly happy. It knows that regardless of whether check is true or false, the
value answer will be set to something before it is used. The otherAnswer variable is not
initialized but never used, and the compiler is equally as happy. Remember, the compiler is
only concerned if you try to use uninitialized local variables; it doesn’t mind the ones you
never use.

The onlyOneBranch variable is initialized only if check happens to be true. The compiler
knows there is the possibility for check to be false, resulting in uninitialized code, and gives a
compiler error. You learn more about the 1 f statement in Chapter 3, “Making Decisions.”

On the exam, be wary of any local variable that is declared but not initial-

ITE ized in a single line. This is a common place on the exam that could result
in a “Does not compile” answer. Be sure to check to make sure it’s initial-
ized before it's used on the exam.

Passing Constructor and Method Parameters

Variables passed to a constructor or method are called constructor parameters or method
parameters, respectively. These parameters are like local variables that have been pre-
initialized. The rules for initializing constructor and method parameters are the same, so we
focus primarily on method parameters.

In the previous example, check is a method parameter.

public void findAnswer (boolean check) {}

Take a look at the following method checkAnswer () in the same class:

public void checkAnswer () {
boolean value;
findAnswer (value); // DOES NOT COMPILE

The call to findAnswer () does not compile because it tries to use a variable that is not
initialized. While the caller of a method checkAnswer () needs to be concerned about the
variable being initialized, once inside the method findAnswer (), we can assume the local
variable has been initialized to some value.

Initializing Variables |

Defining Instance and Class Variables

Variables that are not local variables are defined either as instance variables or as class vari-
ables. An instance variable, often called a field, is a value defined within a specific instance of
an object. Let’s say we have a Person class with an instance variable name of type String.
Each instance of the class would have its own value for name, such as Elysia or Sarah.
Two instances could have the same value for name, but changing the value for one does not
modify the other.

On the other hand, a class variable is one that is defined on the class level and shared
among all instances of the class. It can even be publicly accessible to classes outside the
class and doesn’t require an instance to use. In our previous Person example, a shared class
variable could be used to represent the list of people at the zoo today. You can tell a vari-
able is a class variable because it has the keyword static before it. You learn about this in
Chapter 5. For now, just know that a variable is a class variable if it has the static key-
word in its declaration.

Instance and class variables do not require you to initialize them. As soon as you declare
these variables, they are given a default value. The compiler doesn’t know what value to use
and so wants the simplest value it can give the type: null for an object, zero for the numeric
types, and false for a boolean. You don’t need to know the default value for char, but in
case you are curious, it is ' \ueeee' (NUL).

Inferring the Type with var

You have the option of using the keyword var instead of the type when declaring local vari-
ables under certain conditions. To use this feature, you just type var instead of the primitive
or reference type. Here’s an example:

public class Zoo {
public void whatTypeAmI() {
var name = "Hello";
var size = T;

The formal name of this feature is local variable type inference. Let’s take that apart. First
comes local variable. This means just what it sounds like. You can only use this feature for
local variables. The exam may try to trick you with code like this:

public class VarKeyword {
var tricky = "Hello"; // DOES NOT COMPILE

42 Chapter 1 = Building Blocks

Wait a minute! We just learned the difference between instance and local variables. The
variable tricky is an instance variable. Local variable type inference works with local vari-
ables and not instance variables.

Type Inference of var

Now that you understand the local variable part, it is time to go on to what type inference
means. The good news is that this also means what it sounds like. When you type var, you
are instructing the compiler to determine the type for you. The compiler looks at the code on
the line of the declaration and uses it to infer the type. Take a look at this example:

7: public void reassignment() {

8: var number = 7;

9: number = 4;

10: number = "five"; // DOES NOT COMPILE
11: }

On line 8, the compiler determines that we want an int variable. On line 9, we have no
trouble assigning a different int to it. On line 10, Java has a problem. We’ve asked it to
assign a String to an int variable. This is not allowed. It is equivalent to typing this:
int number = "five";

If you know a language like JavaScript, you might be expecting var to
P TE mean a variable that can take on any type at runtime. In Java, var is still a
specific type defined at compile time. It does not change type at runtime.

For simplicity when discussing var, we are going to assume a variable declaration state-
ment is completed in a single line. You could insert a line break between the variable name
and its initialization value, as in the following example:

7: public void breakingDeclaration() {

8: var silly
9: = 1;
10: }

This example is valid and does compile, but we consider the declaration and initialization
of silly to be happening on the same line.

Examples with var

Let’s go through some more scenarios so the exam doesn’t trick you on this topic! Do you
think the following compiles?

3: public void doesThisCompile(boolean check) {

4 var question;

5: question = 1;

6 var answer;

Initializing Variables 43

7: if (check) {

8: answer = 2;

9: } else {

10: answer = 3;

11: }

12: System.out.println(answer);
13: }

The code does not compile. Remember that for local variable type inference, the compiler
looks only at the line with the declaration. Since question and answer are not assigned
values on the lines where they are defined, the compiler does not know what to make of
them. For this reason, both lines 4 and 6 do not compile.

You might find that strange since both branches of the i f/else do assign a value. Alas, it is
not on the same line as the declaration, so it does not count for var. Contrast this behavior
with what we saw a short while ago when we discussed branching and initializing a local
variable in our findAnswer () method.

Now we know the initial value used to determine the type needs to be part of the same
statement. Can you figure out why these two statements don’t compile?

4: public void twoTypes() {

5 int a, var b = 3; // DOES NOT COMPILE
6: var n = null; // DOES NOT COMPILE
T7: }

Line 5 wouldn’t work even if you replaced var with a real type. All the types declared on
a single line must be the same type and share the same declaration. We couldn’t write int
a, int v = 3; either.

Line 6 is a single line. The compiler is being asked to infer the type of null. This could
be any reference type. The only choice the compiler could make is Object. However, that is
almost certainly not what the author of the code intended. The designers of Java decided it
would be better not to allow var for null than to have to guess at intent.

)’ While a var cannot be initialized with a null value without a type, it can
,&TE be reassigned a null value after it is declared, provided that the under-
lying data type is a reference type.

Let’s try another example. Do you see why this does not compile?

public int addition(var a, var b) { // DOES NOT COMPILE
return a + b;

In this example, a and b are method parameters. These are not local variables. Be on the
lookout for var used with constructors, method parameters, or instance variables. Using
var in one of these places is a good exam trick to see if you are paying attention. Remember
that var is only used for local variable type inference!

44 Chapter 1 = Building Blocks

There’s one last rule you should be aware of: var is not a reserved word and allowed to
be used as an identifier. It is considered a reserved type name. A reserved type name means it
cannot be used to define a type, such as a class, interface, or enum. Do you think this is legal?

package var;

public class Var {
public void var() {
var var = "var";
}
public void Var() {
Var var = new Var();

Believe it or not, this code does compile. Java is case sensitive, so Var doesn’t introduce
any conflicts as a class name. Naming a local variable var is legal. Please don’t write code
that looks like this at your job! But understanding why it works will help get you ready for
any tricky exam questions the exam creators could throw at you.

@ Real World Scenario

var in the Real World

The var keyword is great for exam authors because it makes it easier to write tricky code.
When you work on a real project, you want the code to be easy to read.

Once you start having code that looks like the following, it is time to consider using var:

PileOfPapersToFileInFilingCabinet pileOfPapersToFile =
new PileOfPapersToFileInFilingCabinet();

You can see how shortening this would be an improvement without losing any information:
var pileOfPapersToFile = new PileOfPapersToFileInFilingCabinet();

If you are ever unsure whether it is appropriate to use var, we recommend “Local Variable
Type Inference: Style Guidelines,” which is available at the following location.

https://openjdk.java.net/projects/amber/LVTIstyle.html

Managing Variable Scope 45

Managing Variable Scope

You’ve learned that local variables are declared within a code block. How many variables do
you see that are scoped to this method?

public void eat(int piecesOfCheese) {
int bitesOfCheese = 1;

There are two variables with local scope. The bitesOfCheese variable is declared inside
the method. The piecesOfCheese variable is a method parameter. Neither variable can be
used outside of where it is defined.

Limiting Scope

Local variables can never have a scope larger than the method they are defined in. However,
they can have a smaller scope. Consider this example:

3: public void eatIfHungry(boolean hungry) {
4: if (hungry) {
int bitesOfCheese = 1;
} // bitesOfCheese goes out of scope here
System.out.println(bites0fCheese); // DOES NOT COMPILE

o N o O»

}

The variable hungry has a scope of the entire method, while the variable bitesOfCheese
has a smaller scope. It is only available for use in the i f statement because it is declared inside
of it. When you see a set of braces ({1}) in the code, it means you have entered a new block of
code. Each block of code has its own scope. When there are multiple blocks, you match them
from the inside out. In our case, the i f statement block begins at line 4 and ends at line 6. The
method’s block begins at line 3 and ends at line 8.

Since bitesOfCheese is declared in an 1 f statement block, the scope is limited to that
block. When the compiler gets to line 7, it complains that it doesn’t know anything about
this bitesOfCheese thing and gives an error.

Remember that blocks can contain other blocks. These smaller contained blocks can ref-
erence variables defined in the larger scoped blocks, but not vice versa. Here’s an example:

16: public void eatIfHungry(boolean hungry) {
17: if (hungry) {

18: int bitesOfCheese = 1;
19: {
20: var teenyBit = true;

21: System.out.println(bitesOfCheese);

46 Chapter 1 = Building Blocks

22: }

23: }

24: System.out.println(teenyBit); // DOES NOT COMPILE
25: }

The variable defined on line 18 is in scope until the block ends on line 23. Using it in the
smaller block from lines 19 to 22 is fine. The variable defined on line 20 goes out of scope on
line 22. Using it on line 24 is not allowed.

Tracing Scope

The exam will attempt to trick you with various questions on scope. You’ll probably see a
question that appears to be about something complex and fails to compile because one of
the variables is out of scope.

Let’s try one. Don’t worry if you aren’t familiar with 1 f statements or while loops yet. It
doesn’t matter what the code does since we are talking about scope. See if you can figure out
on which line each of the five local variables goes into and out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {

12: int roomInBelly = 5;

13: if (hungry) {

14: var timeToEat = true;

15: while (amountOfFood > 0) {

16: int amountEaten = 2;

17: roomInBelly = roomInBelly - amountEaten;
18: amountOfFood = amountOfFood - amountEaten;
19: }

20: }

21: System.out.println(amountOfFood) ;

22: }

This method does compile. The first step in figuring out the scope is to identify the blocks
of code. In this case, there are three blocks. You can tell this because there are three sets
of braces. Starting from the innermost set, we can see where the while loop’s block starts
and ends. Repeat this process as we go on for the 1 f statement block and method block.
Table 1.10 shows the line numbers that each block starts and ends on.

TABLE 1.10 Tracking scope by block

Line First line in block Last line in block
while 15 19
if 13 20

Method 1 22

Managing Variable Scope 47

Now that we know where the blocks are, we can look at the scope of each variable.
hungry and amountOfFood are method parameters, so they are available for the entire
method. This means their scope is lines 11 to 22. The variable roomInBelly goes into scope
on line 12 because that is where it is declared. It stays in scope for the rest of the method
and goes out of scope on line 22. The variable timeToEat goes into scope on line 14 where
it is declared. It goes out of scope on line 20 where the 1 f block ends. Finally, the variable
amountEaten goes into scope on line 16 where it is declared. It goes out of scope on line
19 where the wh1ile block ends.

You’ll want to practice this skill a lot! Identifying blocks and variable scope needs to be
second nature for the exam. The good news is that there are lots of code examples to prac-
tice on. You can look at any code example on any topic in this book and match up braces.

Applying Scope to Classes

All of that was for local variables. Luckily, the rule for instance variables is easier: they are
available as soon as they are defined and last for the entire lifetime of the object itself. The
rule for class, aka static, variables is even easier: they go into scope when declared like the
other variable types. However, they stay in scope for the entire life of the program.

Let’s do one more example to make sure you have a handle on this. Again, try to figure
out the type of the four variables and when they go into and out of scope.

1: public class Mouse {

2 final static int MAX_LENGTH = 5;

3 int length;

4 public void grow(int inches) {

5: if (length < MAX_LENGTH) {

6: int newSize = length + inches;
7 length = newSize;

8

9

10: }

In this class, we have one class variable, MAX_LENGTH; one instance variable, length;
and two local variables, inches and newSize. The MAX_LENGTH variable is a class variable
because it has the static keyword in its declaration. In this case, MAX_LENGTH goes into
scope on line 2 where it is declared. It stays in scope until the program ends.

Next, length goes into scope on line 3 where it is declared. It stays in scope as long as
this Mouse object exists. inches goes into scope where it is declared on line 4. It goes out of
scope at the end of the method on line 9. newS1 ze goes into scope where it is declared on line
6. Since it is defined inside the 1 f statement block, it goes out of scope when that block ends
on line 8.

48 Chapter 1 = Building Blocks

Reviewing Scope

Got all that? Let’s review the rules on scope:

» Local variables: In scope from declaration to the end of the block
» Method parameters: In scope for the duration of the method

» [nstance variables: In scope from declaration until the object is eligible for garbage
collection

= Class variables: In scope from declaration until the program ends

Not sure what garbage collection is? Relax: that’s our next and final section for
this chapter.

Destroying Objects

Now that we’ve played with our objects, it is time to put them away. Luckily, the JVM takes
care of that for you. Java provides a garbage collector to automatically look for objects that
aren’t needed anymore.

Remember, your code isn’t the only process running in your Java program. Java code
exists inside of a JVM, which includes numerous processes independent from your applica-
tion code. One of the most important of those is a built-in garbage collector.

All Java objects are stored in your program memory’s heap. The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your Java
application. If your program keeps instantiating objects and leaving them on the heap, even-
tually it will run out of memory and crash. Oh, no! Luckily, garbage collection solves this
problem. In the following sections, we look at garbage collection.

Understanding Garbage Collection

Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. There are many different algo-
rithms for garbage collection, but you don’t need to know any of them for the exam.

As a developer, the most interesting part of garbage collection is determining when the
memory belonging to an object can be reclaimed. In Java and other languages, eligible for
garbage collection refers to an object’s state of no longer being accessible in a program and
therefore able to be garbage collected.

Does this mean an object that’s eligible for garbage collection will be immediately garbage
collected? Definitely not. When the object actually is discarded is not under your control, but
for the exam, you will need to know at any given moment which objects are eligible for gar-
bage collection.

Think of garbage-collection eligibility like shipping a package. You can take an item, seal
it in a labeled box, and put it in your mailbox. This is analogous to making an item eligible
for garbage collection. When the mail carrier comes by to pick it up, though, is not in your

Destroying Objects 49

control. For example, it may be a postal holiday, or there could be a severe weather event.
You can even call the post office and ask them to come pick it up right away, but there’s no
way to guarantee when and if this will actually happen. Hopefully, they will come by before
your mailbox fills with packages!

Java includes a built-in method to help support garbage collection where you can suggest
that garbage collection run.

System.gc();

Just like the post office, Java is free to ignore you. This method is not guaranteed to
do anything.

Tracing Eligibility

How does the JVM know when an object is eligible for garbage collection? The JVM waits
patiently and monitors each object until it determines that the code no longer needs that
memory. An object will remain on the heap until it is no longer reachable. An object is no
longer reachable when one of two situations occurs:

» The object no longer has any references pointing to it.

= All references to the object have gone out of scope.

Objects vs. References

Do not confuse a reference with the object that it refers to; they are two different entities.
The reference is a variable that has a name and can be used to access the contents of an
object. A reference can be assigned to another reference, passed to a method, or returned
from a method. All references are the same size, no matter what their type is.

An object sits on the heap and does not have a name. Therefore, you have no way to access
an object except through a reference. Objects come in all different shapes and sizes and
consume varying amounts of memory. An object cannot be assigned to another object, and
an object cannot be passed to a method or returned from a method. It is the object that gets
garbage collected, not its reference.

The heap

A reference

name An object

Y

50 Chapter 1 = Building Blocks

Realizing the difference between a reference and an object goes a long way toward under-
standing garbage collection, the new operator, and many other facets of the Java language.
Look at this code and see whether you can figure out when each object first becomes eligible
for garbage collection:

1: public class Scope {
2: public static void main(String[] args) {

3: String one, two;

4: one = new String("a");
5: two = new String("b");
6: one = two;

T: String three = one;

8: one = null;

9:

P}

When you are asked a question about garbage collection on the exam, we recommend
that you draw what’s going on. There’s a lot to keep track of in your head, and it’s easy to
make a silly mistake trying to hold it all in your memory. Let’s try it together now. Really.
Get a pencil and paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, write one and two (just the words—no
need for boxes or arrows since no objects have gone on the heap yet). On line 4, we have our
first object. Draw a box with the string "a" in it, and draw an arrow from the word one to
that box. Line § is similar. Draw another box with the string "b" in it this time and an arrow
from the word two. At this point, your work should look like Figure 1.4.

FIGURE 1.4 Yourdrawing after line 5

ong — >

two ———> 'b"

On line 6, the variable one changes to point to "b". Either erase or cross out the arrow
from one and draw a new arrow from one to "b". On line 7, we have a new variable, so
write the word three and draw an arrow from three to "b". Notice that three points to
what one is pointing to right now and not what it was pointing to at the beginning. This
is why you are drawing pictures. It’s easy to forget something like that. At this point, your
work should look like Figure 1.5.

Finally, cross out the line between one and "b" since line 8 sets this variable to nult.
Now, we were trying to find out when the objects were first eligible for garbage collection.
On line 6, we got rid of the only arrow pointing to "a", making that object eligible for gar-
bage collection. "b" has arrows pointing to it until it goes out of scope. This means "b"
doesn’t go out of scope until the end of the method on line 9.

Summary

FIGURE 1.5 Yourdrawing after line 7

one "

two ——>{ b’

three

51

Code Formatting on the Exam

Not all questions will include package declarations and imports. Don’t worry about missing
package statements or imports unless you are asked about them.The following are
common cases where you don’t need to check the imports:

Code that begins with a class name
Code that begins with a method declaration
Code that begins with a code snippet that would normally be inside a class or method

Code that has line numbers that don’t begin with 1

You'll see code that doesn’t have a method. When this happens, assume any necessary
plumbing code like the main () method and class definition were written correctly. You're
just being asked if the part of the code you're shown compiles when dropped into valid sur-
rounding code. Finally, remember that extra whitespace doesn’t matter in Java syntax. The
exam may use varying amounts of whitespace to trick you.

Summary

Java begins program execution with a main () method. The most common signature for this
method run from the command line is public static void main(String[] args).
Arguments are passed in after the class name, as in java NameOfClass firstArgument.
Arguments are indexed starting with 0.

you use an import statement. A wildcard ending an import statement means you want to

Java code is organized into folders called packages. To reference classes in other packages,

import all classes in that package. It does not include packages that are inside that one. The
package java.lang is special in that it does not need to be imported.

52 Chapter 1 = Building Blocks

For some class elements, order matters within the file. The package statement comes first
if present. Then come the import statements if present. Then comes the class declaration.
Fields and methods are allowed to be in any order within the class.

Primitive types are the basic building blocks of Java types. They are assembled into refer-
ence types. Reference types can have methods and be assigned a null value. Numeric literals
are allowed to contain underscores (_) as long as they do not start or end the literal and are
not next to a decimal point (.). Wrapper classes are reference types, and there is one for each
primitive. Text blocks allow creating a String on multiple lines using """,

Declaring a variable involves stating the data type and giving the variable a name. Var-
iables that represent fields in a class are automatically initialized to their corresponding 0,
null, or false values during object instantiation. Local variables must be specifically ini-
tialized before they can be used. Identifiers may contain letters, numbers, currency symbols,
or _. Identifiers may not begin with numbers. Local variable declarations may use the var
keyword instead of the actual type. When using var, the type is set once at compile time and
does not change.

Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables, and
local variables. Instance variables are the non-static fields of your class. Class variables are
the static fields within a class. Local variables are declared within a constructor, method, or
initializer block.

Constructors create Java objects. A constructor is a method matching the class name and
omitting the return type. When an object is instantiated, fields and blocks of code are initial-
ized first. Then the constructor is run. Finally, garbage collection is responsible for removing
objects from memory when they can never be used again. An object becomes eligible for
garbage collection when there are no more references to it or its references have all gone
out of scope.

Exam Essentials

Be able to write code using a main() method. A main() method is usually written as
public static void main(String[] args). Arguments are referenced starting with
args[0]. Accessing an argument that wasn’t passed in will cause the code to throw an
exception.

Understand the effect of using packages and imports. Packages contain Java classes.
Classes can be imported by class name or wildcard. Wildcards do not look at subdirecto-
ries. In the event of a conflict, class name imports take precedence. Package and import
statements are optional. If they are present, they both go before the class declaration in
that order.

Be able to recognize a constructor. A constructor has the same name as the class. It looks
like a method without a return type.

Exam Essentials 53

Be able to identify legal and illegal declarations and initialization. ~Multiple variables can
be declared and initialized in the same statement when they share a type. Local variables
require an explicit initialization; others use the default value for that type. Identifiers may
contain letters, numbers, currency symbols, or _, although they may not begin with numbers.
Also, you cannot define an identifier that is just a single underscore character _. Numeric
literals may contain underscores between two digits, such as 1_000, but not in other places,
such as _1600_.0_.

Understand how to create text blocks. A text block begins with """ on the first line. On
the next line begins the content. The last line ends with """, If """ is on its own line, a
trailing line break is included.

Be able to use var correctly. A var is used for a local variable. A var is initialized on the
same line where it is declared, and while it can change value, it cannot change type. A var
cannot be initialized with a null value without a type, nor can it be used in multiple vari-
able declarations.

Be able to determine where variables go into and out of scope. All variables go into scope
when they are declared. Local variables go out of scope when the block they are declared

in ends. Instance variables go out of scope when the object is eligible for garbage collection.
Class variables remain in scope as long as the program is running.

Know how to identify when an object is eligible for garbage collection. Draw a diagram to
keep track of references and objects as you trace the code. When no arrows point to a box
(object), it is eligible for garbage collection.

54 Chapter 1 = Building Blocks

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which of the following are legal entry point methods that can be run from the command
line? (Choose all that apply.)
A. private static void main(String[] args)

public static final main(String[] args)

public void main(String[] args)

public static final void main(String[] args)

public static void main(String[] args)

mmo o ®

public static main(String[] args)
2. Which answer options represent the order in which the following statements can be assem-
bled into a program that will compile successfully? (Choose all that apply.)
X: class Rabbit {}
Y: dimport java.util.x;
Z: package animals;

X,Y,Z
Y, Z, X
Z,Y, X
Y, X
Z, X
X,Z

None of the above

GmMmDoowp

3. Which of the following are true? (Choose all that apply.)

public class Bunny {
public static void main(String[] x) {
Bunny bun = new Bunny();

I

Bunny is a class.

bun is a class.

main is a class.

Bunny is a reference to an object.
bun is a reference to an object.

main is a reference to an object.

@mMmoowp

The main () method doesn’t run because the parameter name is incorrect.

Review Questions 55

Which of the following are valid Java identifiers? (Choose all that apply.)

A _

B. _helloWorlds
C. true

D. java.lang

E. Public

F. 1980_s

G. _Q2_

Which statements about the following program are correct? (Choose all that apply.)

2 public class Bear {

3 private Bear pandaBear;

4 private void roar(Bear b) {

5: System.out.println("Roar!");
6 pandaBear = b;

-

8

9

}
public static void main(String[] args) {
Bear brownBear = new Bear();

10: Bear polarBear = new Bear();
11: brownBear.roar (polarBear);
12: polarBear = null;
13: brownBear = null;
14: System.gc(); } }
A. The object created on line 9 is eligible for garbage collection after line 13.
B. The object created on line 9 is eligible for garbage collection after line 14.
C. The object created on line 10 is eligible for garbage collection after line 12.
D. The object created on line 10 is eligible for garbage collection after line 13.
E. Garbage collection is guaranteed to run.
F Garbage collection might or might not run.
G. The code does not compile.

Assuming the following class compiles, how many variables defined in the class or method
are in scope on the line marked on line 14?
public class Camel {
{ int hairs = 3_000_0; }
long water, air=2;

public void spit(float distance) {

1

2

3

4: boolean twoHumps = true;
5

6 var path = "";

56 Chapter 1 = Building Blocks

7: { double teeth = 32 + distance++; }
8: while(water > 0) {

9: int age = twoHumps ? 1 : 2;
10: short i=-1;

11: for(i=0; i<10; i++) {

12: var Private = 2;

13: }

14: // SCOPE

15: }

16: }

17: }

G Mmoo ®m>»
N9 v b W

None of the above

7. Which are true about this code? (Choose all that apply.)

public class KitchenSink {
private int numForks;

public static void main(String[] args) {
int numKnives;
System.out.print("""
"# forks = " + numForks +
" # knives = " + numKnives +
cups = Q""");

—

The output includes: # forks = 0.
The output includes: # knives = 0.
The output includes: # cups = 0.
The output includes a blank line.

The output includes one or more lines that begin with whitespace.

Mmoo wp>

The code does not compile.

Review Questions

Which of the following code snippets about var compile without issue when used in a
method? (Choose all that apply.)

var spring = null;

var fall = "leaves";

var evening = 2; evening = null;
var night = Integer.valueOf(3);
var day = 1/0;

var winter = 12, cold;

var fall = 2, autumn = 2;

IOGMMmMOO WP

var morning = ""; morning = null;

Which of the following are correct? (Choose all that apply.)
An instance variable of type float defaults to 0.

An instance variable of type char defaults to nul1.

A local variable of type double defaults to 0. 0.

A local variable of type int defaults to nul1.

A class variable of type String defaults to nul1.

mmoOoOow>»

A class variable of type String defaults to the empty string
G. None of the above.

. Which of the following expressions, when inserted independently into the blank line, allow
the code to compile? (Choose all that apply.)

public void printMagicData() {
var magic =
System.out.println(magic);

}

A. 3.1

B. 1.329_.0
C. 3_.13.0_
D. 5_291._2
E. 2_234.0_0
F 9___6

G. _1.3.5.0

. Given the following two class files, what is the maximum number of imports that can be
removed and have the code still compile?

// Water.java

package aquarium;

public class Water { }

58

12.

Chapter 1 = Building Blocks

// Tank.java

package aquarium;

import java.lang.x;

import java.lang.System;

import aquarium.Water;

import aquarium.x;

public class Tank {
public void print(Water water) {
System.out.println(water); } }

Mmoo wp
AW N =, O

Does not compile

Which statements about the following class are correct? (Choose all that apply.)
1: public class ClownFish {

2 int gills = 0, double weight=2;

3 { int fins = gills; }

4 void print(int length = 3) {

5: System.out.println(gills);
6 System.out.println(weight);
7 System.out.println(fins);
8: System.out.println(length);
9: }}

Line 2 generates a compiler error.

Line 3 generates a compiler error.

Line 4 generates a compiler error.

Line 7 generates a compiler error.

The code prints 0.

The code prints 2. 0.

The code prints 2.

IOoMmMOOw®p

The code prints 3.

Review Questions 59

13. Given the following classes, which of the following snippets can independently be inserted in
place of INSERT IMPORTS HERE and have the code compile? (Choose all that apply.)

package aquarium;
public class Water {
boolean salty = false;

package aquarium.jellies;
public class Water {
boolean salty = true;

package employee;

INSERT IMPORTS HERE

public class WaterFiller {
Water water;

A. dmport aquarium.x*;
B. dimport aquarium.Water;
import aquarium.jellies.x;
C. -+import aquarium.x;
import aquarium.jellies.Water;
D. dimport aquarium.x;
import aquarium.jellies.x*;
E. dimport aquarium.Water;
import aquarium.jellies.Water;

F None of these imports can make the code compile.

14. Which of the following statements about the code snippet are true? (Choose all that apply.)

3: short numPets = 5L;
int numGrains = 2.0;
String name = "Scruffy";
int d = numPets.length();
int e = numGrains.length;
int f

o N o 0 b

name.length();

60

15.

16.

17.

Chapter 1 = Building Blocks

Line 3 generates a compiler error.
Line 4 generates a compiler error.
Line 5 generates a compiler error.

Line 6 generates a compiler error.

moowp

Line 7 generates a compiler error.

F Line 8 generates a compiler error.

Which of the following statements about garbage collection are correct? (Choose all
that apply.)

A. Calling System.gc() is guaranteed to free up memory by destroying objects eligible
for garbage collection.

Garbage collection runs on a set schedule.
Garbage collection allows the JVM to reclaim memory for other objects.
Garbage collection runs when your program has used up half the available memory.

An object may be eligible for garbage collection but never removed from the heap.

mmo o

An object is eligible for garbage collection once no references to it are accessible in the
program.

G. Marking a variable final means its associated object will never be garbage collected.

Which are true about this code? (Choose all that apply.)

var blocky = """
squirrel \s
pigeon \

termite""";
System.out.print(blocky);

It outputs two lines.

It outputs three lines.

It outputs four lines.

There is one line with trailing whitespace.

There are two lines with trailing whitespace.

Mmoo wp

If we indented each line five characters, it would change the output.

What lines are printed by the following program? (Choose all that apply.)

1: public class WaterBottle {

2 private String brand;

3: private boolean empty;

4: public static float code;

5 public static void main(String[] args) {
6 WaterBottle wb = new WaterBottle();

18.

19.

20.

Review Questions

7: System.out.println("Empty = " + wb.empty);
8: System.out.println("Brand = " + wb.brand);
9: System.out.println("Code = " + code);

10: 1}

A. Line 8 generates a compiler error.

B. Line 9 generates a compiler error.

C. Empty =

D. Empty = false

E. Brand =

F. Brand = null

G. Code = 0.0

H. Code = of

Which of the following statements about var are true? (Choose all that apply.)
A var can be used as a constructor parameter.

The type of a var is known at compile time.

A var cannot be used as an instance variable.

A var can be used in a multiple variable assignment statement.

The value of a var cannot change at runtime.

The type of a var cannot change at runtime.

G mMmOoOO®m P

The word var is a reserved word in Java.

Which are true about the following code? (Choose all that apply.)
var numl = Long.parselong("100");

var num2 = Long.valueOf("100");
System.out.println(Long.max (numl, num2));

The output is 100.
The output is 200.

A
B
C. The code does not compile.
D. numl is a primitive.

E

numz2 is a primitive.

Which statements about the following class are correct? (Choose all that apply.)

1: public class PoliceBox {

2: String color;

3: long age;

4: public void PoliceBox() {
5: color = "blue";

6:

age = 1200;

61

62

21.

T:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:

IOoMmMODOw®p

Chapter 1 = Building Blocks

}

public static void main(String [Jtime) {
var p = new PoliceBox();
var q = new PoliceBox();

p.color = "green";
p.age = 1400;
P =49

System.out.println("Q1l="+q.color);

System.out.println("Q2="+q.age);

System.out.println("P1="+p.color);

System.out.println("P2="+p.age);
i

It prints Q1=blue.

It prints Q2=1200.

It prints P1=null.

It prints P2=1400.

Line 4 does not compile.
Line 12 does not compile.
Line 13 does not compile.

None of the above.

What is the output of executing the following class?

1
2
3
4:
5:
6
7
8
9

10:
11:
12:

public class Salmon {

int count;

{ System.out.print(count+"-"); }

{ count++; }

public Salmon() {
count = 4;
System.out.print(2+"-");

}

public static void main(String[] args) {
System.out.print(7+"-");
var s = new Salmon();
System.out.print(s.count+"-"); } }

22,

23.

Review Questions 63

7-0-2-1-

7-0-1-

0-7-2-1-

7-0-2-4-

0-7-1-

The class does not compile because of line 3.

The class does not compile because of line 4.

IomMmMmOO® P>

None of the above.
Given the following class, which of the following lines of code can independently replace
INSERT CODE HERE to make the code compile? (Choose all that apply.)

public class Price {
public void admission() {
INSERT CODE HERE
System.out.print(amount);

P}

int Amount = 0bl1l;

int amount = 9L;

int amount = OxE;

int amount = 1_2.0;
double amount = 1_0_.0;
int amount = 0bl01;
9.2.1_2;
double amount = 1_2_.0_0;

double amount

IOGMMmMOO WP

Which statements about the following class are true? (Choose all that apply.)

1: public class River {

2 int Depth = 1;

3 float temp = 50.0;

4 public void flow() {

5: for (int i = 0; i < 1; i++) {
6: int depth = 2;

7 depth++;
8 temp--;
9

64

10:
11:
12:

14:

IoMmMOO®S>

Chapter 1 = Building Blocks

System.out.println(depth);
System.out.println(temp); }

public static void main(String... s) {
new River().flow();

I

Line 3 generates a compiler error.
Line 6 generates a compiler error.
Line 7 generates a compiler error.
Line 10 generates a compiler error.
The program prints 3 on line 10.
The program prints 4 on line 10.
The program prints 50.0 on line 11.
The program prints 49.0 on line 11.

Operators

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Handling date, time, text, numeric and boolean values
Use primitives and wrapper classes including Math API,
parentheses, type promotion, and casting to evaluate
arithmetic and boolean expressions

The previous chapter talked a lot about defining variables,
but what can you do with a variable once it is created? This
chapter introduces operators and shows how you can use them
to combine existing variables and create new values. It shows you how to apply operators
to various primitive data types, including introducing you to operators that can be applied
to objects.

Understanding Java Operators

Before we get into the fun stuff, let’s cover a bit of terminology. A Java operator is a special
symbol that can be applied to a set of variables, values, or literals—referred to as operands—
and that returns a result. The term operand, which we use throughout this chapter, refers

to the value or variable the operator is being applied to. Figure 2.1 shows the anatomy of a
Java operation.

FIGURE 2.1 Java operation

WOperands

var ¢ = a + b;

} N Qperator
Result assigned to ¢

The output of the operation is simply referred to as the result. Figure 2.1 actually con-
tains a second operation, with the assignment operator (=) being used to store the result in
variable c.

We’re sure you have been using the addition (+) and subtraction (=) operators since you
were a little kid. Java supports many other operators that you need to know for the exam.
While many should be review for you, some (such as the compound assignment operators)
may be new to you.

Types of Operators

Java supports three flavors of operators: unary, binary, and ternary. These types of operators
can be applied to one, two, or three operands, respectively. For the exam, you need to know

Understanding Java Operators 67

a specific subset of Java operators, how to apply them, and the order in which they should
be applied.

Java operators are not necessarily evaluated from left-to-right order. In this following
example, the second expression is actually evaluated from right to left, given the specific
operators involved:

int cookies = 4;
double reward = 3 + 2 * --cookies;
System.out.print("Zoo animal receives: "+reward+" reward points");

In this example, you first decrement cookies to 3, then multiply the resulting value by 2,
and finally add 3. The value then is automatically promoted from 9 to 9.0 and assigned to
reward. The final values of reward and cookies are 9.0 and 3, respectively, with the fol-
lowing printed:

Zoo animal receives: 9.0 reward points

If you didn’t follow that evaluation, don’t worry. By the end of this chapter, solving prob-
lems like this should be second nature.

Operator Precedence

When reading a book or a newspaper, some written languages are evaluated from left to
right, while some are evaluated from right to left. In mathematics, certain operators can
override other operators and be evaluated first. Determining which operators are evaluated
in what order is referred to as operator precedence. In this manner, Java more closely follows
the rules for mathematics. Consider the following expression:

var perimeter = 2 x height + 2 * length;

Let’s apply some optional parentheses to demonstrate how the compiler evaluates this
statement:

var perimeter = ((2 * height) + (2 * length));

The multiplication operator (*) has a higher precedence than the addition operator (+), so
the height and length are both multiplied by 2 before being added together. The assignment
operator (=) has the lowest order of precedence, so the assignment to the perimeter variable
is performed last.

Unless overridden with parentheses, Java operators follow order of operation, listed in
Table 2.1, by decreasing order of operator precedence. If two operators have the same level
of precedence, then Java guarantees left-to-right evaluation for most operators other than
the ones marked in the table.

68 Chapter 2 = Operators

TABLE 2.1 Order of operator precedence

Operator Symbols and examples Evaluation

Post-unary operators expression++, expression—- Left-to-right
Pre-unary operators +t+expression, ——expression Left-to-right
Other unary operators =, 1, ~ + (type) Right-to-left
Cast (Type) reference Right-to-left
Multiplication/division/modulus *, /, % Left-to-right
Addition/subtraction +, - Left-to-right
Shift operators <L, 5>, >>> Left-to-right
Relational operators <, >, <=,>=, 1instanceof Left-to-right
Equal to/not equal to ==, 1= Left-to-right
Logical AND & Left-to-right
Logical exclusive OR A Left-to-right
Logical inclusive OR | Left-to-right
Conditional AND && Left-to-right
Conditional OR || Left-to-right
Ternary operators boolean expression? expressionl : Right-to-left

expression2
Assignment operators =, +=, -5, x=, /=, %=, &=, A=, | =, <<=, >>=, Right-to-left
>>>=
Arrow operator -> Right-to-left

We recommend keeping Table 2.1 handy throughout this chapter. For the exam, you
need to memorize the order of precedence in this table. Note that you won’t be tested on
some operators, like the shift operators, although we recommend that you be aware of their
existence.

2

Applying Unary Operators 69

The arrow operator (->), sometimes called the arrow function or lambda
operator, is a binary operator that represents a relationship between

two operands. Although we won't cover the arrow operator in this
chapter, you will see it used in switch expressions in Chapter 3, “Making
Decisions,” and in lambda expressions starting in Chapter 8, “Lambdas
and Functional Interfaces.”

Applying Unary Operators

By definition, a unary operator is one that requires exactly one operand, or variable, to
function. As shown in Table 2.2, they often perform simple tasks, such as increasing a
numeric variable by one or negating a boolean value.

TABLE 2.2 Unary operators

Operator Examples Description
Logical la Inverts a boolean’s logical value
complement
Bitwise ~b Inverts all ©s and 1s in a number
complement
Plus +c Indicates a number is positive, although numbers are
assumed to be positive in Java unless accompanied by a
negative unary operator
Negation or -d Indicates a literal number is negative or negates an
minus expression
Increment ++e Increments a value by 1
f++
Decrement --f Decrements a value by 1
h__
Cast (String)i Casts a value to a specific type

Even though Table 2.2 includes the casting operator, we postpone discussing casting until
the “Assigning Values” section later in this chapter, since that is where it is commonly used.

70 Chapter 2 = Operators

Complement and Negation Operators

Since we’re going to be working with a lot of numeric operators in this chapter, let’s get the
boolean one out of the way first. The logical complement operator (!) flips the value of a
boolean expression. For example, if the value is true, it will be converted to false, and
vice versa. To illustrate this, compare the outputs of the following statements:

boolean isAnimalAsleep = false;
System.out.print(isAnimalAsleep); // false
isAnimalAsleep = !isAnimalAsleep;
System.out.print(isAnimalAsleep); // true

For the exam, you also need to know about the bitwise complement operator (~), which
flips all of the 0s and 1s in a number. It can only be applied to integer numeric types such as
byte, short, char, int, and long. Let’s try an example. For simplicity, we only show the
last four bits (instead of all 32 bits).

int value = 3; // Stored as 0011
int complement = ~value; // Stored as 1100
System.out.println(value); // 3

System.out.println(complement); // -4

Relax! You don’t need to know how to do complicated bit arithmetic on the exam, as
long as you remember this rule: to find the bitwise complement of a number, multiply it by
negative one and then subtract one.

System.out.println(-1xvalue - 1); /] -4
System.out.println(-1xcomplement - 1); // 3

Moving on to more common operators, the negation operator (=) reverses the sign of a
numeric expression, as shown in these statements:

double zooTemperature = 1.21;
System.out.println(zooTemperature); // 1.21

zooTemperature = -zooTemperature;
System.out.println(zooTemperature); // -1.21
zooTemperature = -(-zooTemperature);

System.out.println(zooTemperature); // -1.21

Notice that in the last example we used parentheses, (), for the negation operator, -, to
apply the negation twice. If we had instead written —-, then it would have been interpreted
as the decrement operator and printed -2.21. You will see more of that decrement oper-
ator shortly.

Based on the description, it might be obvious that some operators require the variable
or expression they’re acting on to be of a specific type. For example, you cannot apply a
negation operator (=) to a boolean expression, nor can you apply a logical complement
operator (!) to a numeric expression. Be wary of questions on the exam that try to do this,

Applying Unary Operators

as they cause the code to fail to compile. For example, none of the following lines of code
will compile:

int pelican = !5; // DOES NOT COMPILE
boolean penguin = -true; // DOES NOT COMPILE
boolean peacock = 10; // DOES NOT COMPILE

The first statement will not compile because in Java you cannot perform a logical
inversion of a numeric value. The second statement does not compile because you cannot
numerically negate a boolean value; you need to use the logical inverse operator. Finally,
the last statement does not compile because you cannot take the logical complement of a
numeric value, nor can you assign an integer to a boolean variable.

' Keep an eye out for questions on the exam that use numeric values (such

P as 0 or 1) with boolean expressions. Unlike in some other programming
languages, in Java, 1 and true are not related in any way, just as 0 and
false are not related.

Increment and Decrement Operators

Increment and decrement operators, ++ and ——, respectively, can be applied to numeric var-
iables and have a high order of precedence compared to binary operators. In other words,
they are often applied first in an expression.

Increment and decrement operators require special care because the order in which they
are attached to their associated variable can make a difference in how an expression is pro-
cessed. Table 2.3 lists each of these operators.

TABLE 2.3 Increment and decrement operators

Operator Example Description

Pre-increment ++w Increases the value by 1 and returns the new value
Pre-decrement -=X Decreases the value by 1 and returns the new value
Post-increment y++ Increases the value by 1 and returns the original value
Post-decrement z-- Decreases the value by 1 and returns the original value

The following code snippet illustrates this distinction:

int parkAttendance = 0;
System.out.println(parkAttendance); /] ©
System.out.println(++parkAttendance); // 1

12 Chapter 2 = Operators

System.out.println(parkAttendance); /] 1
System.out.println(parkAttendance-=); // 1
System.out.println(parkAttendance); /] ©

The first pre-increment operator updates the value for parkAttendance and outputs
the new value of 1. The next post-decrement operator also updates the value of
parkAttendance but outputs the value before the decrement occurs.

For the exam, it is critical that you know the difference between expres-

,&TE sions like parkAttendance++ and ++parkAttendance. The increment
and decrement operators will be in multiple questions, and confusion
about which value is returned could cause you to lose a lot of points on
the exam.

Working with Binary
Arithmetic Operators

Next, we move on to operators that take two operands, called binary operators. Binary
operators are by far the most common operators in the Java language. They can be used

to perform mathematical operations on variables, create logical expressions, and perform
basic variable assignments. Binary operators are often combined in complex expressions
with other binary operators; therefore, operator precedence is very important in evaluating
expressions containing binary operators. In this section, we start with binary arithmetic
operators; we expand to other binary operators in later sections.

Arithmetic Operators

Arithmetic operators are those that operate on numeric values. They are shown in Table 2.4.

TABLE 2.4 Binary arithmetic operators

Operator Example Description

Addition a + b Addstwo numeric values

Subtraction ¢ - d Subtracts two numeric values
Multiplication e * f Multiplies two numeric values
Division g / h Divides one numeric value by another

Modulus i % j Returnsthe remainder after division of one numeric value by
another

Working with Binary Arithmetic Operators 3

You should know all but modulus from early mathematics. If you don’t know what
modulus is, though, don’t worry—we’ll cover that shortly. Arithmetic operators also include
the unary operators, ++ and —-, which we covered already. As you may have noticed in
Table 2.1, the multiplicative operators (*, /, %) have a higher order of precedence than the
additive operators (+, -). Take a look at the following expression:

int price = 2 x 5 + 3 ¥ 4 - 8;
First, you evaluate the 2 * 5 and 3 * 4, which reduces the expression to this:
int price = 10 + 12 - 8;
Then, you evaluate the remaining terms in left-to-right order, resulting in a value of

price of 14. Make sure you understand why the result is 14 because you will likely see this
kind of operator precedence question on the exam.

)/ All of the arithmetic operators may be applied to any Java primitives,
dng with the exception of boolean. Furthermore, only the addition opera-
tors + and += may be applied to String values, which results in String

concatenation. You will learn more about these operators and how they
apply to String values in Chapter 4, “Core APIs.”

Adding Parentheses

You might have noticed we said “Unless overridden with parentheses” prior to presenting
Table 2.1 on operator precedence. That’s because you can change the order of operation
explicitly by wrapping parentheses around the sections you want evaluated first.
Changing the Order of Operation

Let’s return to the previous price example. The following code snippet contains the same
values and operators, in the same order, but with two sets of parentheses added:

int price = 2 x ((5 + 3) *x 4 - 8);

This time you would evaluate the addition operator 5 + 3, which reduces the expression
to the following:
int price = 2 x (8 *x 4 - 8);

You can further reduce this expression by multiplying the first two values within the
parentheses:
int price = 2 x (32 - 8);

Next, you subtract the values within the parentheses before applying terms outside the
parentheses:
int price = 2 x 24;

Finally, you would multiply the result by 2, resulting in a value of 48 for price.

74 Chapter 2 = Operators

Parentheses can appear in nearly any question on the exam involving numeric values, so
make sure you understand how they are changing the order of operation when you see them.

P not sure about the order of operation, feel free to add optional paren-
theses. While often not required, they can improve readability, especially
as you'll see with ternary operators.

% When you encounter code in your professional career in which you are

Verifying Parentheses Syntax

When working with parentheses, you need to make sure they are always valid and balanced.
Consider the following examples:

long pigeon = 1 + ((3 % 5) / 3; // DOES NOT COMPILE
int blueday = (9 + 2) + 3) / (2 * 4; // DOES NOT COMPILE

The first example does not compile because the parentheses are not balanced. There is
a left parenthesis with no matching right parenthesis. The second example has an equal
number of left and right parentheses, but they are not balanced properly. When reading from
left to right, a new right parenthesis must match a previous left parenthesis. Likewise, all left
parentheses must be closed by right parentheses before the end of the expression.

Let’s try another example:

short robin = 3 + [(4 * 2) + 4]; // DOES NOT COMPILE

This example does not compile because Java, unlike some other programming languages,
does not allow brackets, [], to be used in place of parentheses. If you replace the brackets
with parentheses, the last example will compile just fine.

Division and Modulus Operators

As we said earlier, the modulus operator, %, may be new to you. The modulus operator,
sometimes called the remainder operator, is simply the remainder when two numbers are
divided. For example, 9 divided by 3 divides evenly and has no remainder; therefore, the
result of 9 % 3 is 0. On the other hand, 11 divided by 3 does not divide evenly; therefore,
the result of 11 % 3is 2.

The following examples illustrate this distinction:

System.out.println(9 / 3); // 3
System.out.println(9 % 3); /] ©

System.out.println(10 / 3); // 3
System.out.println(10 % 3); //

[y

System.out.println(1l / 3); // 3
System.out.println(11l % 3); //

N

Working with Binary Arithmetic Operators 75

System.out.println(12 / 3); // 4
System.out.println(12 % 3); // ©

As you can see, the division results increase only when the value on the left side goes
from 11 to 12, whereas the modulus remainder value increases by 1 each time the left side is
increased until it wraps around to zero. For a given divisor y, the modulus operation results
in a value between 0 and (y - 1) for positive dividends, or 0, 1, 2 in this example.

Be sure to understand the difference between arithmetic division and modulus. For integer
values, division results in the floor value of the nearest integer that fulfills the operation,
whereas modulus is the remainder value. If you hear the phrase floor value, it just means the
value without anything after the decimal point. For example, the floor value is 4 for each of
the values 4.0, 4.5, and 4.9999999. Unlike rounding, which we’ll cover in Chapter 4, you
just take the value before the decimal point, regardless of what is after the decimal point.

)/ The modulus operation is not limited to positive integer values in Java; it
,&TE may also be applied to negative integers and floating-point numbers. For
example, if the divisor is 5, then the modulus value of a negative number

is between -4 and 0. For the exam, though, you are not required to be
able to take the modulus of a negative integer or a floating-point number.

Numeric Promotion

Now that you understand the basics of arithmetic operators, it is vital to talk about prim-
itive numeric promotion, as Java may do things that seem unusual to you at first. As we
showed in Chapter 1, “Building Blocks,” each primitive numeric type has a bit-length. You
don’t need to know the exact size of these types for the exam, but you should know which
are bigger than others. For example, you should know that a Tong takes up more space than
an int, which in turn takes up more space than a short, and so on.

You need to memorize certain rules that Java will follow when applying operators to
data types:

Numeric Promotion Rules

1. If two values have different data types, Java will automatically promote one of the
values to the larger of the two data types.

2. If one of the values is integral and the other is floating-point, Java will automatically
promote the integral value to the floating-point value’s data type.

3. Smaller data types, namely, byte, short, and char, are first promoted to int any time
they’re used with a Java binary arithmetic operator with a variable (as opposed to a
value), even if neither of the operands is int.

4. After all promotion has occurred and the operands have the same data type, the result-
ing value will have the same data type as its promoted operands.

76 Chapter 2 = Operators

The last two rules are the ones most people have trouble with and the ones likely to trip
you up on the exam. For the third rule, note that unary operators are excluded from this
rule. For example, applying ++ to a short value results in a short value.

Let’s tackle some examples for illustrative purposes:

» What is the data type of x x y?
int x = 1;
long y = 33;
var z = x * y;

In this case, we follow the first rule. Since one of the values is int and the other is long,
and long is larger than int, the int value x is first promoted to a long. The result z is
then a long value.

» What is the data type of x + y?

double x = 39.21;
float y = 2.1;
var z = x + y;

This is actually a trick question, as the second line does not compile! As you may
remember from Chapter 1, floating-point literals are assumed to be double unless post-
fixed with an f, as in 2. 1f. If the value of y was set properly to 2. 1f, then the promo-
tion would be similar to the previous example, with both operands being promoted to a
double, and the result z would be a double value.

» What is the data type of x * y?

short x = 10;
short y = 3;
var z = x * y;

On the last line, we must apply the third rule: that x and y will both be promoted to
int before the binary multiplication operation, resulting in an output of type int. If
you were to try to assign the value to a short variable z without casting, then the code
would not compile. Pay close attention to the fact that the resulting output is not a
short, as we’ll come back to this example in the upcoming “Assigning Values” section.

» What is the data type of w x x / y?

short w = 14;
float x = 13;
double y = 30;

var z =w x x / y;

In this case, we must apply all of the rules. First, w will automatically be promoted to
int solely because it is a short and is being used in an arithmetic binary operation. The
promoted w value will then be automatically promoted to a float so that it can be mul-
tiplied with x. The result of w *x x will then be automatically promoted to a double so
that it can be divided by y, resulting in a double value.

Assigning Values n

When working with arithmetic operators in Java, you should always be aware of the data
type of variables, intermediate values, and resulting values. You should apply operator prece-
dence and parentheses and work outward, promoting data types along the way. In the next
section, we’ll discuss the intricacies of assigning these values to variables of a particular type.

Assigning Values

Compilation errors from assignment operators are often overlooked on the exam, in part
because of how subtle these errors can be. To be successful with the assignment operators,
you should be fluent in understanding how the compiler handles numeric promotion and
when casting is required. Being able to spot these issues is critical to passing the exam, as
assignment operators appear in nearly every question with a code snippet.

Assignment Operator

An assignment operator is a binary operator that modifies, or assigns, the variable on the
left side of the operator with the result of the value on the right side of the equation. Unlike
most other Java operators, the assignment operator is evaluated from right to left.

The simplest assignment operator is the = assignment, which you have seen already:

int herd = 1;

This statement assigns the herd variable the value of 1.

Java will automatically promote from smaller to larger data types, as you saw in the
previous section on arithmetic operators, but it will throw a compiler exception if it detects
that you are trying to convert from larger to smaller data types without casting. Table 2.5
lists the first assignment operator that you need to know for the exam. We present additional
assignment operators later in this section.

TABLE 2.5 Simple assignment operator

Operator Example Description

Assignment int a = 50; Assigns the value on the right to the variable on the left

Casting Values

Seems easy so far, right? Well, we can’t really talk about the assignment operator in detail
until we’ve covered casting. Casting is a unary operation where one data type is explicitly
interpreted as another data type. Casting is optional and unnecessary when converting to a

18 Chapter 2 = Operators

larger or widening data type, but it is required when converting to a smaller or narrowing
data type. Without casting, the compiler will generate an error when trying to put a larger
data type inside a smaller one.

Casting is performed by placing the data type, enclosed in parentheses, to the left of the
value you want to cast. Here are some examples of casting:

int fur = (int)5;

int hair = (short) 2;

String type = (String) "Bird";

short tail = (short) (4 + 10);

long feathers = 10(long); // DOES NOT COMPILE

Spaces between the cast and the value are optional. As shown in the second-to-last
example, it is common for the right side to also be in parentheses. Since casting is a unary
operation, it would only be applied to the 4 if we didn’t enclose 4 + 10 in parentheses. The
last example does not compile because the type is on the wrong side of the value.

On the one hand, it is convenient that the compiler automatically casts smaller data
types to larger ones. On the other hand, it makes for great exam questions when they do the
opposite to see whether you are paying attention. See if you can figure out why none of the
following lines of code compile:

float egg = 2.0 / 9; // DOES NOT COMPILE
int tadpole = (int)5 * 2L; // DOES NOT COMPILE
short frog = 3 - 2.0; // DOES NOT COMPILE

All of these examples involve putting a larger value into a smaller data type. Don’t worry
if you don’t follow this quite yet; we cover more examples like this shortly.

In this chapter, casting is primarily concerned with converting numeric data types into
other data types. As you will see in later chapters, casting can also be applied to objects and
references. In those cases, though, no conversion is performed. Put simply, casting a numeric
value may change the data type, while casting an object only changes the reference to the
object, not the object itself.

Reviewing Primitive Assignments

See if you can figure out why each of the following lines does not compile:

int fish = 1.0; // DOES NOT COMPILE
short bird = 1921222; // DOES NOT COMPILE
int mammal = 9f; // DOES NOT COMPILE

long reptile = 192_301_398_193_810_323; // DOES NOT COMPILE

The first statement does not compile because you are trying to assign a double 1.0
to an integer value. Even though the value is a mathematic integer, by adding . 0, you’re
instructing the compiler to treat it as a double. The second statement does not compile
because the literal value 1921222 is outside the range of short, and the compiler detects
this. The third statement does not compile because the f added to the end of the number

Assigning Values 19

instructs the compiler to treat the number as a floating-point value, but the assignment is to
an int. Finally, the last statement does not compile because Java interprets the literal as an
int and notices that the value is larger than int allows. The literal would need a postfix L
or 1 to be considered a long.

Applying Casting

We can fix three of the previous examples by casting the results to a smaller data type.
Remember, casting primitives is required any time you are going from a larger numerical
data type to a smaller numerical data type, or converting from a floating-point number to an
integral value.

int fish = (int)1.0;

short bird = (short)1921222; // Stored as 20678

int mammal = (int)9f;

What about applying casting to the last example?
long reptile = (long)192301398193810323; // DOES NOT COMPILE

This still does not compile because the value is first interpreted as an int by the compiler
and is out of range. The following fixes this code without requiring casting;:
long reptile = 192301398193810323L;

@ Real World Scenario
Overflow and Underflow

The expressions in the previous example now compile, although there’s a cost. The second
value, 1,921,222, is too large to be stored as a short, so numeric overflow occurs, and it
becomes 20,678. Overflow is when a number is so large that it will no longer fit within the
data type, so the system “wraps around” to the lowest negative value and counts up from
there, similar to how modulus arithmetic works. There’s also an analogous underflow, when
the number is too low to fit in the data type, such as storing -200 in a byte field.

This is beyond the scope of the exam but something to be careful of in your own code. For
example, the following statement outputs a negative number:

System.out.print(2147483647+1); // -2147483648

Since 2147483647 is the maximum 1int value, adding any strictly positive value to it will
cause it to wrap to the smallest negative number.

Let’s return to a similar example from the “Numeric Promotion” section earlier in
the chapter.

80 Chapter 2 = Operators

short mouse = 10;
short hamster = 3;
short capybara = mouse * hamster; // DOES NOT COMPILE

Based on everything you have learned up until now about numeric promotion and
casting, do you understand why the last line of this statement will not compile? As you may
remember, short values are automatically promoted to int when applying any arithmetic
operator, with the resulting value being of type int. Trying to assign a short variable with
an int value results in a compiler error, as Java thinks you are trying to implicitly convert
from a larger data type to a smaller one.

We can fix this expression by casting, as there are times that you may want to over-
ride the compiler’s default behavior. In this example, we know the result of 10 * 3 is 30,
which can easily fit into a short variable, so we can apply casting to convert the result back
to a short:

short mouse = 10;
short hamster = 3;
short capybara = (short)(mouse * hamster);

By casting a larger value into a smaller data type, you instruct the compiler to ignore its
default behavior. In other words, you are telling the compiler that you have taken additional
steps to prevent overflow or underflow. It is also possible that in your particular application
and scenario, overflow or underflow would result in acceptable values.

Last but not least, casting can appear anywhere in an expression, not just on the assign-
ment. For example, let’s take a look at a modified form of the previous example:

short mouse = 10;
short hamster = 3;
short capybara = (short)mouse * hamster; // DOES NOT COMPILE

So, what’s happening on the last line? Well, remember when we said casting was a unary
operation? That means the cast in the last line is applied to mouse, and mouse alone. After
the cast is complete, both operands are promoted to int since they are used with the binary
multiplication operator (x), making the result an int and causing a compiler error.

What if we changed the last line to the following?
short capybara = 1 + (short)(mouse * hamster); // DOES NOT COMPILE

In the example, casting is performed successfully, but the resulting value is automatically
promoted to int because it is used with the binary arithmetic operator (+).

Casting Values vs. Variables

Revisiting our third numeric promotional rule, the compiler doesn’t require casting when
working with literal values that fit into the data type. Consider these examples:

byte hat = 1;
byte gloves = 7 % 10;
short scarf = 5;
short boots = 2 + 1;

Assigning Values

All of these statements compile without issue. On the other hand, neither of these state-
ments compiles:

short boots
byte gloves

2 + hat; // DOES NOT COMPILE
7 x 100; // DOES NOT COMPILE

The first statement does not compile because hat is a variable, not a value, and both
operands are automatically promoted to int. When working with values, the compiler
had enough information to determine the writer’s intent. When working with variables,
though, there is ambiguity about how to proceed, so the compiler reports an error. The sec-
ond expression does not compile because 700 triggers an overflow for byte, which has a
maximum value of 127.

Compound Assignment Operators

Besides the simple assignment operator (=), Java supports numerous compound assignment
operators. For the exam, you should be familiar with the compound operators in Table 2.6.

TABLE 2.6 Compound assignment operators

81

Operator Example Description

Addition a += 5 Adds the value on the right to the variable on the left and
assignment assigns the sum to the variable

Subtraction b -= 0.2 Subtracts the value on the right from the variable on the left
assighment and assigns the difference to the variable

Multiplication c *= 100 Multiplies the value on the right with the variable on the left

assignment and assigns the product to the variable
Division d /= 4 Divides the variable on the left by the value on the right and
assighment assigns the quotient to the variable

Compound operators are really just glorified forms of the simple assignment operator,
with a built-in arithmetic or logical operation that applies the left and right sides of the
statement and stores the resulting value in the variable on the left side of the statement. For
example, the following two statements after the declaration of camel and giraffe are
equivalent when run independently:

int camel = 2, giraffe = 3;
camel = camel * giraffe; // Simple assignment operator
camel *= giraffe; // Compound assignment operator

82 Chapter 2 = Operators

The left side of the compound operator can be applied only to a variable that is already
defined and cannot be used to declare a new variable. In this example, if camel were not
already defined, the expression camel *= giraffe would not compile.

Compound operators are useful for more than just shorthand—they can also save you
from having to explicitly cast a value. For example, consider the following. Can you figure
out why the last line does not compile?

long goat = 10;
int sheep = 5;
sheep = sheep * goat; // DOES NOT COMPILE

From the previous section, you should be able to spot the problem in the last line. We are
trying to assign a long value to an int variable. This last line could be fixed with an explicit
cast to (int), but there’s a better way using the compound assignment operator:
long goat = 10;
int sheep = 5;
sheep *= goat;

The compound operator will first cast sheep to a long, apply the multiplication of two
long values, and then cast the result to an int. Unlike the previous example, in which the
compiler reported an error, the compiler will automatically cast the resulting value to the
data type of the value on the left side of the compound operator.

Return Value of Assignment Operators

One final thing to know about assignment operators is that the result of an assignment is an
expression in and of itself equal to the value of the assignment. For example, the following
snippet of code is perfectly valid, if a little odd-looking:

long wolf = 5;

long coyote = (wolf=3);
System.out.println(wolf); // 3
System.out.println(coyote); // 3

The key here is that (wolf=3) does two things. First, it sets the value of the variable
wolf to be 3. Second, it returns a value of the assignment, which is also 3.

The exam creators are fond of inserting the assignment operator (=) in the middle of an
expression and using the value of the assignment as part of a more complex expression. For
example, don’t be surprised if you see an 1 f statement on the exam similar to the following;:

boolean healthy = false;
if(healthy = true)
System.out.print("Good!");

While this may look like a test if healthy is true, it’s actually assigning healthy a
value of true. The result of the assignment is the value of the assignment, which is true,

Comparing Values 83

resulting in this snippet printing Good!. We’ll cover this in more detail in the upcoming
“Equality Operators” section.

Comparing Values

The last set of binary operators revolves around comparing values. They can be used to
check if two values are the same, check if one numeric value is less than or greater than
another, and perform Boolean arithmetic. Chances are, you have used many of the operators
in this section in your development experience.

Equality Operators

Determining equality in Java can be a nontrivial endeavor as there’s a semantic difference
between “two objects are the same” and “two objects are equivalent.” It is further compli-
cated by the fact that for numeric and boolean primitives, there is no such distinction.

Table 2.7 lists the equality operators. The equals operator (==) and not equals operator
(!=) compare two operands and return a boolean value determining whether the expressions
or values are equal or not equal, respectively.

TABLE 2.7 Equality operators

Operator Example Apply to primitives Apply to objects

Equality a == 10 Returns true if the two values Returns true if the two values ref-
represent the same value erence the same object

Inequality b != 3.14 Returns true if the two values Returns true if the two values do
represent different values not reference the same object

The equality operator can be applied to numeric values, boolean values, and objects
(including String and null). When applying the equality operator, you cannot mix these
types. Each of the following results in a compiler error:

boolean monkey = true == 3; // DOES NOT COMPILE
boolean ape = false != "Grape"; // DOES NOT COMPILE
boolean gorilla = 10.2 == "Koko"; // DOES NOT COMPILE

Pay close attention to the data types when you see an equality operator on the exam. As
mentioned in the previous section, the exam creators also have a habit of mixing assignment
operators and equality operators.

boolean bear = false;

84 Chapter 2 = Operators

boolean polar = (bear = true);
System.out.println(polar); // true

At first glance, you might think the output should be false, and if the expression were
(bear == true), then you would be correct. In this example, though, the expression is
assigning the value of true to bear, and as you saw in the section on assignment operators,
the assignment itself has the value of the assignment. Therefore, polar is also assigned a
value of true, and the output is true.

For object comparison, the equality operator is applied to the references to the objects,
not the objects they point to. Two references are equal if and only if they point to the same
object or both point to null. Let’s take a look at some examples:

var monday = new File("schedule.txt");

var tuesday = new File("schedule.txt");

var wednesday = tuesday;

System.out.println(monday == tuesday); // false
System.out.println(tuesday == wednesday); // true

Even though all of the variables point to the same file information, only two references,
tuesday and wednesday, are equal in terms of == since they point to the same object.

Wait, what's the File class? In this example, as well as during the exam,
TE you may be presented with class names that are unfamiliar, such as File.
Many times you can answer questions about these classes without know-
ing the specific details of these classes. In the previous example, you
should be able to answer questions that indicate monday and tuesday

are two separate and distinct objects because the new keyword is used,
even if you are not familiar with the data types of these objects.

In some languages, comparing null with any other value is always false, although this
is not the case in Java.

System.out.print(null == null); // true

In Chapter 4, we’ll continue the discussion of object equality by introducing what it
means for two different objects to be equivalent. We’ll also cover String equality and show
how this can be a nontrivial topic.

Relational Operators

We now move on to relational operators, which compare two expressions and return a
boolean value. Table 2.8 describes the relational operators you need to know for the exam.

Comparing Values 85

TABLE 2.8 Relational operators

Operator Example Description

Less than ac<s5s Returns true if the value on the left is strictly less than
the value on the right

Less than or b <=6 Returns true if the value on the left is less than or
equal to equal to the value on the right
Greater than c>9 Returns true if the value on the left is strictly greater

than the value on the right

Greater than or 3>=d Returns true if the value on the left is greater than or
equal to equal to the value on the right

Type comparison e instanceof Returns true if the reference on the left side is an in-
String stance of the type on the right side (class, interface,
record, enum, annotation)

Numeric Comparison Operators

The first four relational operators in Table 2.8 apply only to numeric values. If the two
numeric operands are not of the same data type, the smaller one is promoted, as previously
discussed.

Let’s look at examples of these operators in action:

int gibbonNumFeet = 2, wolfNumFeet = 4, ostrichNumFeet = 2;

System.out.println(gibbonNumFeet < wolfNumFeet); // true
System.out.println(gibbonNumFeet <= wolfNumFeet); // true
System.out.println(gibbonNumFeet >= ostrichNumFeet); // true
System.out.println(gibbonNumFeet > ostrichNumFeet); // false

Notice that the last example outputs false, because although gibbonNumFeet and
ostrichNumFeet have the same value, gibbonNumFeet is not strictly greater than
ostrichNumFeet.

instanceof Operator

The final relational operator you need to know for the exam is the instanceof operator,
shown in Table 2.8. It is useful for determining whether an arbitrary object is a member of a
particular class or interface at runtime.

Why wouldn’t you know what class or interface an object is? As we will get into in
Chapter 6, “Class Design,” Java supports polymorphism. For now, all you need to know is

86 Chapter 2 = Operators

objects can be passed around using a variety of references. For example, all classes inherit
from java.lang.Object. This means that any instance can be assigned to an Object ref-
erence. For example, how many objects are created and used in the following code snippet?

Integer zooTime = Integer.valueOf(9);
Number num = zooTime;
Object obj = zooTime;

In this example, only one object is created in memory, but there are three different ref-
erences to it because Integer inherits both Number and Object. This means that you can
call instanceof on any of these references with three different data types, and it will return
true for each of them.

Where polymorphism often comes into play is when you create a method that takes a
data type with many possible subclasses. For example, imagine that we have a function that
opens the zoo and prints the time. As input, it takes a Number as an input parameter.

public void openZoo(Number time) {}

Now, we want the function to add 0' clock to the end of output if the value is a whole
number type, such as an Integer; otherwise, it just prints the value.

public void openZoo(Number time) {
if (time dinstanceof Integer)
System.out.print((Integer)time + " 0'clock");
else
System.out.print(time);

We now have a method that can intelligently handle both Integer and other values. A
good exercise left for the reader is to add checks for other numeric data types such as Short,
Long, Double, and so on.

Notice that we cast the Integer value in this example. It is common to use casting with
instanceof when working with objects that can be various different types, since casting gives
you access to fields available only in the more specific classes. It is considered a good coding
practice to use the instanceof operator prior to casting from one object to a narrower type.

y For the exam, you only need to focus on when instanceof is used with
‘dTE classes and interfaces. Although it can be used with other high-level
types, such as records, enums, and annotations, it is not common.

Invalid instanceof

One area the exam might try to trip you up on is using instanceof with incompatible
types. For example, Number cannot possibly hold a String value, so the following causes a
compilation error:
public void openZoo(Number time) {
if(time instanceof String) // DOES NOT COMPILE
System.out.print(time);

Comparing Values 87

If the compiler can determine that a variable cannot possibly be cast to a specific class, it
reports an error.

null and the instanceof operator

What happens if you call instanceof on a null variable? For the exam, you should know that
calling instanceof on the null literal or a null reference always returns false.

System.out.print(null instanceof Object); // false

Object noObjectHere = null;
System.out.print(noObjectHere instanceof String); // false

The preceding examples both print false. It almost doesn’t matter what the right side of
the expression is. We say “almost” because there are exceptions. This example does not com-
pile, since null is used on the right side of the instanceof operator:
System.out.print(null instanceof null); // DOES NOT COMPILE

Although it may feel like you’'ve learned everything there is about the

‘dTE instanceof operator, there’s a lot more coming! In Chapter 3, we intro-
duce pattern matching with the instanceof operator, which was offi-
cially added in Java 16. In Chapter 7, “Beyond Classes,” we introduce
polymorphism in much more detail and show how to apply these rules to
interfaces.

Logical Operators

If you have studied computer science, you may have already come across logical operators
before. If not, no need to panic—we’ll be covering them in detail in this section.

The logical operators, (&), (|), and (*), may be applied to both numeric and boolean
data types; they are listed in Table 2.9. When they’re applied to boolean data types, they’re
referred to as logical operators. Alternatively, when they’re applied to numeric data types,
they’re referred to as bitwise operators, as they perform bitwise comparisons of the bits
that compose the number. For the exam, though, you don’t need to know anything about
numeric bitwise comparisons, so we’ll leave that educational aspect to other books.

TABLE 2.9 Logical operators

Operator Example Description

Logical AND a &b Value is true only if both values are true.
Logical inclusive OR ¢ | d Value is true if at least one of the values is true.

Logical exclusive OR e * f Value is true only if one value is true and the other is false.

88 Chapter 2 = Operators

You should familiarize yourself with the truth tables in Figure 2.2, where x and y are
assumed to be boolean data types.

FIGURE 2.2 The logical truth tables for &, |, and *

AND (x & y) INCLUSIVE OR (x | y) EXCLUSIVE OR (x " y)
y = Yy = y = y = y = Yy =
true false true false true false
x = true false x = true true x = false true
true true true
X = X = X =
fal fal fal fal
false alse alse false true alse false true alse

Here are some tips to help you remember this table:
= AND is only true if both operands are true.
» Inclusive OR is only false if both operands are false.
» Exclusive OR is only true if the operands are different.
Let’s take a look at some examples:

boolean eyesClosed = true;
boolean breathingSlowly = true;

boolean resting = eyesClosed | breathingSlowly;
boolean asleep = eyesClosed & breathingSlowly;
boolean awake = eyesClosed * breathingSlowly;
System.out.println(resting); // true
System.out.println(asleep); // true
System.out.println(awake); // false

You should try these out yourself, changing the values of eyesClosed and
breathingSlowly and studying the results.

Conditional Operators

Next, we present the conditional operators, & and | |, in Table 2.10.

Comparing Values 89

TABLE 2.10 Conditional operators

Operator Example Description

Conditional a && b Valueis trueonlyif both values are true. If the left side is false, then

AND the right side will not be evaluated.
Conditional ¢ || d Valueis true if at least one of the values is true. If the left side is
OR true, then the right side will not be evaluated.

The conditional operators, often called short-circuit operators, are nearly identical to the
logical operators, & and |, except that the right side of the expression may never be evalu-
ated if the final result can be determined by the left side of the expression. For example, con-
sider the following statement:

int hour = 10;
boolean zooOpen = true || (hour < 4);
System.out.println(zooOpen); // true

Referring to the truth tables, the value zooOpen can be false only if both sides of the
expression are false. Since we know the left side is true, there’s no need to evaluate the
right side, since no value of hour will ever make this code print false. In other words,
hour could have been -10 or 892; the output would have been the same. Try it yourself
with different values for hour!

Avoiding a NullPointerException

A more common example of where conditional operators are used is checking for null
objects before performing an operation. In the following example, if duck is null, the program
will throw a NullPointerException at runtime:
if(duck!=null & duck.getAge()<5) { // Could throw a NullPointerException

// Do something

The issue is that the logical AND (&) operator evaluates both sides of the expression. We
could add a second 1 f statement, but this could get unwieldy if we have a lot of variables to
check. An easy-to-read solution is to use the conditional AND operator (&&):
if(duck!=null && duck.getAge()<5) {

// Do something

In this example, if duck is null, the conditional prevents a NullPointerException
from ever being thrown, since the evaluation of duck.getAge() < 5 is never reached.

90 Chapter 2 = Operators

Checking for Unperformed Side Effects

Be wary of short-circuit behavior on the exam, as questions are known to alter a variable on
the right side of the expression that may never be reached. This is referred to as an unper-
formed side effect. For example, what is the output of the following code?

int rabbit = 6;
boolean bunny = (rabbit >= 6) || (++rabbit <= 7);
System.out.println(rabbit);

Because rabbit >= 6 is true, the increment operator on the right side of the expression
is never evaluated, so the output is 6.

Making Decisions with the
Ternary Operator

The final operator you should be familiar with for the exam is the conditional operator,
? :, otherwise known as the ternary operator. It is notable in that it is the only operator
that takes three operands. The ternary operator has the following form:
booleanExpression ? expressionl : expression2

The first operand must be a boolean expression, and the second and third operands can
be any expression that returns a value. The ternary operation is really a condensed form of a
combined 1 f and else statement that returns a value. We cover 1f/else statements in a lot
more detail in Chapter 3, so for now we just use simple examples.

For example, consider the following code snippet that calculates the food amount
for an owl:

int owl = 5;
int food;
if(owl < 2) {
food = 3;
} else {
food = 4;
}

System.out.println(food); // 4

Compare the previous code snippet with the following ternary operator code snippet:
int owl = 5;
int food = owl < 2 ?2 3 ¢ 4;
System.out.println(food); // 4

Making Decisions with the Ternary Operator 91

These two code snippets are equivalent. Note that it is often helpful for readability to add
parentheses around the expressions in ternary operations, although doing so is certainly not
required. It is especially helpful when multiple ternary operators are used together, though.
Consider the following two equivalent expressions:

int foodl = owl < 4 ? owl > 2 ? 3 : 4 : 5;
int food2 = (owl < 4 ? ((owl > 2) ? 3 : 4) : 5);

While they are equivalent, we find the second statement far more readable. That said, it is
possible the exam could use multiple ternary operators in a single line.

For the exam, you should know that there is no requirement that second and third
expressions in ternary operations have the same data types, although it does come into play
when combined with the assignment operator. Compare the two statements following the
variable declaration:

int stripes = 7;
System.out.print((stripes > 5) ? 21 : "Zebra");

int animal = (stripes < 9) ? 3 : "Horse"; // DOES NOT COMPILE

Both expressions evaluate similar boolean values and return an int and a String,
although only the first one will compile. System.out.print() does not care that the
expressions are completely different types, because it can convert both to Object values and
call toString() on them. On the other hand, the compiler does know that "Horse" is of
the wrong data type and cannot be assigned to an 1int; therefore, it does not allow the code
to be compiled.

Ternary Expression and Unperformed Side Effects

As we saw with the conditional operators, a ternary expression can contain an unper-
formed side effect, as only one of the expressions on the right side will be evaluated at run-
time. Let’s illustrate this principle with the following example:

int sheep = 1;

int zzz = 1;

int sleep = zzz<10 ? sheep++ : zzz++;
System.out.print(sheep + "," + zzz); // 2,1

Notice that since the left-hand boolean expression was true, only sheep was incre-
mented. Contrast the preceding example with the following modification:

92 Chapter 2 = Operators

int sheep = 1;
int zzz = 1;
int sleep = sheep>=10 ? sheep++ : zzz++;
System.out.print(sheep + "," + zzz); // 1,2
Now that the left-hand boolean expression evaluates to false, only zzz is incremented.

In this manner, we see how the changes in a ternary operator may not be applied if the
particular expression is not used.

For the exam, be wary of any question that includes a ternary expression in which a variable
is modified in one of the expressions on the right-hand side.

Summary

This chapter covered a wide variety of Java operator topics for unary, binary, and ternary
operators. Hopefully, most of these operators were review for you. If not, you need to study
them in detail. It is important that you understand how to use all of the required Java oper-
ators covered in this chapter and know how operator precedence and parentheses influence
the way a particular expression is interpreted.

There will likely be numerous questions on the exam that appear to test one thing,
such as NIO.2 or exception handling, when in fact the answer is related to the misuse of a
particular operator that causes the application to fail to compile. When you see an operator
involving numbers on the exam, always check that the appropriate data types are used and
that they match each other where applicable.

Operators are used throughout the exam, in nearly every code sample, so the better you
understand this chapter, the more prepared you will be for the exam.

Exam Essentials

Be able to write code that uses Java operators. This chapter covered a wide variety of
operator symbols. Go back and review them several times so that you are familiar with them
throughout the rest of the book.

Be able to recognize which operators are associated with which data types. Some oper-
ators may be applied only to numeric primitives, some only to boolean values, and some
only to objects. It is important that you notice when an operator and operand(s) are mis-
matched, as this issue is likely to come up in a couple of exam questions.

Exam Essentials 93

Understand when casting is required or numeric promotion occurs. Whenever you mix
operands of two different data types, the compiler needs to decide how to handle the result-
ing data type. When you’re converting from a smaller to a larger data type, numeric promo-
tion is automatically applied. When you’re converting from a larger to a smaller data type,
casting is required.

Understand Java operator precedence. Most Java operators you’ll work with are binary,
but the number of expressions is often greater than two. Therefore, you must understand the
order in which Java will evaluate each operator symbol.

Be able to write code that uses parentheses to override operator precedence. You can use
parentheses in your code to manually change the order of precedence.

9 Chapter 2 = Operators

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which of the following Java operators can be used with boolean variables? (Choose all
that apply.)

A_ ==

mmo o ®

G. Cast with (boolean)
2. What data type (or types) will allow the following code snippet to compile? (Choose all
that apply.)

byte apples = 5;
short oranges = 10;
bananas = apples + oranges;

int
long
boolean
double
short
byte

mmOoOOwWP

3. What change, when applied independently, would allow the following code snippet to
compile? (Choose all that apply.)

3: long ear = 10;
4: dint hearing = 2 * ear;

No change; it compiles as is.

Cast ear on line 4 to int.

Change the data type of ear on line 3 to short.
Cast 2 * ear on line 4 to int.

Change the data type of hearing on line 4 to short.

mmOoOO®Pp

Change the data type of hearing on line 4 to long.

Review Questions

What is the output of the following code snippet?

3: boolean canine = true, wolf = true;

int teeth = 20;

canine = (teeth != 10) A (wolf=false);
System.out.println(canine+", "+teeth+", "+wolf);

o 0 b

true, 20, true

true, 20, false
false, 10, true
false, 20, false

The code will not compile because of line 5.

mmoOoOow®

None of the above.

Which of the following operators are ranked in increasing or the same order of precedence?
Assume the + operator is binary addition, not the unary form. (Choose all that apply.)

A+ x, % —-
++, (int), x

b b

*, [, %, +, ==
L1, &

A — —
’+’ B +=

B
C.
D. (short),=,!,*
E
F.
G

What is the output of the following program?

1: public class CandyCounter {
2: static long addCandy(double fruit, float vegetables) {
return (int)fruit+vegetables;

public static void main(String[] args) {
System.out.print(addCandy (1.4, 2.4f) + ", ");
System.out.print(addCandy (1.9, (float)4) + ", ");
System.out.print(addCandy((long) (int) (short)2, (float)4)); } }

©O© o N o b~ W

.0

-

)

6
» 5,
6

a0 O

)
» 9, 6

The code does not compile because of line 9.

)

mmOoOOwWP»P
A W W >

None of the above.

95

96

Chapter 2 = Operators

What is the output of the following code snippet?

int ph = 7, vis = 2;

boolean clear = vis > 1 & (vis < 9 || ph < 2);
boolean safe = (vis > 2) && (ph++ > 1);

boolean tasty = 7 <= --ph;

System.out.println(clear + "-" + safe + "-" + tasty);

true-true-true
true-true-false
true-false-true
true-false-false
false-true-true
false-true-false

false-false-true

IOoTMmMOOw®p

false-false-false

What is the output of the following code snippet?
4: int pig = (short)4;

5: pig = pigt+;

6: long goat = (int)2;

7: goat -= 1.0;

8: System.out.print(pig + " - " + goat);
A 4 -1

B. 4 -2

C. 5-1

D. 5 -2

E. The code does not compile due to line 7.

F None of the above.

What are the unique outputs of the following code snippet? (Choose all that apply.)
int a =2, b=14,c=2;

System.out.println(a > 2 ? --c : b++);

System.out.println(b = (al=c ? a : b++));

System.out.println(a > b 2 b<c?b:2:1);

e@MmMOoO® >
o 00 A W N

The code does not compile.

10.

1.

12.

Review Questions

What are the unique outputs of the following code snippet? (Choose all that apply.)
short height = 1, weight = 3;

short zebra = (byte) weight * (byte) height;

double ox = 1 + height * 2 + weight;

long giraffe = 1 + 9 % height + 1;

System.out.println(zebra);

System.out.println(ox);

System.out.println(giraffe);

@mMmDpom P
o a0 b~ W N

The code does not compile.

What is the output of the following code?
11: 1int samplel (2 x 4) % 3
12: int sample2 = 3 * 2 % 3;

13: 1dnt sample3d =5 x (1 % 2);

14: System.out.println(samplel + ", " + sample2 + ", " + sample3);
A. 0, 0, 5

B. 1, 2, 10

C. 2,1, 5

D. 2,0, 5

E. 3, 1, 10

F 3,2,6

G. The code does not compile.

The operator increases a value and returns the original value, while the
operator decreases a value and returns the new value.

post-increment, post-increment
pre-decrement, post-decrement
post-increment, post-decrement
post-increment, pre-decrement

pre-increment, pre-decrement

mmOoOOwWP»>

pre-increment, post-decrement

97

98

13.

14.

15.

Chapter 2 = Operators

What is the output of the following code snippet?

boolean sunny = true, raining = false, sunday = true;
boolean goingToTheStore = sunny & raining * sunday;
boolean goingToTheZoo = sunday && !raining;
boolean stayingHome = !(goingToTheStore && goingToTheZoo);
System.out.println(goingToTheStore + "-" + goingToTheZoo

+ "-" +stayingHome);

true-false-false
false-true-false
true-true-true
false-true-true
false-false-false

true-true-false

@MmMUooOw®®

None of the above

Which of the following statements are correct? (Choose all that apply.)
A. The return value of an assignment operation expression can be void.
B. The inequality operator (!=) can be used to compare objects.

C. The equality operator (==) can be used to compare a boolean value with a numeric
value.

D. During runtime, the & and | operators may cause only the left side of the expression to
be evaluated.

E. The return value of an assignment operation expression is the value of the newly
assigned variable.

F InJava, 0 and false may be used interchangeably.

G. The logical complement operator (!) cannot be used to flip numeric values.

Which operators take three operands or values? (Choose all that apply.)

&&

emMmoowp
~

Review Questions 99

16. How many lines of the following code contain compiler errors?

17.

18.

int note = 1 * 2 + (long)3;

short melody = (byte) (double) (note *= 2);

double song = melody;

float symphony = (float)((song == 1_000f) ? song x 2L : song);

E.

A
B.
C.
D

AW N =R O

Given the following code snippet, what are the values of the variables after it is executed?
(Choose all that apply.)

int ticketsTaken = 1;

int ticketsSold = 3;

ticketsSold += 1 + ticketsTaken++;
ticketsTaken *= 2;

ticketsSold += (long)1l;

©GmMmUD O ®m >

ticketsSoldis 8.
ticketsTakenis 2.
ticketsSoldis 6.
ticketsTakenis 6.
ticketsSoldis 7.
ticketsTaken is 4.

The code does not compile.

Which of the following can be used to change the order of operation in an expression?
(Choose all that apply.)

A.

Mmoo w

L]
<

>
()
\ /
{1

100

Chapter 2 = Operators

19. What is the result of executing the following code snippet? (Choose all that apply.)

20.

21.

3:

o 0 b

IomMmMoOO®p

int start = 7;

int end = 4;

end += ++start;

start = (byte) (Byte.MAX_VALUE + 1);

startis 0.

startis -128.

startis 127.

end is 8.

endis 11.

endis 12.

The code does not compile.

The code compiles but throws an exception at runtime.

Which of the following statements about unary operators are true? (Choose all that apply.)

A.

B.
C.

D.

E.

F

Unary operators are always executed before any surrounding numeric binary or ternary
operators.

The - operator can be used to flip a boolean value.

The pre-increment operator (++) returns the value of the variable before the increment is
applied.

The post-decrement operator (--) returns the value of the variable before the decrement
is applied.

The ! operator cannot be used on numeric values.

None of the above

What is the result of executing the following code snippet?

int myFavoriteNumber = 8;
int bird = ~myFavoriteNumber;

int plane = -myFavoriteNumber;

var superman = bird == plane ? 5 : 10;
System.out.println(bird + "," + plane + "," + --superman);
A. -7,-8,9

B. -7,-8,10

C. -8,-8,4

D. -8,-8,5

E. -9,-8,9

F -9,-8,10

G.

None of the above

Making Decisions

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Controlling Program Flow
Create program flow control constructs including if/else,
switch statements and expressions, loops, and break and con-
tinue statements

v Utilizing Java Object-Oriented Approach
Implement polymorphism and differentiate object type versus
reference type. Perform type casting, identify object types
using instanceof operator and pattern matching

Like many programming languages, Java is composed primarily
of variables, operators, and statements put together in some
logical order. In the last chapter, we covered how to create and
manipulate variables. Writing software is about more than managing variables, though; it

is about creating applications that can make intelligent decisions. In this chapter, we pre-
sent the various decision-making statements available to you within the language. This
knowledge will allow you to build complex functions and class structures that you’ll see
throughout this book.

Creating Decision-Making Statements

Java operators allow you to create a lot of complex expressions, but they’re limited in the
manner in which they can control program flow. Imagine you want a method to be executed
only under certain conditions that cannot be evaluated until runtime. For example, on rainy
days, a zoo should remind patrons to bring an umbrella, or on a snowy day, the zoo might
need to close. The software doesn’t change, but the behavior of the software should, depend-
ing on the inputs supplied in the moment. In this section, we discuss decision-making state-
ments including i f and else, along with the new pattern matching feature.

Statements and Blocks

As you may recall from Chapter 1, “Building Blocks,” a Java statement is a complete unit of
execution in Java, terminated with a semicolon (;). In this chapter, we introduce you to var-
ious Java control flow statements. Control flow statements break up the flow of execution by
using decision-making, looping, and branching, allowing the application to selectively exe-
cute particular segments of code.

These statements can be applied to single expressions as well as a block of Java code.
As described in Chapter 1, a block of code in Java is a group of zero or more statements
between balanced braces ({}) and can be used anywhere a single statement is allowed. For
example, the following two snippets are equivalent, with the first being a single expression
and the second being a block containing the same statement:

// Single statement
patrons++;

Creating Decision-Making Statements 103

// Statement inside a block
{

patrons++;

A statement or block often serves as the target of a decision-making statement. For
example, we can prepend the decision-making i f statement to these two examples:

// Single statement

if(ticketsTaken > 1)
patrons++;

// Statement inside a block
if(ticketsTaken > 1)
{

patrons++;

Again, both of these code snippets are equivalent. Just remember that the target of a
decision-making statement can be a single statement or block of statements. For the rest of
the chapter, we use both forms to better prepare you for what you will see on the exam.

While both of the previous examples are equivalent, stylistically using

TE blocks is often preferred, even if the block has only one statement. The
second form has the advantage that you can quickly insert new lines of
code into the block, without modifying the surrounding structure.

The if Statement

Often, we want to execute a block only under certain circumstances. The i f statement, as
shown in Figure 3.1, accomplishes this by allowing our application to execute a particular
block of code if and only if a boolean expression evaluates to true at runtime.

FIGURE 3.1 The structure of an i f statement

if keyword)
Parentheses (required)

| |

if (booleanExpression) {

Curly braces required for block
of multiple statements, optional
for single statement

104 Chapter 3 = Making Decisions

For example, imagine we had a function that used the hour of day, an integer value from
0 to 23, to display a message to the user:

if(hour0fDay < 11)
System.out.println("Good Morning");

If the hour of the day is less than 11, then the message will be displayed. Now let’s say
we also wanted to increment some value, morningGreetingCount, every time the greeting
is printed. We could write the 1 f statement twice, but luckily Java offers us a more natural
approach using a block:

if(hour0fDay < 11) {
System.out.println("Good Morning");
morningGreetingCount++;

Watch Indentation and Braces

One area where the exam writers will try to trip you up is if statements without braces
({}). For example, take a look at this slightly modified form of our example:

if(hour0OfDay < 11)
System.out.println("Good Morning");
morningGreetingCount++;

Based on the indentation, you might be inclined to think the variable
morningGreetingCount is only going to be incremented if hourOfDay is less than 11,
but that's not what this code does. It will execute the print statement only if the condition is
met, but it will always execute the increment operation.

Remember that in Java, unlike some other programming languages, tabs are just
whitespace and are not evaluated as part of the execution. When you see a control flow
statement in a question, be sure to trace the open and close braces of the block, ignoring
any indentation you may come across.

The else Statement
Let’s expand our example a little. What if we want to display a different message if it is 11
a.m. or later? Can we do it using only the tools we have? Of course we can!

if(hourOfDay < 11) {
System.out.println("Good Morning");

Creating Decision-Making Statements 105

}
if(hourOfDay >= 11) {
System.out.println("Good Afternoon");

This seems a bit redundant, though, since we’re performing an evaluation on hourOfDay
twice. Luckily, Java offers us a more useful approach in the form of an else statement, as
shown in Figure 3.2.

FIGURE 3.2 The structure of an else statement

if keyword)
Parentheses (required)

| |

if (booleanExpression) (<

// Branch if true

— Curly braces required for block
} elge { < of myltiple statements, optional
t for single statement

// Branch if false
Optional else statement

Let’s return to this example:

if(hourOfDay < 11) {
System.out.println("Good Morning");
} else System.out.println("Good Afternoon");

Now our code is truly branching between one of the two possible options, with the
boolean evaluation happening only once. The else operator takes a statement or block of
statements, in the same manner as the if statement. Similarly, we can append additional 1 f
statements to an else block to arrive at a more refined example:

if(hourOfDay < 11) {
System.out.println("Good Morning");

} else if(hour0OfDay < 15) {
System.out.println("Good Afternoon");

} else {
System.out.println("Good Evening");

106 Chapter 3 = Making Decisions

In this example, the Java process will continue execution until it encounters an i f state-
ment that evaluates to true. If neither of the first two expressions is true, it will execute the
final code of the else block.

Verifying That the if Statement Evaluates to a Boolean Expression

Another common way the exam may try to lead you astray is by providing code where the
boolean expression inside the i f statement is not actually a boolean expression. For
example, take a look at the following lines of code:

int hourOfDay = 1;
if(hour0fbay) { // DOES NOT COMPILE

}
This statement may be valid in some other programming and scripting languages, but not
in Java, where 0 and 1 are not considered boolean values.

Shortening Code with Pattern Matching

Java 16 officially introduced pattern matching with 1 f statements and the instanceof operator.
Pattern matching is a technique of controlling program flow that only executes a section

of code that meets certain criteria. It is used in conjunction with i f statements for greater
program control.

)’ If pattern matching is new to you, be careful not to confuse it with the
,&TE Java Pattern class or regular expressions (regex). While pattern match-
ing can include the use of regular expressions for filtering, they are unre-
lated concepts.

Pattern matching is a new tool at your disposal to reduce boilerplate in your code.
Boilerplate code is code that tends to be duplicated throughout a section of code over and
over again in a similar manner. A lot of the newer enhancements to the Java language focus
on reducing boilerplate code.

To understand why this tool was added, consider the following code that takes a Number
instance and compares it with the value 5. If you haven’t seen Number or Integer, you just
need to know that Integer inherits from Number for now. You’ll see them a lot in this book!

void comparelIntegers(Number number) {
if(number dinstanceof Integer) {
Integer data = (Integer)number;

Creating Decision-Making Statements 107

System.out.print(data.compareTo(5));

The cast is needed since the compareTo () method is defined on Integer, but not
on Number.

Code that first checks if a variable is of a particular type and then immediately casts it to
that type is extremely common in the Java world. It’s so common that the authors of Java
decided to implement a shorter syntax for it:

void compareIntegers(Number number) {
if(number instanceof Integer data) {
System.out.print(data.compareTo(5));

The variable data in this example is referred to as the pattern variable. Notice that this
code also avoids any potential ClassCastException because the cast operation is executed
only if the implicit instanceof operator returns true.

Reassigning Pattern Variables

While possible, it is a bad practice to reassign a pattern variable since doing so can lead to
ambiguity about what is and is not in scope.

if(number instanceof Integer data) {
data = 10;
}
The reassignment can be prevented with a final modifier, but it is better not to reassign
the variable at all.

if(number instanceof final Integer data) {
data = 10; // DOES NOT COMPILE

Pattern Variables and Expressions
Pattern matching includes expressions that can be used to filter data out, such as in the fol-

lowing example:

void printIntegersGreaterThan5(Number number) {
if(number instanceof Integer data && data.compareTo(5)>0)
System.out.print(data);

108 Chapter 3 = Making Decisions

We can apply a number of filters, or patterns, so that the 1f statement is executed only in
specific circumstances. Notice that we’re using the pattern variable in an expression in the
same line in which it is declared.

Subtypes

The type of the pattern variable must be a subtype of the variable on the left side of the
expression. It also cannot be the same type. This rule does not exist for traditional instanceof
operator expressions, though. Consider the following two uses of the instanceof operator:

Integer value = 123;
if(value dinstanceof Integer) {}
if(value instanceof Integer data) {} // DOES NOT COMPILE

While the second line compiles, the last line does not compile because pattern matching
requires that the pattern variable type Integer be a strict subtype of Integer.

Limitations of Subtype Enforcement

The compiler has some limitations on enforcing pattern matching types when we mix
classes and interfaces, which will make more sense after you read Chapter 7, “Beyond
Classes.” For example, given the non-final class Number and interface List, this does
compile even though they are unrelated:

Number value = 123;
if(value instanceof List) {}
if(value instanceof List data) {}

Flow Scoping

The compiler applies flow scoping when working with pattern matching. Flow scoping
means the variable is only in scope when the compiler can definitively determine its type.
Flow scoping is unlike any other type of scoping in that it is not strictly hierarchical like in-
stance, class, or local scoping. It is determined by the compiler based on the branching and
flow of the program.

Given this information, can you see why the following does not compile?

void printIntegersOrNumbersGreaterThan5(Number number) {
if(number instanceof Integer data || data.compareTo(5)>0)
System.out.print(data);

Creating Decision-Making Statements 109

If the input does not inherit Integer, the data variable is undefined. Since the compiler
cannot guarantee that data is an instance of Integer, data is not in scope, and the code
does not compile.

What about this example?

void printIntegerTwice(Number number) {
if (number instanceof Integer data)
System.out.print(data.intValue());
System.out.print(data.intValue()); // DOES NOT COMPILE

Since the input might not have inherited Integer, data is no longer in scope after the
if statement. Oh, so you might be thinking that the pattern variable is then only in scope
inside the 1 f statement, right? Well, not exactly! Consider the following example that
does compile:

void printOnlyIntegers(Number number) {
if (!(number dinstanceof Integer data))
return;
System.out.print(data.intValue());

It might surprise you to learn this code does compile. Eek! What is going on here? The
method returns if the input does not inherit Integer. This means that when the last line of
the method is reached, the input must inherit Integer, and therefore data stays in scope
even after the if statement ends.

Flow Scoping and else Branches

If the last code sample confuses you, don’t worry: you're not alone! Another way to think
about it is to rewrite the logic to something equivalent that uses an else statement:

void printOnlyIntegers(Number number) {
if (!(number dinstanceof Integer data))
return;
else
System.out.print(data.intValue());
}

We can now go one step further and reverse the if and else branches by inverting the
boolean expression:

void printOnlyIntegers(Number number) {
if (number instanceof Integer data)

110 Chapter 3 = Making Decisions

System.out.print(data.intValue());
else
return;

}

Our new code is equivalent to our original and better demonstrates how the compiler was
able to determine that data was in scope only when number is an Integer.

Make sure you understand the way flow scoping works. In particular, it is possible to use
a pattern variable outside of the i f statement, but only when the compiler can definitively
determine its type.

Applying switch Statements

What if we have a lot of possible branches or paths for a single value? For example, we
might want to print a different message based on the day of the week. We could certainly
accomplish this with a combination of seven if or else statements, but that tends to create
code that is long, difficult to read, and often not fun to maintain:

public void printDayOfWeek(int day) {
if(day == 0)
System.out.print("Sunday");
else if(day == 1)
System.out.print("Monday");
else if(day == 2)
System.out.print("Tuesday");
else if(day == 3)
System.out.print("Wednesday");

Luckily, Java, along with many other languages, provides a cleaner approach. In this
section we present the switch statement, along with the newer switch expression for
controlling program flow.

The switch Statement

A switch statement, as shown in Figure 3.3, is a complex decision-making structure in
which a single value is evaluated and flow is redirected to the first matching branch, known
as a case statement. If no such case statement is found that matches the value, an optional

Applying switch Statements m

default statement will be called. If no such default option is available, the entire switch
statement will be skipped. Notice in Figure 3.3 that case values can be combined into a
single case statement using commas.

FIGURE 3.3 The structure of a switch statement

switch keyword
Parentheses (required)

[]

switch (variableToTest) {<«——— Beginning curly brace (required)

case constantExpressionﬁ
// Branch for case,
break; <

case constantExpression,, constantExpression, — Optional break
// Branch for case, and case,
break; «

Optional default that may
appear anywhere within
(switch statement

default:
// Branch for default

} <— Ending curly brace (required)

Because switch statements can be longer than most decision-making statements, the
exam may present invalid switch syntax to see whether you are paying attention.

Combining case Values

Notice something new in Figure 3.3? Starting with Java 14, case values can now
be combined:

switch(animal) {
case 1,2: System.out.print("Lion");
case 3: System.out.print("Tiger");

112 Chapter 3 = Making Decisions

Prior to Java 14, the equivalent code would have been the following:

switch(animal) {
case 1: case 2: System.out.print("Lion");
case 3: System.out.print("Tiger");

}

As you see shortly, switch expressions can reduce boilerplate code even more!

See if you can figure out why each of the following switch statements does not compile:

int month = 5;

switch month { // DOES NOT COMPILE
case 1: System.out.print("January");

switch(month) // DOES NOT COMPILE
case 1: System.out.print("January");

switch(month) {
case 1: 2: System.out.print("January"); // DOES NOT COMPILE

The first switch statement does not compile because it is missing parentheses around the
switch variable. The second statement does not compile because it is missing braces around
the switch body. The third statement does not compile because a comma (,) should be used
to separate combined case statements, not a colon (:).

One last note you should be aware of for the exam: a sw1itch statement is not required to
contain any case statements. For example, this statement is perfectly valid:

switch(month) {}

Going back to our printDayOfWeek () method, we can rewrite it to use a switch state-
ment instead of if/else statements:
public void printDayOfWeek(int day) {

switch(day) {

case 0:
System.out.print("Sunday");
break;

case 1:
System.out.print("Monday");
break;

case 2:
System.out.print("Tuesday");
break;

Applying switch Statements 113

case 3:
System.out.print("Wednesday");
break;

case 4:
System.out.print("Thursday");
break;

case 5:
System.out.print("Friday");
break;

case 6:
System.out.print("Saturday");
break;

default:
System.out.print("Invalid value");
break;

1}

For simplicity, we just print a message if the value is invalid. If you know about excep-
tions or have already read Chapter 11, “Exceptions and Localization,” it might make more
sense to throw an exception in the default branch if no match is found.

Exiting with break Statements

Taking a look at our previous printDayOfWeek () implementation, you’ll see a break statement
at the end of each case and default section. A break statement terminates the switch statement
and returns flow control to the enclosing process. Put simply, it ends the switch statement
immediately.

The break statements are optional, but without them the code will execute every branch
following a matching case statement, including any default statements it finds. Without break
statements in each branch, the order of case and default statements is now extremely impor-
tant. What do you think the following prints when printSeason(2) is called?

public void printSeason(int month) {
switch(month) {

case 1, 2, 3: System.out.print("Winter");

case 4, 5, 6: System.out.print("Spring");

default: System.out.print("Unknown");
case 7, 8, 9: System.out.print("Summer");

case 10, 11, 12: System.out.print("Fall");

33

It prints everything!

WinterSpringUnknownSummerFall

14 Chapter 3 = Making Decisions

It matches the first case statement and executes all of the branches in the order they are
found, including the default statement. It is common, although certainly not required, to
use a break statement after every case statement.

P statements! When evaluating switch statements on the exam, always

% The exam creators are fond of switch examples that are missing break
consider that multiple branches may be visited in a single execution.

Selecting switch Data Types

As shown in Figure 3.3, a switch statement has a target variable that is not evaluated until
runtime. The type of this target can include select primitive data types (int, byte, short, char)
and their associated wrapper classes (Integer, Byte, Short, Character). The following is a list of
all data types supported by switch statements:

* dntand Integer

» byte and Byte

= short and Short

» char and Character

= String

= enum values

= var (if the type resolves to one of the preceding types)

For this chapter, you just need to know that an enumeration, or enum, represents a fixed
set of constants, such as days of the week, months of the year, and so on. We cover enums
in more detail in Chapter 7, including showing how they can define variables, methods, and
constructors.

Notice that boolean, long, float, and double are excluded from

TE switch statements, as are their associated Boolean, Long, Float, and
Double classes. The reasons are varied, such as boolean having too
small a range of values and floating-point numbers having quite a wide

range of values. For the exam, though, you just need to know that they
are not permitted in switch statements.

Determining Acceptable Case Values

Not just any variable or value can be used in a case statement. First, the values in each
case statement must be compile-time constant values of the same data type as the switch
value. This means you can use only literals, enum constants, or final constant variables
of the same data type. By final constant, we mean that the variable must be marked with
the final modifier and initialized with a literal value in the same expression in which it

is declared. For example, you can’t have a case statement value that requires executing a

Applying switch Statements 115

method at runtime, even if that method always returns the same value. For these reasons,
only the first and last case statements in the following example compile:

final int getCookies() { return 4; }
void feedAnimals() {

final int bananas = 1;

int apples = 2;

int numberOfAnimals = 3;

final int cookies = getCookies();

switch(numberOfAnimals) {

case bananas:

case apples: // DOES NOT COMPILE
case getCookies(): // DOES NOT COMPILE
case cookies : // DOES NOT COMPILE
case 3 x 5 :

Tt

The bananas variable is marked final, and its value is known at compile-time, so it is
valid. The apples variable is not marked final, even though its value is known, so it is
not permitted. The next two case statements, with values getCookies () and cookies, do
not compile because methods are not evaluated until runtime, so they cannot be used as the
value of a case statement, even if one of the values is stored in a final variable. The last
case statement, with value 3 x 5, does compile, as expressions are allowed as case values,
provided the value can be resolved at compile-time. They also must be able to fit in the
switch data type without an explicit cast. We go into that in more detail shortly.

Next, the data type for case statements must match the data type of the switch variable.
For example, you can’t have a case statement of type String if the switch statement variable is
of type int, since the types are incomparable.

The switch Expression

Our second implementation of printDayOfWeek () was improved but still quite long. Notice
that there was a lot of boilerplate code, along with numerous break statements. Can we do
better? Yes, thanks to the new switch expressions that were officially added to Java 14.

A switch expression is a much more compact form of a switch statement, capable of
returning a value. Take a look at the new syntax in Figure 3.4.

Because a switch expression is a compact form, there’s a lot going on in Figure 3.4!
For starters, we can now assign the result of a switch expression to a variable result. For
this to work, all case and default branches must return a data type that is compatible with
the assignment. The switch expression supports two types of branches: an expression and
a block. Each has different syntactical rules on how it must be created. More on these
topics shortly.

116 Chapter 3 = Making Decisions

FIGURE 3.4 The structure of a switch expression

switch keyword

Optional assignment Parentheses (required)
int result = switch(variableToTest) { <——— Beginning curly brace (required)
(Arrow operator (required)

st —y»case constantExpression -> 5;
expression 1

Semicolon required for case expression
Case 3y cgse constantExpression2, constantExpression3 -> {

block .
yield 10;
} - »————Required for case block if switch returns a value

Curly braces re(!uired
for case blocks
... A default branch may appear anywhere within
the switch expression and is required if all
(possible case statement values are not handled.

default -> 20;
} <«— Ending curly brace (required)

Like a traditional switch statement, a switch expression supports zero or many case
branches and an optional default branch. Both also support the new feature that allows
case values to be combined with a single case statement using commas. Unlike a tradi-
tional switch statement, though, switch expressions have special rules around when the
default branch is required.

Recall from Chapter 2, “Operators,” that —> is the arrow operator. While
TE the arrow operator is commonly used in lambda expressions, when it is
used in a switch expression, the case branches are not lambdas.

We can rewrite our previous printDayOfWeek () method in a much more concise
manner using case expressions:
public void printDayOfWeek(int day) {
var result = switch(day) {
case 0 -> "Sunday";
case 1 -> "Monday";

case 2 -> "Tuesday";
case 3 -> "Wednesday";
case 4 -> "Thursday";
case 5 -> "Friday";
case 6 -> "Saturday";

Applying switch Statements 117

default -> "Invalid value";
s
System.out.print(result);

Compare this code with the switch statement we wrote earlier. Both accomplish the
same task, but a lot of the boilerplate code has been removed, leaving the behavior we care
most about.

Notice that a semicolon is required after each switch expression. For example, the fol-
lowing code does not compile. How many semicolons is it missing?

var result = switch(bear) {
case 30 -> "Grizzly"
default -> "Panda"

The answer is three. Each case or default expression requires a semicolon as well as
the assignment itself. The following fixes the code:

var result = switch(bear) {

case 30 -> "Grizzly";

default -> "Panda";
s

As shown in Figure 3.4, case statements can take multiple values, separated by commas.
Let’s rewrite our printSeason() method from earlier using a switch expression:

public void printSeason(int month) {
switch(month) {

case 1, 2, 3 -> System.out.print("Winter");

case 4, 5, 6 -> System.out.print("Spring");

case 7, 8, 9 -> System.out.print("Summer");

case 10, 11, 12 -> System.out.print("Fall");
!

Calling printSeason(2) prints the single value Winter. This time we don’t have to
worry about break statements, since only one branch is executed.

Most of the time, a switch expression returns a value, although
TE printSeason() demonstrates one in which the return type is void.
Since the type is void, it can’t be assigned to a variable. On the exam,

you are more likely to see a switch expression that returns a value, but
you should be aware that it is possible.

118 Chapter 3 = Making Decisions

All of the previous rules around switch data types and case values still apply, although
we have some new rules. Don’t worry if these rules are new to you or you’ve never seen the
yield keyword before; we’ll be discussing them in the following sections.

1. All of the branches of a switch expression that do not throw an exception must return
a consistent data type (if the switch expression returns a value).

2. If the switch expression returns a value, then every branch that isn’t an expression must
yield a value.

3. A default branch is required unless all cases are covered or no value is returned.
We cover the last rule shortly, but notice that our printSeason () example does not contain a

default branch. Since the switch expression does not return a value and assign it to a variable,
it is entirely optional.

)/ Java 17 also supports pattern matching within switch expressions, but
dng since this is a Preview feature, it is not in scope for the exam.

Returning Consistent Data Types

The first rule of using a switch expression is probably the easiest. You can’t return incompat-
ible or random data types. For example, can you see why three of the lines of the following
code do not compile?

int measurement = 10;

int size = switch(measurement) {
case 5 -> 1;
case 10 -> (short)2;
default -> 5;
case 20 -> "3"; // DOES NOT COMPILE
case 40 -> 4L; // DOES NOT COMPILE
case 50 -> null; // DOES NOT COMPILE

s

Notice that the second case expression returns a short, but that can be implicitly cast
to an int. In this manner, the values have to be consistent with size, but they do not all
have to be the same data type. The last three case expressions do not compile because each
returns a type that cannot be assigned to the int variable.

Applying a case Block

A switch expression supports both an expression and a block in the case and default
branches. Like a regular block, a case block is one that is surrounded by braces ({}). It also
includes a yield statement if the switch expression returns a value. For example, the following
uses a mix of case expressions and blocks:

Applying switch Statements 119

int fish = 5;
int length = 12;
var name = switch(fish) {
case 1 -> "Goldfish";
case 2 -> {yield "Trout";}
case 3 -> {
if(length > 10) yield "Blobfish";
else yield "Green";
}
default -> "Swordfish";
s
The yield keyword is equivalent to a return statement within a switch expression and
is used to avoid ambiguity about whether you meant to exit the block or method around the
switch expression.
Referring to our second rule for switch expressions, yield statements are not optional if the
switch statement returns a value. Can you see why the following lines do not compile?
10: 1int fish = 5;
11: 1int length = 12;
12: var name = switch(fish) {

13: case 1 -> "Goldfish";

14: case 2 -> {} // DOES NOT COMPILE
15: case 3 > {

16: if(length > 10) yield "Blobfish";
17: } // DOES NOT COMPILE

18: default -> "Swordfish";

19: };

Line 14 does not compile because it does not return a value using yield. Line 17 also
does not compile. While the code returns a value for length greater than 10, it does not
return a value if length is less than or equal to 10. It does not matter that length is set to
be 12; all branches must yield a value within the case block.

Watch Semicolons in switch Expressions

Unlike a regular switch statement, a switch expression can be used with the assignment
operator and requires a semicolon when doing so. Furthermore, semicolons are required
for case expressions but cannot be used with case blocks.

var name = switch(fish) {
case 1 -> "Goldfish" // DOES NOT COMPILE (missing semicolon)

120 Chapter 3 = Making Decisions

case 2 -> {yield "Trout";}3; // DOES NOT COMPILE (extra semicolon)

} // DOES NOT COMPILE (missing semicolon)

A bit confusing, right? It’s just one of those things you have to train yourself to spot
on the exam.

Covering All Possible Values

The last rule about switch expressions is probably the one the exam is most likely to try to
trick you on: a switch expression that returns a value must handle all possible input values.
And as you saw earlier, when it does not return a value, it is optional.

Let’s try this out. Given the following code, what is the value of type if canis is 5?

String type = switch(canis) { // DOES NOT COMPILE
case 1 -> "dog";
case 2 -> "wolf";
case 3 -> "coyote";

}s

There’s no case branch to cover 5 (or 4, -1, 0, etc.), so should the switch expression
return null, the empty string, undefined, or some other value? When adding switch expres-
sions to the Java language, the authors decided this behavior would be unsupported. Every
switch expression must handle all possible values of the switch variable. As a developer,
there are two ways to address this:

= Addadefault branch.

= If the switch expression takes an enum value, add a case branch for every possible
enum value.

In practice, the first solution is the one most often used. The second solution applies only
to switch expressions that take an enum. You can try writing case statements for all possible
int values, but we promise it doesn’t work! Even smaller types like byte are not permitted by
the compiler, despite there being only 256 possible values.

For enums, the second solution works well when the number of enum values is relatively
small. For example, consider the following enum definition and method:

enum Season {WINTER, SPRING, SUMMER, FALL}

String getWeather(Season value) {
return switch(value) {
case WINTER -> "Cold";
case SPRING -> "Rainy";
case SUMMER -> "Hot";
case FALL -> "warm";

3

Writing while Loops 121

Since all possible permutations of Season are covered, a default branch is not required
in this switch expression. You can include an optional default branch, though, even if
you cover all known values.

P adds a fourth value? Any switch expressions that use the enum without
a default branch will suddenly fail to compile. If this was done fre-
quently, you might have a lot of code to fix! For this reason, consider
including a default branch in every switch expression, even those that
involve enum values.

é/ What happens if you use an enum with three values and later someone

Writing while Loops

A common practice when writing software is doing the same task some number of times.
You could use the decision structures we have presented so far to accomplish this, but that’s
going to be a pretty long chain of i f or else statements, especially if you have to execute the
same thing 100 times or more.

Enter loops! A loop is a repetitive control structure that can execute a statement of code
multiple times in succession. By using variables that can be assigned new values, each repeti-
tion of the statement may be different. The following loop executes exactly 10 times:

int counter = 0;

while (counter < 10) {
double price = counter * 10;
System.out.println(price);
counter++;

If you don’t follow this code, don’t panic—we cover it shortly. In this section, we’re going
to discuss the while loop and its two forms. In the next section, we move on to for loops,
which have their roots in wh1ile loops.

The while Statement

The simplest repetitive control structure in Java is the whi le statement, described in
Figure 3.5. Like all repetition control structures, it has a termination condition, implemented
as a boolean expression, that will continue as long as the expression evaluates to true.

122 Chapter 3 = Making Decisions

FIGURE 3.5 The structure of a while statement

while keyword)
Parentheses (required)

| |

while (booleanExpression)

Curly braces required for block
// Body of multiple statements, optional
for single statement

} <

As shown in Figure 3.5, a while loop is similar to an if statement in that it is composed
of a boolean expression and a statement, or a block of statements. During execution, the
boolean expression is evaluated before each iteration of the loop and exits if the evaluation
returns false.

Let’s see how a loop can be used to model a mouse eating a meal:

int roomInBelly = 5;
public void eatCheese(int bitesOfCheese) {
while (bitesOfCheese > 0 && roomInBelly > 0) {
bitesOfCheese--;
roomInBelly--;
}

System.out.println(bitesOfCheese+" pieces of cheese left");

This method takes an amount of food—in this case, cheese—and continues until the
mouse has no room in its belly or there is no food left to eat. With each iteration of the
loop, the mouse “eats” one bite of food and loses one spot in its belly. By using a compound
boolean statement, you ensure that the while loop can end for either of the conditions.

One thing to remember is that a while loop may terminate after its first evaluation of
the boolean expression. For example, how many times is Not full! printed in the follow-
ing example?
int full = 5;
while(full < 5) {

System.out.println("Not full!");
full++;

The answer? Zero! On the first iteration of the loop, the condition is reached, and the
loop exits. This is why while loops are often used in places where you expect zero or more
executions of the loop. Simply put, the body of the loop may not execute at all or may
execute many times.

Writing while Loops 123

The do/while Statement

The second form a while loop can take is called a do/while loop, which, like a whi le loop,
is a repetition control structure with a termination condition and statement, or a block of
statements, as shown in Figure 3.6.

FIGURE 3.6 The structure of a do/while statement

do keyword
do {=
{ Curly braces required for block
of multiple statements, optional
// Body for single statement

.

} while (booleanExpression) ; «———— Semicolon (required)

| 1 J

hile keyword !
While keywor Parentheses (required)

Unlike a while loop, though, a do/while loop guarantees that the statement or block
will be executed at least once. For example, what is the output of the following statements?
int lizard = 0;
do {

lizard++;
} while(false);
System.out.println(lizard); // 1

Java will execute the statement block first and then check the loop condition. Even
though the loop exits right away, the statement block is still executed once, and the
program prints 1.

Infinite Loops

The single most important thing you should be aware of when you are using any repetition
control structures is to make sure they always terminate! Failure to terminate a loop can
lead to numerous problems in practice, including overflow exceptions, memory leaks, slow
performance, and even bad data. Let’s take a look at an example:
int pen = 2;
int pigs = 5;
while(pen < 10)

pigst+;

124 Chapter 3 = Making Decisions

You may notice one glaring problem with this statement: it will never end. The variable
pen is never modified, so the expression (pen < 10) will always evaluate to true. The
result is that the loop will never end, creating what is commonly referred to as an infinite
loop. An infinite loop is a loop whose termination condition is never reached during runtime.

Anytime you write a loop, you should examine it to determine whether the termination
condition is always eventually met under some condition. For example, a loop in which no
variables are changing between two executions suggests that the termination condition may
not be met. The loop variables should always be moving in a particular direction.

In other words, make sure the loop condition, or the variables the condition is dependent
on, are changing between executions. Then, ensure that the termination condition will be
eventually reached in all circumstances. As you learn in the last section of this chapter, a loop
may also exit under other conditions, such as a break statement.

Constructing for Loops

Even though while and do/wh+ile statements are quite powerful, some tasks are so common
in writing software that special types of loops were created—for example, iterating over a
statement exactly 10 times or iterating over a list of names. You could easily accomplish
these tasks with various wh1ile loops that you’ve seen so far, but they usually require a lot of
boilerplate code. Wouldn’t it be great if there was a looping structure that could do the same
thing in a single line of code?

With that, we present the most convenient repetition control structure, for loops. There
are two types of for loops, although both use the same for keyword. The first is referred to as
the basic for loop, and the second is often called the enhanced for loop. For clarity, we refer
to them as the for loop and the for-each loop, respectively, throughout the book.

The for Loop

A basic for loop has the same conditional boolean expression and statement, or block of
statements, as the while loops, as well as two new sections: an initialization block and an
update statement. Figure 3.7 shows how these components are laid out.

Although Figure 3.7 might seem a little confusing and almost arbitrary at first, the orga-
nization of the components and flow allow us to create extremely powerful statements in
a single line that otherwise would take multiple lines with a while loop. Each of the three
sections is separated by a semicolon. In addition, the initialization and update sections may
contain multiple statements, separated by commas.

Variables declared in the initialization block of a for loop have limited scope and
are accessible only within the for loop. Be wary of any exam questions in which a var-
iable is declared within the initialization block of a for loop and then read outside the
loop. For example, this code does not compile because the loop variable 1 is referenced
outside the loop:

Constructing for Loops 125

FIGURE 3.7 The structure of a basic for loop

for keyword .
Parentheses (required)

Semicolons (required)

/)

for (initialization; booleanExpression; updateStatement) {

// Body

Curly braces required for block
} < of multiple statements, optional
for single statement

@ Initialization statement executes

@ If booleanExpression is true, continue; else exit loop
(® Body executes

@ Execute updateStatement

(® Return to Step 2

for(int i=0; i < 10; i++)
System.out.println("Value is: "+1);
System.out.println(i); // DOES NOT COMPILE

Alternatively, variables declared before the for loop and assigned a value in the initiali-
zation block may be used outside the for loop because their scope precedes the creation of
the for loop.
int 1i;
for(i=0; i < 10; 1i++)

System.out.println("Value is: "+1);
System.out.println(i);

Let’s take a look at an example that prints the first five numbers, starting with zero:
for(int i = 0; i < 5; i++) {
System.out.print(i + " ");

The local variable 1 is initialized first to ©. The variable 1 is only in scope for the duration
of the loop and is not available outside the loop once the loop has completed. Like a while
loop, the boolean condition is evaluated on every iteration of the loop before the loop exe-
cutes. Since it returns true, the loop executes and outputs 0 followed by a space. Next, the
loop executes the update section, which in this case increases the value of i to 1. The loop
then evaluates the boolean expression a second time, and the process repeats multiple times,
printing the following:

01234

126 Chapter 3 = Making Decisions

On the fifth iteration of the loop, the value of i reaches 4 and is incremented by 1 to
reach 5. On the sixth iteration of the loop, the boolean expression is evaluated, and since
(5 < 5) returns false, the loop terminates without executing the statement loop body.

@ Real World Scenario
Why i in for Loops?

You may notice it is common practice to name a for loop variable i. Long before Java
existed, programmers started using i as short for increment variable, and the practice
exists today, even though many of those programming languages no longer do! For dou-
ble or triple loops, where 1 is already used, the next letters in the alphabet, j and k, are
often used.

Printing Elements in Reverse

Let’s say you wanted to print the same first five numbers from zero as we did in the previous
section, but this time in reverse order. The goal then is to print4 3 2 1 0.
How would you do that? An initial implementation might look like the following:

for (var counter = 5; counter > 0; counter--) {
System.out.print(counter + " ");

While this snippet does output five distinct values, and it resembles our first for loop
example, it does not output the same five values. Instead, this is the output:

54321

Wait, that’s not what we wanted! We wanted 4 3 2 1 0. It starts with 5, because that is
the first value assigned to it. Let’s fix that by starting with 4 instead:

for (var counter = 4; counter > 0; counter--) {

System.out.print(counter + " ");
}

What does this print now? It prints the following:
4321

So close! The problem is that it ends with 1, not 0, because we told it to exit as soon as
the value was not strictly greater than 0. If we want to print the same © through 4 as our
first example, we need to update the termination condition, like this:

Constructing for Loops 127

for (var counter = 4; counter >= 0; counter--) {
System.out.print(counter + " ");

Finally! We have code that now prints 4 3 2 1 0 and matches the reverse of our
for loop example in the previous section. We could have instead used counter > -1
as the loop termination condition in this example, although counter >= 0 tends to be
more readable.

For the exam, you are going to have to know how to read forward and
,&TE backward for loops. When you see a for loop on the exam, pay close
attention to the loop variable and operations if the decrement
operator, ——, is used. While incrementing from 0 in a for loop is often
straightforward, decrementing tends to be less intuitive. In fact, if you
do see a for loop with a decrement operator on the exam, you should
assume they are trying to test your knowledge of loop operations.

Working with for Loops

Although most for loops you are likely to encounter in your professional development
experience will be well defined and similar to the previous examples, there are a number of
variations and edge cases you could see on the exam. You should familiarize yourself with
the following five examples; variations of these are likely to be seen on the exam.

Let’s tackle some examples for illustrative purposes:

1. Creating an Infinite Loop
for(5 5)
System.out.println("Hello World");
Although this for loop may look like it does not compile, it will in fact compile and run
without issue. It is actually an infinite loop that will print the same statement repeatedly.
This example reinforces the fact that the components of the for loop are each optional.

Note that the semicolons separating the three sections are required, as for () without
any semicolons will not compile.

2. Adding Multiple Terms to the for Statement
int x = 0;
for(long y = 0, z = 4; x < 5 && y < 10; x++, y++) {
System.out.print(y + " "); }
System.out.print(x + " ");

This code demonstrates three variations of the for loop you may not have seen.
First, you can declare a variable, such as x in this example, before the loop begins and
use it after it completes. Second, your initialization block, boolean expression, and
update statements can include extra variables that may or may not reference each

128

Chapter 3 = Making Decisions

other. For example, z is defined in the initialization block and is never used. Finally,
the update statement can modify multiple variables. This code will print the following
when executed:
012345
Redeclaring a Variable in the Initialization Block
int x = 0;
for(int x = 4; x < 5; x++) // DOES NOT COMPILE
System.out.print(x + " ");

This example looks similar to the previous one, but it does not compile because of the
initialization block. The difference is that x is repeated in the initialization block after
already being declared before the loop, resulting in the compiler stopping because of
a duplicate variable declaration. We can fix this loop by removing the declaration of x
from the for loop as follows:

int x = 0;

for(x = 0; x < 55 x++)

System.out.print(x + " ");

Note that this variation will now compile because the initialization block simply assigns
a value to x and does not declare it.

Using Incompatible Data Types in the Initialization Block

int x = 0;

for(long y = 0, int z = 4; x < 5; x++) // DOES NOT COMPILE
System.out.print(y + " ");

Like the third example, this code will not compile, although this time for a different
reason. The variables in the initialization block must all be of the same type. In the
multiple-terms example, y and z were both long, so the code compiled without issue;
but in this example, they have different types, so the code will not compile.

Using Loop Variables Outside the Loop

for(long y =0, Xx = 4; x <58&& Yy < 10; x++, y++)
System.out.print(y + " ");
System.out.print(x); // DOES NOT COMPILE

We covered this already at the start of this section, but it is so important for passing the
exam that we discuss it again here. If you notice, x is defined in the initialization block
of the loop and then used after the loop terminates. Since x was only scoped for the
loop, using it outside the loop will cause a compiler error.

Constructing for Loops 129

Modifying Loop Variables

As a general rule, it is considered a poor coding practice to modify loop variables due to the
unpredictability of the result, such as in the following examples:

for(int i=0; i<10; 7i++)
i =0

for(int j=1; j<10; j++)
Jtt;

It also tends to make code difficult for other people to follow.

The for-each Loop

The for-each loop is a specialized structure designed to iterate over arrays and various
Collections Framework classes, as presented in Figure 3.8.

FIGURE 3.8 The structure of an enhanced for-each loop

for k d
or keywor Parentheses (required)

Colon (required)

}

for (datatype instance: collection) {

Iterable collection of objects
// Body !

datatype of collection member Curly braces required for block
} < of multiple statements, optional
for single statement

The for-each loop declaration is composed of an initialization section and an object to be
iterated over. The right side of the for-each loop must be one of the following:

» A built-in Java array
» An object whose type implements java.lang.Iterable

We cover what implements means in Chapter 7, but for now you just need to know
that the right side must be an array or collection of items, such as a List or a Set. For the
exam, you should know that this does not include all of the Collections Framework classes

130 Chapter 3 = Making Decisions

or interfaces, but only those that implement or extend that Collection interface. For
example, Map is not supported in a for-each loop, although Map does include methods that
return Collection instances.

The left side of the for-each loop must include a declaration for an instance of a variable
whose type is compatible with the type of the array or collection on the right side of the
statement. On each iteration of the loop, the named variable on the left side of the statement
is assigned a new value from the array or collection on the right side of the statement.

Compare these two methods that both print the values of an array, one using a traditional
for loop and the other using a for-each loop:

public void printNames(String[] names) {
for(int counter=0; counter<names.length; counter++)
System.out.println(names[counter]);

public void printNames(String[] names) {
for(var name : names)
System.out.println(name);

The for-each loop is a lot shorter, isn’t it? We no longer have a counter loop variable
that we need to create, increment, and monitor. Like using a for loop in place of a while
loop, for-each loops are meant to reduce boilerplate code, making code easier to read/write,
and freeing you to focus on the parts of your code that really matter.

We can also use a for-each loop on a L1ist, since it implements Iterable.

public void printNames(List<String> names) {
for(var name : names)
System.out.println(name);

We cover generics in detail in Chapter 9, “Collections and Generics.” For this chapter, you
just need to know that on each iteration, a for-each loop assigns a variable with the same
type as the generic argument. In this case, name is of type String.

So far, so good. What about the following examples?

String birds = "Jay";
for(String bird : birds) // DOES NOT COMPILE
System.out.print(bird + " ");

String[] sloths = new String[3];
for(int sloth : sloths) // DOES NOT COMPILE
System.out.print(sloth + " ");

The first for-each loop does not compile because String cannot be used on the right side
of the statement. While a String may represent a list of characters, it has to actually be an
array or implement Iterable. The second example does not compile because the loop type
on the left side of the statement is int and doesn’t match the expected type of String.

Controlling Flow with Branching 131

Controlling Flow with Branching

The final types of control flow structures we cover in this chapter are branching statements.
Up to now, we have been dealing with single loops that ended only when their boolean
expression evaluated to false. We now show you other ways loops could end, or branch,
and you see that the path taken during runtime may not be as straightforward as in the
previous examples.

Nested Loops

Before we move into branching statements, we need to introduce the concept of nested
loops. A nested loop is a loop that contains another loop, including whi le, do/while,

for, and for-each loops. For example, consider the following code that iterates over a two-
dimensional array, which is an array that contains other arrays as its members. We cover
multidimensional arrays in detail in Chapter 4, “Core APIs,” but for now, assume the follow-
ing is how you would declare a two-dimensional array:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

for(int[] mySimpleArray : myComplexArray) {
for(int i=0; i<mySimpleArray.length; i++) {
System.out.print(mySimpleArray[i]+"\t");
}
System.out.println();

Notice that we intentionally mix a for loop and a for-each loop in this example. The
outer loop will execute a total of three times. Each time the outer loop executes, the inner
loop is executed four times. When we execute this code, we see the following output:

5 2 1 3
3 9 8 9
5 7 12 7

Nested loops can include while and do/while, as shown in this example. See whether
you can determine what this code will output:

int hungryHippopotamus = 8;
while(hungryHippopotamus>0) {
do {
hungryHippopotamus -= 2;
} while (hungryHippopotamus>5);
hungryHippopotamus--;
System.out.print(hungryHippopotamus+", ");

132 Chapter 3 = Making Decisions

The first time this loop executes, the inner loop repeats until the value of
hungryHippopotamus is 4. The value will then be decremented to 3, and that will be the
output at the end of the first iteration of the outer loop.

On the second iteration of the outer loop, the inner do/while will be executed once, even
though hungryHippopotamus is already not greater than 5. As you may recall, do/wh-i le state-
ments always execute the body at least once. This will reduce the value to 1, which will be
further lowered by the decrement operator in the outer loop to 0. Once the value reaches 0,
the outer loop will terminate. The result is that the code will output the following:

3, 0,

The examples in the rest of this section include many nested loops. You will also
encounter nested loops on the exam, so the more practice you have with them, the more pre-
pared you will be.

Adding Optional Labels

One thing we intentionally skipped when we presented i f statements, switch statements,
and loops is that they can all have optional labels. A label is an optional pointer to the head
of a statement that allows the application flow to jump to it or break from it. It is a single
identifier that is followed by a colon (:). For example, we can add optional labels to one of
the previous examples:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

OUTER_LOOP: for(int[] mySimpleArray : myComplexArray) {
INNER_LOOP: for(int i=0; i<mySimpleArray.length; i++) {
System.out.print(mySimpleArray[i]+"\t");
}
System.out.println();

Labels follow the same rules for formatting as identifiers. For readability, they are com-
monly expressed using uppercase letters in snake_case with underscores between words.
When dealing with only one loop, labels do not add any value, but as you learn in the next
section, they are extremely useful in nested structures.

While this topic is not on the exam, it is possible to add optional labels to
ITE control and block statements. For example, the following is permitted by
the compiler, albeit extremely uncommon:

int frog = 15;

BAD_IDEA: if(frog>10)

EVEN_WORSE_IDEA: {
frog++;

Controlling Flow with Branching 133

The break Statement

As you saw when working with switch statements, a break statement transfers the flow
of control out to the enclosing statement. The same holds true for a break statement that
appears inside of a while, do/while, or for loop, as it will end the loop early, as shown in
Figure 3.9.

FIGURE 3.9 The structure of a break statement

Optional reference to head of loop

l ﬁ Colon (required if optionalLabel is present)

optionallabel: while (booleanExpression) {
// Body

// Somewhere in the loop
break optionallLabel;

T L Semicolon (required)

break keyword

Notice in Figure 3.9 that the break statement can take an optional label parameter.
Without a label parameter, the break statement will terminate the nearest inner loop it is
currently in the process of executing. The optional label parameter allows us to break out of
a higher-level outer loop. In the following example, we search for the first (x,y) array index
position of a number within an unsorted two-dimensional array:
public class FindInMatrix {

public static void main(String[] args) {

int[1[] list = {{1,13},{5,2},{2,2}};
int searchValue = 2;
int positionX = -1;
int positionY = -1;
PARENT_LOOP: for(int i=0; 1i<list.length; 1i++) {
for(int j=0; j<list[i].length; j++) {
if(list[i][j]==searchValue) {
positionX = i;

134 Chapter 3 = Making Decisions

positionY = j;
break PARENT_LOOP;

}
if(positionX==-1 || positionY==-1) {
System.out.println("Value "+searchValue+" not found");
} else {
System.out.println("Value "+searchValue+" found at: " +
"("+positionX+","+positionY+")");

When executed, this code will output the following:
Value 2 found at: (1,1)

In particular, take a look at the statement break PARENT_LOOP. This statement will
break out of the entire loop structure as soon as the first matching value is found. Now, ima-
gine what would happen if we replaced the body of the inner loop with the following:

if(list[i][j]==searchValue) {
positionX = 1;
positionY = j;
break;

}

How would this change our flow, and would the output change? Instead of exiting when
the first matching value is found, the program would now only exit the inner loop when the
condition was met. In other words, the structure would find the first matching value of the
last inner loop to contain the value, resulting in the following output:

Value 2 found at: (2,0)

Finally, what if we removed the break altogether?
if(list[i][j]==searchValue) {
positionX = 1;
positionY = j;
}

In this case, the code would search for the last value in the entire structure that had the
matching value. The output would look like this:

Value 2 found at: (2,1)

Controlling Flow with Branching 135

You can see from this example that using a label on a break statement in a nested
loop, or not using the break statement at all, can cause the loop structure to behave quite
differently.

The continue Statement

Let’s now extend our discussion of advanced loop control with the continue statement,
a statement that causes flow to finish the execution of the current loop iteration, as shown in
Figure 3.10.

FIGURE 3.10 The structure of a continue statement

Optional reference to head of loop

h Colon (required if optionalLabel is present)

optionalLabel: while (booleanExpression) ({

// Body

// Somewhere in the loop
continue optionalLabel;

T L Semicolon (required)

continue keyword

}

You may notice that the syntax of the continue statement mirrors that of the break
statement. In fact, the statements are identical in how they are used, but with different results.
While the break statement transfers control to the enclosing statement, the continue state-
ment transfers control to the boolean expression that determines if the loop should continue.
In other words, it ends the current iteration of the loop. Also, like the break statement, the
continue statement is applied to the nearest inner loop under execution, using optional label
statements to override this behavior.

Let’s take a look at an example. Imagine we have a zookeeper who is supposed to clean
the first leopard in each of four stables but skip stable b entirely.

1: public class CleaningSchedule {

2: public static void main(String[] args) {

3 CLEANING: for(char stables = 'a'; stables<='d'; stables++) {
4; for(int leopard = 1; leopard<4; leopard++) {

5 if(stables=="b' || leopard==2) {

136 Chapter 3 = Making Decisions

6: continue CLEANING;

7: }

8: System.out.println("Cleaning: "+stables+","+leopard);
9: + + 1}

With the structure as defined, the loop will return control to the parent loop any time the
first value is b or the second value is 2. On the first, third, and fourth executions of the outer
loop, the inner loop prints a statement exactly once and then exits on the next inner loop
when leopard is 2. On the second execution of the outer loop, the inner loop immediately
exits without printing anything since b is encountered right away. The following is printed:
Cleaning: a,l
Cleaning: c,1
Cleaning: d,1

Now, imagine we remove the CLEANING label in the continue statement so that control
is returned to the inner loop instead of the outer. Line 6 becomes the following:

6: continue;

This corresponds to the zookeeper cleaning all leopards except those labeled 2 or in stable
b. The output is then the following:
Cleaning: a,l
Cleaning: a,3
Cleaning: c,1
Cleaning: c,3
Cleaning: d,1
Cleaning: d,3

Finally, if we remove the continue statement and the associated 1 f statement altogether
by removing lines 5-7, we arrive at a structure that outputs all the values, such as this:
Cleaning: a,l
Cleaning: a,2
Cleaning: a,3
Cleaning: b,1
Cleaning: b,2
Cleaning: b,3
Cleaning: c,1
Cleaning: c,2
Cleaning: c,3
Cleaning: d,1
Cleaning: d,2
Cleaning: d,3

Controlling Flow with Branching 137

The return Statement

Given that this book shouldn’t be your first foray into programming, we hope you’ve come
across methods that contain return statements. Regardless, we cover how to design and
create methods that use them in detail in Chapter 5, “Methods.”

For now, though, you should be familiar with the idea that creating methods and using
return statements can be used as an alternative to using labels and break statements. For
example, take a look at this rewrite of our earlier FindInMatrix class:

public class FindInMatrixUsingReturn {
private static int[] searchForValue(int[][] list, int v) {
for (int i = 0; i < list.length; i++) {
for (int j = 0; j < list[i].length; j++) {
if (List[i][j] == v) {
return new int[] {i,j};

}

return null;

public static void main(String[] args) {
int[][] Wist={{1, 13}, {5 23}, {2,21}1};
int searchValue = 2;
int[] results = searchForValue(list,searchValue);

if (results == null) {
System.out.println("Value " + searchValue + " not found");

} else {
System.out.println("Value " + searchValue + " found at: " +
"(" + results[0] + "," + results[1] + ")");
}

This class is functionally the same as the first FindInMatrix class we saw earlier using
break. If you need finer-grained control of the loop with multiple break and continue
statements, the first class is probably better. That said, we find code without labels
and break statements a lot easier to read and debug. Also, making the search logic an
independent function makes the code more reusable and the calling main () method a lot
easier to read.

138 Chapter 3 = Making Decisions

For the exam, you will need to know both forms. Just remember that return statements
can be used to exit loops quickly and can lead to more readable code in practice, especially
when used with nested loops.

Unreachable Code

One facet of break, continue, and return that you should be aware of is that any code
placed immediately after them in the same block is considered unreachable and will not
compile. For example, the following code snippet does not compile:

int checkDate = 0;
while(checkDate<10) {
checkDatet+;
if(checkDate>100) {
break;
checkDate++; // DOES NOT COMPILE

Even though it is not logically possible for the i f statement to evaluate to true in this
code sample, the compiler notices that you have statements immediately following the
break and will fail to compile with “unreachable code” as the reason. The same is true for
continue and return statements, as shown in the following two examples:
int minute = 1;

WATCH: while(minute>2) {
if(minute++>2) {
continue WATCH;
System.out.print(minute); // DOES NOT COMPILE

int hour = 2;

switch(hour) {
case 1: return; hour++; // DOES NOT COMPILE
case 2:

One thing to remember is that it does not matter if the loop or decision structure actu-
ally visits the line of code. For example, the loop could execute zero or infinite times at run-
time. Regardless of execution, the compiler will report an error if it finds any code it deems
unreachable, in this case any statements immediately following a break, continue, or
return statement.

Summary 139

Reviewing Branching

We conclude this section with Table 3.1, which will help remind you when labels, break,
and continue statements are permitted in Java. Although for illustrative purposes our
examples use these statements in nested loops, they can be used inside single loops as well.

TABLE 3.1 Control statement usage

Support labels Support break Support continue Support yield

while Yes Yes Yes No
do/while Yes Yes Yes No
for Yes Yes Yes No
switch Yes Yes No Yes

Last but not least, all testing centers should offer some form of scrap paper or dry-erase
board to use during the exam. We strongly recommend you make use of these testing aids,
should you encounter complex questions involving nested loops and branching statements.

' Some of the most time-consuming questions you may see on the exam
P could involve nested loops with lots of branching. Unless you spot an
obvious compiler error, we recommend skipping these questions and
coming back to them at the end. Remember, all questions on the exam
are weighted evenly!

Summary

This chapter presented how to make intelligent decisions in Java. We covered basic decision-
making constructs such as if, else, and switch statements and showed how to use them
to change the path of the process at runtime. We also presented newer features in the Java
language, including pattern matching and sw1itch expressions, both designed to reduce boil-
erplate code.

We then moved our discussion to repetition control structures, starting with while and
do/while loops. We showed how to use them to create processes that loop multiple times
and also showed how it is important to make sure they eventually terminate. Remember
that most of these structures require the evaluation of a particular boolean expression
to complete.

140 Chapter 3 = Making Decisions

Next, we covered the extremely convenient repetition control structures: the for and
for-each loops. While their syntax is more complex than the traditional while or do/while
loops, they are extremely useful in everyday coding and allow you to create complex
expressions in a single line of code. With a for-each loop, you don’t need to explicitly
write a boolean expression, since the compiler builds one for you. For clarity, we referred
to an enhanced for loop as a for-each loop, but syntactically both are written using the
for keyword.

We concluded this chapter by discussing advanced control options and how flow can be
enhanced through nested loops coupled with break, continue, and return statements. Be wary
of questions on the exam that use nested loops, especially ones with labels, and verify that
they are being used correctly.

This chapter is especially important because at least one component of this chapter will
likely appear in every exam question with sample code. Many of the questions on the exam
focus on proper syntactic use of the structures, as they will be a large source of questions
that end in “Does not compile.” You should be able to answer all of the review questions
correctly or fully understand those that you answered incorrectly before moving on to
later chapters.

Exam Essentials

Understand if and else decision control statements. The i f and else statements come up
frequently throughout the exam in questions unrelated to decision control, so make sure you
fully understand these basic building blocks of Java.

Apply pattern matching and flow scoping. Pattern matching can be used to reduce boil-
erplate code involving an 1 f statement, instanceof operator, and cast operation using a
pattern variable. It can also include a pattern or filter after the pattern variable declaration.
Pattern matching uses flow scoping in which the pattern variable is in scope as long as the
compiler can definitively determine its type.

Understand switch statements and their proper usage. You should be able to spot a poorly
formed switch statement on the exam. The switch value and data type should be com-
patible with the case statements, and the values for the case statements must evaluate to
compile-time constants. Finally, at runtime, a switch statement branches to the first match-
ing case, or default if there is no match, or exits entirely if there is no match and no
default branch. The process then continues into any proceeding case or default state-
ments until a break or return statement is reached.

Use switch expressions correctly. Discern the differences between switch expressions
and switch statements. Understand how to write switch expressions correctly, including
proper use of semicolons, writing case expressions and blocks that yield a consistent
value, and making sure all possible values of the switch variable are handled by the switch
expression.

Exam Essentials 1M

Write while loops. Know the syntactical structure of all while and do/while loops. In
particular, know when to use one versus the other.

Be able to use for loops. You should be familiar with for and for-each loops and know
how to write and evaluate them. Each loop has its own special properties and structures.
You should know how to use for-each loops to iterate over lists and arrays.

Understand how break, continue, and return can change flow control. Know how to
change the flow control within a statement by applying a break, continue, or return
statement. Also know which control statements can accept break statements and which can
accept continue statements. Finally, you should understand how these statements work
inside embedded loops or switch statements.

142 Chapter 3 = Making Decisions

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which of the following data types can be used in a switch expression? (Choose all
that apply.)
A. enum

int

Byte

long

String

char

var

double

IomMmMOUOW®

2. What is the output of the following code snippet? (Choose all that apply.)
3: int temperature = 4;
4: long humidity = -temperature + temperature * 3;
5: if (temperature>=4)
6: if (humidity < 6) System.out.println("Too Low");
7: else System.out.println("Just Right");
8: else System.out.println("Too High");

Too Low

Just Right

Too High

A NullPointerException is thrown at runtime.

The code will not compile because of line 7.

mmOO®mP

The code will not compile because of line 8.

3. Which of the following data types are permitted on the right side of a for-each expression?
(Choose all that apply.)
A. Double[][]

Object

Map

List

String

char[]

Exception

Set

IomMmoow

Review Questions

4. What is the output of calling printReptile(6)?

void printReptile(int category) {

mmoOoOo WP

var type = switch(category) {
case 1,2 -> "Snake";
case 3,4 -> "Lizard";
case 5,6 -> "Turtle";
case 7,8 -> "Alligator";
s
System.out.print(type);

Snake

Lizard

Turtle
Alligator
TurtleAlligator

None of the above

5. What is the output of the following code snippet?

List<Integer> myFavoriteNumbers = new ArraylList<>();
myFavoriteNumbers.add(10);
myFavoriteNumbers.add(14);

for (var a : myFavoriteNumbers) {

System.out.print(a + ", ");
break;

for (int b : myFavoriteNumbers) {

IOGMMmMOO®P

continue;
System.out.print(b + ", ");

for (Object ¢ : myFavoriteNumbers)

System.out.print(c + ", ");

It compiles and runs without issue but does not produce any output.
10, 14,

10, 10, 14,

10, 10, 14, 10, 14,

Exactly one line of code does not compile.

Exactly two lines of code do not compile.

Three or more lines of code do not compile.

The code contains an infinite loop and does not terminate.

143

144

Chapter 3 = Making Decisions

Which statements about decision structures are true? (Choose all that apply.)
A. A for-each loop can be executed on any Collections Framework object.
B. The body of a while loop is guaranteed to be executed at least once.

C. The conditional expression of a for loop is evaluated before the first execution of the
loop body.

D. A switch expression that takes a String and assigns the result to a variable requires a
default branch.

E. The body of a do/while loop is guaranteed to be executed at least once.
F An if statement can have multiple corresponding else statements.
Assuming weather is a well-formed nonempty array, which code snippet, when inserted

independently into the blank in the following code, prints all of the elements of weather?
(Choose all that apply.)

private void print(int[] weather) {

for() o
System.out.println(weather[i]);

}

}
A. 1int i=weather.length; i>0; i--
B. 1int i=0; i<=weather.length-1; ++i
C. var w : weather
D. 1int i=weather.length-1; i>=0; i--
E. dint i=0, 1int j=3; i<weather.length; ++i
F. dint i=0; ++i<10 && i<weather.length;
G. None of the above

What is the output of calling printType(11)?
31: void printType(Object o) {

32: if(o instanceof Integer bat) {

33: System.out.print("int");

34: } else if(o instanceof Integer bat && bat < 10) {
35: System.out.print("small int");

36: } else if(o instanceof Long bat || bat <= 20) {
37: System.out.print("long");

38: } default {

39: System.out.print("unknown");

40: }

41: }

10.

Review Questions

int

small int

long

unknown

Nothing is printed.

The code contains one line that does not compile.

The code contains two lines that do not compile.

IomMmMmOO® P>

None of the above

145

Which statements, when inserted independently into the following blank, will cause the code

to print 2 at runtime? (Choose all that apply.)
int count = 0;
BUNNY: for(int row = 1; row <=3; row++)
RABBIT: for(int col = 0; col <3 ; col++) {
if((col + row) % 2 == 0)

)

count++;

}
System.out.println(count);

break BUNNY
break RABBIT
continue BUNNY
continue RABBIT
break

continue

mmOoOOwP»P

G. None of the above, as the code contains a compiler error.

Given the following method, how many lines contain compilation errors? (Choose all
that apply.)

10: private DayOfWeek getWeekDay(int day, final int thursday) {

11: int otherDay = day;

12: int Sunday = 0;

13: switch(otherDay) {

14: default:

15: case 1: continue;

16: case thursday: return DayOfWeek.THURSDAY;

17: case 2,10: break;

146 Chapter 3 = Making Decisions

18: case Sunday: return DayOfWeek.SUNDAY;
19: case DayOfWeek.MONDAY: return DayOfWeek.MONDAY;
20: }

21: return DayOfWeek.FRIDAY;

22: }

A. None, the code compiles without issue.

B. 1

C. 2

D. 3

E. 4

E 5

G. 6

H. The code compiles but may produce an error at runtime.

11. What is the output of calling printLocation(Animal.MAMMAL)?
10: class Zoo {

11: enum Animal {BIRD, FISH, MAMMAL}
12: void printLocation(Animal a) {
13: long type = switch(a) {

14: case BIRD -> 1;

15: case FISH -> 2;

16: case MAMMAL -> 3;

17: default -> 4;

18: }s

19: System.out.print(type);

20: 1}

A. 3

B. 4

C. 34

D. The code does not compile because of line 13.
E. The code does not compile because of line 17.
FE None of the above

12. What is the result of the following code snippet?
3: int sing = 8, squawk = 2, notes = 0;
4: while(sing > squawk) {
5: sing-—-;
6 squawk += 2;

Review Questions

7: notes += sing + squawk;

8: }

9: System.out.println(notes);

A 11

B. 13

C. 23

D. 33

E. 50

F The code will not compile because of line 7.

13. What is the output of the following code snippet?

boolean keepGoing = true;
int result = 15, meters = 10;
do {
meters--;
if(meters==8) keepGoing = false;
result -= 2;
} while keepGoing;
System.out.println(result);

© 0 N o b WwN

10
11
15

The code will not compile because of line 6.

mmoOoOow»

2

The code does not compile for a different reason.

14. Which statements about the following code snippet are correct? (Choose all that apply.)

for (var penguin : new int[2])
System.out.println(penguin);

var ostrich = new Character[3];

for(var emu : ostrich)
System.out.println(emu);

List<Integer> parrots = new ArraylList<Integer>();

for(var macaw : parrots)
System.out.println(macaw);

141

148

15.

16.

Chapter 3 = Making Decisions

The data type of penguinis Integer.
The data type of penguin is int.

The data type of emu is undefined.

The data type of emu is Character.
The data type of macaw is List.

The data type of macaw is Integer.

GmMmOD O ®m >

None of the above, as the code does not compile.

What is the result of the following code snippet?

final char a = 'A', e = 'E';
char grade = 'B';
switch (grade) {

default:

case a:

case 'B': 'C': System.out.print("great ");
case 'D': System.out.print("good "); break;
case e:

case 'F': System.out.print("not good ");

}
A. great
B. great good
C. good
D. not good
E. The code does not compile because the data type of one or more case statements does

not match the data type of the switch variable.
F None of the above

Given the following array, which code snippets print the elements in reverse order from how
they are declared? (Choose all that apply.)

char[] wolf = {'W', 'e', 'b', 'b', 'y'};
A.
int q = wolf.length;
for(5 5) {
System.out.print(wolf[--q]);
if(gq==0) break;
}

B.
for (int m=wolf.length-1; m>=0; --m)
System.out.print(wolf[m]);

C.

Review Questions

for(int z=0; z<wolf.length; z++)

D.

System.out.print(wolf[wolf.length-z]);

int x = wolf.length-1;
for(int j=0; x>=0 && j==0; x--)

E.

System.out.print(wolf[x]);

final int r = wolf.length;
for(int w = r-1; r>-1; w = r-1)

F

System.out.print(wolf[w]);

for(int i=wolf.length; i>0; --1)

System.out.print(wolf[i]);

G. None of the above

17. What distinct numbers are printed when the following method is executed? (Choose all

that apply.)

private void countAttendees() {

IOMmMOO®m>P

int participants = 4, animals = 2, performers =
while((participants = participants+l) < 10) {}
do {} while (animals++ <= 1);

for(; performers<2; performers+=2) {}

System.out.println(participants);
System.out.println(animals);
System.out.println(performers);

a b W o0

10
9
The code does not compile.

None of the above

149

150

Chapter 3 = Making Decisions

18. Which statements about pattern matching and flow scoping are correct? (Choose all

that apply.)

A. Pattern matching with an i f statement is implemented using the instance operator.

B. Pattern matching with an i f statement is implemented using the instanceon operator.

C. Pattern matching with an i f statement is implemented using the instanceof operator.

D. The pattern variable cannot be accessed after the i f statement in which it is declared.

E. Flow scoping means a pattern variable is only accessible if the compiler can discern its
type.

F Pattern matching can be used to declare a variable with an else statement.

19. What is the output of the following code snippet?

o N o b~ W N

Mmoo ®>

G.

double iguana = 0;

do {
int snake = 1;
System.out.print(snake++ + " ");
iguana--;

} while (snake <= 5);
System.out.println(iguana);

1234 -4.0

1234-5.0

12345-4.0

©12345-5.0

The code does not compile.

The code compiles but produces an infinite loop at runtime.

None of the above

20. Which statements, when inserted into the following blanks, allow the code to compile and
run without entering an infinite loop? (Choose all that apply.)

4
5
6
T:
8
9

10:
11:
12:
13:
14:
15:

int height = 1;
L1: while(height++ <10) {
long humidity = 12;
L2: do {
if(humidity-- % 12 == 0) H
int temperature = 30;
L3: for(5 ;) {
temperature++;
if(temperature>50) ;

}
} while (humidity > 4);

21.

22,

Review Questions

break L2 on line 8; continue L2 on line 12
continue on line 8; continue on line 12
break L3 on line 8;break L1 on line 12

continue L2 on line 8; continue L3 on line 12

moowp

continue L2 on line 8; continue L2 on line 12

F None of the above, as the code contains a compiler error

A minimum of how many lines need to be corrected before the following method
will compile?

21: void findZookeeper(Long 1id) {

22: System.out.print(switch(id) {
23: case 10 -> {"Jane"}

24: case 20 -> {yield "Lisa";};
25: case 30 -> "Kelly";

26: case 30 -> "Sarah";

27: default -> "Unassigned";
28: s

29: }

A. Zero

B. One

C. Two

D. Three

E. Four

F. Five

What is the output of the following code snippet? (Choose all that apply.)

2: var tailFeathers = 3;

3: final var one = 1;

4: switch (tailFeathers) {

5: case one: System.out.print(3 + " ");

6: default: case 3: System.out.print(5 + " ");
7}

8: while (tailFeathers > 1) {

9: System.out.print(--tailFeathers + " "); }
A 3

B. 51

C. 52

D. 351

E. 521

F. The code will not compile because of lines 3-5.

G. The code will not compile because of line 6.

151

152 Chapter 3 = Making Decisions

23. What is the output of the following code snippet?
15: int penguin = 50, turtle = 75;
16: boolean older = penguin >= turtle;
17: if (older = true) System.out.println("Success");
18: else System.out.println("Failure");
19: else if(penguin != 50) System.out.println("Other");

Success

Failure

Other

The code will not compile because of line 17.

The code compiles but throws an exception at runtime.

Mmoo wp

None of the above
24. Which of the following are possible data types for friends that would allow the code to
compile? (Choose all that apply.)

for(var friend 1in friends) {
System.out.println(friend);

Set

Map

String
int[]
Collection

StringBuilder

GmMmQooOowp

None of the above

25. What is the output of the following code snippet?

6: String dinstrument = "violin";
7: final String CELLO = "cello";
8: String viola = "viola";

9: dnt p = -1;
10: switch(instrument) {

11: case "bass" : break;

12: case CELLO : pt++;

13: default: p++;

14: case "VIOLIN": p++;

15: case "viola" : ++p; break;
16: }

17: System.out.print(p);

mmoOoOow®

Review Questions

3

The code does not compile.

26. What is the output of the following code snippet? (Choose all that apply.)

9:

10:
11:
12:
13:
14:
15:

G mMmOoOO WP

intw =0, r = 1;
String name = "";
while(w < 2) {
name += "A";
do {
name += "B";
if(name.length()>0) name += "C";
else break;
} while (r <=1);
r++; wtt+; }

: System.out.println(name);

ABC

ABCABC

ABCABCABC

Line 15 contains a compilation error.

Line 18 contains a compilation error.

The code compiles but never terminates at runtime.

The code compiles but throws a NullPointerException at runtime.

27. What is printed by the following code snippet?

23:
24
25:
26:
27:
28:
29:
30:
31:

byte amphibian = 1;
String name = "Frog";
String color = switch(amphibian) {
case 1 -> { yield "Red"; }
case 2 -> { if(name.equals("Frog")) yield "Green"; }
case 3 -> { yield "Purple"; }
default -> throw new RuntimeException();
s

System.out.print(color);

153

154

28.

29.

mmOoOoO®P

Chapter 3 = Making Decisions

Red

Green

Purple

RedPurple

An exception is thrown at runtime.

The code does not compile.

What is the output of calling getFish("goldie")?

40:
41:
42:
43:

Mmoo ®>

void getFish(Object fish) {
if (!(fish dinstanceof String guppy))
System.out.print("Eat!");
else if (!(fish instanceof String guppy)) {
throw new RuntimeException();
}

System.out.print("Swim!");

t}

Eat!

Swim!

Eat! followed by an exception.
Eat!Swim!

An exception is printed.

None of the above

What is the result of the following code?

1:
2:

o b~ W

Mmoo wp

public class PrintIntegers {
public static void main(String[] args) {
int y = -2;
do System.out.print(++y + " ");
while(y <= 5);
3

-2 -1012345

-2 -1 01234

-1 0123456

-1 012345

The code will not compile because of line 5.

The code contains an infinite loop and does not terminate.

Core APIs

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Handling date, time, text, numeric and boolean values

Use primitives and wrapper classes including Math API, paren-
theses, type promotion, and casting to evaluate arithmetic and
boolean expressions

Manipulate text, including text blocks, using String and String-
Builder classes

Manipulate date, time, duration, period, instant and time-zone
objects using Date-Time API

v Working with Arrays and Collections

Create Java arrays, List, Set, Map, and Deque collections, and
add, remove, update, retrieve and sort their elements

In the context of an application programming interface (API),
an interface refers to a group of classes or Java interface defini-
tions giving you access to functionality.

In this chapter, you learn about many core data structures in Java, along with the most
common APIs to access them. For example, String and StringBuilder, along with their
associated APIs, are used to create and manipulate text data. Then we cover arrays. Finally,
we explore math and date/time APIs.

Creating and Manipulating Strings

The String class is such a fundamental class that you’d be hard-pressed to write code
without it. After all, you can’t even write a main () method without using the String class.
A string is basically a sequence of characters; here’s an example:

String name = "Fluffy";

As you learned in Chapter 1, “Building Blocks,” this is an example of a reference type.
You also learned that reference types are created using the new keyword. Wait a minute.
Something is missing from the previous example: it doesn’t have new in it! In Java, these two
snippets both create a String:

String name = "Fluffy";
String name = new String("Fluffy");

Both give you a reference variable named name pointing to the String object "Fluffy".
They are subtly different, as you see later in this chapter. For now, just remember that the
String class is special and doesn’t need to be instantiated with new.

Further, text blocks are another way of creating a String. To review, this text block is the
same as the previous variables:

String name = """
F'Luf-f-'yllllll;

Since a String is a sequence of characters, you probably won’t be surprised to hear that
it implements the interface CharSequence. This interface is a general way of representing
several classes, including String and StringBuilder. You learn more about interfaces in
Chapter 7, “Beyond Classes.”

In this section, we look at concatenation, common methods, and method chaining.

Creating and Manipulating Strings 157

Concatenating

In Chapter 2, “Operators,” you learned how to add numbers. 1 + 2 is clearly 3. But what is
"1™+ "2"? It’s "12" because Java combines the two String objects. Placing one String
before the other String and combining them is called string concatenation. The exam
creators like string concatenation because the + operator can be used in two ways within
the same line of code. There aren’t a lot of rules to know for this, but you have to know
them well:

1. If both operands are numeric, + means numeric addition.
2. If either operand is a String, + means concatenation.
3. The expression is evaluated left to right.

Now let’s look at some examples:

System.out.println(l + 2); /13
System.out.println("a" + "b"); /] ab
System.out.println("a" + "b" + 3); // ab3
System.out.println(l + 2 + "c"); /] 3c
System.out.println("c" + 1 + 2); /] c12
System.out.println("c" + null); // cnull

The first example uses the first rule. Both operands are numbers, so we use normal
addition. The second example is simple string concatenation, described in the second rule.
The quotes for the String are only used in code; they don’t get output.

The third example combines the second and third rules. Since we start on the left, Java
figures out what "a" + "b" evaluates to. You already know that one: it’s "ab". Then Java
looks at the remaining expression of "ab" + 3. The second rule tells us to concatenate since
one of the operands is a String.

In the fourth example, we start with the third rule, which tells us to consider 1 + 2. Both
operands are numeric, so the first rule tells us the answer is 3. Then we have 3 + "c", which
uses the second rule to give us "3c". Notice all three rules are used in one line?

The fifth example shows the importance of the third rule. First we have "c" + 1, which
uses the second rule to give us "c1". Then we have "c1" + 2, which uses the second rule
again to give us "c12".

Finally, the last example shows how null is represented as a string when concatenated or
printed, giving us "cnull".

The exam takes trickery a step further and will try to fool you with something like this:

int three = 3;
String four = "4";
System.out.println(l + 2 + three + four);

When you see this, just take it slow, remember the three rules, and be sure to check the
variable types. In this example, we start with the third rule, which tells us to consider 1 + 2.

158 Chapter 4 = Core APIs

The first rule gives us 3. Next, we have 3 + three. Since three is of type int, we still use
the first rule, giving us 6. Then, we have 6 + four. Since four is of type String, we switch
to the second rule and get a final answer of "64". When you see questions like this, just take
your time and check the types. Being methodical pays off.

There is one more thing to know about concatenation, but it is easy. In this example, you
just have to remember what += does. Keep in mind, s += "2" means the same thing as s
= s + n 2 n .

4: var s = "1"; // s currently holds "1"
5: s += "2"; // s currently holds "12"
6: s += 3; // s currently holds "123"
7: System.out.println(s); // 123

On line 5, we are “adding” two strings, which means we concatenate them. Line 6 tries to
trick you by adding a number, but it’s just like we wrote s = s + 3. We know that a string
“plus” anything else means to use concatenation.

To review the rules one more time: use numeric addition if two numbers are involved, use
concatenation otherwise, and evaluate from left to right. Have you memorized these three
rules yet? Be sure to do so before the exam!

Important String Methods

The String class has dozens of methods. Luckily, you need to know only a handful for the
exam. The exam creators pick most of the methods developers use in the real world.

For all these methods, you need to remember that a string is a sequence of characters
and Java counts from 0 when indexed. Figure 4.1 shows how each character in the string
"animals" is indexed.

FIGURE 4.1 Indexing for a string

0 1 2 3 4 5 6

a n i m a 1 s

You also need to know that a String is immutable, or unchangeable. This means calling
a method on a String will return a different String object rather than changing the value
of the reference. In this chapter, you use immutable objects. In Chapter 6, “Class Design,”
you learn how to create immutable objects of your own.

Let’s look at a number of methods from the String class. Many of them are straightfor-
ward, so we won’t discuss them at length. You need to know how to use these methods.

Determining the Length

The method length() returns the number of characters in the String. The method signa-
ture is as follows:

public 1int length()

Creating and Manipulating Strings 159

The following code shows how to use length():

var name = "animals";
System.out.println(name.length()); // 7

Wait. It outputs 72 Didn’t we just tell you that Java counts from 0? The difference is
that zero counting happens only when you’re using indexes or positions within a list.
When determining the total size or length, Java uses normal counting again.

Getting a Single Character

The method charAt () lets you query the string to find out what character is at a specific index.
The method signature is as follows:

public char charAt(int index)

The following code shows how to use charAt():

var name = "animals";
System.out.println(name.charAt(0)); // a
System.out.println(name.charAt(6)); // s
System.out.println(name.charAt(7)); // exception

Since indexes start counting with 0, charAt (0) returns the “first” character in the
sequence. Similarly, charAt (6) returns the “seventh” character in the sequence.
However, charAt(7) is a problem. It asks for the “eighth” character in the sequence, but
there are only seven characters present. When something goes wrong that Java doesn’t know
how to deal with, it throws an exception, as shown here. You learn more about exceptions in
Chapter 11, “Exceptions and Localization.”

java.lang.StringIndexOutOfBoundsException: String index out of range: 7

Finding an Index

The method index0f () looks at the characters in the string and finds the first index that
matches the desired value. The index0f method can work with an individual character or a
whole String as input. It can also start from a requested position. Remember that a char
can be passed to an int parameter type. On the exam, you’ll only see a char passed to the
parameters named ch. The method signatures are as follows:

public int index0f(int ch)

public int dindex0f(int ch, int fromIndex)
public int indexOf(String str)
public int index0f(String str, int fromIndex)

The following code shows you how to use index0f ():

var name = "animals";
System.out.println(name.index0f('a')); /] 0

160 Chapter 4 = Core APIs

System.out.println(name.index0f("al")); /] 4
System.out.println(name.index0f('a', 4)); /] 4
System.out.println(name.index0f("al", 5)); /] -1

Since indexes begin with 0, the first 'a' matches at that position. The second statement
looks for a more specific string, so it matches later. The third statement says Java shouldn’t
even look at the characters until it gets to index 4. The final statement doesn’t find anything
because it starts looking after the match occurred. Unlike charAt (), the index0f ()
method doesn’t throw an exception if it can’t find a match, instead returning —1. Because
indexes start with 0, the caller knows that —1 couldn’t be a valid index. This makes it a
common value for a method to signify to the caller that no match is found.

Getting a Substring

The method substring() also looks for characters in a string. It returns parts of the string.
The first parameter is the index to start with for the returned string. As usual, this is a
zero-based index. There is an optional second parameter, which is the end index you want
to stop at.

Notice we said “stop at” rather than “include.” This means the endIndex parameter
is allowed to be one past the end of the sequence if you want to stop at the end of the
sequence. That would be redundant, though, since you could omit the second parameter
entirely in that case. In your own code, you want to avoid this redundancy. Don’t be sur-
prised if the exam uses it, though. The method signatures are as follows:

public String substring(int beginIndex)
public String substring(int beginIndex, int endIndex)

It helps to think of indexes a bit differently for the substring methods. Pretend the indexes
are right before the character they would point to. Figure 4.2 helps visualize this. Notice
how the arrow with the 0 points to the character that would have index 0. The arrow
with the 1 points between characters with indexes © and 1. There are seven characters in
the String. Since Java uses zero-based indexes, this means the last character has an index
of 6. The arrow with the 7 points immediately after this last character. This will help you
remember that endIndex doesn’t give an out-of-bounds exception when it is one past the
end of the String.

FIGURE 4.2 Indexes for a substring

SEREEEE

The following code shows how to use substring():

var name = "animals";
System.out.println(name.substring(3)); // mals
System.out.println(name.substring(name.index0f('m'))); // mals

Creating and Manipulating Strings 161

System.out.println(name.substring(3, 4)); // m
System.out.println(name.substring(3, 7)); // mals

The substring() method is the trickiest String method on the exam. The first example says
to take the characters starting with index 3 through the end, which gives us "mals". The second
example does the same thing, but it calls index0f () to get the index rather than hard-coding it.
This is a common practice when coding because you may not know the index in advance.

The third example says to take the characters starting with index 3 until, but not
including, the character at index 4. This is a complicated way of saying we want a String
with one character: the one at index 3. This results in "m". The final example says to take the
characters starting with index 3 until we get to index 7. Since index 7 is the same as the end
of the string, it is equivalent to the first example.

We hope that wasn’t too confusing. The next examples are less obvious:

System.out.println(name.substring(3, 3)); // empty string
System.out.println(name.substring(3, 2)); // exception
System.out.println(name.substring(3, 8)); // exception

The first example in this set prints an empty string. The request is for the characters
starting with index 3 until we get to index 3. Since we start and end with the same index,
there are no characters in between. The second example in this set throws an exception
because the indexes can’t be backward. Java knows perfectly well that it will never get
to index 2 if it starts with index 3. The third example says to continue until the eighth
character. There is no eighth position, so Java throws an exception. Granted, there is no
seventh character either, but at least there is the “end of string” invisible position.

Let’s review this one more time since substring() is so tricky. The method returns the string
starting from the requested index. If an end index is requested, it stops right before that
index. Otherwise, it goes to the end of the string.

Adjusting Case

Whew. After that mental exercise, it is nice to have methods that act exactly as they sound!
These methods make it easy to convert your data. The method signatures are as follows:

public String toLowerCase()
public String toUpperCase()

The following code shows how to use these methods:

var name = "animals";
System.out.println(name.toUpperCase()); // ANIMALS
System.out.println("Abc123".toLowerCase()); // abcl23

These methods do what they say. The toUpperCase () method converts any lowercase
characters to uppercase in the returned string. The toLowerCase () method converts any
uppercase characters to lowercase in the returned string. These methods leave alone any
characters other than letters. Also, remember that strings are immutable, so the original
string stays the same.

162 Chapter 4 = Core APIs

Checking for Equality

The equals () method checks whether two String objects contain exactly the same char-
acters in the same order. The equalsIgnoreCase () method checks whether two String
objects contain the same characters, with the exception that it ignores the characters’ case.
The method signatures are as follows:

public boolean equals(Object obj)
public boolean equalsIgnoreCase(String str)

You might have noticed that equals () takes an Object rather than a String. This is
because the method is the same for all objects. If you pass in something that isn’t a String,
it will just return false. By contrast, the equalsIgnoreCase () method only applies to
String objects, so it can take the more specific type as the parameter.

In Java, String values are case-sensitive. That means "abc" and "ABC" are considered differ-
ent values. With that in mind, the following code shows how to use these methods:

System.out.println("abc".equals("ABC")); // false

System.out.println("ABC".equals("ABC")); // true
System.out.println("abc".equalsIgnoreCase("ABC")); // true

This example should be fairly intuitive. In the first example, the values aren’t exactly the
same. In the second, they are exactly the same. In the third, they differ only by case, but it is
okay because we called the method that ignores differences in case.

Overriding toString(), equals(Object), and hashCode()

Knowing how to properly override toString(), equals(Object), and hashCode ()
was part of Java certification exams in the past. As a professional Java developer, it is still
important for you to know at least the basic rules for overriding each of these methods:

= toString():The toString() method is called when you try to print an object or
concatenate the object with a String. It is commonly overridden with a version that
prints a unique description of the instance using its instance fields.

= equals(Object):The equals(Object) method is used to compare objects,
with the default implementation just using the == operator. You should override the
equals (Object) method any time you want to conveniently compare elements for
equality, especially if this requires checking numerous fields.

= hashCode(): Any time you override equals (Object), you must override
hashCode () to be consistent. This means that for any two objects, if a.equals(b) is
true, then a.hashCode()==b.hashCode () must also be true. If they are not con-
sistent, this could lead to invalid data and side effects in hash-based collections such as
HashMap and HashSet.

All of these methods provide a default implementation in Object, but if you want to make
intelligent use of them, you should override them.

Creating and Manipulating Strings 163

Searching for Substrings

Often, you need to search a larger string to determine if a substring is contained within it.
The startsWith() and endsWith () methods look at whether the provided value matches part
of the String. The contains () method isn’t as particular; it looks for matches anywhere in the
String. The method signatures are as follows:

public boolean startsWith(String prefix)

public boolean endsWith(String suffix)
public boolean contains(CharSequence charSeq)

The following code shows how to use these methods:

System.out.println("abc".startsWith("a")); // true
System.out.println("abc".startsWith("A")); // false

System.out.println("abc".endsWith("c")); // true
System.out.println("abc".endsWith("a")); // false

System.out.println("abc".contains("b")); // true
System.out.println("abc".contains("B")); // false

Again, nothing surprising here. Java is doing a case-sensitive check on the values
provided. Note that the contains () method is a convenience method so you don’t have to
write str.indexOf (otherString) != -1.

Replacing Values

The replace () method does a simple search and replace on the string. There’s a version that
takes char parameters as well as a version that takes CharSequence parameters. The method
signatures are as follows:

public String replace(char oldChar, char newChar)
public String replace(CharSequence target, CharSequence replacement)

The following code shows how to use these methods:

System.out.println("abcabc".replace('a', 'A')); // AbcAbc
System.out.println("abcabc".replace("a", "A")); // AbcAbc

The first example uses the first method signature, passing in char parameters. The second
example uses the second method signature, passing in String parameters.

Removing Whitespace

These methods remove blank space from the beginning and/or end of a String. The strip()
and trim() methods remove whitespace from the beginning and end of a String. In terms of
the exam, whitespace consists of spaces along with the \t (tab) and \n (newline) characters.
Other characters, such as \r (carriage return), are also included in what gets trimmed. The
strip() method does everything that trim() does, but it supports Unicode.

164 Chapter 4 = Core APIs

)/ You don’t need to know about Unicode for the exam. But if you want
,@TE to test the difference, one of the Unicode whitespace characters is as
follows:

char ch = '"\u2000';

Additionally, the stripLeading() method removes whitespace from the beginning of
the String and leaves it at the end. The stripTrailing() method does the opposite. It
removes whitespace from the end of the String and leaves it at the beginning. The method
signatures are as follows:

public String strip()
public String stripLeading()
public String stripTrailing()
public String trim()

The following code shows how to use these methods:

System.out.println("abc".strip()); // abc
System.out.println("\t a b c\n".strip()); // abc
String text = " abc\t ";
System.out.printin(text.trim().length()); // 3
System.out.println(text.strip().length()); // 3

System.out.println(text.stripLeading().length()); // 5
System.out.println(text.stripTrailing().length());// 4

First, remember that \t is a single character. The backslash escapes the t to represent a
tab. The first example prints the original string because there are no whitespace characters at
the beginning or end. The second example gets rid of the leading tab, subsequent spaces, and
the trailing newline. It leaves the spaces that are in the middle of the string.

The remaining examples just print the number of characters remaining. You can see that
trim() and strip() leave the same three characters "abc" because they remove both
the leading and trailing whitespace. The stripLeading() method only removes the one
whitespace character at the beginning of the String. It leaves the tab and space at the end.
The stripTrailing() method removes these two characters at the end but leaves the
character at the beginning of the String.

Working with Indentation

Now that Java supports text blocks, it is helpful to have methods that deal with indentation.
Both of these are a little tricky, so read carefully!

public String indent(int numberSpaces)
public String stripIndent()

Creating and Manipulating Strings 165

The indent () method adds the same number of blank spaces to the beginning of each
line if you pass a positive number. If you pass a negative number, it tries to remove that
number of whitespace characters from the beginning of the line. If you pass zero, the inden-
tation will not change.

)’ If you call indent() with a negative number and try to remove more
P TE whitespace characters than are present at the beginning of the line, Java
will remove all that it can find.

This seems straightforward enough. However, indent () also normalizes whitespace
characters. What does normalizing whitespace mean, you ask? First, a line break is added
to the end of the string if not already there. Second, any line breaks are converted to the
\n format. Regardless of whether your operating system uses \r\n (Windows) or\n (Mac/
Unix), Java will standardize on \n for you.

The stripIndent () method is useful when a String was built with concatenation rather than
using a text block. It gets rid of all incidental whitespace. This means that all non-blank lines
are shifted left so the same number of whitespace characters are removed from each line and
the first character that remains is not blank. Like indent (), \r\nis turned into \n. However, the
stripIndent() method does not add a trailing line break if it is missing.

Well, that was a lot of rules. Table 4.1 provides a reference to make them easier
to remember.

TABLE 4.1 Rulesforindent() and stripIndent()

Normalizes Adds line
existing break at end
Method Indent change line breaks if missing
indent(n) where n>0 Adds n spaces to Yes Yes
beginning of each line
indent(n) where n == No change Yes Yes
indent(n) wheren<0 Removes up to n spaces Yes Yes
from each line where the
same number of charac-
ters is removed from each
non-blank line
stripIndent() Removes all leading Yes No

incidental whitespace

166 Chapter 4 = Core APIs

The following code shows how to use these methods. Don’t worry if the results aren’t
what you expect. We explain each one.

10: var block = """

11: a

12: b

13: chur,

14: var concat = " a\n"

15: + " b\n"

16: + " c";

17: System.out.println(block.length()); /] 6
18: System.out.println(concat.length()); // 9
19: System.out.println(block.indent(1).length()); // 10
20: System.out.println(concat.indent(-1).length()); /] 7
21: System.out.println(concat.indent(-4).length()); /] 6

22: System.out.println(concat.stripIndent().length()); // 6

Lines 10-16 create similar strings using a text block and a regular String, respectively.
We say “similar” because concat has a whitespace character at the beginning of each line
while block does not.

Line 17 counts the six characters in block, which are the three letters, the blank space
before b, and the \n after a and b. Line 18 counts the nine characters in concat, which are
the three letters, one blank space before a, two blank spaces before b, one blank space before
¢, and the \n after a and b. Count them up yourself. If you don’t understand which charac-
ters are counted, it will only get more confusing.

On line 19, we ask Java to add a single blank space to each of the three lines in block.
However, the output says we added 4 characters rather than 3 since the length went from 6
to 10. This mysterious additional character is thanks to the line termination normalization.
Since the text block doesn’t have a line break at the end, indent () adds one!

On line 20, we remove one whitespace character from each of the three lines of concat.
This gives a length of seven. We started with nine, got rid of three characters, and added a
trailing normalized new line.

On line 21, we ask Java to remove four whitespace characters from the same three lines.
Since there are not four whitespace characters, Java does its best. The single space is removed
before a and c. Both spaces are removed before b. The length of six should make sense here;
we removed one more character here than on line 20.

Finally, line 22 uses the stripIndent() method. All of the lines have at least one
whitespace character. Since they do not all have two whitespace characters, the method only
gets rid of one character per line. Since no new line is added by stripIndent(), the length
is six, which is three less than the original nine.

Creating and Manipulating Strings 167

Translating Escapes

When we escape characters, we use a single backslash. For example, \t is a tab. If we don’t
want this behavior, we add another backslash to escape the backslash, so \\ t is the literal
string \t. The translateEscapes() method takes these literals and turns them into the
equivalent escaped character. The method signature is as follows:

public String translateEscapes()

The following code shows how to use these methods:

var str = "1\\t2";
System.out.println(str); // 1\t2
System.out.println(str.translateEscapes()); // 1 2

The first line prints the literal string \ t because the backslash is escaped. The second
line prints an actual tab since we translated the escape. This method can be used for escape
sequences such as \t (tab), \n (new line), \'s (space), \" (double quote), and \ ' (single quote.)

Checking for Empty or Blank Strings

Java provides convenience methods for whether a String has a length of zero or contains only
whitespace characters. The method signatures are as follows:

public boolean <isEmpty()
public boolean dsBlank()

The following code shows how to use these methods:

System.out.println(" ".isEmpty()); // false
System.out.println("".isEmpty()); // true
System.out.println(" ".isBlank()); // true
System.out.println("".isBlank()); // true

The first line prints false because the String is not empty; it has a blank space in it.
The second line prints true because this time, there are no characters in the String. The
final two lines print true because there are no characters other than whitespace present.

Formatting Values

There are methods to format String values using formatting flags. Two of the methods take
the format string as a parameter, and the other uses an instance for that value. One method
takes a Locale, which you learn about in Chapter 11.

The method parameters are used to construct a formatted String in a single method call,
rather than via a lot of format and concatenation operations. They return a reference to the
instance they are called on so that operations can be chained together. The method signa-
tures are as follows:

public static String format(String format, Object args...)
public static String format(Locale loc, String format, Object args...)
public String formatted(Object args...)

168 Chapter 4 = Core APIs

The following code shows how to use these methods:

var name = "Kate";
var orderId = 5;

// ALl print: Hello Kate, order 5 is ready
System.out.println("Hello "+name+", order "+orderId+" is ready");
System.out.println(String.format("Hello %s, order %d is ready",
name, orderId));
System.out.println("Hello %s, order %d is ready"
.formatted(name, orderId));

In the format () and formatted() operations, the parameters are inserted and for-
matted via symbols in the order that they are provided in the vararg. Table 4.2 lists the ones
you should know for the exam.

TABLE 4.2 Common formatting symbols

Symbol Description

%s Applies to any type, commonly String values

%d Applies to integer values like int and long

%f Applies to floating-point values like float and double

%n Inserts a line break using the system-dependent line separator

The following example uses all four symbols from Table 4.2:

var name = "James";

var score = 90.25;

var total = 100;

System.out.println("%s:%n Score: %f out of %d"
.formatted(name, score, total));

This prints the following:

James:
Score: 90.250000 out of 100

Mixing data types may cause exceptions at runtime. For example, the following throws
an exception because a floating-point number is used when an integer value is expected:

var str = "Food: %d tons".formatted(2.0); // IllegalFormatConversionException

Creating and Manipulating Strings 169

Using format() with Flags

Besides supporting symbols, Java also supports optional flags between the % and the
symbol character. In the previous example, the floating-point number was printed as
90.250000. By default, %f displays exactly six digits past the decimal. If you want to
display only one digit after the decimal, you can use %. 1f instead of %f.The format ()
method relies on rounding rather than truncating when shortening numbers. For example,
90.250000 will be displayed as 90. 3 (not 90.2) when passed to format () with %.1f.

The format () method also supports two additional features. You can specify the total
length of output by using a number before the decimal symbol. By default, the method will
fill the empty space with blank spaces. You can also fill the empty space with zeros by plac-
ing a single zero before the decimal symbol. The following examples use brackets, [], to
show the start/end of the formatted value:

var pi = 3.14159265359;

System.out. format("[%f]",pi); // [3.141593]
System.out.format("[%12.8f]",pi); // [3.14159265]
System.out.format (" [%012f]",pi); // [00003.141593]
System.out.format("[%12.2f]1",pi); // [3.14]
System.out.format("[%.3f]",pi); // [3.142]

The format () method supports a lot of other symbols and flags. You don’t need to know
any of them for the exam beyond what we've discussed already.

Method Chaining

Ready to put together everything you just learned about? It is common to call multiple
methods as shown here:

var start = "AniMaL ";

var trimmed = start.trim(); // "AniMalL"
var lowercase = trimmed.toLowerCase(); // "animal"
var result = lowercase.replace('a', 'A'); // "AnimAl"

System.out.println(result);

This is just a series of String methods. Each time one is called, the returned value is put
in a new variable. There are four String values along the way, and AnimAl is output.

However, on the exam, there is a tendency to cram as much code as possible into a small
space. You’ll see code using a technique called method chaining. Here’s an example:

String result = "AniMaL ".trim().toLowerCase().replace('a', 'A');
System.out.println(result);

170 Chapter 4 = Core APIs

This code is equivalent to the previous example. It also creates four String objects and
outputs AnimA1l. To read code that uses method chaining, start at the left and evaluate the
first method. Then call the next method on the returned value of the first method. Keep
going until you get to the semicolon.

What do you think the result of this code is?

String a = "abc";

String b = a.toUpperCase();

b = b.replace("B", "2").replace('C', '3');
System.out.println("a=" + a);
System.out.println("b=" + b);

© o N oo U

On line 5, we set a to point to "abc" and never pointed a to anything else. Since none of
the code on lines 6 and 7 changes a, the value remains "abc".

However, b is a little trickier. Line 6 has b pointing to "ABC", which is straightforward.
On line 7, we have method chaining. First, "ABC" . replace ("B", "2") is called. This
returns "A2C". Next, "A2C".replace('C', '3') is called. This returns "A23". Finally, b
changes to point to this returned String. When line 9 executes, b is "A23".

Using the StringBuilder Class

A small program can create a lot of String objects very quickly. For example, how many
objects do you think this piece of code creates?

10: String alpha = "";
11: for(char current = 'a'; current <= 'z'; current++)
12: alpha += current;

13: System.out.println(alpha);

The empty String on line 10 is instantiated, and then line 12 appends an "a". However,
because the String object is immutable, a new String object is assigned to alpha, and the
" object becomes eligible for garbage collection. The next time through the loop, alpha is
assigned a new String object, "ab", and the "a" object becomes eligible for garbage col-
lection. The next iteration assigns alpha to "abc", and the "ab" object becomes eligible for
garbage collection, and so on.

This sequence of events continues, and after 26 iterations through the loop, a total of 27
objects are instantiated, most of which are immediately eligible for garbage collection.

This is very inefficient. Luckily, Java has a solution. The StringBuilder class creates a
String without storing all those interim String values. Unlike the String class,
StringBuilder is not immutable.

15: StringBuilder alpha = new StringBuilder();

16: for(char current = 'a'; current <= 'z'; current++)
17: alpha.append(current);

18: System.out.println(alpha);

Using the StringBuilder Class m

On line 15, a new StringButilder object is instantiated. The call to append () on line
17 adds a character to the StringBuilder object each time through the for loop, append-
ing the value of current to the end of alpha. This code reuses the same StringBuilder
without creating an interim String each time.

In old code, you might see references to StringBuffer. It works the same way, except it
supports threads, which you learn about in Chapter 13, “Concurrency.” StringBuffer is
not on the exam. It performs slower than StringBuilder, so just use StringBuilder.

In this section, we look at creating a StringBu+ilder and using its common methods.

Mutability and Chaining

We’re sure you noticed this from the previous example, but StringBuilder is not immutable.
In fact, we gave it 27 different values in the example (a blank plus adding each letter in

the alphabet). The exam will likely try to trick you with respect to String and StringBuilder
being mutable.

Chaining makes this even more interesting. When we chained String method calls, the
result was a new String with the answer. Chaining StringBuilder methods doesn’t work this
way. Instead, the StringBuilder changes its own state and returns a reference to itself. Let’s
look at an example to make this clearer:

4: StringBuilder sb = new StringBuilder("start");
5: sb.append("+middle"); // sb = "start+middle"
6: StringBuilder same = sb.append("+end"); // "start+middle+end"

Line 5 adds text to the end of sb. It also returns a reference to sb, which is ignored. Line
6 also adds text to the end of sb and returns a reference to sb. This time the reference is
stored in same. This means sb and same point to the same object and would print out the
same value.

The exam won’t always make the code easy to read by having only one method per line.
What do you think this example prints?

StringBuilder a = new StringBuilder("abc");
StringBuilder b = a.append("de");

b = b.append("f").append("g");
System.out.println("a=" + a);
System.out.println("b=" + b);

o N o o p»

Did you say both print "abcdefg"? Good. There’s only one StringBuilder object
here. We know that because new StringBuilder () is called only once. On line 5, there
are two variables referring to that object, which has a value of "abcde". On line 6, those
two variables are still referring to that same object, which now has a value of "abcdefg".
Incidentally, the assignment back to b does absolutely nothing. b is already pointing to that
StringBuilder.

172 Chapter 4 = Core APIs

Creating a StringBuilder

There are three ways to construct a StringBuilder:
StringBuilder sbl = new StringBuilder();

StringBuilder sb2 = new StringBuilder("animal");
StringBuilder sb3 = new StringBuilder(10);

The first says to create a StringBuilder containing an empty sequence of characters
and assign sb1 to point to it. The second says to create a StringBuilder containing a
specific value and assign sb2 to point to it. The first two examples tell Java to manage the
implementation details. The final example tells Java that we have some idea of how big the
eventual value will be and would like the StringBuilder to reserve a certain capacity, or
number of slots, for characters.

Important StringBuilder Methods

As with String, we aren’t going to cover every single method in the StringBuilder class. These
are the ones you might see on the exam.

Using Common Methods

These four methods work exactly the same as in the String class. Be sure you can identify the
output of this example:

var sb = new StringBuilder("animals");

String sub = sb.substring(sb.index0f("a"), sb.index0f("al"));
int len = sb.length();

char ch = sb.charAt(6);

System.out.println(sub + " " + len + " " + ch);

The correct answer is anim 7 s. The index0f () method calls return 0 and 4, respec-
tively. The substring() method returns the String starting with index 0 and ending right
before index 4.

The length () method returns 7 because it is the number of characters in the String-
Builder rather than an index. Finally, charAt () returns the character at index 6. Here, we
do start with 0 because we are referring to indexes. If this doesn’t sound familiar, go back
and read the section on String again.

Notice that substring() returns a Stringrather than a StringBuilder. Thatis why sbis not
changed. The substring() method is really just a method that inquires about the state of the
StringBuilder.

Appending Values

The append () method is by far the most frequently used method in StringBuilder. In fact, it is
so frequently used that we just started using it without comment. Luckily, this method does

Using the StringBuilder Class 173

just what it sounds like: it adds the parameter to the StringBuilder and returns a reference to
the current StringBuilder. One of the method signatures is as follows:

public StringBuilder append(String str)

Notice that we said one of the method signatures. There are more than 10 method signa-
tures that look similar but take different data types as parameters, such as int, char, etc.
All those methods are provided so you can write code like this:

var sb = new StringBuilder().append(1l).append('c');
sb.append("-") .append(true);
System.out.println(sb); // lc-true

Nice method chaining, isn’t it? The append () method is called directly after the con-
structor. By having all these method signatures, you can just call append () without having
to convert your parameter to a String first.

Inserting Data

The insert () method adds characters to the StringBuilder at the requested index and returns a
reference to the current StringBuilder. Just like append (), there are lots of method signatures
for different types. Here’s one:
public StringBuilder insert(int offset, String str)

Pay attention to the offset in these examples. It is the index where we want to insert the
requested parameter.

3: var sb = new StringBuilder("animals");

4: sb.insert(7, "-"); // sb = animals-
5: sb.insert(0, "-"); // sb = -animals-
6: sb.insert(4, "-"); // sb = -ani-mals-
7: System.out.println(sb);

Line 4 says to insert a dash at index 7, which happens to be the end of the sequence of
characters. Line 5 says to insert a dash at index 0, which happens to be the very beginning.
Finally, line 6 says to insert a dash right before index 4. The exam creators will try to trip
you up on this. As we add and remove characters, their indexes change. When you see a
question dealing with such operations, draw what is going on using available writing mate-
rials so you won’t be confused.

Deleting Contents

The delete () method is the opposite of the insert () method. It removes characters from the
sequence and returns a reference to the current StringBuilder. The deleteCharAt () method
is convenient when you want to delete only one character. The method signatures are

as follows:

public StringBuilder delete(int startIndex, int endIndex)
public StringBuilder deleteCharAt(int -index)

174 Chapter 4 = Core APIs

The following code shows how to use these methods:

var sb = new StringBuilder("abcdef");
sb.delete(1, 3); // sb = adef
sb.deleteCharAt(5); // exception

First, we delete the characters starting with index 1 and ending right before index 3. This
gives us adef. Next, we ask Java to delete the character at position 5. However, the remaining
value is only four characters long, so it throws a StringIndexOutOfBoundsException.

The delete () method is more flexible than some others when it comes to array indexes.
If you specify a second parameter that is past the end of the StringButilder, Java will just
assume you meant the end. That means this code is legal:

var sb = new StringBuilder("abcdef");
sb.delete(1, 100); // sb = a

Replacing Portions

The replace () method works differently for StringBuilder than it did for String. The
method signature is as follows:

public StringBuilder replace(int startIndex, int endIndex, String newString)

The following code shows how to use this method:

var builder = new StringBuilder("pigeon dirty");
builder.replace(3, 6, "sty");
System.out.println(builder); // pigsty dirty

First, Java deletes the characters starting with index 3 and ending right before index 6.
This gives us pig dirty. Then Java inserts the value "sty" in that position.

In this example, the number of characters removed and inserted are the same. However,
there is no reason they have to be. What do you think this does?

var builder = new StringBuilder("pigeon dirty");
builder.replace(3, 100, "");
System.out.println(builder);

It prints "pig". Remember, the method is first doing a logical delete. The replace()
method allows specifying a second parameter that is past the end of the StringBuilder.
That means only the first three characters remain.

Reversing

After all that, it’s time for a nice, easy method. The reverse () method does just what it
sounds like: it reverses the characters in the sequences and returns a reference to the current
StringBuilder. The method signature is as follows:

public StringBuilder reverse()

Understanding Equality 175

The following code shows how to use this method:

var sb = new StringBuilder ("ABC");
sb.reverse();
System.out.println(sb);

As expected, this prints CBA. This method isn’t that interesting. Maybe the exam creators
like to include it to encourage you to write down the value rather than relying on memory
for indexes.

Working with toString()

The Object class contains a toString() method that many classes provide custom
implementations of. The StringBuilder class is one of these.

The following code shows how to use this method:
var sb = new StringBuilder("ABC");
String s = sbh.toString();

Often StringBuilder is used internally for performance purposes, but the end result
needs to be a String. For example, maybe it needs to be passed to another method that is
expecting a String.

Understanding Equality

In Chapter 2, you learned how to use == to compare numbers and that object references
refer to the same object. In this section, we look at what it means for two objects to be
equivalent or the same. We also look at the impact of the String pool on equality.

Comparing equals() and ==
Consider the following code that uses == with objects:

var one = new StringBuilder();
var two = new StringBuilder();

var three = one.append("a");
System.out.println(one == two); // false
System.out.println(one == three); // true

Since this example isn’t dealing with primitives, we know to look for whether the ref-
erences are referring to the same object. The one and two variables are both completely

176 Chapter 4 = Core APIs

separate StringBuilder objects, giving us two objects. Therefore, the first print statement
gives us false. The three variable is more interesting. Remember how StringBuilder
methods like to return the current reference for chaining? This means one and three both
point to the same object, and the second print statement gives us true.

You saw earlier that equals () uses logical equality rather than object equality for
String objects:

var x = "Hello World";
var z = " Hello World".trim();
System.out.println(x.equals(z)); // true

This works because the authors of the String class implemented a standard method
called equals () to check the values inside the String rather than the string reference itself.
If a class doesn’t have an equals () method, Java determines whether the references point to
the same object, which is exactly what == does.

In case you are wondering, the authors of StringBuilder did not implement equals().If
you call equals () on two StringBuilder instances, it will check reference equality. You can call
toString() on StringBuilder to get a String to check for equality instead.

Finally, the exam might try to trick you with a question like this. Can you guess why the
code doesn’t compile?

var name = "a";
var builder = new StringBuilder("a");
System.out.println(name == builder); // DOES NOT COMPILE

Remember that == is checking for object reference equality. The compiler is smart enough
to know that two references can’t possibly point to the same object when they are com-
pletely different types.

The String Pool

Since strings are everywhere in Java, they use up a lot of memory. In some production appli-
cations, they can use a large amount of memory in the entire program. Java realizes that
many strings repeat in the program and solves this issue by reusing common ones. The string
pool, also known as the intern pool, is a location in the Java Virtual Machine (JVM) that
collects all these strings.
The string pool contains literal values and constants that appear in your program.
For example, "name" is a literal and therefore goes into the string pool. The myObject.
toString() method returns a string but not a literal, so it does not go into the string pool.
Let’s now visit the more complex and confusing scenario, String equality, made so in part
because of the way the JVM reuses String literals.

var x = "Hello World";
var y = "Hello World";
System.out.println(x == y); // true

Understanding Equality 177

Remember that a String is immutable and literals are pooled. The JVM created only one
literal in memory. The x and y variables both point to the same location in memory; there-
fore, the statement outputs true. It gets even trickier. Consider this code:
var x = "Hello World";
var z = " Hello World".trim();

System.out.println(x == z); // false

In this example, we don’t have two of the same String literal. Although x and z hap-
pen to evaluate to the same string, one is computed at runtime. Since it isn’t the same at
compile-time, a new String object is created. Let’s try another one. What do you think is
output here?
var singleString = "hello world";
var concat = "hello ";
concat += "world";

System.out.println(singleString == concat); // false

This prints false. Calling += is just like calling a method and results in a new String.
You can even force the issue by creating a new String:
var x = "Hello World";
var y = new String("Hello World");
System.out.println(x == vy); // false

The former says to use the string pool normally. The second says, “No, JVM, I really
don’t want you to use the string pool. Please create a new object for me even though it is less
efficient.”

You can also do the opposite and tell Java to use the string pool. The intern () method will
use an object in the string pool if one is present.

public String dintern()

If the literal is not yet in the string pool, Java will add it at this time.

var name = "Hello World";
var name2 = new String("Hello World").intern();
System.out.println(name == name2); // true

First we tell Java to use the string pool normally for name. Then, for name2, we tell
Java to create a new object using the constructor but to intern it and use the string pool
anyway. Since both variables point to the same reference in the string pool, we can use the
== operator.

Let’s try another one. What do you think this prints out? Be careful. It is tricky.

15: var first = "rat" + 1;

16: var second = "r" + M"a'" + "g" + "1V,

17: var third = "r" + "a" + "t" + new String("1");
18: System.out.println(first == second);

178 Chapter 4 = Core APIs

19: System.out.println(first == second.intern());
20: System.out.println(first == third);
21: System.out.println(first == third.intern());

On line 15, we have a compile-time constant that automatically gets placed in the string
pool as "rat1". On line 16, we have a more complicated expression that is also a compile-
time constant. Therefore, first and second share the same string pool reference. This
mabkes lines 18 and 19 print true.

On line 17, we have a String constructor. This means we no longer have a compile-time
constant, and th1ird does not point to a reference in the string pool. Therefore, line 20 prints
false.On line 21, the intern() call looks in the string pool. Java notices that first points to the
same String and prints true.

When you write programs, you wouldn’t want to create a String of a String or use
the intern() method. For the exam, you need to know that both are allowed and how
they behave.

' Remember to never use intern() or == to compare String objects in
P your code. The only time you should have to deal with these is on the
exam.

Understanding Arrays

Up to now, we’ve been referring to the String and StringBuilder classes as a “sequence
of characters.” This is true. They are implemented using an array of characters. An array is
an area of memory on the heap with space for a designated number of elements. A String is
implemented as an array with some methods that you might want to use when dealing with
characters specifically. A StringBuilder is implemented as an array where the array object
is replaced with a new, bigger array object when it runs out of space to store all the charac-
ters. A big difference is that an array can be of any other Java type. If we didn’t want to use
a String for some reason, we could use an array of char primitives directly:

char[] letters;

This wouldn’t be very convenient because we’d lose all the special properties String
gives us, such as writing "Java". Keep in mind that letters is a reference variable and not
a primitive. The char type is a primitive. But char is what goes into the array and not the
type of the array itself. The array itself is of type char []. You can mentally read the brackets
([1) as “array.”

In other words, an array is an ordered list. It can contain duplicates. In this section, we
look at creating an array of primitives and objects, sorting, searching, varargs, and multidi-
mensional arrays.

Understanding Arrays 179

Creating an Array of Primitives

The most common way to create an array is shown in Figure 4.3. It specifies the type of the
array (int) and the size (3). The brackets tell you this is an array.

FIGURE 4.3 The basic structure of an array

Type of array
(Array symbol (required)
int [] numbers = new int[3];

Size of array

When you use this form to instantiate an array, all elements are set to the default value
for that type. As you learned in Chapter 1, the default value of an int is 0. Since numbers
is a reference variable, it points to the array object, as shown in Figure 4.4. As you can see,
the default value for all the elements is 0. Also, the indexes start with 0 and count up, just as
they did for a String.

FIGURE 4.4 Anempty array

numbers

Index: | 0 1 2

Element:| O 0 0

Another way to create an array is to specify all the elements it should start out with:
int[] moreNumbers = new 1int[] {42, 55, 99};

In this example, we also create an int array of size 3. This time, we specify the initial
values of those three elements instead of using the defaults. Figure 4.5 shows what this array
looks like.

FIGURE 4.5 Aninitialized array

moreNumbers

Index: | 0 1 2

Element: | 42 55 99

180 Chapter 4 = Core APIs

Java recognizes that this expression is redundant. Since you are specifying the type of the
array on the left side of the equals sign, Java already knows the type. And since you are spec-
ifying the initial values, it already knows the size. As a shortcut, Java lets you write this:

int[] moreNumbers = {42, 55, 99};

This approach is called an anonymous array. It is anonymous because you don’t specify
the type and size.

Finally, you can type the [] before or after the name, and adding a space is optional. This
means that all five of these statements do the exact same thing:

int[] numAnimals;

int [] numAnimals2;
int [JnumAnimals3;
int numAnimals4[];
int numAnimals5 [];

Most people use the first one. You could see any of these on the exam, though, so get used
to seeing the brackets in odd places.

Multiple “Arrays” in Declarations

What types of reference variables do you think the following code creates?

int[] ids, types;
The correct answer is two variables of type int[].This seems logical enough. After all,
int a, b; created two int variables. What about this example?

int ids[], types;
All we did was move the brackets, but it changed the behavior. This time we get one variable
of type int[] and one variable of type int. Java sees this line of code and thinks something

like this: “They want two variables of type int.The first one is called ids[].This one is an
int[] called ids.The second one is just called types. No brackets, so it is a regular integer.”

Needless to say, you shouldn’t write code that looks like this. But you do need to under-
stand it for the exam.

Creating an Array with Reference Variables
You can choose any Java type to be the type of the array. This includes classes you create
yourself. Let’s take a look at a built-in type with String:

String[] bugs = { "cricket", "beetle", "ladybug" };
String[] alias = bugs;

Understanding Arrays 181

System.out.println(bugs.equals(alias)); // true
System.out.println(bugs.toString()); // [Ljava.lang.String;@160bc7c0

We can call equals () because an array is an object. It returns true because of refer-
ence equality. The equals () method on arrays does not look at the elements of the array.
Remember, this would work even on an int[] too. The type int is a primitive; int[] is
an object.

The second print statement is even more interesting. What on earth is [Ljava.lang.
String;@160bc7c0? You don’t have to know this for the exam, but [L means it is an array,
java.lang.String is the reference type, and 160bc7c0 is the hash code. You’ll get differ-
ent numbers and letters each time you run it since this is a reference.

)/ Java provides a method that prints an array nicely: Arrays.
,&TE toString(bugs) would print [cricket, beetle, ladybug].

Make sure you understand Figure 4.6. The array does not allocate space for the String
objects. Instead, it allocates space for a reference to where the objects are really stored.

FIGURE 4.6 An array pointing to strings
bugs\
Lof[1[2]

"cricket" "ladybug"

"beetle"

As a quick review, what do you think this array points to?

public class Names {
String names[];

You got us. It was a review of Chapter 1 and not our discussion on arrays. The answer is
null. The code never instantiated the array, so it is just a reference variable to null. Let’s
try that again: what do you think this array points to?

public class Names {
String names[] = new String[2];

It is an array because it has brackets. It is an array of type String since that is the type
mentioned in the declaration. It has two elements because the length is 2. Each of those two
slots currently is null but has the potential to point to a String object.

182 Chapter 4 = Core APIs

Remember casting from the previous chapter when you wanted to force a bigger type into
a smaller type? You can do that with arrays too:
3: String[] strings = { "stringValue" };
Object[] objects = strings;
String[] againStrings = (String[]) objects;
againStrings[0] = new StringBuilder(); // DOES NOT COMPILE
objects[0] = new StringBuilder(); // Careful!

~N o 0 b

Line 3 creates an array of type String. Line 4 doesn’t require a cast because Object is
a broader type than String. On line 5, a cast is needed because we are moving to a more
specific type. Line 6 doesn’t compile because a String[] only allows String objects, and
StringBuilder is not a String.

Line 7 is where this gets interesting. From the point of view of the compiler, this is just
fine. A StringBuilder object can clearly go in an Object[]. The problem is that we don’t
actually have an Object[]. We have a String[] referred to from an Object[] variable.
At runtime, the code throws an ArrayStoreException. You don’t need to memorize the
name of this exception, but you do need to know that the code will throw an exception.

Using an Array

Now that you know how to create an array, let’s try accessing one:

4: String[] mammals = {"monkey", "chimp", "donkey"};

5: System.out.println(mammals.length); // 3

6: System.out.println(mammals[0]); // monkey
7: System.out.println(mammals[1]); // chimp
8: System.out.println(mammals[2]); // donkey

Line 4 declares and initializes the array. Line 5 tells us how many elements the array can
hold. The rest of the code prints the array. Notice that elements are indexed starting with 0.
This should be familiar from String and StringBuilder, which also start counting with
0. Those classes also counted length as the number of elements. Note that there are no
parentheses after length since it is not a method. Watch out for compiler errors like the fol-
lowing on the exam!

4: String[] mammals = {"monkey", "chimp", "donkey"};

5: System.out.println(mammals.length()); // DOES NOT COMPILE
To make sure you understand how length works, what do you think this prints?

var birds = new String[6];

System.out.println(birds.length);

The answer is 6. Even though all six elements of the array are null, there are still six of
them. The length attribute does not consider what is in the array; it only considers how
many slots have been allocated.

Understanding Arrays 183

It is very common to use a loop when reading from or writing to an array. This loop sets
each element of numbers to five higher than the current index:

5: var numbers = new int[10];
6: for (int i = 0; 1 < numbers.length; i++)
7: numbers[i] = i + 5;

Line 5 simply instantiates an array with 10 slots. Line 6 is a for loop that uses an extremely
common pattern. It starts at index 0, which is where an array begins as well. It keeps going,
one at a time, until it hits the end of the array. Line 7 sets the current element of numbers.

The exam will test whether you are being observant by trying to access elements that are not
in the array. Can you tell why each of these throws an ArrayIndexOutOfBoundsException
for our array of size 10?

numbers[10] = 3;
numbers[numbers.length] = 5;

for (int i = 0; i1 <= numbers.length; i++)
numbers[i] = i + 5;

The first one is trying to see whether you know that indexes start with 0. Since we have 10
elements in our array, this means only numbers[0] through numbers[9] are valid. The second
example assumes you are clever enough to know that 10 is invalid and disguises it by using the
length field. However, the length is always one more than the maximum valid index. Finally, the
for loop incorrectly uses <= instead of <, which is also a way of referring to that tenth element.

Sorting

Java makes it easy to sort an array by providing a sort method—or rather, a bunch of sort
methods. Just like StringBuilder allowed you to pass almost anything to append (), you
can pass almost any array to Arrays.sort().

Arrays requires an import. To use it, you must have either of the following two state-
ments in your class:

import java.util.x; // import whole package including Arrays
import java.util.Arrays; // import just Arrays

There is one exception, although it doesn’t come up often on the exam. You can write
java.util.Arrays every time it is used in the class instead of specifying it as an import.

Remember that if you are shown a code snippet, you can assume the necessary imports
are there. This simple example sorts three numbers:

int[] numbers = { 6, 9, 1 };

Arrays.sort(numbers);

for (int i = 0; i < numbers.length; i++)
System.out.print(numbers[i] + " ");

184 Chapter 4 = Core APIs

The resultis 1 6 9, as you should expect it to be. Notice that we looped through the output
to print the values in the array. Just printing the array variable directly would give the annoying
hash of [I@2bd9c3e7. Alternatively, we could have printed Arrays.toString(numbers)
instead of using the loop. That would have output [1, 6, 9].

Try this again with String types:

String[] strings = { "1e", "9", "100" };

Arrays.sort(strings);

for (String s : strings)
System.out.print(s + " ");

This time the result might not be what you expect. This code outputs 10 100 9. The
problem is that String sorts in alphabetic order, and 1 sorts before 9. (Numbers sort before
letters, and uppercase sorts before lowercase.) In Chapter 9, “Collections and Generics,” you
learn how to create custom sort orders using something called a comparator.

Did you notice we sneaked the enhanced for loop into this example? Since we aren’t using
the index, we don’t need the traditional for loop. That won’t stop the exam creators from
using it, though, so we’ll be sure to use both to keep you sharp!

Searching

Java also provides a convenient way to search, but only if the array is already sorted.
Table 4.3 covers the rules for binary search.

TABLE 4.3 Binary search rules

Scenario Result

Target element found in sorted array Index of match

Target element not found in sorted array Negative value showing one smaller than the
negative of the index, where a match needs to be
inserted to preserve sorted order

Unsorted array A surprise; this result is undefined

Let’s try these rules with an example:
3: 1int[] numbers = {2,4,6,8};
4: System.out.println(Arrays.binarySearch(numbers, 2)); // ©
5: System.out.println(Arrays.binarySearch(numbers, 4)); // 1
6: System.out.println(Arrays.binarySearch(numbers, 1)); // -1
7: System.out.println(Arrays.binarySearch(numbers, 3)); // -2
8: System.out.println(Arrays.binarySearch(numbers, 9)); // -5

Understanding Arrays 185

Take note of the fact that line 3 is a sorted array. If it wasn’t, we couldn’t apply either of
the other rules. Line 4 searches for the index of 2. The answer is index 0. Line 5 searches for
the index of 4, which is 1.

Line 6 searches for the index of 1. Although 1 isn’t in the list, the search can determine
that it should be inserted at element 0 to preserve the sorted order. Since 0 already means
something for array indexes, Java needs to subtract 1 to give us the answer of —1. Line 7
is similar. Although 3 isn’t in the list, it would need to be inserted at element 1 to preserve
the sorted order. We negate and subtract 1 for consistency, getting —1 —1, also known as -2.
Finally, line 8 wants to tell us that 9 should be inserted at index 4. We again negate and sub-
tract 1, getting -4 -1, also known as -5.

What do you think happens in this example?

5: int[] numbers = new int[] {3,2,1};
6: System.out.println(Arrays.binarySearch(numbers, 2));
7: System.out.println(Arrays.binarySearch(numbers, 3));

Note that on line 5, the array isn’t sorted. This means the output will not be defined.
When testing this example, line 6 correctly gave 1 as the output. However, line 7 gave the
wrong answer. The exam creators will not expect you to know what incorrect values come
out. As soon as you see the array isn’t sorted, look for an answer choice about unpredict-
able output.

On the exam, you need to know what a binary search returns in various scenarios. Oddly,
you don’t need to know why “binary” is in the name. In case you are curious, a binary
search splits the array into two equal pieces (remember, 2 is binary) and determines which
half the target is in. It repeats this process until only one element is left.

Comparing

Java also provides methods to compare two arrays to determine which is “smaller.” First we
cover the compare () method, and then we go on to mismatch (). These methods are overloaded
to take a variety of parameters.

Using compare()

There are a bunch of rules you need to know before calling compare (). Luckily, these are the
same rules you need to know in Chapter 9 when writing a Comparator.

First you need to learn what the return value means. You do not need to know the exact
return values, but you do need to know the following:

» A negative number means the first array is smaller than the second.
= A zero means the arrays are equal.
= A positive number means the first array is larger than the second.

Here’s an example:
System.out.println(Arrays.compare(new int[] {1}, new int[] {2}));

186

Chapter 4 = Core APIs

This code prints a negative number. It should be pretty intuitive that 1 is smaller than 2,
making the first array smaller.

Now that you know how to compare a single value, let’s look at how to compare arrays
of different lengths:

If both arrays are the same length and have the same values in each spot in the same
order, return zero.

If all the elements are the same but the second array has extra elements at the end,
return a negative number.

If all the elements are the same, but the first array has extra elements at the end, return a
positive number.

If the first element that differs is smaller in the first array, return a negative number.

If the first element that differs is larger in the first array, return a positive number.

Finally, what does smaller mean? Here are some more rules that apply here and to
compareTo (), which you see in Chapter 8, “Lambdas and Functional Interfaces”:

null is smaller than any other value.

For numbers, normal numeric order applies.

For strings, one is smaller if it is a prefix of another.
For strings/characters, numbers are smaller than letters.

For strings/characters, uppercase is smaller than lowercase.

Table 4.4 shows examples of these rules in action.

TABLE 4.4 Arrays.compare() examples

First array Second array Result Reason

new

new

new

new

new

int[] {1, 23} new int[] {1} Positive number The first element is
the same, but the
first array is longer.

int[] {1, 23} new int[] {1, 2} Zero Exact match

String[] {"a"} new String[] {"aa"} Negative number The firstelementis
a substring of the
second.

String[] {"a"} ne

=

String[] {"A"} Positive number Uppercase is
smaller than
lowercase.

>
=

String[] {"a"} ew String[] {null} Positive number nullissmaller

than a letter.

Understanding Arrays 187

Finally, this code does not compile because the types are different. When comparing two
arrays, they must be the same array type.

System.out.println(Arrays.compare(
new int[] {1}, new String[] {"a"})); // DOES NOT COMPILE

Using mismatch()

Now that you are familiar with compare (), it is time to learn about mismatch (). If the
arrays are equal, mismatch () returns —1. Otherwise, it returns the first index where they
differ. Can you figure out what these print?

System.out.printin(Arrays.mismatch(new int[] {1}, new int[] {11}));
System.out.println(Arrays.mismatch(new String[] {"a"},

new String[] {"A"}));
System.out.println(Arrays.mismatch(new int[] {1, 2}, new int[] {1}));

In the first example, the arrays are the same, so the result is -1. In the second example,
the entries at element 0 are not equal, so the result is 0. In the third example, the entries at
element 0 are equal, so we keep looking. The element at index 1 is not equal. Or, more spe-
cifically, one array has an element at index 1, and the other does not. Therefore, the result is 1.
To make sure you understand the compare () and mismatch () methods, study
Table 4.5. If you don’t understand why all of the values are there, please go back and study
this section again.

TABLE 4.5 Equality vs. comparison vs. mismatch

Method When arrays contain the same data When arrays are different
equals() true false

compare() 0 Positive or negative number
mismatch() -1 Zero or positive index

Using Methods with Varargs

When you’re creating an array yourself, it looks like what we’ve seen thus far. When one
is passed to your method, there is another way it can look. Here are three examples with a
main() method:

public static void main(String[] args)

public static void main(String args[])

public static void main(String... args) // varargs

188 Chapter 4 = Core APIs

The third example uses a syntax called varargs (variable arguments), which you saw in
Chapter 1. You learn how to call a method using varargs in Chapter 5, “Methods.” For
now, all you need to know is that you can use a variable defined using varargs as if it were a
normal array. For example, args.length and args[0] are legal.

Working with Multidimensional Arrays

Arrays are objects, and of course, array components can be objects. It doesn’t take much
time, rubbing those two facts together, to wonder whether arrays can hold other arrays, and
of course, they can.

Creating a Multidimensional Array

Multiple array separators are all it takes to declare arrays with multiple dimensions. You can
locate them with the type or variable name in the declaration, just as before:

int[][] varsl; // 2D array
int vars2 [][]; // 2D array
int[] vars3[]; // 2D array

int[] vars4 [], space [][]; // a 2D AND a 3D array

The first two examples are nothing surprising and declare a two-dimensional (2D) array.
The third example also declares a 2D array. There’s no good reason to use this style other
than to confuse readers with your code. The final example declares two arrays on the same
line. Adding up the brackets, we see that the vars4 is a 2D array and space is a 3D array.
Again, there’s no reason to use this style other than to confuse readers of your code. The
exam creators like to try to confuse you, though. Luckily, you are on to them and won’t let
this happen to you!

You can specify the size of your multidimensional array in the declaration if you like:
String [][] rectangle = new String[3][2];

The result of this statement is an array rectangle with three elements, each of which refers
to an array of two elements. You can think of the addressable range as [0] [0] through
[2][1], but don’t think of it as a structure of addresses like [0,0] or [2,1].

Now suppose we set one of these values:
rectangle[0][1] = "set";

You can visualize the result as shown in Figure 4.7. This array is sparsely populated
because it has a lot of null values. You can see that rectangle still points to an array of
three elements and that we have three arrays of two elements. You can also follow the trail
from reference to the one value pointing to a String. You start at index 0 in the top array.
Then you go to index 1 in the next array.

Understanding Arrays 189

FIGURE 4.7 A sparsely populated multidimensional array
rectangle\
I/0 BN 2\ |

[o | 1| [o | 1|

o [7]

While that array happens to be rectangular in shape, an array doesn’t need to be. Con-
sider this one:

int[][] differentSizes = {{1, 4}, {3}, {9,8,7}};

We still start with an array of three elements. However, this time the elements in the next
level are all different sizes. One is of length 2, the next length 1, and the last length 3. See
Figure 4.8. This time the array is of primitives, so they are shown as if they are in the array
themselves.

FIGURE 4.8 An asymmetric multidimensional array
differentSizes \
EEEN \|
0 1 0

1
1 4 9 8 7

Another way to create an asymmetric array is to initialize just an array’s first dimension
and define the size of each array component in a separate statement:
int [1[] args = new int[4][];
args[0] = new int[5];
args[1] = new int[3];

This technique reveals what you really get with Java: arrays of arrays that, properly
managed, offer a multidimensional effect.

190 Chapter 4 = Core APIs

Using a Multidimensional Array

The most common operation on a multidimensional array is to loop through it. This
example prints out a 2D array:

var twoD = new int[3][2];
for(int i = 0; i < twoD.length; 1i++) {
for(int j = 03 j < twoD[1i].length; j++)
System.out.print(twoD[i][j] + " "); // print element
System.out.println(); // time for a new row

We have two loops here. The first uses index i and goes through the first subarray for twoD.
The second uses a different loop variable, j. It is important that these be different variable names
so the loops don’t get mixed up. The inner loop looks at how many elements are in the second-
level array. The inner loop prints the element and leaves a space for readability. When the inner
loop completes, the outer loop goes to a new line and repeats the process for the next element.

This entire exercise would be easier to read with the enhanced for loop.

for(int[] inner : twoD) {
for(int num : inner)
System.out.print(num + " ");
System.out.println();

We’ll grant you that it isn’t fewer lines, but each line is less complex, and there aren’t any
loop variables or terminating conditions to mix up.

Calculating with Math APls

It should come as no surprise that computers are good at computing numbers. Java comes
with a powerful Math class with many methods to make your life easier. We just cover a
few common ones here that are most likely to appear on the exam. When doing your own
projects, look at the Math Javadoc to see what other methods can help you.

Pay special attention to return types in math questions. They are an excellent opportunity
for trickery!

Finding the Minimum and Maximum
The min() and max () methods compare two values and return one of them.
The method signatures for min() are as follows:

public static double min(double a, double b)
public static float min(float a, float b)

Calculating with Math APIs 191

public static int min(int a, int b)
public static long min(long a, long b)

There are four overloaded methods, so you always have an API available with the same
type. Each method returns whichever of a or b is smaller. The max () method works the
same way, except it returns the larger value.

The following shows how to use these methods:

int first = Math.max(3, 7); /] 7
int second = Math.min(7, -9); // -9

The first line returns 7 because it is larger. The second line returns -9 because it is smaller.
Remember from school that negative values are smaller than positive ones.

Rounding Numbers

The round () method gets rid of the decimal portion of the value, choosing the next higher
number if appropriate. If the fractional part is .5 or higher, we round up.
The method signatures for round () are as follows:

public static long round(double num)
public static int round(float num)

There are two overloaded methods to ensure that there is enough room to store a
rounded double if needed. The following shows how to use this method:

long low = Math.round(123.45); // 123

long high = Math.round(123.50); /] 124
int fromFloat = Math.round(123.45f); // 123

The first line returns 123 because .45 is smaller than a half. The second line returns 124
because the fractional part is just barely a half. The final line shows that an explicit float
triggers the method signature that returns an int.

Determining the Ceiling and Floor

The ceil() method takes a double value. If it is a whole number, it returns the same
value. If it has any fractional value, it rounds up to the next whole number. By contrast, the
floor () method discards any values after the decimal.

The method signatures are as follows:

public static double ceil(double num)
public static double floor(double num)
The following shows how to use these methods:

double ¢ = Math.ceil(3.14); // 4.0
double f = Math.floor(3.14); // 3.0

192 Chapter 4 = Core APIs

The first line returns 4.0 because four is the integer, just larger. The second line returns
3.0 because it is the integer, just smaller.

Calculating Exponents

The pow() method handles exponents. As you may recall from your elementary school math
class, 32 means three squared. This is 3 * 3 or 9. Fractional exponents are allowed as well.
Sixteen to the .5 power means the square root of 16, which is 4. (Don’t worry, you won’t
have to do square roots on the exam.)

The method signature is as follows:

public static double pow(double number, double exponent)
The following shows how to use this method:

double squared = Math.pow(5, 2); // 25.0

Notice that the result is 25.0 rather than 25 since it is a double. Again, don’t worry; the
exam won’t ask you to do any complicated math.

Generating Random Numbers

The random() method returns a value greater than or equal to 0 and less than 1. The method
signature is as follows:

public static double random()
The following shows how to use this method:
double num = Math.random();

Since it is a random number, we can’t know the result in advance. However, we can rule
out certain numbers. For example, it can’t be negative because that’s less than 0. It can’t be
1.0 because that’s not less than 1.

)/ While not on the exam, it is common to use the Random class for gener-
dng ating pseudo-random numbers. It allows generating numbers of different
types.

Working with Dates and Times

Java provides a number of APIs for working with dates and times. There’s also an old java.
util.Date class, but it is not on the exam. You need an import statement to work with the
modern date and time classes. To use it, add this import to your program:

import java.time.x; // import time classes

Working with Dates and Times 193

Day vs. Date

In American English, the word date is used to represent two different concepts. Sometimes,
it is the month/day/year combination when something happened, such as January 1, 2000.
Sometimes, it is the day of the month, such as “Today’s date is the 6th.”

That's right; the words day and date are often used as synonyms. Be alert to this on
the exam, especially if you live someplace where people are more precise about this
distinction.

In the following sections, we look at creating and manipulating dates and times, including
time zones and daylight saving time.

Creating Dates and Times

In the real world, we usually talk about dates and time zones as if the other person is located
near us. For example, if you say to me, “I’ll call you at 11:00 on Tuesday morning,” we
assume that 11:00 means the same thing to both of us. But if I live in New York and you live
in California, we need to be more specific. California is three hours earlier than New York
because the states are in different time zones. You would instead say, “I’ll call you at 11:00
EST (Eastern Standard Time) on Tuesday morning.”

When working with dates and times, the first thing to do is to decide how much
information you need. The exam gives you four choices:

LocalDate Contains just a date—no time and no time zone. A good example of Local-
Date is your birthday this year. It is your birthday for a full day, regardless of what time it is.

LocalTime Contains just a time—no date and no time zone. A good example of
LocalTime is midnight. It is midnight at the same time every day.

LocalDateTime Contains both a date and time but no time zone. A good example of
LocalDateT1ime is “the stroke of midnight on New Year’s Eve.” Midnight on January 2
isn’t nearly as special, making the date relatively unimportant, and clearly an hour after
midnight isn’t as special either.

ZonedDateTime Contains a date, time, and time zone. A good example of
ZonedDateT1ime is “a conference call at 9:00 a.m. EST.” If you live in California,
you’ll have to get up really early since the call is at 6:00 a.m. local time!

You obtain date and time instances using a static method:

System.out.println(LocalDate.now());
System.out.println(LocalTime.now());
System.out.println(LocalDateTime.now());
System.out.println(ZonedDateTime.now());

194 Chapter 4 = Core APIs

Each of the four classes has a stat+ic method called now (), which gives the current date
and time. Your output is going to depend on the date/time when you run it and where you
live. The authors live in the United States, making the output look like the following when
run on October 25 at 9:13 a.m.:

2021-10-25

09:13:07.768

2021-10-25T09:13:07.768
2021-10-25T09:13:07.769-05:00[America/New_York]

The key is the type of information in the output. The first line contains only a date and
no time. The second contains only a time and no date. The time displays hours, minutes, sec-
onds, and fractional seconds. The third contains both a date and a time. The output uses T
to separate the date and time when converting LocalDateTime to a String. Finally, the
fourth adds the time zone offset and time zone. New York is four time zones away from
Greenwich Mean Time (GMT).

Greenwich Mean Time is a time zone in Europe that is used as time zone zero when dis-
cussing offsets. You might have also heard of Coordinated Universal Time, which is a time
zone standard. It is abbreviated as UTC, as a compromise between the English and French
names. (That’s not a typo. UTC isn’t actually the proper acronym in either language!) UTC
uses the same time zone zero as GMT.

First, let’s try to figure out how far apart these moments are in time. Notice how India
has a half-hour offset, not a full hour. To approach a problem like this, you subtract the time
zone from the time. This gives you the GMT equivalent of the time:

2022-06-20T06:50+05:30[Asia/Kolkata] // GMT 2022-06-20 01:20
2022-06-20T07:50-05:00[US/Eastern] // GMT 2022-06-20 12:50

Remember that you need to add when subtracting a negative number. After converting to
GMT, you can see that the U.S. Eastern time is 11 and a half hours behind the Kolkata time.

)/ The time zone offset can be listed in different ways: +02:00, GMT+2, and
A@TE UTC+2 all mean the same thing. You might see any of them on the exam.

If you have trouble remembering this, try to memorize one example where the time
zones are a few zones apart, and remember the direction. In the United States, most
people know that the East Coast is three hours ahead of the West Coast. And most people
know that Asia is ahead of Europe. Just don’t cross time zone zero in the example that
you choose to remember. The calculation works the same way, but it isn’t as great a
memory aid.

Working with Dates and Times 195

Wait, | Don’t Live in the United States

The exam recognizes that exam takers live all over the world, and it will not ask you about
the details of U.S. date and time formats. That said, our examples do use U.S. date and time
formats, as will the questions on the exam. Just remember that the month comes before
the date. Also, Java tends to use a 24-hour clock even though the United States uses a 12-
hour clock with a.m./p.m.

Now that you know how to create the current date and time, let’s look at other specific
dates and times. To begin, let’s create just a date with no time. Both of these examples create
the same date:

var datel = LocalDate.of (2022, Month.JANUARY, 20);
var date2 = LocalDate.of(2022, 1, 20);

Both pass in the year, month, and date. Although it is good to use the Month constants (to
make the code easier to read), you can pass the int number of the month directly. Just use
the number of the month the same way you would if you were writing the date in real life.

The method signatures are as follows:

public static LocalDate of(int year, int month, int dayOfMonth)
public static LocalDate of(int year, Month month, 1int dayOfMonth)

Up to now, we've been continually telling you that Java counts starting
Py 9TE with 0. Well, months are an exception. For months in the new date and
time methods, Java counts starting from 1, just as we humans do.

When creating a time, you can choose how detailed you want to be. You can specify just
the hour and minute, or you can include the number of seconds. You can even include nano-
seconds if you want to be very precise. (A nanosecond is a billionth of a second, although
you probably won’t need to be that specific.)

var timel = LocalTime.of(6, 15); // hour and minute
var time2 = LocalTime.of(6, 15, 30); // + seconds
var time3 = LocalTime.of(6, 15, 30, 200); // + nanoseconds

These three times are all different but within a minute of each other. The method signa-
tures are as follows:
public static LocalTime of(int hour, int minute)
public static LocalTime of(int hour, int minute, int second)
public static LocalTime of(int hour, int minute, int second, int nanos)

196 Chapter 4 = Core APIs

You can combine dates and times into one object:

var dateTimel = LocalDateTime.of (2022, Month.JANUARY, 20, 6, 15, 30);
var dateTime2 = LocalDateTime.of (datel, timel);

The first line of code shows how you can specify all of the information about the
LocalDateT1ime right in the same line. The second line of code shows how you can cre-
ate LocalDate and LocalTime objects separately first and then combine them to create a
LocalDateTime object.

There are a lot of method signatures since there are more combinations. The following
method signatures use integer values:

public static LocalDateTime of(int year, int month,
int dayOfMonth, int hour, int minute)
public static LocalDateTime of (int year, int month,
int dayOfMonth, int hour, int minute, 1int second)
public static LocalDateTime of (int year, int month,
int dayOfMonth, int hour, int minute, int second, 1int nanos)

Others take a Month reference:

public static LocalDateTime of(int year, Month month,
int dayOfMonth, int hour, int minute)
public static LocalDateTime of(int year, Month month,
int dayOfMonth, int hour, int minute, int second)
public static LocalDateTime of(int year, Month month,
int dayOfMonth, int hour, int minute, int second, 1int nanos)

Finally, one takes an existing LocalDate and LocalTime:
public static LocalDateTime of(LocalDate date, LocalTime time)

In order to create a ZonedDateTime, we first need to get the desired time zone. We will
use US/Eastern in our examples:

var zone = Zoneld.of("US/Eastern");
var zonedl = ZonedDateTime.of (2022, 1, 20,
6, 15, 30, 200, zone);
ZonedDateTime.of (datel, timel, zone);
ZonedDateTime.of (dateTimel, zone);

var zoned2

var zoned3

We start by getting the time zone object. Then we use one of three approaches to create
the ZonedDateT-ime. The first passes all of the fields individually. We don’t recommend this
approach—there are too many numbers, and it is hard to read. A better approach is to pass
a LocalDate object and a LocalTime object, or a LocalDateTime object.

Working with Dates and Times 197

Although there are other ways of creating a ZonedDateT-ime, you only need to know three
for the exam:
public static ZonedDateTime of(int year, int month,
int dayOfMonth, int hour, int minute, 1int second,
int nanos, ZoneIld zone)
public static ZonedDateTime of(LocalDate date, LocalTime time,
Zoneld zone)
public static ZonedDateTime of(LocalDateTime dateTime, Zoneld zone)

Notice that there isn’t an option to pass in the Month enum. Also, we did not use a con-
structor in any of the examples. The date and time classes have private constructors along
with static methods that return instances. This is known as the factory pattern. The exam
creators may throw something like this at you:

var d = new LocalDate(); // DOES NOT COMPILE

Don’t fall for this. You are not allowed to construct a date or time object directly.
Another trick is what happens when you pass invalid numbers to of (), for example:

var d = LocalDate.of(2022, Month.JANUARY, 32) // DateTimeException
You don’t need to know the exact exception that’s thrown, but it’s a clear one:

java.time.DateTimeException: Invalid value for DayOfMonth
(valid values 1-28/31): 32

Manipulating Dates and Times

Adding to a date is easy. The date and time classes are immutable. Remember to assign the
results of these methods to a reference variable so they are not lost.

12: var date = LocalDate.of(2022, Month.JANUARY, 20);

13: System.out.println(date); // 2022-01-20
14: date = date.plusDays(2);

15: System.out.println(date); // 2022-01-22
16: date = date.plusWeeks(1);

17: System.out.println(date); // 2022-01-29
18: date = date.plusMonths(1);

19: System.out.println(date); /] 2022-02-28
20: date = date.plusYears(5);

21: System.out.println(date); // 2027-02-28

This code is nice because it does just what it looks like. We start out with January 20,
2022. On line 14, we add two days to it and reassign it to our reference variable. On line 16,
we add a week. This method allows us to write clearer code than plusDays (7). Now date
is January 29, 2022. On line 18, we add a month. This would bring us to February 29, 2022.

198 Chapter 4 = Core APIs

However, 2022 is not a leap year. (2020 and 2024 are leap years.) Java is smart enough to
realize that February 29, 2022 does not exist, and it gives us February 28,2022, instead.
Finally, line 20 adds five years.

)/ February 29 exists only in a leap year. Leap years are years that are a mul-
,@TE tiple of 4 or 400, but not other multiples of 100. For example, 2000 and
2016 are leap years, but 2100 is not.

There are also nice, easy methods to go backward in time. This time, let’s work with
LocalDateTime:

22: var date = LocalDate.of(2024, Month.JANUARY, 20);

23: var time = LocalTime.of(5, 15);
24: var dateTime = LocalDateTime.of(date, time);

25: System.out.println(dateTime); // 2024-01-20T05:15
26: dateTime = dateTime.minusDays(1);

27: System.out.println(dateTime); // 2024-01-19T05:15
28: dateTime = dateTime.minusHours(10);

29: System.out.println(dateTime); // 2024-01-18T19:15
30: dateTime = dateTime.minusSeconds(30);

31: System.out.println(dateTime); // 2024-01-18T19:14:30

Line 25 prints the original date of January 20, 2024, at 5:15 a.m. Line 26 subtracts a full
day, bringing us to January 19, 2024, at 5:15 a.m. Line 28 subtracts 10 hours, showing that
the date will change if the hours cause it to adjust, and it brings us to January 18, 2024, at
19:15 (7:15 p.m.). Finally, line 30 subtracts 30 seconds. You can see that all of a sudden, the
display value starts showing seconds. Java is smart enough to hide the seconds and nanosec-
onds when we aren’t using them.

It is common for date and time methods to be chained. For example, without the print
statements, the previous example could be rewritten as follows:

var date = LocalDate.of(2024, Month.JANUARY, 20);

var time = LocalTime.of(5, 15);

var dateTime = LocalDateTime.of(date, time)
.minusDays (1) .minusHours(10) .minusSeconds(30);

When you have a lot of manipulations to make, this chaining comes in handy. There are
two ways that the exam creators can try to trick you. What do you think this prints?
var date = LocalDate.of(2024, Month.JANUARY, 20);
date.plusDays(10) 3
System.out.println(date);

It prints January 20, 2024. Adding 10 days was useless because the program ignored the
result. Whenever you see immutable types, pay attention to make sure that the return value

Working with Dates and Times 199

of a method call isn’t ignored. The exam also may test to see if you remember what each of
the date and time objects includes. Do you see what is wrong here?

var date = LocalDate.of(2024, Month.JANUARY, 20);

date = date.plusMinutes(1); // DOES NOT COMPILE

LocalDate does not contain time. This means that you cannot add minutes to it. This
can be tricky in a chained sequence of addition/subtraction operations, so make sure that
you know which methods in Table 4.6 can be called on which types.

TABLE 4.6 MethodsinLocalDate, LocalTime, LocalDateTime, and ZonedDateTime

Can call on

Can call on Can call on LocalDateTime or

LocalDate? LocalTime? ZonedDateTime?
plusYears() Yes No Yes
minusYears()
plusMonths () Yes No Yes
minusMonths ()
plusWeeks () Yes No Yes
minusWeeks ()
plusDays () Yes No Yes
minusDays ()
plusHours () No Yes Yes
minusHours ()
plusMinutes() No Yes Yes
minusMinutes ()
plusSeconds() No Yes Yes
minusSeconds ()
plusNanos () No Yes Yes

minusNanos ()

Working with Periods

Now you know enough to do something fun with dates! Our zoo performs animal enrich-
ment activities to give the animals something enjoyable to do. The head zookeeper has

200 Chapter 4 = Core APIs

decided to switch the toys every month. This system will continue for three months to see
how it works out.

public static void main(String[] args) {
var start = LocalDate.of(2022, Month.JANUARY, 1);
var end = LocalDate.of(2022, Month.MARCH, 30);
performAnimalEnrichment(start, end);
}
private static void performAnimalEnrichment(LocalDate start, LocalDate end) {
var upTo = start;
while (upTo.isBefore(end)) { // check if still before end
System.out.println("give new toy: " + upTo);
upTo = upTo.plusMonths(1l); // add a month
11

This code works fine. It adds a month to the date until it hits the end date. The problem
is that this method can’t be reused. Our zookeeper wants to try different schedules to see
which works best.

)/ LocalDate and LocalDateTime have a method to convert themselves
dng into long values, equivalent to the number of milliseconds that have
passed since January 1, 1970, referred to as the epoch. What's special

about this date? That’s what Unix started using for date standards, so
Java reused it.

Luckily, Java has a Period class that we can pass in. This code does the same thing as the
previous example:

public static void main(String[] args) {
var start = LocalDate.of (2022, Month.JANUARY, 1);
var end = LocalDate.of(2022, Month.MARCH, 30);
var period = Period.ofMonths(1); // create a period
performAnimalEnrichment(start, end, period);

}

private static void performAnimalEnrichment(LocalDate start, LocalDate end,
Period period) { // uses the generic period

var upTo = start;
while (upTo.isBefore(end)) {
System.out.println("give new toy: " + upTo);
upTo = upTo.plus(period); // adds the period
o}

Working with Dates and Times 201

The method can add an arbitrary period of time that is passed in. This allows us to reuse
the same method for different periods of time as our zookeeper changes their mind.
There are five ways to create a Period class:

var annually = Period.ofYears(l); // every 1 year
var quarterly = Period.ofMonths(3); // every 3 months
var everyThreeWeeks = Period.ofWeeks(3); // every 3 weeks
var everyOtherDay = Period.ofDays(2); // every 2 days

var everyYearAndAWeek = Period.of(1, 0, 7); // every year and 7 days

There’s one catch. You cannot chain methods when creating a Period. The following
code looks like it is equivalent to the everyYearAndAWeek example, but it’s not. Only the
last method is used because the Period.of methods are static methods.
var wrong = Perijod.ofYears(l).ofWeeks(1l); // every week

This tricky code is really like writing the following:

var wrong = Perijod.ofYears(1);
wrong = Period.ofWeeks(1);

This is clearly not what you intended! That’s why the of () method allows you to pass in
the number of years, months, and days. They are all included in the same period. You will
get a compiler warning about this. Compiler warnings tell you that something is wrong or
suspicious without failing compilation.

The of () method takes only years, months, and days. The ability to use another factory
method to pass weeks is merely a convenience. As you might imagine, the actual period is
stored in terms of years, months, and days. When you print out the value, Java displays any
non-zero parts using the format shown in Figure 4.9.

FIGURE 4.9 Period format

System.out.println(Period.of (1,2,3));

P1Y2M3D

Period/ T \
(mandatory) # months
#years

days

As you can see, the P always starts out the String to show it is a period measure. Then
come the number of years, number of months, and number of days. If any of these are zero,
they are omitted.

Can you figure out what this outputs?

System.out.printin(Period.ofMonths(3));

202 Chapter 4 = Core APIs

The output is P3M. Remember that Java omits any measures that are zero. The last thing
to know about Period is what objects it can be used with. Let’s look at some code:

var date = LocalDate.of (2022, 1, 20);

var time = LocalTime.of(6, 15);

var dateTime = LocalDateTime.of(date, time);

var period = Period.ofMonths(1);
System.out.println(date.plus(period)); // 2022-02-20
System.out.println(dateTime.plus(period)); // 2022-02-20T06:15
System.out.println(time.plus(period)); // Exception

© 0 N oo o b~ W

Lines 7 and 8 work as expected. They add a month to January 20, 2022, giving us Febru-
ary 20, 2022. The first has only the date, and the second has both the date and time.

Line 9 attempts to add a month to an object that has only a time. This won’t work. Java
throws an UnsupportedTemporalTypeException and complains that we attempted to
use an Unsupported unit: Months.

As you can see, you have to pay attention to the type of date and time objects every place
you see them.

Working with Durations

You’ve probably noticed by now that a Period is a day or more of time. There is also
Duration, which is intended for smaller units of time. For Duration, you can specify the
number of days, hours, minutes, seconds, or nanoseconds. And yes, you could pass 365 days
to make a year, but you really shouldn’t—that’s what Per-iod is for.

Conveniently, Duration works roughly the same way as Period, except it is used with
objects that have time. Duration is output beginning with PT, which you can think of as a
period of time. A Duration is stored in hours, minutes, and seconds. The number of seconds
includes fractional seconds.

We can create a Duration using a number of different granularities:

var daily = Duration.ofDays(1); // PT24H

var hourly = Duration.ofHours(1l); // PT1H

var everyMinute = Duration.ofMinutes(1); // PT1M

var everyTenSeconds = Duration.ofSeconds(10); // PT10S

var everyMilli = Duration.ofMillis(1); // PT0.001S

var everyNano = Duration.ofNanos(1); // PT0.000000001S

Duration doesn’t have a factory method that takes multiple units like Period does. If
you want something to happen every hour and a half, you specify 90 minutes.

Duration includes another more generic factory method. It takes a number and a
TemporalUnit. The idea is, say, something like “5 seconds.” However, TemporalUnit is an
interface. At the moment, there is only one implementation named ChronoUn-it.

Working with Dates and Times 203

The previous example could be rewritten like this:

var daily = Duration.of(1, ChronoUnit.DAYS);

var hourly = Duration.of(1, ChronoUnit.HOURS);

var everyMinute = Duration.of(1, ChronoUnit.MINUTES);

var everyTenSeconds = Duration.of(10, ChronoUnit.SECONDS);
var everyMilli = Duration.of(1, ChronoUnit.MILLIS);

var everyNano = Duration.of(1l, ChronoUnit.NANOS);

ChronoUnit also includes some convenient units such as ChronoUnit.HALF_DAYS to
represent 12 hours.

ChronoUnit for Differences

ChronoUn-it is a great way to determine how far apart two Temporal values are.
Temporal includes LocalDate, LocalTime, and so on. ChronoUnitisin the java.
time.temporal package.

var one = LocalTime.of(5, 15);

var two = LocalTime.of(6, 30);

var date = LocalDate.of(2016, 1, 20);
System.out.println(ChronoUnit.HOURS.between(one, two)); /] 1
System.out.println(ChronoUnit.MINUTES.between(one, two)); /] 75
System.out.println(ChronoUnit.MINUTES.between(one, date)); // DateTimeException

The first print statement shows that between truncates rather than rounds.The second
shows how easy it is to count in different units. Just change the ChronoUn1t type.The last
reminds us that Java will throw an exception if we mix up what can be done on date vs.
time objects.

Alternatively, you can truncate any object with a time element. For example:

LocalTime time = LocalTime.of(3,12,45);
System.out.println(time); // 03:12:45

LocalTime truncated = time.truncatedTo(ChronoUnit.MINUTES);
System.out.println(truncated); // 03:12

This example zeroes out any fields smaller than minutes. In our case, it gets rid of
the seconds.

Using a Duration works the same way as using a Period. For example:

7: var date = LocalDate.of(2022, 1, 20);
8: var time = LocalTime.of(6, 15);

204 Chapter 4 = Core APIs

9: var dateTime = LocalDateTime.of(date, time);
10: var duration = Duration.ofHours(6);
11: System.out.println(dateTime.plus(duration)); // 2022-01-20T12:15

12: System.out.println(time.plus(duration)); // 12:15
13: System.out.println(
14: date.plus(duration)); // UnsupportedTemporalTypeException

Line 11 shows that we can add hours to a LocalDateT1ime, since it contains a time. Line
12 also works, since all we have is a time. Line 13 fails because we cannot add hours to an
object that does not contain a time.

Let’s try that again, but add 23 hours this time.

7: var date = LocalDate.of(2022, 1, 20);
8: var time = LocalTime.of(6, 15);
var dateTime = LocalDateTime.of(date, time);
10: var duration = Duration.ofHours(23);
11: System.out.println(dateTime.plus(duration)); // 2022-01-21T05:15

12: System.out.println(time.plus(duration)); // 05:15
13: System.out.println(
14: date.plus(duration)); // UnsupportedTemporalTypeException

This time we see that Java moves forward past the end of the day. Line 11 goes to
the next day since we pass midnight. Line 12 doesn’t have a day, so the time just wraps
around—ijust like on a real clock.

Period vs. Duration

Remember that Period and Duration are not equivalent. This example shows a Period and
Duration of the same length:

var date = LocalDate.of (2022, 5, 25);
var period = Period.ofDays(1);
var days = Duration.ofDays(1);

System.out.printin(date.plus(period)); // 2022-05-26
System.out.println(date.plus(days)); // Unsupported unit: Seconds

Since we are working with a LocalDate, we are required to use Period. Duration
has time units in it, even if we don’t see them, and they are meant only for objects with
time. Make sure that you can fill in Table 4.7 to identify which objects can use Period
and Duration.

Working with Dates and Times 205

TABLE 4.7 Wheretouse Duration and Period

Can use with Period? Can use with Duration?
LocalDate Yes No
LocalDateTime Yes Yes
LocalTime No Yes
ZonedDateTime Yes Yes

Working with Instants

The Instant class represents a specific moment in time in the GMT time zone. Suppose that
you want to run a timer:

var now = Instant.now();
// do something time consuming
var later = Instant.now();

var duration = Duration.between(now, later);
System.out.println(duration.toMillis()); // Returns number milliseconds

In our case, the “something time consuming” was just over a second, and the program
printed out 1025.
If you have a ZonedDateTime, you can turn it into an Instant:

var date = LocalDate.of (2022, 5, 25);

var time = LocalTime.of(11l, 55, 00);

var zone = Zoneld.of("US/Eastern");

var zonedDateTime = ZonedDateTime.of(date, time, zone);

var instant = zonedDateTime.toInstant(); // 2022-05-25T15:55:00Z
System.out.println(zonedDateTime); // 2022-05-25T11:55-04:00[US/Eastern]
System.out.println(instant); // 202-05-25T15:55:00Z

The last two lines represent the same moment in time. The ZonedDateT1ime includes
a time zone. The Instant gets rid of the time zone and turns it into an Instant of
time in GMT.

You cannot convert a LocalDateTime to an Instant. Remember that an Instantis a
point in time. A LocalDateTime does not contain a time zone, and it is therefore not uni-
versally recognized around the world as the same moment in time.

206 Chapter 4 = Core APIs

Accounting for Daylight Saving Time

Some countries observe daylight saving time. This is where the clocks are adjusted by an
hour twice a year to make better use of the sunlight. Not all countries participate, and those
that do use different weekends for the change. You only have to work with U.S. daylight
saving time on the exam, and that’s what we describe here.

The question will let you know if a date/time mentioned falls on a weekend when the
clocks are scheduled to be changed. If it is not mentioned in a question, you can assume that
it is a normal weekend. The act of moving the clock forward or back occurs at 2:00 a.m.,
which falls very early Sunday morning.

Figure 4.10 shows what happens with the clocks. When we change our clocks in March,
time springs forward from 1:59 a.m. to 3:00 a.m. When we change our clocks in November,
time falls back, and we experience the hour from 1:00 a.m. to 1:59 a.m. twice. Children
learn this as “Spring forward in the spring, and fall back in the fall.”

FIGURE 4.10 How daylight saving time works

Normal day 1:00 a.m.—1:59 a.mH:OO a.m.-3:00 a.mH:OO a.m.—4:00 a.m.

4 N~ N
March 1:00 a.m.—1:59 a.m. —>{ 3:00 a.m.—4:00 a.m.
changeover
A\ AN J
4 N~ N
November 1:00 a.m.—1:59 a.m. 1:00 a.m.—1:59 a.m. . e
changeover (first time)] (again) 200am-4:00am.
A\ AN J

For example, on March 13, 2022, we move our clocks forward an hour and jump from
2:00 a.m. to 3:00 a.m. This means that there is no 2:30 a.m. that day. If we wanted to know
the time an hour later than 1:30, it would be 3:30.

var date = LocalDate.of (2022, Month.MARCH, 13);

var time = LocalTime.of(1l, 30);

var zone = Zoneld.of("US/Eastern");

var dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2022-03-13T01:30-05:00[US/Eastern]
System.out.println(dateTime.getHour()); // 1
System.out.println(dateTime.getOffset()); // -05:00

Working with Dates and Times 207

dateTime = dateTime.plusHours(1);

System.out.println(dateTime); // 2022-03-13T03:30-04:00[US/Eastern]
System.out.println(dateTime.getHour()); // 3
System.out.println(dateTime.get0Offset()); // -04:00

Notice that two things change in this example. The time jumps from 1:30 to 3:30. The
UTC offset also changes. Remember when we calculated GMT time by subtracting the time
zone from the time? You can see that we went from 6:30 GMT (1:30 minus —5:00) to 7:30
GMT (3:30 minus —4:00). This shows that the time really did change by one hour from
GMT’s point of view. We printed the hour and offset fields separately for emphasis.

Similarly, in November, an hour after the initial 1:30 a.m. is also 1:30 a.m. because at
2:00 a.m. we repeat the hour. This time, try to calculate the GMT time yourself for all three
times to confirm that we really do move only one hour at a time.

var date = LocalDate.of(2022, Month.NOVEMBER, 6);

var time = LocalTime.of(1l, 30);

var zone = Zoneld.of("US/Eastern");

var dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2022-11-06T01:30-04:00[US/Eastern]

dateTime = dateTime.plusHours(1);
System.out.printin(dateTime); // 2022-11-06T01:30-05:00[US/Eastern]

dateTime = dateTime.plusHours(1);
System.out.println(dateTime); // 2022-11-06T02:30-05:00[US/Eastern]

Did you get it? We went from 5:30 GMT to 6:30 GMT, to 7:30 GMT.
Finally, trying to create a time that doesn’t exist just rolls forward:

var date = LocalDate.of (2022, Month.MARCH, 13);

LocalTime.of(2, 30);

ZoneId.of ("US/Eastern");

var dateTime = ZonedDateTime.of(date, time, zone);
System.out.printin(dateTime); // 2022-03-13T03:30-04:00[US/Eastern]

var time

var zone

Java is smart enough to know that there is no 2:30 a.m. that night and switches over to
the appropriate GMT offset.

Yes, it is annoying that Oracle expects you to know this even if you aren’t in the United
States—or for that matter, in a part of the United States that doesn’t follow daylight saving
time. The exam creators are in the United States, and they decided that everyone needs to
know how U.S. time zones work.

208 Chapter 4 = Core APIs

Summary

In this chapter, you learned that a String is an immutable sequence of characters. Calling the
constructor explicitly is optional. The concatenation operator (+) creates a new String with
the content of the first String followed by the content of the second String. If either operand
involved in the + expression is a String, concatenation is used; otherwise, addition is used.
String literals are stored in the string pool. The String class has many methods.

By contrast, a StringBuilder is a mutable sequence of characters. Most of the methods
return a reference to the current object to allow method chaining. The StringBuilder class has
many methods.

Calling == on String objects will check whether they point to the same object in the pool.
Calling == on StringBuilder references will check whether they are pointing to the same
StringBuilder object. Calling equals () on String objects will check whether the
sequence of characters is the same. Calling equals () on StringBuilder objects will check
whether they are pointing to the same object rather than looking at the values inside.

An array is a fixed-size area of memory on the heap that has space for primitives or
pointers to objects. You specify the size when creating it. For example, int[] a = new
int[6] ;. Indexes begin with 0, and elements are referred to using a [0]. The Arrays.
sort() method sorts an array. Arrays.binarySearch() searches a sorted array and
returns the index of a match. If no match is found, it negates the position where the element
would need to be inserted and subtracts 1. Arrays.compare() and Arrays.mismatch()
check whether two arrays are equivalent. Methods that are passed varargs (. . .) can be used
as if a normal array was passed in. In a multidimensional array, the second-level arrays and
beyond can be different sizes.

The Math class provides a number of static methods for performing mathematical opera-
tions. For example, you can get minimums or maximums. You can round or even generate
random numbers. Some methods work on any numeric primitive, and others only work
on doub'le.

A LocalDate contains just a date, a LocalTime contains just a time, and a
LocalDateTime contains both a date and a time. All three have private constructors and
are created using LocalDate.now() or LocalDate.of () (or the equivalents for that
class). Dates and times can be manipulated using plusXXX or minusXXX methods. The
Period class represents a number of days, months, or years to add to or subtract from a
LocalbDate or LocalDateT1ime. The date and time classes are all immutable, which means
the return value must be used.

Exam Essentials 209

Exam Essentials

Be able to determine the output of code using String. Know the rules for concatenating
with String and how to use common String methods. Know that a String is immutable.
Pay special attention to the fact that indexes are zero-based and that the substring()
method gets the string up until right before the index of the second parameter.

Be able to determine the output of code using StringBuilder. Know that a StringBuilder
is mutable and how to use common StringBuilder methods. Know that substring()
does not change the value of a StringBuilder, whereas append(), delete(), and
insert() do change it. Also note that most StringBuilder methods return a reference to
the current instance of StringBuilder.

Understand the difference between == and equals(). == checks object equality. equals ()
depends on the implementation of the object it is being called on. For the String class,
equals () checks the characters inside of it.

Be able to determine the output of code using arrays. Know how to declare and instantiate
one-dimensional and multidimensional arrays. Be able to access each element and know
when an index is out of bounds. Recognize correct and incorrect output when searching
and sorting.

Identify the return types of Math methods. Depending on the primitive passed in, the Math
methods may return different primitive results.

Recognize invalid uses of dates and times. LocalDate does not contain time fields, and
LocalTime does not contain date fields. Watch for operations being performed on the
wrong time. Also watch for adding or subtracting time and ignoring the result. Be comfort-
able with date math, including time zones and daylight saving time.

210 Chapter 4 = Core APIs

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. What is output by the following code? (Choose all that apply.)

: public class Fish {
public static void main(String[] args) {
int numFish = 4;
String fishType = "tuna";

System.out.println(anotherFish + " " + fishType);

1

2

3

4

5: String anotherFish = numFish + 1;

6

7 System.out.println(numFish + " " + 1);
8

4 1

5

5 tuna
5tuna
51tuna

The code does not compile.

Mmoo wp

2. Which of these array declarations are not legal? (Choose all that apply.)
int[][] scores = new int[5][];

Object[][][] cubbies = new Object[3][0][5];

String beans[] = new beans[6];

java.util.Date[] dates[] = new java.util.Date[2][];
int[][] types = new 1int[];

int[][] java = new 1int[][];

Mmoo ® >

3. Note that March 13,2022 is the weekend when we spring forward, and November 6, 2022
is when we fall back for daylight saving time. Which of the following can fill in the blank
without the code throwing an exception? (Choose all that apply.)

var zone = Zoneld.of("US/Eastern");

var date = H

var time = LocalTime.of(2, 15);

var z = ZonedDateTime.of(date, time, zone);

A. LocalDate.of (2022, 3, 13)
B. LocalDate.of (2022, 3, 40)
C. LocalDate.of (2022, 11, 6)

4

© 0 N oo b~ Ww

© o~ G

23:
24:
25:
26:

Review Questions

D. LocalbDate.of(2022, 11, 7)
E. LocalDate.of(2023, 2, 29)
F. LocalDate.of (2022, MonthEnum.MARCH, 13);

Which of the following are output by this code? (Choose all that apply.)
var s = "Hello";

var t = new String(s);

if ("Hello".equals(s)) System.out.println("one");

if (t == s) System.out.println("two");

if (t.intern() == s) System.out.println("three");

if ("Hello" == s) System.out.println("four");

if ("Hello".intern() == t) System.out.println("five");

A. one
two
three
four
five

The code does not compile.

®mMmOO®

None of the above

What is the result of the following code?

var sb = new StringBuilder();

: sb.append("aaa").insert(1, "bb").insert(4, "ccc");

System.out.println(sb);

A. abbaaccc

B. abbaccca
bbaaaccc

Cc

D. bbaaccca
E. Anempty line
F

The code does not compile.

How many of these lines contain a compiler error? (Choose all that apply.)
double one = Math.pow(1l, 2);

int two = Math.round(1.0);

float three = Math.random();

var doubles = new double[] {one, two, three};

A. 0
B. 1

AL

212 Chapter 4 = Core APIs

C. 2
D. 3
E. 4

7. Which of these statements is true of the two values? (Choose all that apply.)

2022-08-28T05:00 GMT-04:00
2022-08-28T09:00 GMT-06:00

The first date/time is earlier.

The second date/time is earlier.
Both date/times are the same.

The date/times are two hours apart.

The date/times are six hours apart.

Mmoo wp

The date/times are 10 hours apart.

8. Which of the following return 5 when run independently? (Choose all that apply.)

var string = "12345";
var builder = new StringBuilder("12345");

builder.charAt(4)

builder.replace(2, 4, "6").charAt(3)
builder.replace(2, 5, "6").charAt(2)
string.charAt(5)

string.length

string.replace("123", "1").charAt(2)

None of the above

emMmoowp

9. Which of the following are true about arrays? (Choose all that apply.)
A. The first element is index 0.

The first element is index 1.

Arrays are fixed size.

Arrays are immutable.

moow

Calling equals () on two different arrays containing the same primitive values always
returns true.

m

Calling equals () on two different arrays containing the same primitive values always
returns false.

G. Calling equals() on two different arrays containing the same primitive values can return
true or false.

Review Questions

10. How many of these lines contain a compiler error? (Choose all that apply.)
23: 1int one = Math.min(5, 3);

24: long two = Math.round(5.5);

25: double three = Math.floor(6.6);

26: var doubles = new double[] {one, two, three};

A
B.
C.
D
E

AW N =R O

11. What is the output of the following code?

var date = LocalDate.of (2022, 4, 3);

date.plusDays(2);

date.plusHours(3);

System.out.println(date.getYear() + " " + date.getMonth()
+ " " + date.getDayOfMonth());

A. 2022 MARCH 4
2022 MARCH 6
2022 APRIL 3
2022 APRIL 5

The code does not compile.

moowm

F A runtime exception is thrown.

12. What is output by the following code? (Choose all that apply.)

var numbers = "012345678".indent(1);
numbers = numbers.stripLeading();
System.out.println(numbers.substring(l, 3));
System.out.println(numbers.substring(7, 7));
System.out.print(numbers.substring(7));

A. 12

123

7

78

A blank line

The code does not compile.

O@mMmMODoOo®

An exception is thrown.

213

214 Chapter 4 = Core APIs

13. What is the result of the following code?

public class Lion {
public void roar(String roarl, StringBuilder roar2) {

roarl.concat("!!!");
roar2.append("!!!");

}

public static void main(String[] args) {
var roarl = "roar";
var roar2 = new StringBuilder("roar");
new Lion().roar(roarl, roar2);
System.out.println(roarl + " " + roar2);

i

roar roar

roar roar!!!

A

B

C. roar!!! roar
D. roar!!! roar!!!

E. An exception is thrown.
F

The code does not compile.

14. Given the following, which can correctly fill in the blank? (Choose all that apply.)

var date = LocalDate.now();

var time = LocalTime.now();

var dateTime = LocalDateTime.now();

var zoneld = ZoneId.systemDefault();

var zonedDateTime = ZonedDateTime.of(dateTime, zoneld);
Instant instant = 5

A. Instant.now()

new Instant()
date.toInstant()
dateTime.toInstant()
time.toInstant()

F. zonedDateTime.toInstant()

moow

15. What is the output of the following? (Choose all that apply.)

var arr = new String[] { "PIG", "pig", "123"};
Arrays.sort(arr);
System.out.println(Arrays.toString(arr));
System.out.println(Arrays.binarySearch(arr, "Pippa"));

Review Questions

[pig, PIG, 123]
[PIG, pig, 123]
PIG, pig]
[123, pig, PIG]

mmoOoOow®
M
[
N
w

G. The results of binarySearch() are undefined in this example.

16. What is included in the output of the following code? (Choose all that apply.)

var base = "ewe\nsheep\\t";

int length = base.length();

int dindent = base.indent(2).length();

int translate = base.translateEscapes().length();

var formatted = "%s %s %s".formatted(length, indent, translate);
System.out.format(formatted);

A. 10
11
12
13
14
15
16

O@mMmMpDOow®

17. Which of these statements are true? (Choose all that apply.)
var letters = new StringBuilder("abcdefg");

letters.substring(1l, 2) returns a single-character String.
letters.substring(2, 2) returns a single-character String.
letters.substring(6, 5) returns a single-character String.
letters.substring(6, 6) returns a single-character String.
letters.substring(l, 2) throws an exception.

letters.substring(2, 2) throws an exception.

G mMmOoOO WP

letters.substring(6, 5) throws an exception.

H. letters.substring(6, 6) throws an exception.

18. What is the result of the following code? (Choose all that apply.)

13: String s1 = """
14: purr""";

215

216 Chapter 4 = Core APIs

15: String s2 = "";

16:

17: sl.toUpperCase();

18: sl.trim();

19: sl.substring(l, 3);

20: sl += "two";

21:

22: s2 += 2;

23: s2 += '¢';

24: s2 += false;

25:

26: if (s2 == "2cfalse") System.out.println("==");
27: if (s2.equals("2cfalse")) System.out.println("equals");
28: System.out.println(sl.length());

A.

B.

C. 7

D. 10

E. ==

F. equals
G.

An exception is thrown.

H. The code does not compile.

19. Which of the following fill in the blank to print a positive integer? (Choose all that apply.)

String[] s1 = { "Camel", "Peacock", "Llama"};
String[] s2 = { "Camel", "Llama", "Peacock"};
String[] s3 = { "Camel"};

String[] s4 = { "Camel", null};
System.out.println(Arrays.)3

A. compare(sl, s2)
mismatch(sl, s2)
compare(s3, s4)
mismatch (s3, s4)

compare(s4, s4)

mmo o

mismatch (s4, s4)

Review Questions 217

20. Note that March 13,2022 is the weekend that clocks spring ahead for daylight saving time.
What is the output of the following? (Choose all that apply.)

var date = LocalDate.of (2022, Month.MARCH, 13);

var time = LocalTime.of(1l, 30);

var zone = Zoneld.of("US/Eastern");

var dateTimel = ZonedDateTime.of(date, time, zone);

var dateTime2 = dateTimel.plus(l, ChronoUnit.HOURS);

long diff = ChronoUnit.HOURS.between(dateTimel, dateTime2);
int hour = dateTime2.getHour();
boolean offset = dateTimel.getOffset()

== dateTime2.getOffset();

System.out.println("diff = " + diff);
System.out.println("hour = " + hour);
System.out.println("offset = " + offset);

A. diff =1

B. diff = 2

C. hour =2

D. hour = 3

E. offset = true

F The code does not compile.

G. A runtime exception is thrown.

21. Which of the following can fill in the blank to print avaJ? (Choose all that apply.)
3: var puzzle = new StringBuilder("Java");

4: puzzle.
5: System.out.println(puzzle);

)

A. reverse()

B. append("vals$").substring(0, 4)

C. append("val$").delete(0, 3).deleteCharAt(puzzle.length() - 1)
D. append("vals").delete(0, 3).deleteCharAt(puzzle.length())

E. None of the above

22. What is the output of the following code?

var date = LocalDate.of (2022, Month.APRIL, 30);

date.plusDays(2);

date.plusYears(3);

System.out.println(date.getYear() + " " + date.getMonth()
+ " " + date.getDayOfMonth());

218

@mMmooOowp

Chapter 4 = Core APIs

2022
2022
2025
2025
2025

APRIL 30
MAY 2
APRIL 2
APRIL 30
MAY 2

The code does not compile.

A runtime exception is thrown.

Methods

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Utilizing Java Object-Oriented Approach

Create classes and records, and define and use instance and
static fields and methods, constructors, and instance and
static initializers

Implement overloading, including var-arg methods

In previous chapters, you learned how to write snippets of code
without much thought about the methods that contained the
code. In this chapter, you explore methods in depth including
modifiers, arguments, varargs, overloading, and autoboxing. Many of these fundamentals,
such as access and static modifiers, are applicable to classes and other types throughout
the rest of the book. If you’re having difficulty, you might want to read this chapter twice!

Designing Methods

Every interesting Java program we’ve seen has had a main() method. You can write
other methods too. For example, you can write a basic method to take a nap, as shown in
Figure 5.1.

FIGURE 5.1 Method declaration

Access modifier Method name
Optional specifier Parentheses (required)

l Retuln type (—‘ﬂ / Exception (optional)

public final void nap(int minutes) throws InterruptedException {

// take a nap LListofparameters

} Method body

This is called a method declaration, which specifies all the information needed to call the
method. There are a lot of parts, and we cover each one in more detail. Two of the parts—
the method name and parameter list—are called the method signature. The method signature
provides instructions for how callers can reference this method. The method signature does
not include the return type and access modifiers, which control where the method can be
referenced.

Table 5.1 is a brief reference to the elements of a method declaration. Don’t worry if it
seems like a lot of information—Dby the time you finish this chapter, it will all fit together.

TABLE 5.1 Parts of a method declaration in Figure 5.1

Designing Methods 221

Element Value in nap () example Required?
Access modifier public No
Optional specifier final No
Return type void Yes
Method name nap Yes

Parameter list

Method signature
Exception list

Method body

(int minutes)

nap (int minutes)

throws InterruptedException

{
// take a nap

}

Yes, but can be empty
parentheses

Yes
No

Yes, except for abstract
methods

To call this method, just use the method signature and provide an int value in

parentheses:

nap(10);

Let’s start by taking a look at each of these parts of a basic method.

Access Modifiers

An access modifier determines what classes a method can be accessed from. Think of it like
a security guard. Some classes are good friends, some are distant relatives, and some are
complete strangers. Access modifiers help to enforce when these components are allowed to

talk to each other. Java offers four choices of access modifier:

private The private modifier means the method can be called only from within the

same class.

Package Access

With package access, the method can be called only from a class in

the same package. This one is tricky because there is no keyword. You simply omit the
access modifier. Package access is sometimes referred to as package-private or default
access (even within this book!).

222 Chapter 5 = Methods

protected The protected modifier means the method can be called only from a class
in the same package or a subclass.

public The public modifier means the method can be called from anywhere.

)/ For simplicity, we're primarily concerned with access modifiers applied

dng to methods and fields in this chapter. Rules for access modifiers are
also applicable to classes and other types you learn about in Chapter 7,
“Beyond Classes," such as interfaces, enums, and records.

We explore the impact of the various access modifiers later in this chapter. For now, just
master identifying valid syntax of methods. The exam creators like to trick you by putting
method elements in the wrong order or using incorrect values.

We’ll see practice examples as we go through each of the method elements in this chapter.
Make sure you understand why each of these is a valid or invalid method declaration. Pay
attention to the access modifiers as you figure out what is wrong with the ones that don’t
compile when inserted into a class:

public class ParkTrip {
public void skipl() {}
default void skip2() {} // DOES NOT COMPILE
void public skip3() {} // DOES NOT COMPILE
void skip4() {}

The skipl() method is a valid declaration with public access. The skip4 () method
is a valid declaration with package access. The skip2 () method doesn’t compile because
default is not a valid access modifier. There is a default keyword, which is used in
switch statements and interfaces, but default is never used as an access modifier.

The skip3 () method doesn’t compile because the access modifier is specified after the
return type.

Optional Specifiers

There are a number of optional specifiers for methods, shown in Table 5.2. Unlike with
access modifiers, you can have multiple specifiers in the same method (although not all com-
binations are legal). When this happens, you can specify them in any order. And since these
specifiers are optional, you are allowed to not have any of them at all. This means you can
have zero or more specifiers in a method declaration.

As you can see in Table 5.2, four of the method modifiers are covered in later chapters,
and the last two aren’t even in scope for the exam (and are seldom used in real life). In this
chapter, we focus on introducing you to these modifiers. Using them often requires a lot
more rules.

Designing Methods 223

TABLE 5.2 Optional specifiers for methods

Modifier Description Chapter covered

static Indicates the method is a member of the shared class Chapter 5
object

abstract Used in an abstract class or interface when the method Chapter 6

body is excluded

final Specifies that the method may not be overridden in a sub- Chapter 6
class
default Used in an interface to provide a default implementation Chapter 7

of a method for classes that implement the interface
synchronized Used with multithreaded code Chapter 13

native Used when interacting with code written in another Out of scope
language, such as C++

strictfp Used for making floating-point calculations portable Out of scope

While access modifiers and optional specifiers can appear in any order, they must all
appear before the return type. In practice, it is common to list the access modifier first. As
you’ll also learn in upcoming chapters, some specifiers are not compatible with one another.
For example, you can’t declare a method (or class) both final and abstract.

Remember, access modifiers and optional specifiers can be listed in any

P order, but once the return type is specified, the rest of the parts of the
method are written in a specific order: name, parameter list, exception
list, body.

Again, just focus on syntax for now. Do you see why these compile or don’t compile?

public class Exercise {
public void bikel() {3}
public final void bike2() {}
public static final void bike3() {}
public final static void bike4() {}
public modifier void bike5() {} // DOES NOT COMPILE
public void final bike6() {} // DOES NOT COMPILE
final public void bike7() {}

224 Chapter 5 = Methods

The bikel () method is a valid declaration with no optional specifier. This is okay—it is
optional, after all. The bike2 () method is a valid declaration, with final as the optional
specifier. The bike3 () and bike4 () methods are valid declarations with both final
and static as optional specifiers. The order of these two keywords doesn’t matter.

The bike5 () method doesn’t compile because mod+ifier is not a valid optional specifier.
The bike6 () method doesn’t compile because the optional specifier is after the return type.

The bike7 () method does compile. Java allows the optional specifiers to appear before the
access modifier. This is a weird case and not one you need to know for the exam. We are
mentioning it so you don’t get confused when practicing.

Return Type

The next item in a method declaration is the return type. It must appear after any access
modifiers or optional specifiers and before the method name. The return type might be an
actual Java type such as String or int. If there is no return type, the void keyword is used.
This special return type comes from the English language: void means without contents.

y Remember that a method must have a return type. If no value is returned,
dng the void keyword must be used. You cannot omit the return type.
When checking return types, you also have to look inside the method body. Methods with
a return type other than void are required to have a return statement inside the method
body. This return statement must include the primitive or object to be returned. Methods
that have a return type of void are permitted to have a return statement with no value

returned or omit the return statement entirely. Think of a return statement in a void
method as the method saying, “’'m done!” and quitting early, such as the following;:

public void swim(int distance) {
if(distance <= 0) {
// Exit early, nothing to do!
return;

}

System.out.print("Fish is swimming " + distance + " meters");

Ready for some examples? Can you explain why these methods compile or don’t?

public class Hike {
public void hikel() {}
public void hike2() { return; }

public String hike3() { return ""; }
public String hike4() {} // DOES NOT COMPILE
public hike5() {} // DOES NOT COMPILE

public String int hike6() { } // DOES NOT COMPILE

Designing Methods 225

String hike7(int a) { // DOES NOT COMPILE
if (1 < 2) return "orange";

Since the return type of the hikel() method is void, the return statement is optional.
The hike2 () method shows the optional return statement that correctly doesn’t return
anything. The hike3 () method is a valid declaration with a String return type and a
return statement that returns a String. The hike4 () method doesn’t compile because the
return statement is missing. The hike5 () method doesn’t compile because the return type
is missing. The hike6 () method doesn’t compile because it attempts to use two return types.
You get only one return type.

The hike7 () method is a little tricky. There is a return statement, but it doesn’t always get
run. Even though 1 is always less than 2, the compiler won’t fully evaluate the i f statement
and requires a return statement if this condition is false. What about this modified version?

String hike8(int a) {

if (1 < 2) return "orange";

return "apple"; // COMPILER WARNING
}

The code compiles, although the compiler will produce a warning about unreachable code
(or dead code). This means the compiler was smart enough to realize you wrote code that
cannot possibly be reached.

When returning a value, it needs to be assignable to the return type. Can you spot what’s
wrong with two of these examples?

public class Measurement {

int getHeightl() {
int temp = 9;
return temp;

}

int getHeight2() {
int temp = 9L; // DOES NOT COMPILE
return temp;

}

int getHeight3() {
long temp = 9L;
return temp; // DOES NOT COMPILE

The getHeight2 () method doesn’t compile because you can’t assign a long to an 1int.
The method getHeight3 () method doesn’t compile because you can’t return a long value
as an int. If this wasn’t clear to you, you should go back to Chapter 2, “Operators,” and
reread the sections about numeric types and casting.

226 Chapter 5 = Methods

Method Name

Method names follow the same rules we practiced with variable names in Chapter 1,
“Building Blocks.” To review, an identifier may only contain letters, numbers, currency sym-
bols, or _. Also, the first character is not allowed to be a number, and reserved words are not
allowed. Finally, the single underscore character is not allowed.

By convention, methods begin with a lowercase letter, but they are not required to. Since
this is a review of Chapter 1, we can jump right into practicing with some examples:

public class BeachTrip {
public void jogl() {3}
public void 2jog() {} // DOES NOT COMPILE
public jog3 void() {} // DOES NOT COMPILE
public void Jog_$() {}
public _() {} // DOES NOT COMPILE
public veid() {} // DOES NOT COMPILE

The jogl () method is a valid declaration with a traditional name. The 2jog() method
doesn’t compile because identifiers are not allowed to begin with numbers. The jog3 ()
method doesn’t compile because the method name is before the return type. The Jog_3 ()
method is a valid declaration. While it certainly isn’t good practice to start a method name
with a capital letter and end with punctuation, it is legal. The _ method is not allowed since
it consists of a single underscore. The final line of code doesn’t compile because the method
name is missing.

Parameter List

Although the parameter list is required, it doesn’t have to contain any parameters. This
means you can just have an empty pair of parentheses after the method name, as follows:

public class Sleep {
void nap() {}

If you do have multiple parameters, you separate them with a comma. There are a couple
more rules for the parameter list that you’ll see when we cover varargs shortly. For now, let’s
practice looking at method declaration with “regular” parameters:

public class PhysicalEducation {
public void runl() {}
public void run2 {} // DOES NOT COMPILE
public void run3(int a) {}
public void run4(int a; int b) {} // DOES NOT COMPILE
public void run5(int a, int b) {}

Designing Methods 227

The runl() method is a valid declaration without any parameters. The run2 () method
doesn’t compile because it is missing the parentheses around the parameter list. The run3()
method is a valid declaration with one parameter. The run4 () method doesn’t compile
because the parameters are separated by a semicolon rather than a comma. Semicolons are
for separating statements, not for parameter lists. The run5 () method is a valid declaration
with two parameters.

Method Signature

A method signature, composed of the method name and parameter list, is what Java uses
to uniquely determine exactly which method you are attempting to call. Once it determines
which method you are trying to call, it then determines if the call is allowed. For example,
attempting to access a private method outside the class or assigning the return value of a
void method to an int variable results in compiler errors. Neither of these compiler errors is
related to the method signature, though.

It’s important to note that the names of the parameters in the method signature are not
used as part of a method signature. The parameter list is about the types of parameters and
their order. For example, the following two methods have the exact same signature:

public class Trip {
public void visitZoo(String name, int waitTime) {}
public void visitZoo(String attraction, int rainFall) {} // DOES NOT COMPILE

Despite having different parameter names, these two methods have the same signature
and cannot be declared within the same class. Changing the order of parameter types does
allow the method to compile, though:

public class Trip {
public void visitZoo(String name, int waitTime) {}
public void visitZoo(int rainFall, String attraction) {}

We cover these rules in more detail when we get to method overloading later in
this chapter.

Exception List

In Java, code can indicate that something went wrong by throwing an exception. We cover
this in Chapter 11, “Exceptions and Localization.” For now, you just need to know

that it is optional and where in the method declaration it goes if present. For example,
InterruptedException is a type of Exception. You can list as many types of exceptions
as you want in this clause, separated by commas. Here’s an example:

public class ZooMonorail {
public void zeroExceptions() {}

228 Chapter 5 = Methods

public void oneException() throws IllegalArgumentException {}

public void twoExceptions() throws
IllegalArgumentException, InterruptedException {}

While the list of exceptions is optional, it may be required by the compiler, depending on
what appears inside the method body. You learn more about this, as well as how methods
calling them may be required to handle these exception declarations, in Chapter 11.

Method Body

The final part of a method declaration is the method body. A method body is simply a code
block. It has braces that contain zero or more Java statements. We’ve spent several chapters
looking at Java statements by now, so you should find it easy to figure out why these com-
pile or don’t:

public class Bird {
public void flyl() {}
public void fly2() // DOES NOT COMPILE
public void fly3(int a) { int name = 5; }

The fly1() method is a valid declaration with an empty method body. The fly2 ()
method doesn’t compile because it is missing the braces around the empty method body.
Methods are required to have a body unless they are declared abstract. We cover
abstract methods in Chapter 6, “Class Design.” The fly3() method is a valid declaration
with one statement in the method body.

Congratulations! You’ve made it through the basics of identifying correct and incorrect
method declarations. Now you can delve into more detail.

Declaring Local and Instance Variables

Now that we have methods, we need to talk a little bit about the variables that they can
create or use. As you might recall from Chapter 1, local variables are those defined with a
method or block, while instance variables are those that are defined as a member of a class.
Let’s take a look at an example:

public class Lion {
int hunger = 4;

public int feedZooAnimals() {
int snack = 10; // Local variable

Declaring Local and Instance Variables 229

if(snack > 4) {
long dinnerTime = snack++;
hunger--;

}

return snack;

In the Lion class, snack and dinnertime are local variables only accessible within their
respective code blocks, while hunger is an instance variable and created in every object of
the Lion class.

The object or value returned by a method may be available outside the method, but the
variable reference snack is gone. Keep this in mind while reading this chapter: all local var-
iable references are destroyed after the block is executed, but the objects they point to may
still be accessible.

Local Variable Modifiers

There’s only one modifier that can be applied to a local variable: final. Easy to remember,
right? When writing methods, developers may want to set a variable that does not change
during the course of the method. In this code sample, trying to change the value or object
these variables reference results in a compiler error:

public void zooAnimalCheckup(boolean isWeekend) {
final int rest;
if(isWeekend) rest = 5; else rest = 20;
System.out.print(rest);

final var giraffe = new Animal();
final int[] friends = new int[5];

rest = 10; // DOES NOT COMPILE
giraffe = new Animal(); // DOES NOT COMPILE
friends = null; // DOES NOT COMPILE

As shown with the rest variable, we don’t need to assign a value when a final variable
is declared. The rule is only that it must be assigned a value before it can be used. We can
even use var and final together. Contrast this with the following example:

public void zooAnimalCheckup(boolean isWeekend) {
final int rest;
if(isWeekend) rest = 5;
System.out.print(rest); // DOES NOT COMPILE

230 Chapter 5 = Methods

The rest variable might not have been assigned a value, such as if isWeekend is false.
Since the compiler does not allow the use of local variables that may not have been assigned
a value, the code does not compile.

Does using the final modifier mean we can’t modify the data? Nope. The final attribute
only refers to the variable reference; the contents can be freely modified (assuming the object
isn’t immutable).

public void zooAnimalCheckup() {
final int rest = 5;
final Animal giraffe = new Animal();
final int[] friends = new int[5];

giraffe.setName("George");
friends[2] = 23

The rest variable is a primitive, so it’s just a value that can’t be modified. On the other
hand, the contents of the giraffe and friends variables can be freely modified, provided
the variables aren’t reassigned.

' While it might not seem obvious, marking a local variable final is

P often a good practice. For example, you may have a complex method
in which a variable is referenced dozens of times. It would be really bad
if someone came in and reassigned the variable in the middle of the
method. Using the final attribute is like sending a message to other
developers to leave the variable alone!

Effectively Final Variables

An effectively final local variable is one that is not modified after it is assigned. This means
that the value of a variable doesn’t change after it is set, regardless of whether it is explicitly
marked as final. If you aren’t sure whether a local variable is effectively final, just add the
final keyword. If the code still compiles, the variable is effectively final.

Given this definition, which of the following variables are effectively final?

11: public String zooFriends() {

12: String name = "Harry the Hippo";
13: var size = 10;

14: boolean wet;

15: if(size > 100) size++;

16: name.substring(0);

17: wet = true;

18: return name;

19: }

Declaring Local and Instance Variables 231

Remember, a quick test of effectively final is to just add final to the variable declara-
tion and see if it still compiles. In this example, name and wet are effectively final and can
be updated with the final modifier, but not size. The name variable is assigned a value
on line 12 and not reassigned. Line 16 creates a value that is never used. Remember from
Chapter 4, “Core APIs,” that strings are immutable. The s+ize variable is not effectively final
because it could be incremented on line 15. The wet variable is assigned a value only once
and not modified afterward.

Effective Final Parameters

Recall from Chapter 1 that method and constructor parameters are local variables that have
been pre-initialized. In the context of local variables, the same rules around final and
effectively final apply. This is especially important in Chapter 7 and Chapter 8, “Lambdas
and Functional Interfaces,” since local classes and lambda expressions declared within a
method can only reference local variables that are final or effectively final.

Instance Variable Modifiers

Like methods, instance variables can use access modifiers, such as private, package, protected,
and public. Remember, package access is indicated by the lack of any modifiers. We cover
each of the different access modifiers shortly in this chapter. Instance variables can also use
optional specifiers, described in Table 5.3.

TABLE 5.3 Optional specifiers for instance variables

Modifier Description Chapter Covered

final Specifies that the instance variable must be initialized with Chapter 5
each instance of the class exactly once

volatile Instructs the JVM that the value in this variable may be Chapter 13
modified by other threads

transient Used to indicate that an instance variable should not be Chapter 14
serialized with the class

Looks like we only need to discuss final in this chapter! If an instance variable is
marked final, then it must be assigned a value when it is declared or when the object is

232 Chapter 5 = Methods

instantiated. Like a local final variable, it cannot be assigned a value more than once,
though. The following PolarBear class demonstrates these properties:

public class PolarBear {
final int age = 10;
final int fishEaten;
final String name;

{ fishEaten = 10; }

public PolarBear() {
name = "Robert";

The age variable is given a value when it is declared, while the fishEaten variable
is assigned a value in an instance initializer. The name variable is given a value in the no-
argument constructor. Failing to initialize an instance variable (or assigning a value more
than once) will lead to a compiler error. We talk about final variable initialization in more
detail when we cover constructors in the next chapter.

)/ In Chapter 1, we show that instance variables receive default values

dng based on their type when not set. For example, int receives a default
value of 0, while an object reference receives a default value of null. The
compiler does not apply a default value to final variables, though. A

final instance or final static variable must receive a value when it is
declared or as part of initialization.

Working with Varargs

As mentioned in Chapter 4, a method may use a varargs parameter (variable argument) as if
it is an array. Creating a method with a varargs parameter is a bit more complicated. In fact,
calling such a method may not use an array at all.

Creating Methods with Varargs

There are a number of important rules for creating a method with a varargs parameter.
Rules for Creating a Method with a Varargs Parameter
1. A method can have at most one varargs parameter.

2. If a method contains a varargs parameter, it must be the last parameter in the list.

Working with Varargs 233

Given these rules, can you identify why each of these does or doesn’t compile? (Yes, there
is a lot of practice in this chapter. You have to be really good at identifying valid and invalid
methods for the exam.)
public class VisitAttractions {

public void walkl(int... steps) {}

public void walk2(int start, int... steps) {}

public void walk3(int... steps, int start) {} // DOES NOT COMPILE

public void walk4(int... start, int... steps) {} // DOES NOT COMPILE

The walk1 () method is a valid declaration with one varargs parameter. The walk2 ()
method is a valid declaration with one int parameter and one varargs parameter. The
walk3 () and walk4 () methods do not compile because they have a varargs parameter in a
position that is not the last one.

Calling Methods with Varargs

When calling a method with a varargs parameter, you have a choice. You can pass in an
array, or you can list the elements of the array and let Java create it for you. Given our
previous walkl () method, which takes a varargs parameter, we can call it one of two ways:
// Pass an array

int[] data = new int[] {1, 2, 3};

walkl(data);

// Pass a list of values
walk1(1,2,3);

Regardless of which one you use to call the method, the method will receive an array con-
taining the elements. We can reinforce this with the following example:

public void walkl(int... steps) {

int[] step2 = steps; // Not necessary, but shows steps is of type int[]
System.out.print(step2.length);

You can even omit the varargs values in the method call, and Java will create an array of
length zero for you.
walkl();

234 Chapter 5 = Methods

Accessing Elements of a Vararg

Accessing a varargs parameter is just like accessing an array. It uses array indexing. Here’s
an example:

16: public static void run(int... steps) {

17: System.out.print(steps[1]);

18: }

19: public static void main(String[] args) {
20: run(11l, 77); /] 17

21: }

Line 20 calls a varargs method with two parameters. When the method is called, it sees an
array of size 2. Since indexes are zero-based, 77 is printed.

Using Varargs with Other Method Parameters

Finally! You get to do something other than identify whether method declarations are valid.
Instead, you get to look at method calls. Can you figure out why each method call outputs
what it does? For now, feel free to ignore the static modifier in the walkDog () method declara-
tion; we cover that later in the chapter.

1: public class DogWalker {

2 public static void walkDog(int start, int... steps) {
3 System.out.println(steps.length);

4 }

5: public static void main(String[] args) {

6 walkDog(1); /] 0

7 walkDog(1, 2); /] 1

8 walkDog(1, 2, 3); /] 2

9: walkDog(1l, new int[] {4, 5}); // 2

10: 13}

Line 6 passes 1 as start but nothing else. This means Java creates an array of length ©
for steps. Line 7 passes 1 as start and one more value. Java converts this one value to
an array of length 1. Line 8 passes 1 as start and two more values. Java converts these
two values to an array of length 2. Line 9 passes 1 as start and an array of length 2
directly as steps.

You’ve seen that Java will create an empty array if no parameters are passed for a vararg.
However, it is still possible to pass null explicitly. The following snippet does compile:

walkDog(1l, null); // Triggers NullPointerException in walkDog()
Since nullisn’t an int, Java treats it as an array reference that happens to be null. It

just passes on the null array object to walkDog (). Then the walkDog() method throws an
exception because it tries to determine the length of null.

Applying Access Modifiers 235

Applying Access Modifiers

You already saw that there are four access modifiers: private, package, protected, and public
access. We are going to discuss them in order from most restrictive to least restrictive:

= private: Only accessible within the same class.

= Package access: private plus other members of the same package. Sometimes referred to
as package-private or default access.

» protected: Package access plus access within subclasses.
= public: protected plus classes in the other packages.

We will explore the impact of these four levels of access on members of a class.

Private Access

Let’s start with private access, which is the simplest. Only code in the same class can call
private methods or access private fields.

First, take a look at Figure 5.2. It shows the classes you’ll use to explore private and
package access. The big boxes are the names of the packages. The smaller boxes inside them
are the classes in each package. You can refer back to this figure if you want to quickly see
how the classes relate.

FIGURE 5.2 Classes used to show private and package access

pond.duck
FatherDuck MotherDuck
BadDuckling GoodDuckling
pond.swan
BadCygnet

This is perfectly legal code because everything is one class:

1: package pond.duck;
2: public class FatherDuck {

236 Chapter 5 = Methods

3: private String noise = "quack";

4; private void quack() {

5: System.out.print(noise); // private access 1is ok
6: }

7}

So far, so good. FatherDuck declares a private method quack() and uses private
instance variable noise on line 5.
Now we add another class:

1: package pond.duck;
2: public class BadDuckling {

3: public void makeNoise() {

4: var duck = new FatherDuck();

5: duck.quack() ; // DOES NOT COMPILE
6: System.out.print(duck.noise); // DOES NOT COMPILE
7: }

8: }

BadDuckling is trying to access an instance variable and a method it has no business
touching. On line §, it tries to access a private method in another class. On line 6, it
tries to access a private instance variable in another class. Both generate compiler errors.
Bad duckling!

Our bad duckling is only a few days old and doesn’t know better yet. Luckily, you know
that accessing private members of other classes is not allowed, and you need to use a differ-
ent type of access.

In the previous example, FatherDuck and BadDuckling are in separate
TE files, but what if they were declared in the same file? Even then, the code

would still not compile as Java prevents access outside the class.

Package Access

Luckily, MotherDuck is more accommodating about what her ducklings can do. She allows
classes in the same package to access her members. When there is no access modifier, Java
assumes package access.

package pond.duck;
public class MotherDuck {

String noise = "quack";
void quack() {

System.out.print(noise); // package access is ok
}

Applying Access Modifiers 237

MotherDuck can refer to noise and call quack (). After all, members in the same class
are certainly in the same package. The big difference is that MotherDuck lets other classes
in the same package access members, whereas FatherDuck doesn’t (due to being private).
GoodDuckling has a much better experience than BadDuckling:

package pond.duck;
public class GoodDuckling {
public void makeNoise() {
var duck = new MotherDuck();
duck.quack(); // package access is ok
System.out.print(duck.noise); // package access is ok

GoodDuckling succeeds in learning to quack () and make noise by copying its mother.
Notice that all the classes covered so far are in the same package, pond. duck. This allows
package access to work.

In this same pond, a swan just gave birth to a baby swan. A baby swan is called a cygnet.
The cygnet sees the ducklings learning to quack and decides to learn from MotherDuck as well.

package pond.swan;
import pond.duck.MotherDuck; // import another package
public class BadCygnet {
public void makeNoise() {
var duck = new MotherDuck();
duck.quack(); // DOES NOT COMPILE
System.out.print(duck.noise); // DOES NOT COMPILE

Oh, no! MotherDuck only allows lessons to other ducks by restricting access to the
pond.duck package. Poor little BadCygnet is in the pond. swan package, and the code
doesn’t compile. Remember that when there is no access modifier on a member, only classes
in the same package can access the member.

Protected Access

Protected access allows everything that package access does, and more. The protected
access modifier adds the ability to access members of a parent class. We cover creating sub-
classes in depth in Chapter 6. For now, we cover the simplest possible use of a subclass. In
the following example, the “child” ClownFish class is a subclass of the “parent” Fish class,
using the extends keyword to connect them:

public class Fish {}

public class ClownFish extends Fish {}

238 Chapter 5 = Methods

By extending a class, the subclass gains access to all protected and public members
of the parent class, as if they were declared in the subclass. If the two classes are in the same
package, then the subclass also gains access to all package members.

Figure 5.3 shows the many classes we create in this section. There are a number of classes
and packages, so don’t worry about keeping them all in your head. Just check back with this
figure as you go.

FIGURE 5.3 Classes used to show protected access

pond.shore pond.goose
Bird (ext%?]fjl;ngird)
BirdWatcher (extsr?dossegird)
pond.inland pond.swan
BirdWatcherFromAfar (extei\ﬁjl:nBird)
pond.duck
GooseWatcher

First, create a Bird class and give protected access to its members:

package pond.shore;
public class Bird {
protected String text = "floating";
protected void floatInWater() {
System.out.print(text); // protected access 1is ok

Next, we create a subclass:

package pond.goose; // Different package than Bird
import pond.shore.Bird;
public class Gosling extends Bird { // Gosling is a subclass of Bird

Applying Access Modifiers 239

public void swim() {
floatInWater(); // protected access 1is ok
System.out.print(text); // protected access 1is ok
}
public static void main(String[] args) {
new Gosling().swim();

This is a simple subclass. It extends the Bird class. Extending means creating a subclass
that has access to any protected or public members of the parent class. Running this
program prints floating twice: once from calling floatInWater (), and once from the
print statement in swim(). Since Gosling is a subclass of Bird, it can access these members
even though it is in a different package.

Remember that protected also gives us access to everything that package access does. This
means a class in the same package as Bird can access its protected members.

package pond.shore; // Same package as Bird
public class BirdwWatcher {
public void watchBird() {
Bird bird = new Bird();
bird.floatInWater(); // protected access 1is ok
System.out.print(bird.text); // protected access is ok

Since Bird and BirdWatcher are in the same package, BirdWatcher can access
package members of the b1 rd variable. The definition of protected allows access to
subclasses and classes in the same package. This example uses the same package part of that
definition.

Now let’s try the same thing from a different package:

package pond.inland; // Different package than Bird
import pond.shore.Bird;
public class BirdwWatcherFromAfar { // Not a subclass of Bird

public void watchBird() {
Bird bird = new Bird();
bird.floatInWater(); // DOES NOT COMPILE
System.out.print(bird.text); // DOES NOT COMPILE

BirdwatcherFromAfar is not in the same package as Bird, and it doesn’t inherit from
B1ird. This means it is not allowed to access protected members of Bird.

Got that? Subclasses and classes in the same package are the only ones allowed to access
protected members.

240 Chapter 5 = Methods

There is one gotcha for protected access. Consider this class:

1: package pond.swan; // Different package than Bird

2: import pond.shore.Bird;

3: public class Swan extends Bird { // Swan is a subclass of Bird

4 public void swim() {

5: floatInWater(); // protected access 1is ok

6 System.out.print(text); // protected access is ok

7 }

8 public void helpOtherSwanSwim() {

9 Swan other = new Swan();

10: other.floatInWater(); // subclass access to superclass
11: System.out.print(other.text); // subclass access to superclass
12: }

13: public void helpOtherBirdSwim() {

14: Bird other = new Bird();

15: other.floatInWater(); // DOES NOT COMPILE

16: System.out.print(other.text); // DOES NOT COMPILE

17: }

18: }

Take a deep breath. This is interesting. Swan is not in the same package as Bird but does
extend it—which implies it has access to the protected members of B1ird since it is a sub-
class. And it does. Lines 5 and 6 refer to protected members via inheriting them.

Lines 10 and 11 also successfully use protected members of Bird. This is allowed because
these lines refer to a Swan object. Swan inherits from B1ird, so this is okay. It is sort of a two-
phase check. The Swan class is allowed to use protected members of Bird, and we are referring
to a Swan object. Granted, it is a Swan object created on line 9 rather than an inherited one,
but it is still a Swan object.

Lines 15 and 16 do not compile. Wait a minute. They are almost exactly the same as lines
10 and 11! There’s one key difference. This time a B+ rd reference is used rather than inher-
itance. It is created on line 14. Bird is in a different package, and this code isn’t inheriting
from Bird, so it doesn’t get to use protected members. Say what, now? We just got through
saying repeatedly that Swan inherits from B4 rd. And it does. However, the variable reference
isn’t a Swan. The code just happens to be in the Swan class.

It’s okay to be confused. This is arguably one of the most confusing points on the exam.
Looking at it a different way, the protected rules apply under two scenarios:

= A member is used without referring to a variable. This is the case on lines 5 and 6. In
this case, we are taking advantage of inheritance, and protected access is allowed.

= A member is used through a variable. This is the case on lines 10, 11, 15, and 16. In this
case, the rules for the reference type of the variable are what matter. If it is a subclass,
protected access is allowed. This works for references to the same class or a subclass.

Applying Access Modifiers y2]]

We’re going to try this again to make sure you understand what is going on. Can you
figure out why these examples don’t compile?

package pond.goose;
import pond.shore.Bird;
public class Goose extends Bird {
public void helpGooseSwim() {
Goose other = new Goose();
other.floatInWater();
System.out.print(other.text);
}
public void helpOtherGooseSwim() {
Bird other = new Goose();
other.floatInWater(); // DOES NOT COMPILE
System.out.print(other.text); // DOES NOT COMPILE

The first method is fine. In fact, it is equivalent to the Swan example. Goose extends
Bird. Since we are in the Goose subclass and referring to a Goose reference, it can access
protected members. The second method is a problem. Although the object happens to be a
Goose, it is stored in a Bird reference. We are not allowed to refer to members of the Bird
class since we are not in the same package and the reference type of other is not a sub-
class of Goose.

What about this one?

package pond.duck;
import pond.goose.Goose;
public class GooseWatcher {
public void watch() {
Goose goose = new Goose();
goose. floatInWater(); // DOES NOT COMPILE

This code doesn’t compile because we are not in the goose object. The floatInWater ()
method is declared in Bird. GooseWatcher is not in the same package as Bird, nor does
it extend Bird. Goose extends Bird. That only lets Goose refer to floatInWater (), not
callers of Goose.

If this is still puzzling, try it. Type in the code and try to make it compile. Then reread this
section. Don’t worry—it wasn’t obvious to us the first time either!

242

Chapter 5 = Methods

Public Access

Protected access was a tough concept. Luckily, the last type of access modifier is easy:
public means anyone can access the member from anywhere.

The Java module system redefines “anywhere,” and it becomes pos-
sible to restrict access to public code outside a module. We cover this in
more detail in Chapter 12, “Modules.” When given code samples, you can
assume they are in the same module unless explicitly stated otherwise.

Let’s create a class that has pub1lic members:

package pond.duck;
public class DuckTeacher {
public String name = "helpful";

public void swim() {
System.out.print(name); // public access 1is ok

DuckTeacher allows access to any class that wants it. Now we can try it:

package pond.goose;
import pond.duck.DuckTeacher;
public class LostDuckling {
public void swim() {
var teacher = new DuckTeacher();
teacher.swim(); // allowed
System.out.print("Thanks" + teacher.name); // allowed

LostDuckling is able to refer to swim() and name on DuckTeacher because they are
public. The story has a happy ending. LostDuckling has learned to swim and can find its
parents—all because DuckTeacher made members public.

Reviewing Access Modifiers

Make sure you know why everything in Table 5.4 is true. Use the first column for the
first blank and the first row for the second blank. Also, remember that a member is a

method or field.

Accessing static Data 243

TABLE 5.4 A methodin can access a member.

private package protected public

the same class Yes Yes Yes Yes
another class in the same package No Yes Yes Yes
a subclass in a different package No No Yes Yes
an unrelated class in a different package No No No Yes

Accessing static Data

When the static keyword is applied to a variable, method, or class, it belongs to the class
rather than a specific instance of the class. In this section, you see that the static keyword
can also be applied to import statements.

Designing static Methods and Variables

Except for the main() method, we’ve been looking at instance methods. Methods and var-
iables declared static don’t require an instance of the class. They are shared among all
users of the class. For instance, take a look at the following Penguin class:

public class Penguin {
String name;
static String nameOfTallestPenguin;

In this class, every Penguin instance has its own name like Willy or Li1lly, but only
one Penguin among all the instances is the tallest. You can think of a static variable as
being a member of the single class object that exists independently of any instances of that
class. Consider the following example:

public static void main(String[] unused) {
var pl = new Penguin();
pl.name = "Lilly";
pl.nameOfTallestPenguin = "Lilly";
var p2 = new Penguin();
p2.name = "Willy";
p2.name0fTallestPenguin = "Willy";

244 Chapter 5 = Methods

System.out.println(pl.name); // Lilly
System.out.println(pl.name0fTallestPenguin); // Willy
System.out.println(p2.name); // Willy

System.out.println(p2.name0fTallestPenguin); // Willy

We see that each penguin instance is updated with its own unique name. The
nameOfTallestPenguin field is static and therefore shared, though, so anytime it is
updated, it impacts all instances of the class.

You have seen one static method since Chapter 1. The main() method is a static
method. That means you can call it using the class name:

public class Koala {
public static int count = 0; // static variable
public static void main(String[] args) { // static method
System.out.print(count);

Here the JVM basically calls Koala.main() to get the program started. You can do this
too. We can have a KoalaTester that does nothing but call the main () method:
public class KoalaTester {
public static void main(String[] args) {
Koala.main(new String[0]); // call static method

Quite a complicated way to print 0, isn’t it? When we run KoalaTester, it makes a call
to the main () method of Koala, which prints the value of count. The purpose of all these
examples is to show that main() can be called just like any other static method.

In addition to main () methods, static methods have two main purposes:

= For utility or helper methods that don’t require any object state. Since there is no need
to access instance variables, having stat+ic methods eliminates the need for the caller to
instantiate an object just to call the method.

= For state that is shared by all instances of a class, like a counter. All instances must share
the same state. Methods that merely use that state should be stat+ic as well.

In the following sections, we look at some examples covering other static concepts.

Accessing a staticVariable or Method

Usually, accessing a static member is easy.

public class Snake {
public static long hiss = 2;

Accessing static Data 245

You just put the class name before the method or variable, and you are done. Here’s
an example:

System.out.println(Snake.hiss);

Nice and easy. There is one rule that is trickier. You can use an instance of the object
to call a static method. The compiler checks for the type of the reference and uses that
instead of the object—which is sneaky of Java. This code is perfectly legal:

5: Snake s = new Snake();

6: System.out.println(s.hiss); // s is a Snake

7: s = null;

8: System.out.println(s.hiss); // s is still a Snake

Believe it or not, this code outputs 2 twice. Line 6 sees that s is a Snake and hiss
is a static variable, so it reads that static variable. Line 8 does the same thing. Java
doesn’t care that s happens to be null. Since we are looking for a static variable, it
doesn’t matter.

Remember to look at the reference type for a variable when you see a

ITE static method or variable. The exam creators will try to trick you into
thinking a NullPointerException is thrown because the variable hap-
pens to be null. Don’t be fooled!

One more time, because this is really important: what does the following output?

Snake.hiss = 4;

Snake snakel = new Snake();
Snake snake2 = new Snake();
snakel.hiss = 6;

snake2.hiss = 5;
System.out.println(Snake.hiss);

We hope you answered 5. There is only one hiss variable since it is static. It is set to 4
and then 6 and finally winds up as 5. All the Snake variables are just distractions.

Class vs. Instance Membership

There’s another way the exam creators will try to trick you regarding stat+ic and instance
members. A static member cannot call an instance member without referencing an instance
of the class. This shouldn’t be a surprise since stat+ic doesn’t require any instances of the class
to even exist.

The following is a common mistake for rookie programmers to make:

public class MantaRay {
private String name = "Sammy";
public static void first() { 1}

246 Chapter 5 = Methods

public static void second() { 1}
public void third() { System.out.print(name); }
public static void main(String args[]) {
first();
second();
third(); // DOES NOT COMPILE

The compiler will give you an error about making a stat1c reference to an instance
method. If we fix this by adding static to third(), we create a new problem. Can you
figure out what it is?

public static void third() { System.out.print(name); } // DOES NOT COMPILE

All this does is move the problem. Now, third() is referring to an instance variable
name. There are two ways we could fix this. The first is to add static to the name vari-
able as well.

public class MantaRay {
private static String name = "Sammy";

public static void third() { System.out.print(name); }

The second solution would have been to call third() as an instance method and not use
static for the method or the variable.

public class MantaRay {
private String name = "Sammy";

public void third() { System.out.print(name); }
public static void main(String args[]) {

var ray = new MantaRay();
ray.third();

The exam creators like this topic—a lot. A static method or instance method can call a
static method because static methods don’t require an object to use. Only an instance
method can call another instance method on the same class without using a reference vari-
able, because instance methods do require an object. Similar logic applies for instance and
static variables.

Accessing static Data 247

Suppose we have a Giraffe class:

public class Giraffe {
public void eat(Giraffe g) {}
public void drink() {3};
public static void allGiraffeGoHome(Giraffe g) {}
public static void allGiraffeComeOut() {}

Make sure you understand Table 5.5 before continuing.

TABLE 5.5 Static vs. instance calls

Method Calling Legal?
allGiraffeGoHome () allGiraffeComeOut() Yes
allGiraffeGoHome () drink() No
allGiraffeGoHome () g.eat() Yes
eat() allGiraffeComeOut() Yes
eat() drink() Yes
eat() g.eat() Yes

Let’s try one more example so you have more practice at recognizing this scenario. Do
you understand why the following lines fail to compile?

1 public class Gorilla {

2 public static int count;

3 public static void addGorilla() { count++; }
4 public void babyGorilla() { count++; }

5: public void announceBabies() {

6 addGorilla();

7 babyGorilla();

8 }

9: public static void announceBabiesToEveryone() {
10: addGorilla();

11: babyGorilla(); // DOES NOT COMPILE
12: }

13: public int total;

14: public static double average

15: = total / count; // DOES NOT COMPILE

16: }

248 Chapter 5 = Methods

Lines 3 and 4 are fine because both static and instance methods can refer to a statiic
variable. Lines 5-8 are fine because an instance method can call a static method. Line 11
doesn’t compile because a static method cannot call an instance method. Similarly, line 15
doesn’t compile because a static variable is trying to use an instance variable.

A common use for static variables is counting the number of instances:

public class Counter {

private static int count;

public Counter() { count++; }

public static void main(String[] args) {
Counter cl = new Counter();
Counter c2 = new Counter();
Counter c3 = new Counter();
System.out.println(count); // 3

Each time the constructor is called, it increments count by one. This example relies on
the fact that static (and instance) variables are automatically initialized to the default
value for that type, which is 0 for int. See Chapter 1 to review the default values.

Also notice that we didn’t write Counter.count. We could have. It isn’t necessary
because we are already in that class, so the compiler can infer it.

P throughout this book. You even see a similar topic when we discuss inter-
faces in Chapter 7. For example, a stat-ic interface method cannot call a
default interface method without a reference, much the same way that
within a class, a static method cannot call an instance method without
a reference.

é/ Make sure you understand this section really well. It comes up

static Variable Modifiers

Referring back to Table 5.3, static variables can be declared with the same modifiers as in-
stance variables, such as final, transient,and volatile. While some static variables are meant to
change as the program runs, like our count example, others are meant to never change. This
type of static variable is known as a constant. It uses the final modifier to ensure the variable
never changes.

Constants use the modifier static final and a different naming convention than
other variables. They use all uppercase letters with underscores between “words.” Here’s
an example:

Accessing static Data 249

public class ZooPen {
private static final int NUM_BUCKETS = 45;
public static void main(String[] args) {
NUM_BUCKETS = 5; // DOES NOT COMPILE

The compiler will make sure that you do not accidentally try to update a final variable.
This can get interesting. Do you think the following compiles?

import java.util.x;
public class ZooInventoryManager {
private static final String[] treats = new String[10];
public static void main(String[] args) {
treats[0] = "popcorn";

It actually does compile since treats is a reference variable. We are allowed to modify
the referenced object or array’s contents. All the compiler can do is check that we don’t try
to reassign treats to point to a different object.

The rules for static final variables are similar to instance final variables, except
they do not use static constructors (there is no such thing!) and use static initializers
instead of instance initializers.

public class Panda {
final static String name = "Ronda";
static final int bamboo;
static final double height; // DOES NOT COMPILE
static { bamboo = 53}

The name variable is assigned a value when it is declared, while the bamboo variable is
assigned a value in a static initializer. The height variable is not assigned a value any-
where in the class definition, so that line does not compile. Remember, final variables must
be initialized with a value. Next, we cover stat1ic initializers.

250 Chapter 5 = Methods

static Initializers

In Chapter 1, we covered instance initializers that looked like unnamed methods—just code
inside braces. static initializers look similar. They add the static keyword to specify that they
should be run when the class is first loaded. Here’s an example:

private static final int NUM_SECONDS_PER_MINUTE;
private static final int NUM_MINUTES_PER_HOUR;
private static final int NUM_SECONDS_PER_HOUR;
static {
NUM_SECONDS_PER_MINUTE = 60;
NUM_MINUTES_PER_HOUR = 60;

}
static {
NUM_SECONDS_PER_HOUR
= NUM_SECONDS_PER_MINUTE * NUM_MINUTES_PER_HOUR;
}

All static initializers run when the class is first used, in the order they are defined.
The statements in them run and assign any static variables as needed. There is something
interesting about this example. We just got through saying that fina'l variables aren’t
allowed to be reassigned. The key here is that the statc initializer is the first assignment.
And since it occurs up front, it is okay.

Let’s try another example to make sure you understand the distinction:

14: private static int one;

15: private static final int two;

16: private static final 1int three = 3;

17: private static final int four; // DOES NOT COMPILE
18: static {

19: one = 1;

20: two = 2;

21: three = 3; // DOES NOT COMPILE
22: two = 4; // DOES NOT COMPILE
23: }

Line 14 declares a static variable that is not fina'l. It can be assigned as many times
as we like. Line 15 declares a final variable without initializing it. This means we can ini-
tialize it exactly once in a static block. Line 22 doesn’t compile because this is the second
attempt. Line 16 declares a final variable and initializes it at the same time. We are not
allowed to assign it again, so line 21 doesn’t compile. Line 17 declares a final variable that
never gets initialized. The compiler gives a compiler error because it knows that the static
blocks are the only place the variable could possibly be initialized. Since the programmer
forgot, this is clearly an error.

Accessing static Data 251

Try to Avoid static and Instance Initializers

Using static and instance initializers can make your code much harder to read. Every-
thing that could be done in an instance initializer could be done in a constructor instead.
Many people find the constructor approach easier to read.

There is a common case to use a static initializer: when you need to initialize a static

field and the code to do so requires more than one line. This often occurs when you want to
initialize a collection like an ArrayList or a HashMap. When you do need to use a static
initializer, put all the static initialization in the same block. That way, the order is obvious.

static Imports

In Chapter 1, you saw that you can import a specific class or all the classes in a package.
If you haven’t seen ArrayList or List before, don’t worry, because we cover them in detail in
Chapter 9, “Collections and Generics.”

import java.util.ArraylList;
import java.util.x;

We could use this technique to import two classes:

import java.util.List;
import java.util.Arrays;
public class Imports {
public static void main(String[] args) {
List<String> list = Arrays.asList("one", "two");

Imports are convenient because you don’t need to specify where each class comes from
each time you use it. There is another type of import called a static import. Regular imports
are for importing classes, while static imports are for importing static members of
classes like variables and methods.

Just like regular imports, you can use a wildcard or import a specific member. The idea
is that you shouldn’t have to specify where each static method or variable comes from each
time you use it. An example of when static imports shine is when you are referring to a lot of
constants in another class.

We ran rewrite our previous example to use a static import. Doing so yields the following:

import java.util.List;
import static java.util.Arrays.asList; // static import
public class ZooParking {
public static void main(String[] args) {
List<String> list = asList("one", "two"); // No Arrays. prefix

252 Chapter 5 = Methods

In this example, we are specifically importing the asList method. This means that any
time we refer to asList in the class, it will call Arrays.asList().

An interesting case is what would happen if we created an asList method in our
ZooParking class. Java would give it preference over the imported one, and the method we
coded would be used.

The exam will try to trick you by misusing static imports. This example shows almost
everything you can do wrong. Can you figure out what is wrong with each one?

: import static java.util.Arrays; // DOES NOT COMPILE
import static java.util.Arrays.aslList;
static import java.util.Arrays.x; // DOES NOT COMPILE

public class BadZooParking {
public static void main(String[] args) {
Arrays.asList("one"); // DOES NOT COMPILE

o N o b~ W N B

}

Line 1 tries to use a static import to import a class. Remember that static
imports are only for importing static members like a method or variable. Regular
imports are for importing a class. Line 3 tries to see whether you are paying attention
to the order of keywords. The syntax is import static and not vice versa. Line 6
is sneaky. The asList method is imported on line 2. However, the Arrays class is
not imported anywhere. This makes it okay to write asList("one") but not
Arrays.asList("one").

There’s only one more scenario with static imports. In Chapter 1, you learned that
importing two classes with the same name gives a compiler error. This is true of static
imports as well. The compiler will complain if you try to explicitly do a static import
of two methods with the same name or two static variables with the same name.
Here’s an example:

import static zoo.A.TYPE;
import static zoo.B.TYPE; // DOES NOT COMPILE

Luckily, when this happens, we can just refer to the static members via their class name
in the code instead of trying to use a static import.

< In a large program, static imports can be overused. When importing
P from too many places, it can be hard to remember where each static
member comes from. Use them sparingly!

Passing Data among Methods 253

Passing Data among Methods

Java is a “pass-by-value” language. This means that a copy of the variable is made and the
method receives that copy. Assignments made in the method do not affect the caller. Let’s
look at an example:

2: public static void main(String[] args) {
3 int num = 43

4 newNumber (num) ;

5: System.out.print(num); /] 4

6: }

7: public static void newNumber (int num) {
8 num = 8;

9: }

On line 3, num is assigned the value of 4. On line 4, we call a method. On line 8, the num
parameter in the method is set to 8. Although this parameter has the same name as the var-
iable on line 3, this is a coincidence. The name could be anything. The exam will often use
the same name to try to confuse you. The variable on line 3 never changes because no assign-
ments are made to it.

Passing Objects

Now that you’ve seen primitives, let’s try an example with a reference type. What do you
think is output by the following code?
public class Dog {
public static void main(String[] args) {
String name = "Webby";
speak(name) ;
System.out.print(name) ;

}

public static void speak(String name) {
name = "Georgette";

}

The correct answer is Webby. Just as in the primitive example, the variable assignment is
only to the method parameter and doesn’t affect the caller.

254 Chapter 5 = Methods

Notice how we keep talking about variable assignments. This is because we can call
methods on the parameters. As an example, here is code that calls a method on the
StringBuilder passed into the method

public class Dog {

public static void main(String[] args) {
var name = new StringBuilder ("Webby");
speak(name) ;
System.out.print(name) ; // WebbyGeorgette

}

public static void speak(StringBuilder s) {
s.append("Georgette")

In this case, speak () calls a method on the parameter. It doesn’t reassign s to a different
object. In Figure 5.4, you can see how pass-by-value is still used. The variable s is a copy of the
variable name. Both point to the same StringBuilder, which means that changes made to the
StringBuilder are available to both references.

FIGURE 5.4 Copying a reference with pass-by-value

name —————>»
StringBuilder

/ object
S

Pass-by-Value vs. Pass-by-Reference

Different languages handle parameters in different ways. Pass-by-value is used by many
languages, including Java. In this example, the swap () method does not change the
original values. It only changes a and b within the method.

public static void main(String[] args) {
int originall = 1;
int original2 = 2;
swap(originall, original2);
System.out.println(originall); /] 1
System.out.println(original2); /] 2
}
public static void swap(int a, int b) {
int temp = a;
a = b;
b

temp;

Passing Data among Methods 255

The other approach is pass-by-reference. It is used by default in a few languages, such as
Perl. We aren’t going to show you Perl code here because you are studying for the Java
exam, and we don’t want to confuse you. In a pass-by-reference language, the variables
would be swapped and the output would be reversed.

To review, Java uses pass-by-value to get data into a method. Assigning a new primitive
or reference to a parameter doesn’t change the caller. Calling methods on a reference to an
object can affect the caller.

Returning Objects

Getting data back from a method is easier. A copy is made of the primitive or reference and
returned from the method. Most of the time, this returned value is used. For example, it
might be stored in a variable. If the returned value is not used, the result is ignored. Watch
for this on the exam. Ignored returned values are tricky.

Let’s try an example. Pay attention to the return types.

1: public class ZooTickets {

2: public static void main(String[] args) {

3: int tickets = 2; // tickets = 2
4: String guests = "abc"; // guests = abc
5: addTickets(tickets); // tickets = 2
6: guests = addGuests(guests); // guests = abcd
T: System.out.println(tickets + guests); // 2abcd

8: }

9: public static int addTickets(int tickets) {

10: tickets++;

11: return tickets;

12: }

13: public static String addGuests(String guests) {

14: guests += "d";

15: return guests;

16: }

17: }

This is a tricky one because there is a lot to keep track of. When you see such questions
on the exam, write down the values of each variable. Lines 3 and 4 are straightforward
assignments. Line 5 calls a method. Line 10 increments the method parameter to 3 but
leaves the tickets variable in the main () method as 2. While line 11 returns the value,
the caller ignores it. The method call on line 6 doesn’t ignore the result, so guests becomes
"abcd". Remember that this is happening because of the returned value and not the method
parameter.

256 Chapter 5 = Methods

Autoboxing and Unboxing Variables

Java supports some helpful features around passing primitive and wrapper data types, such
as int and Integer. Remember from Chapter 1 that we can explicitly convert between primi-
tives and wrapper classes using built-in methods.

5: int quack = 5;
6: Integer quackquack = Integer.valueOf(quack); // Convert int to Integer
7: int quackquackquack = quackquack.intValue(); // Convert Integer to int

Useful, but a bit verbose. Luckily, Java has handlers built into the Java language that
automatically convert between primitives and wrapper classes and back again. Autoboxing
is the process of converting a primitive into its equivalent wrapper class, while unboxing is
the process of converting a wrapper class into its equivalent primitive.

5: int quack = 5;
6: Integer quackquack = quack; // Autoboxing
7: 1int quackquackquack = quackquack; // Unboxing

The new code is equivalent to the previous code, as the compiler is “doing the work” of
converting the types automatically for you. Autoboxing applies to all primitives and their
associated wrapper types, such as the following:

Short tail = 8; // Autoboxing

Character p = Character.valueOf('p');

char paw = p3 // Unboxing

Boolean nose = true; // Autoboxing

Integer e = Integer.valueOf(9);

long ears = e; // Unboxing, then dimplicit casting

Each of these examples compiles without issue. In the last line, e is unboxed to an int
value. Since an int value can be stored in a long variable via implicit casting, the compiler
allows the assignment.

Limits of Autoboxing and Numeric Promotion

While Java will implicitly cast a smaller primitive to a larger type, as well as autobox, it will
not do both at the same time. Do you see why the following does not compile?

Long badGorilla = 8; // DOES NOT COMPILE

Java will automatically cast or autobox the int value to long or Integer, respectively.
Neither of these types can be assigned to a Long reference variable, though, so the code
does not compile. Compare this behavior to the previous example with ears, where the
unboxed primitive value could be implicitly cast to a larger primitive type.

Passing Data among Methods 257

What do you think happens if you try to unbox a nul1?

10: Character elephant = null;
11: char badElephant = elephant; // NullPointerException

On line 10, we store null in a Character reference. This is legal because a nul1 ref-
erence can be assigned to any reference variable. On line 11, we try to unbox that null to a
char primitive. This is a problem. Java tries to get the char value of null. Since calling any
method on null gives a NullPointerException, that is just what we get. Be careful when
you see null in relation to autoboxing and unboxing.

Where autoboxing and unboxing really shine is when we apply them to method calls.

public class Chimpanzee {

public void climb(long t) {}

public void swing(Integer u) {}

public void jump(int v) {}

public static void main(String[] args) {
var ¢ = new Chimpanzee();
c.climb(123);
c.swing(123);
c.jump(123L); // DOES NOT COMPILE

In this example, the call to climb () compiles because the int value can be implicitly cast to a
long. The call to swing() also is permitted, because the int value is autoboxed to an Integer.
On the other hand, the call to jump () results in a compiler error because a Llong must be explic-
itly cast to an int. In other words, Java will not automatically convert to a narrower type.

As before, the same limitation around autoboxing and numeric promotion applies to
method calls. For example, the following does not compile:
public class Gorilla {

public void rest(Long x) {
System.out.print("long");

}

public static void main(String[] args) {
var g = new Gorilla();
g.rest(8); // DOES NOT COMPILE

Java will cast or autobox the value automatically, but not both at the same time.

258 Chapter 5 = Methods

Overloading Methods

Now that you are familiar with the rules for declaring and using methods, it is time to look
at creating methods with the same name in the same class. Method overloading occurs when
methods in the same class have the same name but different method signatures, which means
they use different parameter lists. (Overloading differs from overriding, which you learn
about in Chapter 6.)

We’ve been showing how to call overloaded methods for a while. System.out.
println() and StringBuilder’s append() methods provide many overloaded versions,
$0 you can pass just about anything to them without having to think about it. In both of
these examples, the only change was the type of the parameter. Overloading also allows dif-
ferent numbers of parameters.

Everything other than the method name can vary for overloading methods. This means
there can be different access modifiers, optional specifiers (like static), return types, and
exception lists.

The following shows five overloaded versions of the fly () method:

public class Falcon {
public void fly(int numMiles) {}
public void fly(short numFeet) {}
public boolean fly() { return false; }
void fly(int numMiles, short numFeet) {}
public void fly(short numFeet, int numMiles) throws Exception {}

As you can see, we can overload by changing anything in the parameter list. We can have
a different type, more types, or the same types in a different order. Also notice that the return
type, access modifier, and exception list are irrelevant to overloading. Only the method name
and parameter list matter.

Now let’s look at an example that is not valid overloading:

public class Eagle {
public void fly(int numMiles) {}
public int fly(int numMiles) { return 1; } // DOES NOT COMPILE

This method doesn’t compile because it differs from the original only by return type. The
method signatures are the same, so they are duplicate methods as far as Java is concerned.
What about these; why do they not compile?

public class Hawk {
public void fly(int numMiles) {}
public static void fly(int numMiles) {} // DOES NOT COMPILE
public void fly(int numKilometers) {} // DOES NOT COMPILE

Overloading Methods 259

Again, the method signatures of these three methods are the same. You cannot declare
methods in the same class where the only difference is that one is an instance method and
one is a static method. You also cannot have two methods that have parameter lists with
the same variable types and in the same order. As we mentioned earlier, the names of the
parameters in the list do not matter when determining the method signature.

Calling overloaded methods is easy. You just write code, and Java calls the right one.
For example, look at these two methods:

public class Dove {
public void fly(int numMiles) {
System.out.println("int");
}
public void fly(short numFeet) {
System.out.println("short");

The call fly((short) 1) prints short. It looks for matching types and calls the appro-
priate method. Of course, it can be more complicated than this.

Now that you know the basics of overloading, let’s look at some more complex scenarios
that you may encounter on the exam.

Reference Types

Given the rule about Java picking the most specific version of a method that it can, what do
you think this code outputs?

public class Pelican {

public void fly(string s) {
System.out.print("string");

public void fly(Object o) {
System.out.print("object");

}

public static void main(String[] args) {
var p = new Pelican();
p.fly("test");
System.out.print("-");
p.fly(56);

260 Chapter 5 = Methods

The answer is string-object. The first call passes a String and finds a direct match.
There’s no reason to use the Object version when there is a nice String parameter list just
waiting to be called. The second call looks for an int parameter list. When it doesn’t find
one, it autoboxes to Integer. Since it still doesn’t find a match, it goes to the Object one.

Let’s try another. What does this print?

import java.time.x;
import java.util.x;
public class Parrot {
public static void print(List<Integer> i) {
System.out.print("I");
}
public static void print(CharSequence c) {
System.out.print("C");
}
public static void print(Object o) {
System.out.print("0");
}
public static void main(String[] args){
print("abc");
print(Arrays.asList(3));
print(LocalDate.of(2019, Month.JULY, 4));

The answer is CI0. The code is due for a promotion! The first call to print() passes
a String. As you learned in Chapter 4, String and StringBuilder implement the
CharSequence interface. You also learned that Arrays.asList() can be used to create a
List<Integer> object, which explains the second output. The final call to print() passes
a LocalDate. This is a class you might not know, but that’s okay. It clearly isn’t a sequence
of characters or a list. That means the Object method signature is used.

Primitives

Primitives work in a way that’s similar to reference variables. Java tries to find the most
specific matching overloaded method. What do you think happens here?

public class Ostrich {
public void fly(int 1) {
System.out.print("int");
}
public void fly(long 1) {
System.out.print("long");

Overloading Methods 261

public static void main(String[] args) {
var p = new Ostrich();
p.fly(123);
System.out.print("-");
p.fly(123L);

The answer is int-Tlong. The first call passes an int and sees an exact match. The sec-
ond call passes a long and also sees an exact match. If we comment out the overloaded
method with the int parameter list, the output becomes long-1long. Java has no problem
calling a larger primitive. However, it will not do so unless a better match is not found.

Autoboxing

As we saw earlier, autoboxing applies to method calls, but what happens if you have both a
primitive and an integer version?

public class Kiwi {

public void fly(int numMiles) {}
public void fly(Integer numMiles) {}

These method overloads are valid. Java tries to use the most specific parameter list it can
find. This is true for autoboxing as well as other matching types we talk about in this section.

This means calling fly (3) will call the first method. When the primitive int version isn’t
present, Java will autobox. However, when the primitive int version is provided, there is no
reason for Java to do the extra work of autoboxing.

Arrays

Unlike the previous example, this code does not autobox:

public static void walk(int[] dints) {}
public static void walk(Integer[] dintegers) {}

Arrays have been around since the beginning of Java. They specify their actual types.
What about generic types, such as List<Integer>? We cover this topic in Chapter 9.

Varargs

Which method do you think is called if we pass an int[]?
public class Toucan {
public void fly(int[] lengths) {}
public void fly(int... lengths) {} // DOES NOT COMPILE

262 Chapter 5 = Methods

Trick question! Remember that Java treats varargs as if they were an array. This means
the method signature is the same for both methods. Since we are not allowed to overload
methods with the same parameter list, this code doesn’t compile. Even though the code
doesn’t look the same, it compiles to the same parameter list.

Now that we’ve just gotten through explaining that the two methods are similar, it is time
to mention how they are different. It shouldn’t be a surprise that you can call either method
by passing an array:

fly(new int[] { 1, 2, 3 }); // Allowed to call either fly() method
However, you can only call the varargs version with stand-alone parameters:

fly(1, 2, 3); // Allowed to call only the fly() method using varargs

Obviously, this means they don’t compile exactly the same. The parameter list is the same,
though, and that is what you need to know with respect to overloading for the exam.

Putting It All Together

So far, all the rules for when an overloaded method is called should be logical. Java calls

the most specific method it can. When some of the types interact, the Java rules focus on
backward compatibility. A long time ago, autoboxing and varargs didn’t exist. Since old code
still needs to work, this means autoboxing and varargs come last when Java looks at over-
loaded methods. Ready for the official order? Table 5.6 lays it out for you.

TABLE 5.6 The order that Java uses to choose the right overloaded method

Rule Example of what will be chosen for glide(1,2)
Exact match by type String glide(int i, int j)

Larger primitive type String glide(long i, long j)
Autoboxed type String glide(Integer i, Integer j)
Varargs String glide(int... nums)

Let’s give this a practice run using the rules in Table 5.6. What do you think this outputs?

public class Glider {
public static String glide(String s) {

return "1";

3

public static String glide(String... s) {
return "2";

Summary 263

public static String glide(Object o) {

return "3";

}

public static String glide(String s, String t) {
return "4";

}

public static void main(String[] args) {
System.out.print(glide("a"));
System.out.print(glide("a", "b"));
System.out.print(glide("a", "b", "c"));

It prints out 142. The first call matches the signature taking a single String because that
is the most specific match. The second call matches the signature taking two String param-
eters since that is an exact match. It isn’t until the third call that the varargs version is used
since there are no better matches.

Summary

In this chapter, we presented a lot of rules for declaring methods and variables. Methods
start with access modifiers and optional specifiers in any order (although commonly with
access modifiers first). The access modifiers we discussed in this chapter are private, package
(omitted), protected, and public. The optional specifier for methods we covered in this
chapter is static. We cover additional method modifiers in future chapters.

Next comes the method return type, which is void if there is no return value. The method
name and parameter list are provided next, which compose the unique method signature.
The method name uses standard Java identifier rules, while the parameter list is composed
of zero or more types with names. An optional list of exceptions may also be added fol-
lowing the parameter list. Finally, a block defines the method body (which is omitted for
abstract methods).

Access modifiers are used for a lot more than just methods, so make sure you understand
them well. Using the private keyword means the code is only available from within the
same class. Package access means the code is available only from within the same package.
Using the protected keyword means the code is available from the same package or sub-
classes. Using the public keyword means the code is available from anywhere.

Both static methods and static variables are shared by all instances of the class.
When referenced from outside the class, they are called using the class name—for example,
Pigeon.fly(). Instance members are allowed to call static members, but static mem-
bers are not allowed to call instance members. In addition, static imports are used to
import static members.

264 Chapter 5 = Methods

We also presented the final modifier and showed how it can be applied to local, instance,
and stat1c variables. Remember, a local variable is effectively final if it is not modified after it is
assigned. One quick test for this is to add the final modifier and see if the code still compiles.

Java uses pass-by-value, which means that calls to methods create a copy of the parame-
ters. Assigning new values to those parameters in the method doesn’t affect the caller’s var-
iables. Calling methods on objects that are method parameters changes the state of those
objects and is reflected in the caller. Java supports autoboxing and unboxing of primitives
and wrappers automatically within a method and through method calls.

Overloaded methods are methods with the same name but a different parameter list. Java
calls the most specific method it can find. Exact matches are preferred, followed by wider
primitives. After that comes autoboxing and finally varargs.

Make sure you understand everything in this chapter. It sets the foundation of what you
learn in the next chapters.

Exam Essentials

Be able to identify correct and incorrect method declarations. Be able to view a method sig-
nature and know if it is correct, contains invalid or conflicting elements, or contains elements
in the wrong order.

Identify when a method or field is accessible. Recognize when a method or field is acces-
sible when the access modifier is: private, package (omitted), protected, or public.

Understand how to declare and use final variables. Local, instance, and static variables
may be declared fina'l. Be able to understand how to declare them and how they can (or
cannot) be used.

Be able to spot effectively final variables. Effectively final variables are local variables that
are not modified after being assigned. Given a local variable, be able to determine if it is
effectively final.

Recognize valid and invalid uses of static imports. Static imports import static mem-
bers. They are written as import static, not static import. Make sure they are importing
static methods or variables rather than class names.

Apply autoboxing and unboxing. The process of automatically converting from a primitive
value to a wrapper class is called autoboxing, while the reciprocal process is called unbox-
ing. Watch for a NullPointerException when performing unboxing.

State the output of code involving methods. Identify when to call static rather than in-
stance methods based on whether the class name or object comes before the method. Rec-
ognize that instance methods can call static methods and that static methods need an
instance of the object in order to call an instance method.

Recognize the correct overloaded method. Exact matches are used first, followed by wider
primitives, followed by autoboxing, followed by varargs. Assigning new values to method
parameters does not change the caller, but calling methods on them does.

Review Questions

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which statements about the final modifier are correct? (Choose all that apply.)
A.
B.
(o
D.
E.

2. Which of the following can fill in the blank in this code to make it compile? (Choose all

Instance and static variables can be marked final.
A variable is effectively final only if it is marked fina'l.

An object that is marked fina'l cannot be modified.

Local variables cannot be declared with type var and the final modifier.

A primitive that is marked final cannot be modified.

that apply.)

public class Ant {
void method() {}

mmOoOO®P

default
final
private
Public
String

zzzZ:

3. Which of the following methods compile? (Choose all that apply.)

moowp

F

final static void rain() {}
public final int void snow() {}
private void int hail() {}
static final void sleet() {}
void final dice() {}

void public slush() {}

265

4. Which of the following can fill in the blank and allow the code to compile? (Choose all that apply.)

final

A.
B.

mmo o

song = 6;
int
Integer
long
Long
double
Double

266 Chapter 5 = Methods

5. Which of the following methods compile? (Choose all that apply.)

A. public void january() { return; }
B. public int february() { return null;}
C. public void march() {}
D. public int april() { return 9;}
E. public int may() { return 9.0;}
F. public int june() { return;}

6. Which of the following methods compile? (Choose all that apply.)
A. public void violin(int... nums) {}
B. public void viola(String values, int... nums) {}
C. public void cello(int... nums, String values) {}
D. public void bass(String... values, int... nums) {}
E. public void flute(String[] values, ...int nums) {}
F. public void oboe(String[] values, 1int[] nums) {}

7. Given the following method, which of the method calls return 2? (Choose all that apply.)

public int juggle(boolean b, boolean... b2) {
return b2.length;

juggle();

juggle(true);

juggle(true, true);
juggle(true, true, true);
juggle(true, {true, true});

Mmoo wp

juggle(true, new boolean[2]);

8. Which of the following statements is correct?
A. Package access is more lenient than protected access.

B. A public class that has private fields and package methods is not visible to classes
outside the package.

C. You can use access modifiers so only some of the classes in a package see a particular
package class.

D. You can use access modifiers to allow access to all methods and not any instance vari-

ables.

E. You can use access modifiers to restrict access to all classes that begin with the word
Test.

Review Questions

267

9. Given the following class definitions, which lines in the main () method generate a compiler

error? (Choose all that apply.)

// Classroom.java
package my.school;
public class Classroom {
private int roomNumber;
protected static String teacherName;
static int globalKey = 54321;
public static int floor = 3;
Classroom(int r, String t) {
roomNumber = r;
teacherName = t; } }

~
~

School.java
package my.city;
import my.school.x;
public class School {
public static void main(String[] args) {

System.out.println(room.roomNumber) ;
System.out.println(Classroom.floor);

O o N o b~ W N

None: the code compiles fine.
Line §
Line 6
Line 7
Line 8
F. Line 9

moowp

10. What is the output of executing the Chimp program?
// Rope.java

1: package rope;

2: public class Rope {

3: public static int LENGTH = 5;
4. static {

5: LENGTH = 10;

6: }

7: public static void swing() {

System.out.println(Classroom.globalKey);
Classroom room = new Classroom(101, "Mrs.

Anderson");

System.out.println(Classroom.teacherName); } }

268 Chapter 5 = Methods

8: System.out.print("swing ");
9: Pl

// Chimp.java
¢ import rope.x*;
import static rope.Rope.*;
public class Chimp {
public static void main(String[] args) {
Rope.swing();
new Rope().swing();
System.out.println(LENGTH);
I

o N o b~ W N

swing swing 5

swing swing 10

Compiler error on line 2 of Chimp
Compiler error on line 5 of Chimp

Compiler error on line 6 of Chimp

Mmoo wp

Compiler error on line 7 of Chimp

-
—

Which statements are true of the following code? (Choose all that apply.)

public class Rope {

public static void swing() {
System.out.print("swing");

}

public void climb() {
System.out.println("climb");

}

public static void play() {
swing();
climb();

©O© 0 N oo U b~ W N

= e
= o

}

public static void main(String[] args) {
Rope rope = new Rope();
rope.play();
Rope rope2 = null;
System.out.print("-");
rope2.play();

I

i T e e I =T e
o ~N o U hWN

12.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

13.

/1

Review Questions 269

The code compiles as is.

There is exactly one compiler error in the code.

There are exactly two compiler errors in the code.

If the line(s) with compiler errors are removed, the output is swing-climb.

If the line(s) with compiler errors are removed, the output is swing-swing.

mmOoOoO®P

If the line(s) with compile errors are removed, the code throws a NullPointerException.

How many variables in the following method are effectively final?

public void feed() {
int monkey = 0;
if(monkey > 0) {
var giraffe = monkey++;
String name;
name = "geoffrey";
}
String name = "milly";
var food = 10;
while(monkey <= 10) {
food = 0;
}

name = null;

moowp

1
2
3
4
5

F None of the above. The code does not compile.

What is the output of the following code?

RopeSwing.java

import rope.x;

import static rope.Rope.x*;
public class RopeSwing {

private static Rope ropel = new Rope();
private static Rope rope2 = new Rope();

{

System.out.printin(ropel.length);

270 Chapter 5 = Methods

public static void main(String[] args) {
ropel.length = 2;
rope2.length = 8;
System.out.println(ropel.length);

// Rope.java
package rope;
public class Rope {
public static int length = 0;

}
A. 02
B. 08
C. 2
D. 8
E. The code does not compile.
F An exception is thrown.
14. How many lines in the following code have compiler errors?
1: public class RopeSwing {
2: private static final String leftRope;
3: private static final String rightRope;
4: private static final String bench;
5: private static final String name = "name";
6: static {
7: leftRope = "left";
8: rightRope = "right";
9: }
10: static {
11: name = "name";
12: rightRope = "right";
13: }
14: public static void main(String[] args) {
15: bench = "bench";
16: }
17: }
A. 0

B. 1

F

C.
D.
E

Review Questions

(SIS I]

n

15. Which of the following can replace line 2 to make this code compile? (Choose all that apply.)

1
2
3
4:
5
6
7

®OO\IOWU‘I-I>(A)NI—'6;

T o T e S S T SRR
N U N WN RO

mmoOoOow®

: import java.util.x;
: // INSERT CODE HERE
: public class Imports {

public void method(ArrayList<String> list) {
sort(list);

import static java.util.Collections;

import static java.util.Collections.*;

import static java.util.Collections.sort(ArrayList<String>);
static import java.util.Collections;

static import java.util.Collections.*;

static import java.util.Collections.sort(ArrayList<String>);

What is the result of the following statements?

public class Test {

public void print(byte x) {
System.out.print("byte-");

}

public void print(int x) {
System.out.print("int-");

}

public void print(float x) {
System.out.print("float-");

}

public void print(Object x) {
System.out.print("Object-");

}

public static void main(String[] args) {
Test t = new Test();
short s = 123;
t.print(s);
t.print(true);

272 Chapter 5 = Methods

19: t.print(6.789);
20: }
21:

[

byte-float-Object-
int-float-Object-
byte-Object-float-
int-Object-float-
int-Object-Object-
byte-Object-Object-

Mmoo wp

-
~N

What is the result of the following program?

public class Squares {

public static long square(int x) {
var y = x * (long) x;
X = -1;
return vy;

}

public static void main(String[] args) {
var value = 9;

O 00 N O U b W N B

var result = square(value);
System.out.println(value);
I

=
— ©

-1
9
81

Scowp»

Compiler error on line 9

E. Compiler error on a different line

18. Which of the following are output by the following code? (Choose all that apply.)

public class StringBuilders {

public static StringBuilder work(StringBuilder a,
StringBuilder b) {
a = new StringBuilder("a");
b.append("b");
return a;

}

public static void main(String[] args) {
var sl = new StringBuilder("sl1");
var s2 = new StringBuilder("s2");

-
(3]

©O© o N o b~ W N

[y
(o]

20. Which of the following are true about the following code? (Choose all that apply.)

var s3 = work(sl, s2);

System.out.println("sl = " + sl1);
System.out.println("s2 = " + s2);
System.out.println("s3 = " + s3);

}

A. sl = a

B. s1 = s1

C. s2 = s2

D. s2 = s2b

E. s3 =a

F The code does not compile.

(Choose all that apply.)

public class Order3 {
final String valuel = "red",;
static String value2 = "blue";
String value3 = "yellow";
{
// CODE SNIPPET 1

}
static {
// CODE SNIPPET 2

Pt
A. Insert at line 6: valuel = "green";
B. [Insert at line 6: value2 = "purple";
C. Insert at line 6: value3 = "orange";
D. Insert at line 9: valuel = "magenta";
E. Insertatline 9: value2 = "cyan";
F. Insert at line 9: value3 = "turquoise";

public class Run {

static void execute() {
System.out.print("1-");

}

static void execute(int num) {
System.out.print("2-");

Review Questions

. Which of the following will compile when independently inserted in the following code?

273

214

Chapter 5 = Methods

static void execute(Integer num) {

}

System.out.print("3-");

static void execute(Object num) {

System.out.print("4-");

}

static void execute(int... nums) {
System.out.print("5-");

}

public static void main(String[] args) {

Run.execute(100);
Run.execute(100L);

}
}
A. The code prints out 2-4-.
B. The code prints out 3-4-.
C. The code prints out 4-2-.
D. The code prints out 4-4-.
E. The code prints 3-4- if you remove the method static void execute(int num).
F The code prints 4-4- if you remove the method static void execute(int num).
21. Which method signatures are valid overloads of the following method signature? (Choose all
that apply.)
public void moo(int m, int... n)
A. public void moo(int a, int... b)
B. public int moo(char ch)
C. public void moooo(int... z)
D. private void moo(int... x)
E. public void moooo(int vy)
F. public void moo(int... c, int d)
G. public void moo(int... i, 1int j...)

Class Design

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Utilizing Java Object-Oriented Approach

Create classes and records, and define and use instance and
static fields and methods, constructors, and instance and
static initializers

Understand variable scopes, use local variable type inference,
apply encapsulation, and make objects immutable

Implement polymorphism and differentiate object type versus
reference type. Perform type casting, identify object types
using instanceof operator and pattern matching

In Chapter 1, “Building Blocks,” we introduced the basic def-
inition of a class in Java. In Chapter 5, “Methods,” we delved
into methods and modifiers and showed how you can use them
to build more structured classes. In this chapter, we take things a step further and show how
class structure and inheritance is one of the most powerful features in the Java language.

At its core, proper Java class design is about code reusability, increased functionality,
and standardization. For example, by creating a new class that extends an existing class,
you may gain access to a slew of inherited primitives, objects, and methods, which increases
code reuse.

This chapter is the culmination of some of the most important topics in Java including
inheritance, class design, constructors, order of initialization, overriding methods, abstract
classes, and immutable objects. Read this chapter carefully and make sure you understand all
of the topics well. This chapter forms the basis of Chapter 7, “Beyond Classes,” in which we
expand our discussion of types to include other top-level and nested types.

Understanding Inheritance

When creating a new class in Java, you can define the class as inheriting from an existing
class. Inberitance is the process by which a subclass automatically includes certain members
of the class, including primitives, objects, or methods, defined in the parent class.

For illustrative purposes, we refer to any class that inherits from another class as a sub-
class or child class, as it is considered a descendant of that class. Alternatively, we refer to
the class that the child inherits from as the superclass or parent class, as it is considered an
ancestor of the class.

When working with other types, like interfaces, we tend to use the gen-
TE eral terms subtype and supertype. You see this more in the next chapter.

Declaring a Subclass

Let’s begin with the declaration of a class and its subclass. Figure 6.1 shows an example of a
superclass, Mamma'l, and subclass Rhinoceros.

Understanding Inheritance 277

FIGURE 6.1 Subclass and superclass declarations

public class Mammal { } < Superclass
. final
public or ke class Class
yword Extends parent class
package access (optional) keyword name }\
l‘ l l 4 A\

public final class Rhinoceros extends Mammal { } <— Subclass

We indicate a class is a subclass by declaring it with the extends keyword. We don’t need
to declare anything in the superclass other than making sure it is not marked final. More
on that shortly.

One key aspect of inheritance is that it is transitive. Given three classes [X, Y, Z], if X
extends Y, and Y extends Z, then X is considered a subclass or descendant of Z. Likewise,

Z is a superclass or ancestor of X. We sometimes use the term direct subclass or descendant
to indicate the class directly extends the parent class. For example, X is a direct descendant
only of class Y, not Z.

In the last chapter, you learned that there are four access levels: public, protected,
package, and private. When one class inherits from a parent class, all public and
protected members are automatically available as part of the child class. If the two classes
are in the same package, then package members are available to the child class. Last but not
least, private members are restricted to the class they are defined in and are never available
via inheritance. This doesn’t mean the parent class can’t have private members that can
hold data or modify an object; it just means the subclass doesn’t have direct access to them.

Let’s take a look at a simple example:

public class BigCat {
protected double size;

public class Jaguar extends BigCat {
public Jaguar() {
size = 10.2;
}
public void printDetails() {
System.out.print(size);

278 Chapter 6 = Class Design

public class Spider {
public void printDetails() {
System.out.println(size); // DOES NOT COMPILE

Jaguar is a subclass or child of BigCat, making BigCat a superclass or parent of
Jaguar. In the Jaguar class, size is accessible because it is marked protected. Via inher-
itance, the Jaguar subclass can read or write size as if it were its own member. Contrast
this with the Spider class, which has no access to size since it is not inherited.

Class Modifiers

Like methods and variables, a class declaration can have various modifiers. Table 6.1 lists the
modifiers you should know for the exam.

TABLE 6.1 Class modifiers

Modifier Description Chapter covered
final The class may not be extended. Chapter 6
abstract The class is abstract, may contain abstract methods, Chapter 6

and requires a concrete subclass to instantiate.

sealed The class may only be extended by a specific list of Chapter 7
classes.

non-sealed A subclass of a sealed class permits potentially unnamed Chapter 7
subclasses.

static Used for static nested classes defined within a class. Chapter 7

We cover abstract classes later in this chapter. In the next chapter, we cover sealed
and non-sealed classes, as well as static nested classes.

For now, let’s talk about marking a class final. The final modifier prevents a class
from being extended any further. For example, the following does not compile:

public final class Rhinoceros extends Mammal { }

public class Clara extends Rhinoceros { } // DOES NOT COMPILE

On the exam, pay attention to any class marked final. If you see another class extending
it, you know immediately the code does not compile.

Understanding Inheritance 279

Single vs. Multiple Inheritance

Java supports single inheritance, by which a class may inherit from only one direct par-
ent class. Java also supports multiple levels of inheritance, by which one class may extend
another class, which in turn extends another class. You can have any number of levels of
inheritance, allowing each descendant to gain access to its ancestor’s members.

To truly understand single inheritance, it may be helpful to contrast it with multiple inher-
itance, by which a class may have multiple direct parents. By design, Java doesn’t support
multiple inheritance in the language because multiple inheritance can lead to complex, often
difficult-to-maintain data models. Java does allow one exception to the single inheritance
rule, which you see in Chapter 7—a class may implement multiple interfaces.

Figure 6.2 illustrates the various types of inheritance models. The items on the left are
considered single inheritance because each child has exactly one parent. You may notice that
single inheritance doesn’t preclude parents from having multiple children. The right side
shows items that have multiple inheritance. As you can see, a Dog object has multiple parent
designations.

FIGURE 6.2 Types of inheritance

CEICEICOENCIIE)

Single Inheritance Multiple Inheritance

Part of what makes multiple inheritance complicated is determining which parent to
inherit values from in case of a conflict. For example, if you have an object or method
defined in all of the parents, which one does the child inherit? There is no natural ordering
for parents in this example, which is why Java avoids these issues by disallowing multiple
inberitance altogether.

Inheriting Object

Throughout our discussion of Java in this book, we have thrown around the word object
numerous times—and with good reason. In Java, all classes inherit from a single class:
java.lang.0Object, or Object for short. Furthermore, Object is the only class that
doesn’t have a parent class.

280 Chapter 6 = Class Design

You might be wondering, “None of the classes I've written so far extend Object, so
how do all classes inberit from it?” The answer is that the compiler has been automatically
inserting code into any class you write that doesn’t extend a specific class. For example, the
following two are equivalent:

public class Zoo { }

public class Zoo extends java.lang.Object { }

The key is that when Java sees you define a class that doesn’t extend another class, the
compiler automatically adds the syntax extends java.lang.Object to the class defini-
tion. The result is that every class gains access to any accessible methods in the Object class.
For example, the toString() and equals() methods are available in Object; therefore,
they are accessible in all classes. Without being overridden in a subclass, though, they may
not be particularly useful. We cover overriding methods later in this chapter.

On the other hand, when you define a new class that extends an existing class, Java does
not automatically extend the Object class. Since all classes inherit from Object, extending an
existing class means the child already inherits from Object by definition. If you look at the
inheritance structure of any class, it will always end with Object on the top of the tree, as
shown in Figure 6.3.

FIGURE 6.3 Java object inheritance

java.lang.Object

All objects inherit java.lang.Object

Primitive types such as int and boolean do not inherit from Object, since they are not
classes. As you learned in Chapter 3, through autoboxing they can be assigned or passed as
an instance of an associated wrapper class, which does inherit Object.

Creating Classes 281

Creating Classes

Now that we’ve established how inheritance works in Java, we can use it to define and
create complex class relationships. In this section, we review the basics for creating and
working with classes.

Extending a Class

Let’s create two files in the same package, Animal.java and Lion.java.

// Animal.java
public class Animal {
private int age;
protected String name;
public int getAge() {
return age;
}
public void setAge(int newAge) {
age = newAge;

// Lion.java
public class Lion extends Animal {
protected void setProperties(int age, String n) {
setAge(age);
name = n;
}
public void roar() {
System.out.print(name + ", age " + getAge() + ", says: Roar!");
}
public static void main(String[] args) {
var lion = new Lion();
lion.setProperties(3, "kion");
lion.roar();

282 Chapter 6 = Class Design

There’s a lot going on here, we know! The age variable exists in the parent Animal
class and is not directly accessible in the Lion child class. It is indirectly accessible via
the setAge () method. The name variable is protected, so it is inherited in the Lion
class and directly accessible. We create the Lion instance in the main() method and use
setProperties() to set instance variables. Finally, we call the roar () method, which
prints the following:

kion, age 3, says: Roar!

Let’s take a look at the members of the Lion class. The instance variable age is marked
private and is not directly accessible from the subclass Lion. Therefore, the following
would not compile:

public class Lion extends Animal {

public void roar() {
System.out.print("Lions age: " + age); // DOES NOT COMPILE

Remember when working with subclasses that private members are never inherited,
and package members are only inherited if the two classes are in the same package. If you
need a refresher on access modifiers, it may help to read Chapter 5 again.

Applying Class Access Modifiers

Like variables and methods, you can apply access modifiers to classes. As you might
remember from Chapter 1, a top-level class is one not defined inside another class. Also
remember that a . java file can have at most one top-level class.

While you can only have one top-level class, you can have as many classes (in any order)
with package access as you want. In fact, you don’t even need to declare a public class! The
following declares three classes, each with package access:

// Bear.java
class Bird {}
class Bear {}
class Fish {}

Trying to declare a top-level class with protected or private class will lead to a com-
piler error, though:
// ClownFish.java
protected class ClownFish{} // DOES NOT COMPILE

// BlueTang.java
private class BlueTang {} // DOES NOT COMPILE

Creating Classes 283

Does that mean a class can never be declared protected or private? Not exactly. In
Chapter 7, we present nested types and show that when you define a class inside another, it
can use any access modifier.

Accessing the this Reference

What happens when a method parameter has the same name as an existing instance vari-
able? Let’s take a look at an example. What do you think the following program prints?

public class Flamingo {
private String color = null;
public void setColor(String color) {
color = color;

}

public static void main(String... unused) {
var f = new Flamingo();
f.setColor ("PINK");
System.out.print(f.color);

}

If you said null, then you’d be correct. Java uses the most granular scope, so when it
sees color = color, it thinks you are assigning the method parameter value to itself (not
the instance variable). The assignment completes successfully within the method, but the
value of the instance variable color is never modified and is null when printed in the
main() method.

The fix when you have a local variable with the same name as an instance variable is
to use the this reference or keyword. The this reference refers to the current instance of the
class and can be used to access any member of the class, including inherited members. It can
be used in any instance method, constructor, or instance initializer block. It cannot be used
when there is no implicit instance of the class, such as in a static method or statc initializer
block. We apply this to our previous method implementation as follows:

public void setColor(String color) {
this.color = color; // Sets the instance variable with method parameter

}

The corrected code will now print PINK as expected. In many cases, the this reference is
optional. If Java encounters a variable or method it cannot find, it will check the class hier-
archy to see if it is available.

Now let’s look at some examples that aren’t common but that you might see on the exam.

1: public class Duck {
2: private String color;
3: private int height;

284 Chapter 6 = Class Design

4 private int length;
5
6: public void setData(int length, int theHeight) {
T: length = this.length; // Backwards -- no good!
8 height = theHeight; // Fine, because a different name
9: this.color = "white"; // Fine, but this. reference not necessary
10: }
11:
12: public static void main(String[] args) {
13: Duck b = new Duck();
14: b.setData(1,2);
15: System.out.print(b.length + " " + b.height + " " + b.color);
16: 1}
This code compiles and prints the following;:
0 2 white

This might not be what you expected, though. Line 7 is incorrect, and you should watch
for it on the exam. The instance variable length starts out with a © value. That 0 is assigned
to the method parameter length. The instance variable stays at 0. Line 8 is more straight-
forward. The parameter theHeight and instance variable height have different names.
Since there is no naming collision, this is not required. Finally, line 9 shows that a vari-
able assignment is allowed to use the this reference even when there is no duplication of
variable names.

Calling the super Reference

In Java, a variable or method can be defined in both a parent class and a child class. This
means the object instance actually holds two copies of the same variable with the same
underlying name. When this happens, how do we reference the version in the parent class
instead of the current class? Let’s take a look at an example.

// Reptile.java

1: public class Reptile {

2: protected int speed = 10;

3}

// Crocodile.java
1: public class Crocodile extends Reptile {
2: protected int speed = 20;
public int getSpeed() {
return speed;
}
public static void main(String[] data) {

o b~ W

Creating Classes 285

7: var croc = new Crocodile();
8: System.out.println(croc.getSpeed()); // 20
9: Pl

One of the most important things to remember about this code is that an instance of
Crocodile stores two separate values for speed: one at the Reptile level and one at the
Crocodile level. On line 4, Java first checks to see if there is a local variable or method
parameter named speed. Since there is not, it then checks this.speed; and since it exists,
the program prints 20.

y Declaring a variable with the same name as an inherited variable is
,&TE referred to as hiding a variable and is discussed later in this chapter.

But what if we want the program to print the value in the Reptile class? Within the
Crocodile class, we can access the parent value of speed, instead, by using the super
reference or keyword. The super reference is similar to the this reference, except that it
excludes any members found in the current class. In other words, the member must be acces-
sible via inheritance.

3: public int getSpeed() {
4. return super.speed; // Causes the program to now print 10
5: }

Let’s see if you’ve gotten the hang of this and super. What does the following
program output?

1: class Insect {

2 protected int numberOfLegs = 4;

3 String label = "buggy";

4: 3

5:

6: public class Beetle extends Insect {

7 protected int numberOfLegs = 6;

8 short age = 3;

9: public void printData() {

10: System.out.println(this.label);
11: System.out.println(super.label);
12: System.out.println(this.age);

13: System.out.println(super.age);
14: System.out.println(numberOfLegs) ;
15: }

16: public static void main(String [In) {
17: new Beetle().printData();

18: }

19: }

286 Chapter 6 = Class Design

That was a trick question—this program code would not compile! Let’s review each line
of the printData() method. Since label is defined in the parent class, it is accessible via
both th1is and super references. For this reason, lines 10 and 11 compile and would both
print buggy if the class compiled. On the other hand, the variable age is defined only in the
current class, making it accessible via th+is but not super. For this reason, line 12 compiles
(and would print 3), but line 13 does not. Remember, while th+is includes current and inher-
ited members, super only includes inherited members.

Last but not least, what would line 14 print if line 13 was commented out? Even though
both numberOfLegs variables are accessible in Beetle, Java checks outward, starting with
the narrowest scope. For this reason, the value of numberOfLegs in the Beetle class is
used, and 6 is printed. In this example, this.numberOfLegs and super.numberOfLegs
refer to different variables with distinct values.

Since this includes inherited members, you often only use super when you have a naming
conflict via inheritance. For example, you have a method or variable defined in the current
class that matches a method or variable in a parent class. This commonly comes up in
method overriding and variable hiding, which are discussed later in this chapter.

Phew, that was a lot! Using this and super can take a little getting used to. Since we use
them often in upcoming sections, make sure you understand the last example really well
before moving forward.

Declaring Constructors

As you learned in Chapter 1, a constructor is a special method that matches the name of the
class and has no return type. It is called when a new instance of the class is created. For the
exam, you’ll need to know a lot of rules about constructors. In this section, we show how to
create a constructor. Then, we look at default constructors, overloading constructors, calling
parent constructors, final fields, and the order of initialization in a class.

Creating a Constructor

Let’s start with a simple constructor:

public class Bunny {
public Bunny() {
System.out.print("hop");

The name of the constructor, Bunny, matches the name of the class, Bunny, and there is
no return type, not even void. That makes this a constructor. Can you tell why these two are
not valid constructors for the Bunny class?

public class Bunny {

Declaring Constructors 287

public bunny() {} // DOES NOT COMPILE
public void Bunny() {}

The first one doesn’t match the class name because Java is case-sensitive. Since it doesn’t
match, Java knows it can’t be a constructor and is supposed to be a regular method. How-
ever, it is missing the return type and doesn’t compile. The second method is a perfectly good
method but is not a constructor because it has a return type.

Like method parameters, constructor parameters can be any valid class, array, or prim-
itive type, including generics, but may not include var. For example, the following does
not compile:

public class Bonobo {
public Bonobo(var food) { // DOES NOT COMPILE
}

A class can have multiple constructors, as long as each constructor has a unique con-
structor signature. In this case, that means the constructor parameters must be distinct. Like
methods with the same name but different signatures, declaring multiple constructors with
different signatures is referred to as constructor overloading. The following Turtle class has
four distinct overloaded constructors:

public class Turtle {

private String name;

public Turtle() {
name = "John Doe";

}

public Turtle(int age) {}

public Turtle(long age) {}

public Turtle(String newName, String... favoriteFoods) {
name = newName;

Constructors are used when creating a new object. This process is called instantiation
because it creates a new instance of the class. A constructor is called when we write new fol-
lowed by the name of the class we want to instantiate. Here’s an example:

new Turtle(15)

When Java sees the new keyword, it allocates memory for the new object. It then looks
for a constructor with a matching signature and calls it.

The Default Constructor

Every class in Java has a constructor, whether you code one or not. If you don’t include
any constructors in the class, Java will create one for you without any parameters.

288 Chapter 6 = Class Design

This Java-created constructor is called the default constructor and is added any time a class
is declared without any constructors. We often refer to it as the default no-argument con-
structor, for clarity. Here’s an example:

public class Rabbit {
public static void main(String[] args) {
new Rabbit(); // Calls the default constructor

In the Rabb-it class, Java sees that no constructor was coded and creates one. The
previous class is equivalent to the following, in which the default constructor is provided and
therefore not inserted by the compiler:

public class Rabbit {
public Rabbit() {}
public static void main(String[] args) {
new Rabbit(); // Calls the user-defined constructor

The default constructor has an empty parameter list and an empty body. It is fine for you
to type this in yourself. However, since it doesn’t do anything, Java is happy to generate it
for you and save you some typing.

We keep saying generated. This happens during the compile step. If you look at the file
with the . java extension, the constructor will still be missing. It only makes an appearance in
the compiled file with the . class extension.

For the exam, one of the most important rules you need to know is that the compiler only
inserts the default constructor when no constructors are defined. Which of these classes do
you think has a default constructor?

public class Rabbitl {}
public class Rabbit2 {

public Rabbit2() {}

public class Rabbit3 {
public Rabbit3(boolean b) {}

public class Rabbit4 {
private Rabbit4() {}

Declaring Constructors 289

Only Rabbitl gets a default no-argument constructor. It doesn’t have a constructor
coded, so Java generates a default no-argument constructor. Rabbit2 and Rabbit3
both have public constructors already. Rabb+it4 has a private constructor. Since
these three classes have a constructor defined, the default no-argument constructor is not
inserted for you.

Let’s take a quick look at how to call these constructors:

1: public class RabbitsMultiply {

2 public static void main(String[] args) {

3 var rl = new Rabbitl();

4: var r2 = new Rabbit2();

5 var r3 = new Rabbit3(true);

6 var r4 = new Rabbit4(); // DOES NOT COMPILE
7

P}

Line 3 calls the generated default no-argument constructor. Lines 4 and 5 call the user-
provided constructors. Line 6 does not compile. Rabbit4 made the constructor private so
that other classes could not call it.

Having only private constructors in a class tells the compiler not to

ITE provide a default no-argument constructor. It also prevents other classes
from instantiating the class. This is useful when a class has only static
methods or the developer wants to have full control of all calls to create
new instances of the class.

Calling Overloaded Constructors with this()

Have the basics about creating and referencing constructors? Good, because things are about
to get a bit more complicated. Since a class can contain multiple overloaded constructors,
these constructors can actually call one another. Let’s start with a simple class containing
two overloaded constructors:

public class Hamster {

private String color;

private int weight;

public Hamster(int weight, String color) { // First constructor
this.weight = weight;
this.color = color;

}

public Hamster(int weight) { // Second constructor
this.weight = weight;
color = "brown";

290 Chapter 6 = Class Design

One of the constructors takes a single int parameter. The other takes an int and a
String. These parameter lists are different, so the constructors are successfully overloaded.

There is a bit of duplication, as this.weight is assigned the same way in both construc-
tors. In programming, even a bit of duplication tends to turn into a lot of duplication as we
keep adding “just one more thing.” For example, imagine that we have five variables being
set like this.we1ight, rather than just one. What we really want is for the first constructor
to call the second constructor with two parameters. So, how can you have a constructor call
another constructor? You might be tempted to rewrite the first constructor as the following:

public Hamster (int weight) { // Second constructor
Hamster (weight, "brown"); // DOES NOT COMPILE
}

This will not work. Constructors can be called only by writing new before the name of
the constructor. They are not like normal methods that you can just call. What happens if we
stick new before the constructor name?

public Hamster (int weight) { // Second constructor
new Hamster(weight, "brown"); // Compiles, but creates an extra object

}

This attempt does compile. It doesn’t do what we want, though. When this constructor is
called, it creates a new object with the default weight and color. It then constructs a differ-
ent object with the desired weight and color. In this manner, we end up with two objects,
one of which is discarded after it is created. That’s not what we want. We want weight and
color set on the object we are trying to instantiate in the first place.

Java provides a solution: this ()—yes, the same keyword we used to refer to instance
members, but with parentheses. When this () is used with parentheses, Java calls another
constructor on the same instance of the class.

public Hamster (int weight) { // Second constructor
this(weight, "brown");
}

Success! Now Java calls the constructor that takes two parameters, with weight and
color set as expected.

this vs. this()

Despite using the same keyword, this and this () are very different. The first, this,
refers to an instance of the class, while the second, this (), refers to a constructor call
within the class. The exam may try to trick you by using both together, so make sure you
know which one to use and why.

Declaring Constructors 291

Calling this () has one special rule you need to know. If you choose to call it, the this () call
must be the first statement in the constructor. The side effect of this is that there can be only
one call to this() in any constructor.

3: public Hamster (int weight) {

4: System.out.println("chew");

5: // Set weight and default color

6: this(weight, "brown"); // DOES NOT COMPILE
7. }

Even though a print statement on line 4 doesn’t change any variables, it is still a Java
statement and is not allowed to be inserted before the call to this (). The comment on line
5 is just fine. Comments aren’t considered statements and are allowed anywhere.

There’s one last rule for overloaded constructors that you should be aware of. Consider
the following definition of the Gopher class:

public class Gopher {
public Gopher(int dugHoles) {
this(5); // DOES NOT COMPILE

The compiler is capable of detecting that this constructor is calling itself infinitely. This is
often referred to as a cycle and is similar to the infinite loops that we discussed in Chapter 3,
“Making Decisions.” Since the code can never terminate, the compiler stops and reports this
as an error. Likewise, this also does not compile:
public class Gopher {

public Gopher() {
this(5); // DOES NOT COMPILE
}
public Gopher(int dugHoles) {
this(); // DOES NOT COMPILE

In this example, the constructors call each other, and the process continues infinitely. Since
the compiler can detect this, it reports an error.

Here we summarize the rules you should know about constructors that we covered in this
section. Study them well!

» A class can contain many overloaded constructors, provided the signature for each
is distinct.

» The compiler inserts a default no-argument constructor if no constructors are declared.
» If a constructor calls this (), then it must be the first line of the constructor.

= Java does not allow cyclic constructor calls.

292 Chapter 6 = Class Design

Calling Parent Constructors with super()

Congratulations: you’re well on your way to becoming an expert in using constructors!
There’s one more set of rules we need to cover, though, for calling constructors in the parent
class. After all, how do instance members of the parent class get initialized?

The first statement of every constructor is a call to a parent constructor using super () or
another constructor in the class using this (). Read the previous sentence twice to make sure
you remember it. It’s really important!

y For simplicity in this section, we often refer to super() and this() to
‘dTE refer to any parent or overloaded constructor call, even those that take
arguments.

Let’s take a look at the Animal class and its subclass Zebra and see how their construc-
tors can be properly written to call one another:

public class Animal {
private int age;
public Animal(int age) {
super(); // Refers to constructor in java.lang.Object
this.age = age;

public class Zebra extends Animal {
public Zebra(int age) {
super(age); // Refers to constructor in Animal

}
public Zebra() {

this(4); // Refers to constructor in Zebra with int argument
}

In the Animal class, the first statement of the constructor is a call to the parent con-
structor defined in java.lang.Object, which takes no arguments. In the second class,
Zebra, the first statement of the first constructor is a call to Animal’s constructor, which
takes a single argument. The Zebra class also includes a second no-argument constructor
that doesn’t call super () but instead calls the other constructor within the Zebra class
using this(4).

Declaring Constructors 293

super vs. super()

Like this and this(), super and super () are unrelated in Java.The first, super, is
used to reference members of the parent class, while the second, super (), calls a par-
ent constructor. Anytime you see the keyword super on the exam, make sure it is being
used properly.

Like calling this (), calling super () can only be used as the first statement of the constructor.
For example, the following two class definitions will not compile:
public class Zoo {
public Zoo() {
System.out.println("Zoo created");
super () // DOES NOT COMPILE

public class Zoo {
public Zoo() {

super();
System.out.println("Zoo created");
super(); // DOES NOT COMPILE

The first class will not compile because the call to the parent constructor must be the first
statement of the constructor. In the second code snippet, super () is the first statement of
the constructor, but it is also used as the third statement. Since super () can only be called
once as the first statement of the constructor, the code will not compile.

If the parent class has more than one constructor, the child class may use any valid parent
constructor in its definition, as shown in the following example:

public class Animal {
private int age;
private String name;
public Animal(int age, String name) {
super();
this.age = age;

294 Chapter 6 = Class Design

this.name = name;

}

public Animal(int age) {
super();
this.age = age;
this.name = null;

public class Gorilla extends Animal {
public Gorilla(int age) {
super (age,"Gorilla"); // Calls the first Animal constructor

}
public Gorilla() {
super(5); // Calls the second Animal constructor

In this example, the first child constructor takes one argument, age, and calls the parent
constructor, which takes two arguments, age and name. The second child constructor takes
no arguments, and it calls the parent constructor, which takes one argument, age. In this
example, notice that the child constructors are not required to call matching parent con-
structors. Any valid parent constructor is acceptable as long as the appropriate input param-
eters to the parent constructor are provided.

Understanding Compiler Enhancements

Wait a second: we said the first line of every constructor is a call to either this () or super (), but
we’ve been creating classes and constructors throughout this book, and we’ve rarely done
either. How did these classes compile?

The answer is that the Java compiler automatically inserts a call to the no-argument con-
structor super () if you do not explicitly call this () or super () as the first line of a constructor.
For example, the following three class and constructor definitions are equivalent, because the
compiler will automatically convert them all to the last example:

public class Donkey {}

public class Donkey {
public Donkey() {}

Declaring Constructors 295

public class Donkey {
public Donkey() {
super () ;

Make sure you understand the differences between these three Donkey class definitions
and why Java will automatically convert them all to the last definition. While reading the
next section, keep in mind the process the Java compiler performs.

Default Constructor Tips and Tricks

We’ve presented a lot of rules so far, and you might have noticed something. Let’s say we
have a class that doesn’t include a no-argument constructor. What happens if we define a
subclass with no constructors, or a subclass with a constructor that doesn’t include a super ()
reference?

public class Mammal {
public Mammal(int age) {}

public class Seal extends Mammal {} // DOES NOT COMPILE

public class Elephant extends Mammal {
public Elephant() {} // DOES NOT COMPILE

The answer is that neither subclass compiles. Since Mamma'l defines a constructor, the
compiler does not insert a no-argument constructor. The compiler will insert a default no-
argument constructor into Sea'l, though, but it will be a simple implementation that just
calls a nonexistent parent default constructor.

public class Seal extends Mammal {
public Seal() {
super()s // DOES NOT COMPILE

Likewise, Elephant will not compile for similar reasons. The compiler doesn’t see a call
to super () or this() as the first line of the constructor so it inserts a call to a nonexistent
no-argument super () automatically.

public class Elephant extends Mammal {
public Elephant() {
super(); // DOES NOT COMPILE

296 Chapter 6 = Class Design

In these cases, the compiler will not help, and you must create at least one constructor in
your child class that explicitly calls a parent constructor via the super () command.

public class Seal extends Mammal {
public Seal() {
super(6); // Explicit call to parent constructor

public class Elephant extends Mammal {
public Elephant() {
super(4); // Explicit call to parent constructor

Subclasses may include no-argument constructors even if their parent classes do not. For
example, the following compiles because Elephant includes a no-argument constructor:
public class AfricanElephant extends Elephant {}

It’s a lot to take in, we know. For the exam, you should be able to spot right away why
classes such as our first Seal and Elephant implementations did not compile.

super() Always Refers to the Most Direct Parent

A class may have multiple ancestors via inheritance. In our previous example,
AfricanElephant is a subclass of ELlephant, which in turn is a subclass of Mamma'l. For
constructors, though, super () always refers to the most direct parent. In this example,
calling super () inside the AfricanElephant class always refers to the Elephant class
and never to the Mamma'l class.

We conclude this section by adding three constructor rules to your skill set:

= The first line of every constructor is a call to a parent constructor using super () or an
overloaded constructor using this ().

= If the constructor does not contain a this() or super () reference, then the compiler
automatically inserts super () with no arguments as the first line of the constructor.

= If a constructor calls super (), then it must be the first line of the constructor.

Congratulations: you’ve learned everything we can teach you about declaring construc-
tors. Next, we move on to initialization and discuss how to use constructors.

Initializing Objects 297

Initializing Objects

In Chapter 1, we covered order of initialization, albeit in a very simplistic manner. Order of
initialization refers to how members of a class are assigned values. They can be given default
values, like 0 for an int, or require explicit values, such as for final variables. In this section,
we go into much more detail about how order of initialization works and how to spot errors
on the exam.

Initializing Classes

We begin our discussion of order of initialization with class initialization. First, we initialize
the class, which involves invoking all static members in the class hierarchy, starting with the
highest superclass and working downward. This is sometimes referred to as loading the class.
The Java Virtual Machine (JVM) controls when the class is initialized, although you can
assume the class is loaded before it is used. The class may be initialized when the program
first starts, when a static member of the class is referenced, or shortly before an instance of
the class is created.

One of the most important rules with class initialization is that it happens at most once
for each class. The class may also never be loaded if it is not used in the program. We sum-
marize the order of initialization for a class as follows:

Initialize Class X
1. If there is a superclass Y of X, then initialize class Y first.
2. Process all static variable declarations in the order in which they appear in the class.
3. Process all static initializers in the order in which they appear in the class.
Taking a look at an example, what does the following program print?

public class Animal {
static { System.out.print("A"); }

public class Hippo extends Animal {

public static void main(String[] grass) {
System.out.print("C");
new Hippo();
new Hippo();
new Hippo();

}

static { System.out.print("B"); }

298 Chapter 6 = Class Design

It prints ABC exactly once. Since the main () method is inside the Hippo class, the class
will be initialized first, starting with the superclass and printing AB. Afterward, the main ()
method is executed, printing C. Even though the main () method creates three instances, the
class is loaded only once.

Why the Hippo Program Printed C After AB

In the previous example, the Hippo class was initialized before the main () method was
executed. This happened because our main () method was inside the class being executed,
so it had to be loaded on startup. What if you instead called Hippo inside another program?

public class HippoFriend {
public static void main(String[] grass) {
System.out.print("C");
new Hippo();

}

Assuming the class isn’t referenced anywhere else, this program will likely print CAB, with
the Hippo class not being loaded until it is needed inside the main () method. We say
likely because the rules for when classes are loaded are determined by the JVM at runtime.
For the exam, you just need to know that a class must be initialized before it is referenced
or used. Also, the class containing the program entry point, aka the main () method, is
loaded before the main () method is executed.

Initializing final Fields

Before we delve into order of initialization for instance members, we need to talk about final
fields (instance variables) for a minute. When we presented instance and class variables in
Chapter 1, we told you they are assigned a default value based on their type if no value is
specified. For example, a double is initialized with 0.0, while an object reference is initialized
to null. A default value is only applied to a non-final field, though.

As you saw in Chapter 5, final static variables must be explicitly assigned a value
exactly once. Fields marked final follow similar rules. They can be assigned values in the
line in which they are declared or in an instance initializer.

public class MouseHouse {
private final int volume;
private final String name = "The Mouse House"; // Declaration assignment

{

Initializing Objects 299

volume = 10; // Instance initializer assignment

Unlike static class members, though, final instance fields can also be set in a con-
structor. The constructor is part of the initialization process, so it is allowed to assign final
instance variables. For the exam, you need to know one important rule: by the time the con-
structor completes, all final instance variables must be assigned a value exactly once.

Let’s try this out in an example:

public class MouseHouse {
private final int volume;
private final String name;
public MouseHouse() {
this.name = "Empty House"; // Constructor assignment

volume = 103 // Instance initializer assignment

Unlike local final variables, which are not required to have a value unless they are actu-
ally used, final instance variables must be assigned a value. If they are not assigned a value
when they are declared or in an instance initializer, then they must be assigned a value in
the constructor declaration. Failure to do so will result in a compiler error on the line that
declares the constructor.

public class MouseHouse {

private final int volume;

private final String type;

{
this.volume = 10;

}

public MouseHouse(String type) {
this.type = type;

}

public MouseHouse() { // DOES NOT COMPILE
this.volume = 2; // DOES NOT COMPILE

In this example, the first constructor that takes a String argument compiles. In terms
of assigning values, each constructor is reviewed individually, which is why the second con-
structor does not compile. First, the constructor fails to set a value for the type variable.

http://this.name

300 Chapter 6 = Class Design

The compiler detects that a value is never set for type and reports an error on the line where
the constructor is declared. Second, the constructor sets a value for the volume variable,
even though it was already assigned a value by the instance initializer.

)/ On the exam, be wary of any instance variables marked final. Make
,@TE sure they are assigned a value in the line where they are declared, in an
instance initializer, or in a constructor. They should be assigned a value
only once, and failure to assign a value is considered a compiler error in
the constructor.

What about final instance variables when a constructor calls another constructor in the
same class? In that case, you have to follow the flow carefully, making sure every final in-
stance variable is assigned a value exactly once. We can replace our previous bad constructor
with the following one that does compile:

public MouseHouse() {
this(null);
}

This constructor does not perform any assignments to any final instance variables, but
it calls the MouseHouse (String) constructor, which we observed compiles without issue.
We use null here to demonstrate that the variable does not need to be an object value. We
can assign a null value to final instance variables as long as they are explicitly set.

Initializing Instances

We’ve covered class initialization and final fields, so now it’s time to move on to order of
initialization for objects. We’ll warn you that this can be a bit cumbersome at first, but the
exam isn’t likely to ask questions more complicated than the examples in this section. We
promise to take it slowly, though.

First, start at the lowest-level constructor where the new keyword is used. Remember, the
first line of every constructor is a call to this () or super (), and if omitted, the compiler will
automatically insert a call to the parent no-argument constructor super (). Then, progress
upward and note the order of constructors. Finally, initialize each class starting with the
superclass, processing each instance initializer and constructor in the reverse order in which
it was called. We summarize the order of initialization for an instance as follows:

Initialize Instance of X

1. Initialize class X if it has not been previously initialized.

If there is a superclass Y of X, then initialize the instance of Y first.

Process all instance variable declarations in the order in which they appear in the class.

Process all instance initializers in the order in which they appear in the class.

A S

Initialize the constructor, including any overloaded constructors referenced with this ().

Initializing Objects

Let’s try an example with no inheritance. See if you can figure out what the following

application outputs:

1
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

public class ZooTickets {
private String name = "BestZoo";
{ System.out.print(name + "-"); 1}
private static int COUNT = 0;
static { System.out.print(COUNT + "-"); }
static { COUNT += 10; System.out.print(COUNT + "-"); 1}

public ZooTickets() {
System.out.print("z-");

public static void main(String... patrons) {
new ZooTickets();

13

The output is as follows:

0-10-BestZoo-z-

First, we have to initialize the class. Since there is no superclass declared, which means

the superclass is Object, we can start with the static components of ZooT1ickets. In
this case, lines 4, 5, and 6 are executed, printing 0- and 10-. Next, we initialize the instance
created on line 13. Again, since no superclass is declared, we start with the instance compo-

nents. Lines 2 and 3 are executed, which prints BestZoo-. Finally, we run the constructor

on lines 8-10, which outputs z-.

Next, let’s try a simple example with inheritance:

class Primate {

public Primate() {
System.out.print("Primate-");

1}

class Ape extends Primate {

public Ape(int fur) {
System.out.print("Apel-");

}

public Ape() {
System.out.print("Ape2-");

Tt

301

302 Chapter 6 = Class Design

public class Chimpanzee extends Ape {
public Chimpanzee() {
super(2);
System.out.print("Chimpanzee-");
}
public static void main(String[] args) {
new Chimpanzee();

b}

The compiler inserts the super () command as the first statement of both the Primate
and Ape constructors. The code will execute with the parent constructors called first and
yield the following output:

Primate-Apel-Chimpanzee-

Notice that only one of the two Ape () constructors is called. You need to start with the
call to new Chimpanzee() to determine which constructors will be executed. Remember,
constructors are executed from the bottom up, but since the first line of every constructor is
a call to another constructor, the flow ends up with the parent constructor executed before
the child constructor.

The next example is a little harder. What do you think happens here?

1: public class Cuttlefish {

2 private String name = "swimmy";

3 { System.out.println(name); }

4: private static int COUNT = 0;

5: static { System.out.println(COUNT); }

6 { COUNT++; System.out.println(COUNT); }
7
8
9

public Cuttlefish() {
System.out.println("Constructor");

12: public static void main(String[] args) {
13: System.out.println("Ready");

14: new Cuttlefish();

15: 1}

The output looks like this:

0

Ready
swimmy

1
Constructor

Initializing Objects 303

No superclass is declared, so we can skip any steps that relate to inheritance. We first
process the static variables and static initializers—lines 4 and 5, with line § printing
0. Now that the static initializers are out of the way, the main () method can run, which
prints Ready. Next we create an instance declared on line 14. Lines 2, 3, and 6 are pro-
cessed, with line 3 printing swimmy and line 6 printing 1. Finally, the constructor is run on
lines 8-10, which prints Constructor.

Ready for a more difficult example, the kind you might see on the exam? What does the
following output?

1: class GiraffeFamily {

2 static { System.out.print("A"); }

3 { System.out.print("B"); }

4

5: public GiraffeFamily(String name) {
6 this(1);

7 System.out.print("C");

8 }

9:

10: public GiraffeFamily() {

11: System.out.print('"D");

12: }

13:

14: public GiraffeFamily(int stripes) {
15: System.out.print("E");

16: }

17: }

18: public class Okapi extends GiraffeFamily {
19: static { System.out.print("F"); }
20:

21: public Okapi(int stripes) {

22: super ("sugar");

23: System.out.print("G");

24 }

25: { System.out.print("H"); }

26:

27: public static void main(String[] grass) {
28: new Okapi(l);

29: System.out.println();

30: new Okapi(2);

31: }

32: }

304 Chapter 6 = Class Design

The program prints the following:

AFBECHG
BECHG

Let’s walk through it. Start with initializing the Okap class. Since it has a superclass
GiraffeFamily, initialize it first, printing A on line 2. Next, initialize the Okapi class,
printing F on line 19.

After the classes are initialized, execute the main () method on line 27. The first line of the
main() method creates a new Okapi object, triggering the instance initialization process. Per
the first rule, the superclass instance of GiraffeFamily is initialized first. Per our third rule, the
instance initializer in the superclass GiraffeFamily is called, and B is printed on line 3. Per the
fourth rule, we initialize the constructors. In this case, this involves calling the constructor
on line 5, which in turn calls the overloaded constructor on line 14. The result is that EC is
printed, as the constructor bodies are unwound in the reverse order that they were called.

The process then continues with the initialization of the Okap1 instance itself. Per the third
and fourth rules, H is printed on line 25, and G is printed on line 23, respectively. The pro-
cess is a lot simpler when you don’t have to call any overloaded constructors. Line 29 then
inserts a line break in the output. Finally, line 30 initializes a new Okapi object. The order
and initialization are the same as line 28, sans the class initialization, so BECHG is printed
again. Notice that D is never printed, as only two of the three constructors in the superclass
GiraffeFamily are called.

This example is tricky for a few reasons. There are multiple overloaded constructors, lots
of initializers, and a complex constructor pathway to keep track of. Luckily, questions like
this are uncommon on the exam. If you see one, just write down what is going on as you
read the code.

We conclude this section by listing important rules you should know for the exam:

= A class is initialized at most once by the JVM before it is referenced or used.

» All static final variables must be assigned a value exactly once, either when they
are declared or in a static initializer.

= All final fields must be assigned a value exactly once, either when they are declared, in an
instance initializer, or in a constructor.

= Non-final static and instance variables defined without a value are assigned a
default value based on their type.

= Order of initialization is as follows: variable declarations, then initializers, and finally
constructors.

Inheriting Members

Now that we’ve created a class, what can we do with it? One of Java’s biggest strengths is
leveraging its inheritance model to simplify code. For example, let’s say you have five classes,
each of which extends from the Animal class. Furthermore, each class defines an eat () method

Inheriting Members 305

with an identical implementation. In this scenario, it’s a lot better to define eat () once in the
Animal class than to have to maintain the same method in five separate classes.

Inheriting a class not only grants access to inherited methods in the parent class but also
sets the stage for collisions between methods defined in both the parent class and the sub-
class. In this section, we review the rules for method inheritance and how Java handles such
scenarios.

We refer to the ability of an object to take on many different forms as polymorphism. We
cover this more in the next chapter, but for now you just need to know that an object can be
used in a variety of ways, in part based on the reference variable used to call the object.

Overriding a Method

What if a method with the same signature is defined in both the parent and child classes? For
example, you may want to define a new version of the method and have it behave differently
for that subclass. The solution is to override the method in the child class. In Java, overriding
a method occurs when a subclass declares a new implementation for an inherited method
with the same signature and compatible return type.

)/ Remember that a method signature is composed of the name of the
dng method and method parameters. It does not include the return type,
access modifiers, optional specifiers, or any declared exceptions.

When you override a method, you may still reference the parent version of the method
using the super keyword. In this manner, the keywords this and super allow you to select
between the current and parent versions of a method, respectively. We illustrate this with the
following example:

public class Marsupial {
public double getAverageWeight() {
return 50;

}
public class Kangaroo extends Marsupial {
public double getAverageWeight() {
return super.getAverageWeight()+20;
}
public static void main(String[] args) {
System.out.println(new Marsupial().getAverageWeight()); // 50.0
System.out.println(new Kangaroo().getAverageWeight()); // 70.0

306 Chapter 6 = Class Design

In this example, the Kangaroo class overrides the getAverageWeight () method but in
the process calls the parent version using the super reference.

Method Overriding Infinite Calls

You might be wondering whether the use of super in the previous example was required.
For example, what would the following code output if we removed the super keyword?

public double getAverageWeight() {
return getAverageWeight()+20; // StackOverflowError
}

In this example, the compiler would not call the parent Marsupial method; it would call
the current Kangaroo method. The application will attempt to call itself infinitely and pro-
duce a StackOverflowError at runtime.

To override a method, you must follow a number of rules. The compiler performs the fol-
lowing checks when you override a method:

1. The method in the child class must have the same signature as the method in the
parent class.

2. The method in the child class must be at least as accessible as the method in the
parent class.

3. The method in the child class may not declare a checked exception that is new or
broader than the class of any exception declared in the parent class method.

4. If the method returns a value, it must be the same or a subtype of the method in the par-
ent class, known as covariant return types.

While these rules may seem confusing or arbitrary at first, they are needed for consistency.
Without these rules in place, it is possible to create contradictions within the Java language.

Rule #1: Method Signatures

The first rule of overriding a method is somewhat self-explanatory. If two methods have the
same name but different signatures, the methods are overloaded, not overridden. Overloaded
methods are considered independent and do not share the same polymorphic properties as
overridden methods.

Inheriting Members 307

We covered overloading a method in Chapter 5, and it is similar to over-

A 9TE riding a method, as both involve defining a method using the same name.
Overloading differs from overriding in that overloaded methods use a
different parameter list. For the exam, it is important that you understand
this distinction and that overridden methods have the same signature and
a lot more rules than overloaded methods.

Rule #2: Access Modifiers

What’s the purpose of the second rule about access modifiers? Let’s try an illustra-
tive example:

public class Camel {
public int getNumberOfHumps() {
return 1;

1}

public class BactrianCamel extends Camel {
private int getNumberOfHumps() { // DOES NOT COMPILE
return 2;

}}

In this example, BactrianCamel attempts to override the getNumberOfHumps () method
defined in the parent class but fails because the access modifier private is more restrictive
than the one defined in the parent version of the method. Let’s say BactrianCamel was
allowed to compile, though. Would this class compile?

public class Rider {
public static void main(String[] args) {
Camel ¢ = new BactrianCamel();
System.out.print(c.getNumberOfHumps()); // ?2?
Tt

The answer is, we don’t know. The reference type for the object is Camel, where the
method is declared public, but the object is actually an instance of type BactrianCamel,
where the method is declared private. Java avoids these types of ambiguity problems by
limiting overriding a method to access modifiers that are as accessible or more accessible
than the version in the inherited method.

Rule #3: Checked Exceptions

The third rule says that overriding a method cannot declare new checked exceptions or
checked exceptions broader than the inherited method. This is done for polymorphic reasons

308 Chapter 6 = Class Design

similar to limiting access modifiers. In other words, you could end up with an object that is
more restrictive than the reference type it is assigned to, resulting in a checked exception that
is not handled or declared. One implication of this rule is that overridden methods are free
to declare any number of new unchecked exceptions.

)/ If you don’t know what a checked or unchecked exception is, don’t worry.
P TE We cover this in Chapter 11, “Exceptions and Localization.” For now, you
just need to know that the rule applies only to checked exceptions. It’s also
helpful to know that both IOException and FileNotFoundException
are checked exceptions and that FileNotFoundException is a subclass
of IOException.

Let’s try an example:

public class Reptile {
protected void sleep() throws IOException {}

protected void hide() {}

protected void exitShell() throws FileNotFoundException {}

public class GalapagosTortoise extends Reptile {
public void sleep() throws FileNotFoundException {}

public void hide() throws FileNotFoundException {} // DOES NOT COMPILE

public void exitShell() throws IOException {} // DOES NOT COMPILE

In this example, we have three overridden methods. These overridden methods use
the more accessible public modifier, which is allowed per our second rule for overrid-
den methods. The first overridden method sleep() in GalapagosTortoise compiles
without issue because the declared exception is narrower than the exception declared in the
parent class.

The overridden hide () method does not compile because it declares a new checked
exception not present in the parent declaration. The overridden exitShell() also does not com-
pile, since IOException is a broader checked exception than FileNotFoundException. We revisit
these exception classes, including memorizing which ones are subclasses of each other, in
Chapter 11.

Inheriting Members 309

Rule #4: Covariant Return Types

The fourth and final rule around overriding a method is probably the most complicated, as
it requires knowing the relationships between the return types. The overriding method must
use a return type that is covariant with the return type of the inherited method.

Let’s try an example for illustrative purposes:

public class Rhino {
protected CharSequence getName() {
return "rhino";

}
protected String getColor() {
return "grey, black, or white";

1}

public class JavanRhino extends Rhino {
public String getName() {
return "javan rhino";

}
public CharSequence getColor() { // DOES NOT COMPILE
return "grey";

1}

The subclass JavanRhino attempts to override two methods from Rhino: getName ()
and getColor (). Both overridden methods have the same name and signature as the inher-
ited methods. The overridden methods also have a broader access modifier, public, than
the inherited methods. Remember, a broader access modifier is acceptable in an overrid-
den method.

From Chapter 4, “Core APIs,” we learned that String implements the CharSequence
interface, making String a subtype of CharSequence. Therefore, the return type of
getName () in JavanRhino is covariant with the return type of getName () in Rhino.

On the other hand, the overridden getColor () method does not compile because
CharSequence is not a subtype of String. To put it another way, all String values are
CharSequence values, but not all CharSequence values are String values. For instance, a
StringBuilder is a CharSequence but not a String. For the exam, you need to know if
the return type of the overriding method is the same as or a subtype of the return type of the
inherited method.

type A and an overriding return type B, can you assign an instance of B
to a reference variable for A without a cast? If so, then they are covariant.
This rule applies to primitive types and object types alike. If one of the
return types is void, then they both must be void, as nothing is covar-
iant with void except itself.

é/ A simple test for covariance is the following: given an inherited return
P

310 Chapter 6 = Class Design

That’s everything you need to know about overriding methods for this chapter. In
Chapter 9, “Collections and Generics,” we revisit overriding methods involving generics.
There’s always more to learn!

@ Real World Scenario

Marking Methods with the @Override Annotation

An annotation is a metadata tag that provides additional information about your code.
You can use the @Override annotation to tell the compiler that you are attempting to
override a method.

public class Fish {
public void swim() {};

}

public class Shark extends Fish {
@Ooverride
public void swim() {};

}

When used correctly, the annotation doesn’t impact the code. On the other hand, when
used incorrectly, this annotation can prevent you from making a mistake. The following
does not compile because of the presence of the @Override annotation:

public class Fish {
public void swim() {};
}

public class Shark extends Fish {

@Override

public void swim(int speed) {}; // DOES NOT COMPILE
}

The compiler sees that you are attempting a method override and looks for an inherited
version of swim() that takes an int value. Since the compiler doesn’t find one, it reports
an error. While knowing advanced topics (such as how to create annotations) is not required
for the exam, knowing how to use them properly is.

Inheriting Members n

Redeclaring private Methods

What happens if you try to override a private method? In Java, you can’t override private
methods since they are not inherited. Just because a child class doesn’t have access to the
parent method doesn’t mean the child class can’t define its own version of the method. It

just means, strictly speaking, that the new method is not an overridden version of the parent
class’s method.

Java permits you to redeclare a new method in the child class with the same or modified
signature as the method in the parent class. This method in the child class is a separate and
independent method, unrelated to the parent version’s method, so none of the rules for over-
riding methods is invoked. For example, these two declarations compile:

public class Beetle {
private String getSize() {
return "Undefined";

1}

public class RhinocerosBeetle extends Beetle {
private int getSize() {
return 5;

}}

Notice that the return type differs in the child method from String to int. In this
example, the method getSize() in the parent class is redeclared, so the method in the child
class is a new method and not an override of the method in the parent class.

What if getSize () method was declared public in Beetle? In this case, the method in
RhinocerosBeetle would be an invalid override. The access modifier in RhinocerosBeetle
is more restrictive, and the return types are not covariant.

Hiding Static Methods

A static method cannot be overridden because class objects do not inherit from each other in
the same way as instance objects. On the other hand, they can be hidden. A hidden method
occurs when a child class defines a static method with the same name and signature as an
inherited static method defined in a parent class. Method hiding is similar to but not exactly
the same as method overriding. The previous four rules for overriding a method must be fol-
lowed when a method is hidden. In addition, a new fifth rule is added for hiding a method:

5. The method defined in the child class must be marked as stat-ic if it is marked as
static in a parent class.

Put simply, it is method hiding if the two methods are marked static and method over-
riding if they are not marked static. If one is marked static and the other is not, the
class will not compile.

312 Chapter 6 = Class Design

Let’s review some examples of the new rule:

public class Bear {
public static void eat() {
System.out.println("Bear is eating");

1}

public class Panda extends Bear {
public static void eat() {
System.out.println("Panda is chewing");
}
public static void main(String[] args) {
eat();
Tt

In this example, the code compiles and runs. The eat () method in the Panda class hides
the eat () method in the Bear class, printing "Panda is chewing" at runtime. Because
they are both marked as static, this is not considered an overridden method. That said,
there is still some inheritance going on. If you remove the eat () declaration in the Panda
class, then the program prints "Bear is eating" instead.

See if you can figure out why each of the method declarations in the SunBear class does
not compile:

public class Bear {

public static void sneeze() {
System.out.println("Bear is sneezing");

}

public void hibernate() {
System.out.println("Bear is hibernating");

}

public static void laugh() {
System.out.println("Bear is laughing");

}
}
public class SunBear extends Bear {
public void sneeze() { // DOES NOT COMPILE
System.out.println("Sun Bear sneezes quietly");
}

public static void hibernate() { // DOES NOT COMPILE
System.out.println("Sun Bear is going to sleep");

Inheriting Members 313

protected static void laugh() { // DOES NOT COMPILE
System.out.println("Sun Bear is laughing");

In this example, sneeze () is marked static in the parent class but not in the child
class. The compiler detects that you’re trying to override using an instance method. How-
ever, sneeze () is a static method that should be hidden, causing the compiler to generate
an error. The second method, hibernate (), does not compile for the opposite reason. The
method is marked stat+ic in the child class but not in the parent class.

Finally, the Taugh () method does not compile. Even though both versions of the method
are marked static, the version in SunBear has a more restrictive access modifier than the one it
inherits, and it breaks the second rule for overriding methods. Remember, the four rules for
overriding methods must be followed when hiding static methods.

Hiding Variables

As you saw with method overriding, there are a lot of rules when two methods have the
same signature and are defined in both the parent and child classes. Luckily, the rules for
variables with the same name in the parent and child classes are much simpler. In fact, Java
doesn’t allow variables to be overridden. Variables can be hidden, though.

A hidden variable occurs when a child class defines a variable with the same name as an
inherited variable defined in the parent class. This creates two distinct copies of the variable
within an instance of the child class: one instance defined in the parent class and one defined
in the child class.

As when hiding a static method, you can’t override a variable; you can only hide it. Let’s
take a look at a hidden variable. What do you think the following application prints?

class Carnivore {
protected boolean hasFur = false;

public class Meerkat extends Carnivore {
protected boolean hasFur = true;

public static void main(String[] args) {
Meerkat m = new Meerkat();
Carnivore ¢ = m;
System.out.println(m.hasFur); // true
System.out.println(c.hasFur); // false

314 Chapter 6 = Class Design

Confused about the output? Both of these classes define a hasFur variable, but with
different values. Even though only one object is created by the main () method, both vari-
ables exist independently of each other. The output changes depending on the reference var-
iable used.

If you didn’t understand the last example, don’t worry. We cover polymorphism in more
detail in the next chapter. For now, you just need to know that overriding a method replaces
the parent method on all reference variables (other than super), whereas hiding a method or
variable replaces the member only if a child reference type is used.

Writing final Methods

We conclude our discussion of method inheritance with a somewhat self-explanatory rule:
final methods cannot be overridden. By marking a method final, you forbid a child class from
replacing this method. This rule is in place both when you override a method and when you
hide a method. In other words, you cannot hide a static method in a child class if it is marked
final in the parent class.

Let’s take a look at an example:

public class Bird {
public final boolean hasFeathers() {
return true;

}
public final static void flyAway() {}

public class Penguin extends Bird {
public final boolean hasFeathers() { // DOES NOT COMPILE
return false;

}
public final static void flyAway() {} // DOES NOT COMPILE

In this example, the instance method hasFeathers () is marked as final in the par-
ent class Bird, so the child class Penguin cannot override the parent method, resulting in
a compiler error. The static method flyAway () is also marked final, so it cannot be
hidden in the subclass. In this example, whether or not the child method uses the final key-
word is irrelevant—the code will not compile either way.

This rule applies only to inherited methods. For example, if the two methods were
marked private in the parent Bird class, then the Penguin class, as defined, would compile. In
that case, the private methods would be redeclared, not overridden or hidden.

Creating Abstract Classes 315

Creating Abstract Classes

When designing a model, we sometimes want to create an entity that cannot be instantiated
directly. For example, imagine that we have a Canine class with subclasses Wolf, Fox, and
Coyote. We want other developers to be able to create instances of the subclasses, but per-
haps we don’t want them to be able to create a Canine instance. In other words, we want to
force all objects of Canine to have a particular type at runtime.

Introducing Abstract Classes

Enter abstract classes. An abstract class is a class declared with the abstract modifier that
cannot be instantiated directly and may contain abstract methods. Let’s take a look at an
example based on the Canine data model:

public abstract class Canine {}
public class Wolf extends Canine {}
public class Fox extends Canine {}

public class Coyote extends Canine {}

In this example, other developers can create instances of Wolf, Fox, or Coyote, but not
Canine. Sure, they can pass a variable reference as a Canine, but the underlying object must
be a subclass of Canine at runtime.

But wait, there’s more! An abstract class can contain abstract methods. An abstract
method is a method declared with the abstract modifier that does not define a body. Put
another way, an abstract method forces subclasses to override the method.

Why would we want this? Polymorphism, of course! By declaring a method abstract, we
can guarantee that some version will be available on an instance without having to specify
what that version is in the abstract parent class.

public abstract class Canine {
public abstract String getSound();
public void bark() { System.out.println(getSound()); }

public class Wolf extends Canine {
public String getSound() {
return "Wooooooof!";

13

316 Chapter 6 = Class Design

public class Fox extends Canine {
public String getSound() {
return "Squeak!";

1}

public class Coyote extends Canine {
public String getSound() {
return "Roar!";

1}

We can then create an instance of Fox and assign it to the parent type Canine. The over-
ridden method will be used at runtime.
public static void main(String[] p) {

Canine w = new Fox();

w.bark(); // Squeak!

Easy so far. But there are some rules you need to be aware of:
* Only instance methods can be marked abstract within a class, not variables, construc-
tors, or static methods.
= An abstract method can only be declared in an abstract class.
» A non-abstract class that extends an abstract class must implement all inherited
abstract methods.
= Opverriding an abstract method follows the existing rules for overriding methods that
you learned about earlier in the chapter.
Let’s see if you can spot why each of these class declarations does not compile:
public class FennecFox extends Canine {
public int getSound() {
return 10;

1
public class ArcticFox extends Canine {}

public class Direwolf extends Canine {
public abstract rest();
public String getSound() {
return "Roof!";

b}

Creating Abstract Classes 317

public class Jackal extends Canine {
public abstract String name;
public String getSound() {
return "Laugh";

1}

First off, the FennecFox class does not compile because it is an invalid method override.
In particular, the return types are not covariant. The ArcticFox class does not compile
because it does not override the abstract getSound () method. The Direwolf class does
not compile because it is not abstract but declares an abstract method rest (). Finally, the
Jackal class does not compile because variables cannot be marked abstract.

An abstract class is most commonly used when you want another class to inherit properties
of a particular class, but you want the subclass to fill in some of the implementation details.

Earlier, we said that an abstract class is one that cannot be instantiated. This means that if
you attempt to instantiate it, the compiler will report an exception, as in this example:

abstract class Alligator {
public static void main(String... food) {
var a = new Alligator(); // DOES NOT COMPILE

An abstract class can be initialized, but only as part of the instantiation of a non-
abstract subclass.

Declaring Abstract Methods

An abstract method is always declared without a body. It also includes a semicolon (;) after
the method declaration. As you saw in the previous example, an abstract class may include
non-abstract methods, in this case with the bark () method. In fact, an abstract class can
include all of the same members as a non-abstract class, including variables, static and in-
stance methods, constructors, etc.

It might surprise you to know that an abstract class is not required to include any
abstract methods. For example, the following code compiles even though it doesn’t define
any abstract methods:

public abstract class Llama {
public void chew() {}

Even without abstract methods, the class cannot be directly instantiated. For the exam,
keep an eye out for abstract methods declared outside abstract classes, such as the following;:
public class Egret { // DOES NOT COMPILE

public abstract void peck();

318 Chapter 6 = Class Design

The exam creators like to include invalid class declarations, mixing non-abstract classes
with abstract methods.

Like the final modifier, the abstract modifier can be placed before or after the access
modifier in class and method declarations, as shown in this Tiger class:

abstract public class Tiger {
abstract public int claw();

The abstract modifier cannot be placed after the class keyword in a class declaration
or after the return type in a method declaration. The following Bear and howl() declara-
tions do not compile for these reasons:

public class abstract Bear { // DOES NOT COMPILE
public 1int abstract howl(); // DOES NOT COMPILE

)/ Itis not possible to define an abstract method that has a body or default
,@TE implementation. You can still define a default method with a body—you
just can’t mark it as abstract. As long as you do not mark the method as
final, the subclass has the option to override the inherited method.

Creating a Concrete Class

An abstract class becomes usable when it is extended by a concrete subclass. A concrete class
is a non-abstract class. The first concrete subclass that extends an abstract class is required to
implement all inherited abstract methods. This includes implementing any inherited abstract
methods from inherited interfaces, as you see in the next chapter.

When you see a concrete class extending an abstract class on the exam, check to make
sure that it implements all of the required abstract methods. Can you see why the following
Walrus class does not compile?

public abstract class Animal {
public abstract String getName();

public class Walrus extends Animal {} // DOES NOT COMPILE

In this example, we see that Animal is marked as abstract and Walrus is not, making
Walrus a concrete subclass of Animal. Since Walrus is the first concrete subclass, it must
implement all inherited abstract methods—getName () in this example. Because it doesn’t,
the compiler reports an error with the declaration of Walrus.

We highlight the first concrete subclass for a reason. An abstract class can extend a non-
abstract class and vice versa. Anytime a concrete class is extending an abstract class, it must

Creating Abstract Classes 319

implement all of the methods that are inherited as abstract. Let’s illustrate this with a set of
inherited classes:

public abstract class Mammal {
abstract void showHorn();
abstract void eatLeaf();

public abstract class Rhino extends Mammal {
void showHorn() {} // Inherited from Mammal

public class BlackRhino extends Rhino {
void eatLeaf() {} // Inherited from Mammal

In this example, the BlackRhino class is the first concrete subclass, while the Mammal
and Rhino classes are abstract. The BlackRhino class inherits the eatLeaf () method as
abstract and is therefore required to provide an implementation, which it does.

What about the showHorn () method? Since the parent class, Rhino, provides an implemen-
tation of showHorn (), the method is inherited in the BlackRh1ino as a non-abstract method.
For this reason, the BlackRh1ino class is permitted but not required to override the showHorn ()
method. The three classes in this example are correctly defined and compile.

What if we changed the Rhino declaration to remove the abstract modifier?

public class Rhino extends Mammal { // DOES NOT COMPILE
void showHorn() {}

By changing Rhino to a concrete class, it becomes the first non-abstract class to extend
the abstract Mammal class. Therefore, it must provide an implementation of both the
showHorn () and eatLeaf () methods. Since it only provides one of these methods, the
modified Rhino declaration does not compile.

Let’s try one more example. The following concrete class Lion inherits two abstract
methods, getName () and roar():

public abstract class Animal {
abstract String getName();

public abstract class BigCat extends Animal {
protected abstract void roar();

320 Chapter 6 = Class Design

public class Lion extends BigCat {
public String getName() {
return "Lion";
}
public void roar() {
System.out.println("The Lion lets out a loud ROAR!");

In this sample code, BigCat extends Animal but is marked as abstract; therefore, it
is not required to provide an implementation for the getName () method. The class Lion
is not marked as abstract, and as the first concrete subclass, it must implement all of the
inherited abstract methods not defined in a parent class. All three of these classes compile
successfully.

Creating Constructors in Abstract Classes

Even though abstract classes cannot be instantiated, they are still initialized through con-
structors by their subclasses. For example, consider the following program:

abstract class Mammal {
abstract CharSequence chew();
public Mammal() {
System.out.println(chew()); // Does this line compile?

public class Platypus extends Mammal {
String chew() { return "yummy!"; 3}
public static void main(String[] args) {
new Platypus();

Using the constructor rules you learned about earlier in this chapter, the compiler inserts
a default no-argument constructor into the Platypus class, which first calls super () in the
Mammal class. The Mammal constructor is only called when the abstract class is being initial-
ized through a subclass; therefore, there is an implementation of chew() at the time the con-
structor is called. This code compiles and prints yummy ! at runtime.

For the exam, remember that abstract classes are initialized with constructors in the same
way as non-abstract classes. For example, if an abstract class does not provide a constructor,
the compiler will automatically insert a default no-argument constructor.

Creating Abstract Classes kYA

The primary difference between a constructor in an abstract class and a non-abstract class
is that a constructor in an abstract class can be called only when it is being initialized by a
non-abstract subclass. This makes sense, as abstract classes cannot be instantiated.

Spotting Invalid Declarations

We conclude our discussion of abstract classes with a review of potential issues you’re more
likely to encounter on the exam than in real life. The exam writers are fond of questions
with methods marked as abstract for which an implementation is also defined. For example,
can you see why each of the following methods does not compile?

public abstract class Turtle {
public abstract long eat() // DOES NOT COMPILE
public abstract void swim() {}; // DOES NOT COMPILE
public abstract int getAge() { // DOES NOT COMPILE

return 10;
3
public abstract void sleep; // DOES NOT COMPILE
public void goInShell(); // DOES NOT COMPILE

The first method, eat (), does not compile because it is marked abstract but does not
end with a semicolon (;). The next two methods, swim() and getAge (), do not compile
because they are marked abstract, but they provide an implementation block enclosed
in braces ({}). For the exam, remember that an abstract method declaration must end in
a semicolon without any braces. The next method, sleep, does not compile because it is
missing parentheses, (), for method arguments. The last method, goInShell(), does not
compile because it is not marked abstract and therefore must provide a body enclosed
in braces.

Make sure you understand why each of the previous methods does not compile and that
you can spot errors like these on the exam. If you come across a question on the exam in
which a class or method is marked abstract, make sure the class is properly implemented
before attempting to solve the problem.

abstract and final Modifiers

What would happen if you marked a class or method both abstract and final? If you mark
something abstract, you intend for someone else to extend or implement it. But if you mark
something final, you are preventing anyone from extending or implementing it. These con-
cepts are in direct conflict with each other.

Due to this incompatibility, Java does not permit a class or method to be marked both
abstract and fina'l. For example, the following code snippet will not compile:

public abstract final class Tortoise { // DOES NOT COMPILE
public abstract final void walk(); // DOES NOT COMPILE

322 Chapter 6 = Class Design

In this example, neither the class nor the method declarations will compile because
they are marked both abstract and final. The exam doesn’t tend to use final modi-
fiers on classes or methods often, so if you see them, make sure they aren’t used with the
abstract modifier.

abstract and private Modifiers

A method cannot be marked as both abstract and private. This rule makes sense if you think
about it. How would you define a subclass that implements a required method if the method
is not inherited by the subclass? The answer is that you can’t, which is why the compiler will
complain if you try to do the following;:

public abstract class Whale {
private abstract void sing(); // DOES NOT COMPILE

public class HumpbackWhale extends Whale {
private void sing() {
System.out.println("Humpback whale is singing");

1}

In this example, the abstract method sing() defined in the parent class Wha'le is not
visible to the subclass HumpbackWhale. Even though HumpbackWhale does provide an
implementation, it is not considered an override of the abstract method since the abstract
method is not inherited. The compiler recognizes this in the parent class and reports an error
as soon as private and abstract are applied to the same method.

) While it is not possible to declare a method abstract and private, itis
9TE possible (albeit redundant) to declare a method final and private.

If we changed the access modifier from private to protected in the parent class
Whale, would the code compile?

public abstract class Whale {
protected abstract void sing();

public class HumpbackWhale extends Whale {
private void sing() { // DOES NOT COMPILE
System.out.println("Humpback whale is singing");

In this modified example, the code will still not compile, but for a completely different
reason. If you remember the rules for overriding a method, the subclass cannot reduce the

Creating Immutable Objects 323

visibility of the parent method, sing(). Because the method is declared protected in
the parent class, it must be marked as protected or public in the child class. Even with
abstract methods, the rules for overriding methods must be followed.

abstract and static Modifiers

As we discussed earlier in the chapter, a static method can only be hidden, not overridden. It
is defined as belonging to the class, not an instance of the class. If a static method cannot be
overridden, then it follows that it also cannot be marked abstract since it can never be imple-
mented. For example, the following class does not compile:
abstract class Hippopotamus {

abstract static void swim(); // DOES NOT COMPILE

For the exam, make sure you know which modifiers can and cannot be used with one
another, especially for abstract classes and interfaces.

Creating Immutable Objects

As you might remember from Chapter 4, an immutable object is one that cannot change
state after it is created. The immutable objects pattern is an object-oriented design pattern in
which an object cannot be modified after it is created.

Immutable objects are helpful when writing secure code because you don’t have to worry
about the values changing. They also simplify code when dealing with concurrency since
immutable objects can be easily shared between multiple threads.

Declaring an Immutable Class

Although there are a variety of techniques for writing an immutable class, you should be
familiar with a common strategy for making a class immutable:

1. Mark the class as final or make all of the constructors private.

Mark all the instance variables private and final.

Don’t define any setter methods.

Don’t allow referenced mutable objects to be modified.

LA S

Use a constructor to set all properties of the object, making a copy if needed.

The first rule prevents anyone from creating a mutable subclass. The second and third
rules ensure that callers don’t make changes to instance variables and are the hallmarks of
good encapsulation, a topic we discuss along with records in Chapter 7.

324 Chapter 6 = Class Design

The fourth rule for creating immutable objects is subtle. Basically, it means you shouldn’t
expose an accessor (or getter) method for mutable instance fields. Can you see why the fol-
lowing creates a mutable object?
import java.util.x;
public final class Animal { // Not an immutable object declaration

private final ArrayList<String> favoriteFoods;

public Animal() {
this.favoriteFoods = new ArrayList<String>();
this.favoriteFoods.add("Apples");

public List<String> getFavoriteFoods() {
return favoriteFoods;

1}

We carefully followed the first three rules, but unfortunately, a malicious caller could still
modify our data:
var zebra = new Animal();
System.out.println(zebra.getFavoriteFoods()); // [Apples]

zebra.getFavoriteFoods().clear();
zebra.getFavoriteFoods().add("Chocolate Chip Cookies");
System.out.println(zebra.getFavoriteFoods()); // [Chocolate Chip Cookies]

Oh no! Zebras should not eat Chocolate Chip Cookies! It’s not an immutable object
if we can change its contents! If we don’t have a getter for the favoriteFoods object, how
do callers access it? Simple: by using delegate or wrapper methods to read the data.
import java.util.x;
public final class Animal { // An immutable object declaration

private final List<String> favoriteFoods;

public Animal() {
this.favoriteFoods = new ArrayList<String>();
this.favoriteFoods.add("Apples");

public int getFavoriteFoodsCount() {
return favoriteFoods.size();

Creating Immutable Objects 325

public String getFavoriteFoodsItem(int index) {
return favoriteFoods.get(index);

1}

In this improved version, the data is still available. However, it is a true immutable object
because the mutable variable cannot be modified by the caller.

Copy on Read Accessor Methods

Besides delegating access to any private mutable objects, another approach is to make a
copy of the mutable object any time it is requested.

public ArraylList<String> getFavoriteFoods() {
return new ArrayList<String>(this.favoriteFoods);

}

Of course, changes in the copy won’t be reflected in the original, but at least the original is
protected from external changes. This can be an expensive operation if called frequently by
the caller.

Performing a Defensive Copy

So, what’s this about the fifth and final rule for creating immutable objects? In designing our
class, let’s say we want a rule that the data for favoriteFoods is provided by the caller and that
it always contains at least one element. This rule is often called an invariant; it is true any
time we have an instance of the object.
import java.util.x;
public final class Animal { // Not an immutable object declaration

private final ArrayList<String> favoriteFoods;

public Animal(ArrayList<String> favoriteFoods) {
if (favoriteFoods == null || favoriteFoods.size() == 0)
throw new RuntimeException("favoriteFoods is required");
this.favoriteFoods = favoriteFoods;

public int getFavoriteFoodsCount() {
return favoriteFoods.size();

326 Chapter 6 = Class Design

public String getFavoriteFoodsItem(int index) {
return favoriteFoods.get(index);

I

To ensure that favoriteFoods is provided, we validate it in the constructor and throw
an exception if it is not provided. So is this immutable? Not quite! A malicious caller might
be tricky and keep their own secret reference to our favoriteFoods object, which they can
modify directly.
var favorites = new ArrayList<String>();
favorites.add("Apples");

var zebra = new Animal(favorites); // Caller still has access to favorites
System.out.println(zebra.getFavoriteFoodsItem(0)); // [Apples]

favorites.clear();
favorites.add("Chocolate Chip Cookies");
System.out.println(zebra.getFavoriteFoodsItem(0)); // [Chocolate Chip Cookies]

Whoops! It seems like Animal is not immutable anymore, since its contents can
change after it is created. The solution is to make a copy of the list object containing the
same elements.

public Animal(List<String> favoriteFoods) {
if (favoriteFoods == null || favoriteFoods.size() == 0)
throw new RuntimeException("favoriteFoods is required");
this.favoriteFoods = new ArrayList<String>(favoriteFoods);

}

The copy operation is called a defensive copy because the copy is being made in case
other code does something unexpected. It’s the same idea as defensive driving: prevent a
problem before it exists. With this approach, our Animal class is once again immutable.

Summary

This chapter took the basic class structures we’ve presented throughout the book and
expanded them by introducing the notion of inheritance. Java classes follow a single-
inheritance pattern in which every class has exactly one direct parent class, with all classes
eventually inheriting from java.lang.Object.

Inheriting a class gives you access to all of the public and protected members of
the class. It also gives you access to package members of the class if the classes are in the
same package. All instance methods, constructors, and instance initializers have access to
two special reference variables: this and super. Both this and super provide access to

Exam Essentials 327

all inherited members, with only this providing access to all members in the current class
declaration.

Constructors are special methods that use the class name and do not have a return type.
They are used to instantiate new objects. Declaring constructors requires following a number
of important rules. If no constructor is provided, the compiler will automatically insert a
default no-argument constructor in the class. The first line of every constructor is a call to
an overloaded constructor, this (), or a parent constructor, super (); otherwise, the compiler
will insert a call to super () as the first line of the constructor. In some cases, such as if the
parent class does not define a no-argument constructor, this can lead to compilation errors.
Pay close attention on the exam to any class that defines a constructor with arguments and
doesn’t define a no-argument constructor.

Classes are initialized in a predetermined order: superclass initialization; stat1c variables
and static initializers in the order that they appear; instance variables and instance initial-
izers in the order they appear; and finally, the constructor. All final instance variables must be
assigned a value exactly once.

We reviewed overloaded, overridden, hidden, and redeclared methods and showed how
they differ. A method is overloaded if it has the same name but a different signature as
another accessible method. A method is overridden if it has the same signature as an inher-
ited method, with access modifiers, exceptions, and a return type that are compatible. A
static method is hidden if it has the same signature as an inherited stat+c method. Finally, a
method is redeclared if it has the same name and possibly the same signature as an uninher-
ited method.

We then moved on to abstract classes, which are just like regular classes except that they
cannot be instantiated and may contain abstract methods. An abstract class can extend a
non-abstract class and vice versa. Abstract classes can be used to define a framework that
other developers write subclasses against. An abstract method is one that does not include a
body when it is declared. An abstract method can only be placed inside an abstract class or
interface. Next, an abstract method can be overridden with another abstract declaration or
a concrete implementation, provided the rules for overriding methods are followed. The first
concrete class must implement all of the inherited abstract methods, whether they are inher-
ited from an abstract class or an interface.

Finally, this chapter showed you how to create immutable objects in Java. Although there
are a number of different techniques to do so, we included the most common one you should
know for the exam. Immutable objects are extremely useful in practice, especially in multi-
threaded applications, since they do not change.

Exam Essentials

Be able to write code that extends other classes. A Java class that extends another class
inherits all of its public and protected methods and variables. If the class is in the same
package, it also inherits all package members of the class. Classes that are marked final
cannot be extended. Finally, all classes in Java extend java.lang.Object either directly or
from a superclass.

328

Chapter 6 = Class Design

Be able to distinguish and use this, this(), super, and super(). To access a current or
inherited member of a class, the this reference can be used. To access an inherited
member, the super reference can be used. The super reference is often used to reduce
ambiguity, such as when a class reuses the name of an inherited method or variable. The
calls to this () and super () are used to access constructors in the same class and par-
ent class, respectively.

Evaluate code involving constructors. The first line of every constructor is a call to
another constructor within the class using this () or a call to a constructor of the par-
ent class using the super () call. The compiler will insert a call to super () if no con-
structor call is declared. If the parent class doesn’t contain a no-argument constructor,
an explicit call to the parent constructor must be provided. Be able to recognize when
the default constructor is provided. Remember that the order of initialization is to ini-
tialize all classes in the class hierarchy, starting with the superclass. Then the instances
are initialized, again starting with the superclass. All final variables must be assigned a
value exactly once by the time the constructor is finished.

Understand the rules for method overriding. Java allows methods to be overridden, or
replaced, by a subclass if certain rules are followed: a method must have the same signa-
ture, be at least as accessible as the parent method, must not declare any new or broader
exceptions, and must use covariant return types. Methods marked final may not be
overridden or hidden.

Recognize the difference between method overriding and method overloading. Both
method overloading and overriding involve creating a new method with the same
name as an existing method. When the method signature is the same, it is referred to
as method overriding and must follow a specific set of override rules to compile. When
the method signature is different, with the method taking different inputs, it is referred
to as method overloading, and none of the override rules are required. Method over-
riding is important to polymorphism because it replaces all calls to the method, even
those made in a superclass.

Understand the rules for hiding methods and variables. When a static method is
overridden in a subclass, it is referred to as method hiding. Likewise, variable hiding is
when an inherited variable name is reused in a subclass. In both situations, the original
method or variable still exists and is accessible depending on where it is accessed and
the reference type used. For method hiding, the use of static in the method declaration
must be the same between the parent and child class. Finally, variable and method hid-
ing should generally be avoided since it leads to confusing and difficult-to-follow code.

Be able to write code that creates and extends abstract classes. In Java, classes and
methods can be declared as abstract. An abstract class cannot be instantiated. An in-
stance of an abstract class can be obtained only through a concrete subclass. Abstract
classes can include any number of abstract and non-abstract methods, including zero.

Exam Essentials 329

Abstract methods follow all the method override rules and may be defined only within
abstract classes. The first concrete subclass of an abstract class must implement all the
inherited methods. Abstract classes and methods may not be marked as final.

Create immutable objects. An immutable object is one that cannot be modified after it
is declared. An immutable class is commonly implemented with a private constructor,
no setter methods, and no ability to modify mutable objects contained within the class.

330 Chapter 6 = Class Design

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which code can be inserted to have the code print 2?

public class BirdSeed {
private int numberBags;
boolean call;

public BirdSeed() {
// LINE 1
call = false;
// LINE 2

public BirdSeed(int numberBags) {
this.numberBags = numberBags;

public static void main(String[] args) {
var seed = new BirdSeed();
System.out.print(seed.numberBags);

1}

Replace line 1 with BirdSeed(2) ;.
Replace line 2 with BirdSeed (2) ;.
Replace line 1 with new BirdSeed(2) ;.
Replace line 2 with new BirdSeed(2) ;.
Replace line 1 with this(2) ;.

Replace line 2 with this(2) ;.

The code prints 2 without any changes.

GmMmD O wp

2. Which modifier pairs can be used together in a method declaration? (Choose all that apply.)
A. staticand final
B. privateand static

static and abstract

private and abstract

abstract and final

mmo o

private and final

Review Questions 331

Which of the following statements about methods are true? (Choose all that apply.)
Overloaded methods must have the same signature.

Overridden methods must have the same signature.

Hidden methods must have the same signature.

Overloaded methods must have the same return type.

Overridden methods must have the same return type.

mmoOoOo WP

Hidden methods must have the same return type.

What is the output of the following program?

1: class Mammal {

2 private void sneeze() {}

3 public Mammal(int age) {

4 System.out.print("Mammal") ;

5: I

6: public class Platypus extends Mammal {
7 int sneeze() { return 1; }

8 public Platypus() {

9: System.out.print("Platypus");
10: }

11: public static void main(String[] args) {
12: new Mammal(5);

13: 1}

A. Platypus

B. Mammal

C. PlatypusMammal

D. MammalPlatypus

E. The code will compile if line 7 is changed.

F The code will compile if line 9 is changed.

Which of the following complete the constructor so that this code prints out 50? (Choose all
that apply.)
class Speedster {
int numSpots;
}
public class Cheetah extends Speedster {
int numSpots;

public Cheetah(int numSpots) {
// INSERT CODE HERE

332 Chapter 6 = Class Design

public static void main(String[] args) {
Speedster s = new Cheetah(50);
System.out.print(s.numSpots);

numSpots = numSpots;
numSpots = this.numSpots;
this.numSpots = numSpots;
numSpots = super.numSpots;
super.numSpots = numSpots;

The code does not compile regardless of the code inserted into the constructor.

emMmoowp

None of the above

6. Which of the following declare immutable classes? (Choose all that apply.)

public final class Moose {
private final int antlers;

public class Caribou {
private int antlers = 10;

public class Reindeer {
private final int antlers = 5;

public final class Elk {}

public final class Deer {
private final Object o = new Object();

Moose
Caribou
Reindeer
Elk

Deer

Mmoo wp>

None of the above

Review Questions

What is the output of the following code?

1: class Arthropod {

2 protected void printName(long input) {
3 System.out.print("Arthropod");

4 }

5: void printName(int input) {

6 System.out.print("Spooky");

7 i

8: public class Spider extends Arthropod {

9 protected void printName(int input) {
10: System.out.print("Spider");

11: }

12: public static void main(String[] args) {
13: Arthropod a = new Spider();

14: a.printName((short)4);

15: a.printName(4);

16: a.printName(5L);

17: 1}

SpiderSpiderArthropod
SpiderSpiderSpider
SpiderSpookyArthropod

A

B

C

D. SpookySpiderArthropod

E. The code will not compile because of line 5.
FE The code will not compile because of line 9.
G

None of the above

What is the result of the following code?

abstract class Bird {
private final void fly() { System.out.println("Bird"); }
protected Bird() { System.out.print("Wow-"); }
}
public class Pelican extends Bird {
public Pelican() { System.out.print("Oh-"); }
protected void fly() { System.out.println("Pelican"); }
public static void main(String[] args) {
var chirp = new Pelican();
10: chirp.fly();
11: } }

O 00 N O U b W N B

333

334

10.

Chapter 6 = Class Design

Oh-Bird
Oh-Pelican
Wow-Oh-B1ird

Wow-0Oh-Pelican

moom»

The code contains a compilation error.

F. None of the above

Which of the following statements about overridden methods are true? (Choose all
that apply.)

A. An overridden method must contain method parameters that are the same or covariant
with the method parameters in the inherited method.

B. An overridden method may declare a new exception, provided it is not checked.
C. An overridden method must be more accessible than the method in the parent class.

D. An overridden method may declare a broader checked exception than the method in the
parent class.

E. If an inherited method returns vo1id, then the overridden version of the method must
return void.

F. None of the above

Which of the following pairs, when inserted into the blanks, allow the code to compile?
(Choose all that apply.)

1: public class Howler {

2 public Howler(long shadow) {
3 ;

4 }

5: private Howler (int moon) {

6 super();

7 }

8: 1}

9: class Wolf extends Howler {

10: protected Wolf(String stars) {
11: super(2L);

12: }

13: public Wolf() {

14: ;

15: }

16: }

A. this(3) atline 3, this("") atline 14

B. this() atline 3, super (1) at line 14

C. this((short)1) atline 3, this(null) at line 14
D

super () at line 3, super () at line 14

1.

12.

Review Questions

E. this(2L) atline 3, super ((short)2) at line 14
F. this(5) atline 3, super (null) at line 14
G. Remove lines 3 and 14.

What is the result of the following?

1: public class PolarBear {

2: StringBuilder value = new StringBuilder("t");
3: { value.append("a"); 1}

4; { value.append("c"); }

5: private PolarBear() {

6: value.append("b");

7 }

8: public PolarBear(String s) {

9: this();

10: value.append(s);

11: }

12: public PolarBear(CharSequence p) {

13: value.append(p);

14: }

15: public static void main(String[] args) {
16: Object bear = new PolarBear();

17: bear = new PolarBear("f");

18: System.out.println(((PolarBear)bear).value);
19: 1}

A. tacb

B. tacf

C. tacbf

D. tcafb

E. taftachb

F The code does not compile.

G. An exception is thrown.

How many lines of the following program contain a compilation error?

1: public class Rodent {

2 public Rodent(Integer x) {}

3 protected static Integer chew() throws Exception {
4: System.out.println("Rodent is chewing");

5: return 1;

6 }

335

336

13.

Chapter 6 = Class Design

7: 0}

8: class Beaver extends Rodent {

9: public Number chew() throws RuntimeException {
10: System.out.println("Beaver is chewing on wood");
11: return 2;

12: 1}

A. None

B. 1

C. 2

D. 3

E. 4

FE 5

Which of these classes compile and will include a default constructor created by the
compiler? (Choose all that apply.)

A.
public class Bird {}
B.

public class Bird {
public bird() {}
}
C.
public class Bird {
public bird(String name) {}

}
D.

public class Bird {
public Bird() {}

}

E.

public class Bird {
Bird(String name) {}

}

F

public class Bird {
private Bird(int age) {}

14.

15.

16.

Review Questions 337

G.

public class Bird {
public Bird bird() { return null; }

Which of the following statements about inheritance are correct? (Choose all that apply.)
A class can directly extend any number of classes.

A class can implement any number of interfaces.

All variables inherit java.lang.0Object.

If class A is extended by B, then B is a superclass of A.

If class C implements interface D, then C is a subtype of D.

mmoOoOow®

Multiple inheritance is the property of a class to have multiple direct superclasses.

Which statements about the following program are correct? (Choose all that apply.)

1: abstract class Nocturnal {

2 boolean isBlind();

3: }

4: public class Owl extends Nocturnal {

5: public boolean 1isBlind() { return false; }
6 public static void main(String[] args) {

7 var nocturnal = (Nocturnal)new Owl();

8: System.out.println(nocturnal.isBlind());
9: 1}

It compiles and prints true.

It compiles and prints false.

The code will not compile because of line 2.
The code will not compile because of line 5.
The code will not compile because of line 7.

The code will not compile because of line 8.

G@mMmQDoom P

None of the above

What is the result of the following?

1: class Arachnid {

2 static StringBuilder sb = new StringBuilder();
3 { sb.append("c"); }

4; static

5 { sb.append("u"); }

6 { sb.append("r"); }

-

338

17.

18.

8:
9:

10:
11:
12:
13:
14:

emMmoowp

Chapter 6 = Class Design

public class Scorpion extends Arachnid {

static

{ sb.append("q"); }

{ sb.append("m"); }

public static void main(String[] args) {
System.out.print(Scorpion.sb + " ");
System.out.print(Scorpion.sb + " ");
new Arachnid();
new Scorpion();
System.out.print(Scorpion.sb);

I

qu qu qumrcrc
U u ucrcrm

ug ug ugmcrcr
ug ug ugcrcrm
qu qu qumcrcr
qu qu qucrcrm

The code does not compile.

Which of the following are true? (Choose all that apply.)

Mmoo wp

this () can be called from anywhere in a constructor.

this () can be called from anywhere in an instance method.
this.variableName can be called from any instance method in the class.
this.variableName can be called from any static method in the class.
You can call the default constructor written by the compiler using this ().

You can access a private constructor with the main () method in the same class.

Which statements about the following classes are correct? (Choose all that apply.)

1
2
3
4
5:
6
7
8
9

public class Mammal {
private void eat() {}
protected static void drink() {}
public Integer dance(String p) { return null; }
}
class Primate extends Mammal {
public void eat(String p) {}
}

class Monkey extends Primate {

19.

13:

IOGMMmMOO WP

Review Questions

public static void drink() throws RuntimeException {}
public Number dance(CharSequence p) { return null; }
public int eat(String p) {}

}

The eat () method in Mamma'l is correctly overridden on line 7.
The eat () method in Mamma'l is correctly overloaded on line 7.
The drink () method in Mammal is correctly overridden on line 10.
The drink () method in Mamma'l is correctly hidden on line 10
The dance () method in Mammal is correctly overridden on line 11.
The dance () method in Mamma'l is correctly overloaded on line 11.
The eat () method in Primate is correctly hidden on line 12.

The eat () method in Primate is correctly overloaded on line 12.

What is the output of the following code?

1
2
3
4
5:
6
7
8
9

10:
11:

class Reptile {
{System.out.print("A");}
public Reptile(int hatch) {}
void layEggs() {
System.out.print("Reptile");
!
public class Lizard extends Reptile {
static {System.out.print("B");}
public Lizard(int hatch) {}
public final void layEggs() {
System.out.print("Lizard");
}
public static void main(String[] args) {
var reptile = new Lizard(1l);
reptile.layEggs();
I

AALizard

BALizard

BLizardA

ALizard

The code will not compile because of line 3.

None of the above

339

340 Chapter 6 = Class Design

20. Which statement about the following program is correct?

1: class Bird {

2: int feathers = 0;

3: Bird(int x) { this.feathers = x; }

4: Bird fly() {

5: return new Bird(1l);

6: I

7: class Parrot extends Bird {

8: protected Parrot(int y) { super(y); }

9: protected Parrot fly() {

10: return new Parrot(2);

11: 1}

12: public class Macaw extends Parrot {

13: public Macaw(int z) { super(z); }

14: public Macaw fly() {

15: return new Macaw(3);

16: }

17: public static void main(String... sing) {
18: Bird p = new Macaw(4);

19: System.out.print(((Parrot)p.fly()).feathers);
20: 1}

A. One line contains a compiler error.
Two lines contain compiler errors.
Three lines contain compiler errors.

B
Cc
D. The code compiles but throws a ClassCastException at runtime.
E. The program compiles and prints 3.

F

The program compiles and prints 0.

21. Which of the following are properties of immutable classes? (Choose all that apply.)
The class can contain setter methods, provided they are marked final.

The class must not be able to be extended outside the class declaration.

The class may not contain any instance variables.

The class must be marked static.

The class may not contain any static variables.

The class may only contain private constructors.

emMmoowp

The data for mutable instance variables may be read, provided they cannot be modified
by the caller.

22,

23.

Review Questions

What does the following program print?

1: class Person {

2: static String name;

3: void setName(String q) { name = q; } }
4: public class Child extends Person {

5: static String name;

6: void setName(String w) { name = w; }
7: public static void main(String[] p) {
8: final Child m = new Child();

9: final Person t = m;

10: m.name = "Elysia";

11: t.name = "Sophia";

12: m.setName ("Webby") ;

13: t.setName("0Olivia");

14: System.out.println(m.name + " " + t.name);
15: 13}

A. Elysia Sophia

B. Webby Olivia

C. Olivia Olivia

D. Olivia Sophia

E. The code does not compile.

F. None of the above

What is the output of the following program?

1: class Canine {

2 public Canine(boolean t) { logger.append("a"); }

3 public Canine() { logger.append("q"); }

4

5: private StringBuilder logger = new StringBuilder();
6 protected void print(String v) { logger.append(v); }
7 protected String view() { return logger.toString(); }
8: 1}

9

10: class Fox extends Canine {

11: public Fox(long x) { print("p"); 1}

12: public Fox(String name) {

13: this(2);

14: print("z");

15: }

n

342 Chapter 6 = Class Design

16: }

17:

18: public class Fennec extends Fox {
19: public Fennec(int e) {

20: super("tails");

21: print("j");

22: }

23: public Fennec(short f) {

24: super ("eevee");

25: print("m");

26: }

27:

28: public static void main(String... unused) {
29: System.out.println(new Fennec(1l).view());
30: 1}

A. qgpz

B. qgpzj

C. jzpa

D. apj

E. apjm

F The code does not compile.

G. None of the above

24. What is printed by the following program?

1: class Antelope {

2 public Antelope(int p) {

3 System.out.print("4");

4: }

5: { System.out.print("2"); }

6 static { System.out.print("1"); }
700}

8: public class Gazelle extends Antelope {
9 public Gazelle(int p) {

10: super(6);

11: System.out.print("3");

12: }

25.

26.

Review Questions 343

13: public static void main(String hopping[]) {
14: new Gazelle(0);

15: }

16: static { System.out.print("8"); }
17: { System.out.print("9"); }

18: }

A. 182640

B. 182943

C. 182493

D. 421389

E. The code does not compile.

F The output cannot be determined until runtime.

Which of the following are true about a concrete class? (Choose all that apply.)
A. A concrete class can be declared as abstract.

A concrete class must implement all inherited abstract methods.

A concrete class can be marked as final.

A concrete class must be immutable.

moowm

A concrete method that implements an abstract method must match the method declara-
tion of the abstract method exactly.

What is the output of the following code?

4 public abstract class Whale {

5 public abstract void dive();

6 public static void main(String[] args) {
7: Whale whale = new Orca();

8 whale.dive(3);

9

: }
10: }
11: class Orca extends Whale {
12: static public int MAX = 3;
13: public void dive() {
14: System.out.println("Orca diving");
15: }
16: public void dive(int... depth) {
17: System.out.println("Orca diving deeper "+MAX);

18: } }

344

IOGMMmMOO WP

Chapter 6 = Class Design

Orca diving

Orca diving deeper 3

The code will not compile because of line 4.
The code will not compile because of line 8.
The code will not compile because of line 11.
The code will not compile because of line 12.
The code will not compile because of line 17.

None of the above

Beyond Classes

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Utilizing Java Object-Oriented Approach

Declare and instantiate Java objects including nested class
objects, and explain the object life-cycle including creation,
reassigning references, and garbage collection

Create classes and records, and define and use instance and
static fields and methods, constructors, and instance and
static initializers

Understand variable scopes, use local variable type inference,
apply encapsulation, and make objects immutable

Implement polymorphism and differentiate object type versus
reference type. Perform type casting, identify object types
using instanceof operator and pattern matching

Create and use interfaces, identify functional interfaces, and
utilize private, static, and default interface methods

Create and use enumerations with fields, methods and
constructors

In Chapter 6, “Class Design,” we showed you how to create,
initialize, and extend both abstract and concrete classes. In this
- chapter, we move beyond classes to other types available in
Java, including interfaces, enums, sealed classes, and records. Many of the same basic rules
you learned about in Chapter 5, “Methods,” still apply, such as access modifiers and static
members, although there are additional rules for each type. We also cover encapsulation and
how to properly protect instance members. Finally, we conclude this chapter by discussing
nested types and polymorphic inheritance.

For this chapter, remember that a Java file may have at most one public top-level type,
and it must match the name of the file. This applies to classes, enums, records, and so on.
Also, remember that a top-level type can only be declared with public or package access.

Another top-level type available in Java is annotations. Knowing how to

ITE create a custom annotation can be a useful skill in practice, although it is
not required for the exam. You should still know how to use certain anno-
tations for the exam, such as @Overr-ide.

Implementing Interfaces

In Chapter 6, you learned about abstract classes, specifically how to create and extend
one. Since classes can only extend one class, they had limited use for inheritance. On the
other hand, a class may implement any number of interfaces. An interface is an abstract
data type that declares a list of abstract methods that any class implementing the interface
must provide.

Over time, the precise definition of an interface has changed, as new method types are
now supported. In this chapter, we start with a rudimentary definition of an interface and
expand it to cover all of the supported members.

Declaring and Using an Interface

In Java, an interface is defined with the interface keyword, analogous to the class keyword
used when defining a class. Refer to Figure 7.1 for a proper interface declaration.

Implementing Interfaces 347

FIGURE 7.1 Defining an interface

public or interface Interface
package access keyword name

l Implicit modifier l l

public abstract interface CanBurrow {

public abstract Float getSpeed(int age); <«———— Abstract interface method
1N J

Implicit modifiers

public static final int MINIMUM DEPTH = 2; <——Constantvariable
\ J

N
} Implicit modifiers

In Figure 7.1, our interface declaration includes an abstract method and a constant vari-
able. Interface variables are referred to as constants because they are assumed to be public,
static, and final. They are initialized with a constant value when they are declared. Since
they are public and static, they can be used outside the interface declaration without
requiring an instance of the interface. Figure 7.1 also includes an abstract method that, like
an interface variable, is assumed to be public.

For brevity, we often say “an instance of an interface” in this chapter to
% mean an instance of a class that implements the interface.

What does it mean for a variable or method to be assumed to be something? One aspect
of an interface declaration that differs from an abstract class is that it contains implicit mod-
ifiers. An implicit modifier is a modifier that the compiler automatically inserts into the code.
For example, an interface is always considered to be abstract, even if it is not marked so.
We cover rules and examples for implicit modifiers in more detail shortly.

Let’s start with a simple example. Imagine that we have an interface WalksOnTwolegs,
defined as follows:

public abstract interface WalksOnTwoLegs {}

It compiles because interfaces are not required to define any methods. The abstract
modifier in this example is optional for interfaces, with the compiler inserting it if it is not
provided. Now, consider the following two examples, which do not compile:
public class Biped {

public static void main(String[] args) {
var e = new WalksOnTwolLegs(); // DOES NOT COMPILE

public final interface WalksOnEightLegs {} // DOES NOT COMPILE

348 Chapter 7 = Beyond Classes

The first example doesn’t compile, as WalksOnTwolLegs is an interface and cannot be
instantiated. The second example, WalksOnEightLegs, doesn’t compile because interfaces
cannot be marked as final for the same reason that abstract classes cannot be marked as
final. In other words, marking an interface final implies no class could ever implement it.

How do you use an interface? Let’s say we have an interface Climb, defined as follows:

public dinterface Climb {
Number getSpeed(int age);

Next, we have a concrete class FieldMouse that invokes the Climb interface by using
the implements keyword in its class declaration, as shown in Figure 7.2.

FIGURE 7.2 Implementing an interface

impl k
e eﬁ:qraitrsd)eyword Interface name(s)
separated by commas ()

R s i

public class FieldMouse implements Climb, CanBurrow {

Covariant return type I
public Float getSpeed(int age)

U J
public keyword/ .
return 11f; Signature matches

(required)
interface method

Class name

The FieldMouse class declares that it implements the Climb interface and includes an
overridden version of getSpeed () inherited from the Climb interface. The method signa-
ture of getSpeed () matches exactly, and the return type is covariant, since a Float can be
implicitly cast to a Number. The access modifier of the interface method is implicitly public
in Climb, although the concrete class FieldMouse must explicitly declare it.

As shown in Figure 7.2, a class can implement multiple interfaces, each separated by
a comma (,). If any of the interfaces define abstract methods, then the concrete class is
required to override them. In this case, FieldMouse implements the CanBurrow interface
that we saw in Figure 7.1. In this manner, the class overrides two abstract methods at the
same time with one method declaration. You learn more about duplicate and compatible
interface methods in this chapter.

Extending an Interface

Like a class, an interface can extend another interface using the extends keyword.

public interface Nocturnal {}

public interface HasBigEyes extends Nocturnal {}

Implementing Interfaces 349

Unlike a class, which can extend only one class, an interface can extend multiple
interfaces.

public interface Nocturnal {
public int hunt();

public interface CanFly {
public void flap();

public interface HasBigEyes extends Nocturnal, CanFly {}

public class Owl implements HasBigEyes {
public int hunt() { return 5; }
public void flap() { System.out.println("Flap!"); }

In this example, the Owl class implements the HasBigEyes interface and must implement
the hunt () and flap() methods. Extending two interfaces is permitted because interfaces
are not initialized as part of a class hierarchy. Unlike abstract classes, they do not contain
constructors and are not part of instance initialization. Interfaces simply define a set of rules
and methods that a class implementing them must follow.

Inheriting an Interface

Like an abstract class, when a concrete class inherits an interface, all of the inherited abstract
methods must be implemented. We illustrate this principle in Figure 7.3. How many abstract
methods does the concrete Swan class inherit?

FIGURE 7.3 Interface Inheritance

abstract class Animal
abstract int getType ()
A
extends
abstract class Bird implements | interface Fly
abstract boolean canSwoop () 7 void £f1y()
A
extends
class Swan implements _|interface Swim
77 void swim()

350 Chapter 7 = Beyond Classes

Give up? The concrete Swan class inherits four abstract methods that it must imple-
ment: getType (), canSwoop (), fly(), and swim(). Let’s take a look at another example
involving an abstract class that implements an interface:

public interface HasTail {
public int getTaillLength();

public interface HasWhiskers {
public int getNumberOfWhiskers();

public abstract class HarborSeal implements HasTail, HasWhiskers {}

public class CommonSeal extends HarborSeal {} // DOES NOT COMPILE

The HarborSeal class compiles because it is abstract and not required to implement
any of the abstract methods it inherits. The concrete CommonSeal class, though, must
override all inherited abstract methods.

Mixing Class and Interface Keywords

The exam creators are fond of questions that mix class and interface terminology. Although
a class can implement an interface, a class cannot extend an interface. Likewise, while an
interface can extend another interface, an interface cannot implement another interface. The
following examples illustrate these principles:

public interface CanRun {}
public class Cheetah extends CanRun {} // DOES NOT COMPILE

public class Hyena {}
public dinterface HasFur extends Hyena {} // DOES NOT COMPILE

The first example shows a class trying to extend an interface and doesn’t compile. The
second example shows an interface trying to extend a class, which also doesn’t compile. Be
wary of examples on the exam that mix class and interface declarations.

Inheriting Duplicate Abstract Methods

Java supports inheriting two abstract methods that have compatible method declarations.

public interface Herbivore { public void eatPlants(); }
public interface Omnivore { public void eatPlants(); }

public class Bear implements Herbivore, Omnivore {

Implementing Interfaces 351

public void eatPlants() {
System.out.println("Eating plants");
1

By compatible, we mean a method can be written that properly overrides both inherited
methods: for example, by using covariant return types that you learned about in Chapter 6.
The following is an example of an incompatible declaration:

public interface Herbivore { public void eatPlants(); }
public interface Omnivore { public int eatPlants(); }

public class Tiger implements Herbivore, Omnivore { // DOES NOT COMPILE

It’s impossible to write a version of Tiger that satisfies both inherited abstract
methods. The code does not compile, regardless of what is declared inside the Tiger class.

Inserting Implicit Modifiers

As mentioned earlier, an implicit modifier is one that the compiler will automatically insert.
It’s reminiscent of the compiler inserting a default no-argument constructor if you do not
define a constructor, which you learned about in Chapter 6. You can choose to insert these
implicit modifiers yourself or let the compiler insert them for you.

The following list includes the implicit modifiers for interfaces that you need to know
for the exam:

» Interfaces are implicitly abstract.

» Interface variables are implicitly public, static, and final.

» Interface methods without a body are implicitly abstract.

» Interface methods without the private modifier are implicitly public.

The last rule applies to abstract, default, and static interface methods, which we cover in
the next section.

Let’s take a look at an example. The following two interface definitions are equivalent, as
the compiler will convert them both to the second declaration:

public interface Soar {
int MAX_HEIGHT = 10;
final static boolean UNDERWATER = true;
void fly(int speed);
abstract void takeoff();
public abstract double dive();

352 Chapter 7 = Beyond Classes

public abstract interface Soar {
public static final int MAX_HEIGHT = 10;
public final static boolean UNDERWATER = true;
public abstract void fly(int speed);
public abstract void takeoff();
public abstract double dive();

In this example, we’ve marked in bold the implicit modifiers that the compiler automat-
ically inserts. First, the abstract keyword is added to the interface declaration. Next, the
public, static, and final keywords are added to the interface variables if they do not
exist. Finally, each abstract method is prepended with the abstract and public keywords
if it does not contain them already.

Conflicting Modifiers

What happens if a developer marks a method or variable with a modifier that conflicts with
an implicit modifier? For example, if an abstract method is implicitly public, can it be
explicitly marked protected or private?

public 1interface Dance {
private int count = 4; // DOES NOT COMPILE
protected void step(); // DOES NOT COMPILE

Neither of these interface member declarations compiles, as the compiler will apply the
public modifier to both, resulting in a conflict.

Differences between Interfaces and Abstract Classes

Even though abstract classes and interfaces are both considered abstract types, only inter-
faces make use of implicit modifiers. How do the play () methods differ in the following two
definitions?

abstract class Husky { // abstract required 1in class declaration
abstract void play(); // abstract required in method declaration

}

interface Poodle { // abstract optional in dinterface declaration
void play(); // abstract optional in method declaration

}

Both of these method definitions are considered abstract. That said, the Husky class will
not compile if the play () method is not marked abstract, whereas the method in the
Poodle interface will compile with or without the abstract modifier.

Implementing Interfaces 353

What about the access level of the play () method? Can you spot anything wrong with
the following class definitions that use our abstract types?
public class Webby extends Husky {

void play() {} // OK - play() is declared with package access in Husky

public class Georgette implements Poodle {
void play() {} // DOES NOT COMPILE - play() is public in Poodle

The Webby class compiles, but the Georgette class does not. Even though the two
method implementations are identical, the method in the Georgette class reduces the access
modifier on the method from public to package access.

Declaring Concrete Interface Methods

While interfaces started with abstract methods and constants, they’ve grown to include a
lot more. Table 7.1 lists the six interface member types that you need to know for the exam.
We’ve already covered abstract methods and constants, so we focus on the remaining four
concrete methods in this section.

TABLE 7.1 Interface member types

Has value or
Membership type Required modifiers Implicit modifiers body?

Constant Class — public Yes
variable static
final
abstract method Instance — public No
abstract
default method Instance default public Yes
static method Class static public Yes
private method Instance private — Yes
private static Class private — Yes
method

static

354 Chapter 7 = Beyond Classes

In Table 7.1, the membership type determines how it is able to be accessed. A method
with a membership type of class is shared among all instances of the interface, whereas a
method with a membership type of instance is associated with a particular instance of the
interface.

What About protected or Package Interface Members?

Alongside public methods, interfaces now support private methods.They do not
support protected access, though, as a class cannot extend an interface. They also do not
support package access, although more likely for syntax reasons and backward compati-
bility. Since interface methods without an access modifier have been considered implicitly
public, changing this behavior to package access would break many existing programs!

Writing a default Interface Method

The first type of concrete method you should be familiar with for the exam is a default
method. A default method is a method defined in an interface with the default keyword
and includes a method body. It may be optionally overridden by a class implementing the
interface.

One use of default methods is for backward compatibility. You can add a new default
method to an interface without the need to modify all of the existing classes that implement
the interface. The older classes will just use the default implementation of the method defined
in the interface. This is where the name default method comes from!

The following is an example of a default method defined in an interface:

public interface IsColdBlooded {
boolean hasScales();
default double getTemperature() {
return 10.0;

3

This example defines two interface methods, one abstract and one default. The fol-
lowing Snake class, which implements IsColdBlooded, must implement hasScales().It
may rely on the default implementation of getTemperature() or override the method with
its own version:

public class Snake implements IsColdBlooded {
public boolean hasScales() { // Required override
return true;

Implementing Interfaces 355

public double getTemperature() { // Optional override

return 12;
}
}
Note that the default interface method modifier is not the same as the
TE default label used in a switch statement or expression. Likewise, even

though package access is sometimes referred to as default access, that
feature is implemented by omitting an access modifier. Sorry if this is
confusing! We agree Java has overused the word default over the years!
For the exam, you should be familiar with various rules for declaring default methods.

Default Interface Method Definition Rules

A default method may be declared only within an interface.

A default method must be marked with the default keyword and include a method body.

A default method is implicitly public.

A default method cannot be marked abstract, final, or static.

A default method may be overridden by a class that implements the interface.

S

If a class inherits two or more default methods with the same method signature, then the
class must override the method.

The first rule should give you some comfort in that you’ll only see default methods in
interfaces. If you see them in a class or enum on the exam, something is wrong. The second
rule just denotes syntax, as default methods must use the default keyword. For example,
the following code snippets will not compile because they mix up concrete and abstract
interface methods:

public dinterface Carnivore {

public default void eatMeat(); // DOES NOT COMPILE

public int getRequiredFoodAmount() { // DOES NOT COMPILE
return 13;

11

The next three rules for default methods follow from the relationship with abstract
interface methods. Like abstract interface methods, default methods are implicitly public.
Unlike abstract methods, though, default interface methods cannot be marked abstract
since they provide a body. They also cannot be marked as final, because they are designed
so that they can be overridden in classes implementing the interface, just like abstract
methods. Finally, they cannot be marked static since they are associated with the instance
of the class implementing the interface.

356 Chapter 7 = Beyond Classes

Inheriting Duplicate default Methods

The last rule for creating a default interface method requires some explanation. For example,
what value would the following code output?

public interface Walk {
public default int getSpeed() { return 5; }

public interface Run {
public default int getSpeed() { return 10; }

public class Cat implements Walk, Run {} // DOES NOT COMPILE

In this example, Cat inherits the two default methods for getSpeed (), so which does
it use? Since Walk and Run are considered siblings in terms of how they are used in the Cat
class, it is not clear whether the code should output 5 or 10. In this case, the compiler throws
up its hands and says, “Too hard, I give up!” and fails.

All is not lost, though. If the class implementing the interfaces overrides the duplicate
default method, the code will compile without issue. By overriding the conflicting method,
the ambiguity about which version of the method to call has been removed. For example, the
following modified implementation of Cat will compile:

public class Cat implements Walk, Run {
public int getSpeed() { return 1; }

Calling a Hidden default Method

In the last section, we showed how our Cat class could override a pair of conflicting
default methods, but what if the Cat class wanted to access the version of getSpeed() in
Wa'lk or Run? Is it still accessible?

Yes, but it requires some special syntax.

public class Cat implements Walk, Run {

public int getSpeed() {
return 1;

public int getWalkSpeed() {
return Walk.super.getSpeed();
1

Implementing Interfaces 357

This is an area where a default method exhibits properties of both a static and in-
stance method. We use the interface name to indicate which method we want to call, but we
use the super keyword to show that we are following instance inheritance, not class inher-
itance. Note that calling Walk.getSpeed() or Walk.this.getSpeed() would not have
worked. A bit confusing, we know, but you need to be familiar with this syntax for the exam.

Declaring static Interface Methods

Interfaces are also declared with static methods. These methods are defined explicitly with
the static keyword and, for the most part, behave just like static methods defined in classes.

Static Interface Method Definition Rules

1. A static method must be marked with the static keyword and include a
method body.

A static method without an access modifier is implicitly public.
A static method cannot be marked abstract or final.

A static method is not inherited and cannot be accessed in a class implementing the
interface without a reference to the interface name.

These rules should follow from what you know so far of classes, interfaces, and statiic
methods. For example, you can’t declare static methods without a body in classes, either. Like
default and abstract interface methods, static interface methods are implicitly public if they
are declared without an access modifier. As you see shortly, you can use the private access
modifier with static methods.

Let’s take a look at a static interface method:

public interface Hop {
static int getJumpHeight() {
return 8;

1}

Since the method is defined without an access modifier, the compiler will automati-
cally insert the publ1ic access modifier. The method getJumpHeight () works just like a
static method as defined in a class. In other words, it can be accessed without an instance
of a class.

public class Skip {
public int skip() {
return Hop.getJumpHeight();
Tl

The last rule about inheritance might be a little confusing, so let’s look at an example. The
following is an example of a class Bunny that implements Hop and does not compile:

public class Bunny implements Hop {
public void printDetails() {
System.out.println(getJumpHeight()); // DOES NOT COMPILE
I

358 Chapter 7 = Beyond Classes

Without an explicit reference to the name of the interface, the code will not compile, even
though Bunny implements Hop. This can be easily fixed by using the interface name:

public class Bunny implements Hop {
public void printDetails() {
System.out.println(Hop.getJumpHeight());
11

Notice we don’t have the same problem we did when we inherited two default interface
methods with the same signature. Java “solved” the multiple inheritance problem of static
interface methods by not allowing them to be inherited!

Reusing Code with private Interface Methods

The last two types of concrete methods that can be added to interfaces are private and
private static interface methods. Because both types of methods are private, they
can only be used in the interface declaration in which they are declared. For this reason,
they were added primarily to reduce code duplication. For example, consider the following
code sample:

public dinterface Schedule {

default void wakeUp() { checkTime(7); }
private void haveBreakfast() { checkTime(9); 1}
static void workOut() { checkTime(18); }

private static void checkTime(int hour) {
if (hour> 17) {
System.out.println("You're late!");
} else {
System.out.println("You have "+(17-hour)+" hours left "
+ "to make the appointment");

} i}

You could write this interface without using a private method by copying the con-
tents of the checkTime () method into the places it is used. It’s a lot shorter and easier to
read if you don’t. Since the authors of Java were nice enough to add this feature for our
convenience, we might as well use it!

We could have also declared checkTime() as public in the previous

‘dTE example, but this would expose the method to use outside the interface.
One important tenet of encapsulation is to not expose the internal work-
ings of a class or interface when not required. We cover encapsulation
later in this chapter.

Implementing Interfaces 359

The difference between a non-static private method and a static one is analo-
gous to the difference between an instance and static method declared within a class. In
particular, it’s all about what methods each can be called from.

Private Interface Method Definition Rules

1. A private interface method must be marked with the private modifier and include a
method body.

2. Aprivate static interface method may be called by any method within the interface
definition.

3. A private interface method may only be called by default and other private non-
static methods within the interface definition.

Another way to think of it is that a private interface method is only accessible to non-
static methods defined within the interface. A private static interface method, on
the other hand, can be accessed by any method in the interface. For both types of private
methods, a class inheriting the interface cannot directly invoke them.

Calling Abstract Methods

We’ve talked a lot about the newer types of interface methods, but what about abstract
methods? It turns out default and private non-static methods can access abstract methods
declared in the interface. This is the primary reason we associate these methods with instance
membership. When they are invoked, there is an instance of the interface.

public interface ZooRenovation {
public String projectName();
abstract String status();
default void printStatus() {
System.out.print("The " + projectName() + " project " + status());

1}

In this example, both projectName () and status() have the same modi-
fiers (abstract and public are implicit) and can be called by the default method
printStatus().

Reviewing Interface Members

We conclude our discussion of interface members with Table 7.2, which shows the access
rules for members within and outside an interface.

360 Chapter 7 = Beyond Classes

TABLE 7.2 Interface member access

Accessible from Accessible from Accessible from Accessible
defaultandprivate static methods methods in classes without an
methods within the within the inheriting the instance of the
interface? interface? interface? interface?

Constant Yes Yes Yes Yes

variable

abstract Yes No Yes No

method

default VYes No Yes No

method

static Yes Yes Yes (interface name Yes (interface

method required) name required)

private Yes No No No

method

private Yes Yes No No

static

method

While Table 7.2 might seem like a lot to remember, here are some quick tips for the exam:

» Treat abstract, default, and non-static private methods as belonging to an in-
stance of the interface.

» Treat static methods and variables as belonging to the interface class object.
= All private interface method types are only accessible within the interface declaration.
Using these rules, which of the following methods do not compile?

public interface ZooTrainTour {
abstract int getTrainName();
private static void ride() {}
default void playHorn() { getTrainName(); ride(); }
public static void slowDown() { playHorn(); }
static void speedUp() { ride(); }

The ride () method is private and static, so it can be accessed by any default or
static method within the interface declaration. The getTrainName () is abstract, so
it can be accessed by a default method associated with the instance. The slowDown ()

Working with Enums 361

method is static, though, and cannot call a default or private method, such as
playHorn (), without an explicit reference object. Therefore, the slowDown () method does
not compile.

Give yourself a pat on the back! You just learned a lot about interfaces, probably more
than you thought possible. Now take a deep breath. Ready? The next type we are going to
cover is enums.

Working with Enums

In programming, it is common to have a type that can only have a finite set of values, such
as days of the week, seasons of the year, primary colors, and so on. An enumeration, or enum
for short, is like a fixed set of constants.

Using an enum is much better than using a bunch of constants because it provides type-
safe checking. With numeric or String constants, you can pass an invalid value and not find
out until runtime. With enums, it is impossible to create an invalid enum value without
introducing a compiler error.

Enumerations show up whenever you have a set of items whose types are known at com-
pile time. Common examples include the compass directions, the months of the year, the
planets in the solar system, and the cards in a deck (well, maybe not the planets in a solar
system, given that Pluto had its planetary status revoked).

Creating Simple Enums

To create an enum, declare a type with the enum keyword, a name, and a list of values, as
shown in Figure 7.4.

FIGURE 7.4 Defining a simple enum

publicor enum Enum
package access keyword name

Vol

public enum Season {

WINTER, SPRING, SUMMER, FALL;
“ o

~
Enum values (comma separated)

} Semicolon optional

for simple enums

362 Chapter 7 = Beyond Classes

We refer to an enum that only contains a list of values as a simple enum. When working
with simple enums, the semicolon at the end of the list is optional. Keep the Season enum
handy, as we use it throughout this section.

)/ Enum values are considered constants and are commonly written using
,@TE snake case. For example, an enum declaring a list of ice cream flavors
might include values like VANILLA, ROCKY_ROAD,
MINT_CHOCOLATE_CHIP, and so on.

Using an enum is super easy.

var s = Season.SUMMER;
System.out.println(Season.SUMMER) ; // SUMMER
System.out.println(s == Season.SUMMER); // true

As you can see, enums print the name of the enum when toString() is called. They can
be compared using == because they are like static final constants. In other words, you
can use equals () or == to compare enums, since each enum value is initialized only once in
the Java Virtual Machine (JVM).

One thing that you can’t do is extend an enum.

public enum ExtendedSeason extends Season {} // DOES NOT COMPILE

The values in an enum are fixed. You cannot add more by extending the enum.

Calling the values(), name(), and ordinal() Methods

An enum provides a values () method to get an array of all of the values. You can use this like
any normal array, including in a for-each loop:

for(var season: Season.values()) {
System.out.println(season.name() + " " + season.ordinal());

The output shows that each enum value has a corresponding int value, and the values
are listed in the order in which they are declared:
WINTER ©
SPRING 1
SUMMER 2
FALL 3

The int value will remain the same during your program, but the program is easier to
read if you stick to the human-readable enum value.

You can’t compare an int and an enum value directly anyway since an enum is a type, like
a Java class, and not a primitive int.

if (Season.SUMMER == 2) {} // DOES NOT COMPILE

http://season.name

Working with Enums 363

Calling the valueOf() Method

Another useful feature is retrieving an enum value from a String using the value0Of ()
method. This is helpful when working with older code or parsing user input. The String
passed in must match the enum value exactly, though.

Season s = Season.valueOf("SUMMER"); // SUMMER

Season t = Season.valueOf("summer"); // IllegalArgumentException

The first statement works and assigns the proper enum value to s. Note that this line is
not creating an enum value, at least not directly. Each enum value is created once when the
enum is first loaded. Once the enum has been loaded, it retrieves the single enum value with
the matching name.

The second statement encounters a problem. There is no enum value with the lowercase
name summer. Java throws up its hands in defeat and throws an I1legalArgumentException.

Exception in thread "main" java.lang.IllegalArgumentException:
No enum constant enums.Season.summer

Using Enums in switch Statements

Enums can be used in switch statements and expressions. Pay attention to the case values
in this code:

Season summer = Season.SUMMER;
switch(summer) {
case WINTER:
System.out.print("Get out the sled!");
break;
case SUMMER:
System.out.print("Time for the pool!");
break;
default:
System.out.print("Is it summer yet?");

The code prints "Time for the pool!" since it matches SUMMER. In each case state-
ment, we just typed the value of the enum rather than writing Season.WINTER. After all, the
compiler already knows that the only possible matches can be enum values. Java treats the
enum type as implicit. In fact, if you were to type case Season.WINTER, it would not com-
pile. Don’t believe us? Take a look at this equivalent example using a switch expression:

Season summer = Season.SUMMER;

var message = switch(summer) {
case Season.WINTER -> "Get out the sled!"™; // DOES NOT COMPILE

364 Chapter 7 = Beyond Classes

case 0 -> "Time for the pool!"; // DOES NOT COMPILE
default -> "Is it summer yet?";
s

System.out.print(message);

The first case statement does not compile because Season is used in the case value. If
we changed Season. FALL to just FALL, then the line would compile. What about the sec-
ond case statement? Just as earlier we said that you can’t compare enums with int values,
you cannot use them in a switch statement with int values. On the exam, pay special
attention when working with enums that they are used only as enums.

Adding Constructors, Fields, and Methods

While a simple enum is composed of just a list of values, we can define a complex enum with
additional elements. Let’s say our zoo wants to keep track of traffic patterns to determine
which seasons get the most visitors.

1: public enum Season {

2: WINTER("Low"), SPRING("Medium"), SUMMER("High"), FALL("Medium");

private final String expectedVisitors;

private Season(String expectedVisitors) {
this.expectedVisitors = expectedVisitors;

}

public void printExpectedVisitors() {
System.out.println(expectedVisitors);

P}

There are a few things to notice here. On line 2, the list of enum values ends with a semi-
colon (;). While this is optional when our enum is composed solely of a list of values, it is
required if there is anything in the enum besides the values.

Lines 3-9 are regular Java code. We have an instance variable, a constructor, and a
method. We mark the instance variable private and final on line 3 so that our enum properties
cannot be modified.

©O© 0 N oo b W

é Although it is possible to create an enum with instance variables that
P can be modified, it is a very poor practice to do so since they are shared
within the JVM. When designing an enum, the values should be immu-
table.

All enum constructors are implicitly private, with the modifier being optional. This is
reasonable since you can’t extend an enum and the constructors can be called only within
the enum itself. In fact, an enum constructor will not compile if it contains a public or
protected modifier.

Working with Enums 365

What about the parentheses on line 2? Those are constructor calls, but without the new
keyword normally used for objects. The first time we ask for any of the enum values, Java
constructs all of the enum values. After that, Java just returns the already constructed enum
values. Given that explanation, you can see why this calls the constructor only once:

public enum OnlyOne {
ONCE (true);
private OnlyOne(boolean b) {
System.out.print("constructing,");

public class PrintTheOne {
public static void main(String[] args) {
System.out.print("begin,");
OnlyOne firstCall = OnlyOne.ONCE; // Prints constructing,
OnlyOne secondCall = OnlyOne.ONCE; // Doesn't print anything
System.out.print("end");

This class prints the following:

begin,constructing,end

If the OnlyOne enum was used earlier in the program, and therefore initialized sooner,
then the line that declares the firstCall variable would not print anything.

How do we call an enum method? That’s easy, too: we just use the enum value followed
by the method call.

Season.SUMMER. printExpectedVisitors();

Sometimes you want to define different methods for each enum. For example, our zoo has
different seasonal hours. It is cold and gets dark early in the winter. We can keep track of the
hours through instance variables, or we can let each enum value manage hours itself.
public enum Season {

WINTER {

public String getHours() { return "1Qam-3pm"; }
})
SPRING {

public String getHours() { return "9am-5pm"; }
b
SUMMER {

public String getHours() { return "9am-7pm"; }
})

366 Chapter 7 = Beyond Classes

FALL {
public String getHours() { return "9am-5pm"; }

s

public abstract String getHours();

What’s going on here? It looks like we created an abstract class and a bunch of tiny
subclasses. In a way, we did. The enum itself has an abstract method. This means that each
and every enum value is required to implement this method. If we forget to implement the
method for one of the values, we get a compiler error:

The enum constant WINTER must implement the abstract method getHours()
But what if we don’t want each and every enum value to have a method? No problem. We

can create an implementation for all values and override it only for the special cases.

public enum Season {
WINTER {
public String getHours() { return "1Qam-3pm"; }

s
SUMMER {

public String getHours() { return "9am-7pm"; }
3

SPRING, FALL;
public String getHours() { return "9am-5pm"; }

This looks better. We only code the special cases and let the others use the enum-provided
implementation.

An enum can even implement an interface, as this just requires overriding the
abstract methods:

public 1interface Weather { int getAverageTemperature(); }

public enum Season implements Weather {
WINTER, SPRING, SUMMER, FALL;
public int getAverageTemperature() { return 30; }

Just because an enum can have lots of methods doesn’t mean that it should. Try to keep
your enums simple. If your enum is more than a page or two, it is probably too long. When
enums get too long or too complex, they are hard to read.

You might have noticed that in each of these enum examples, the list of
OTE values came first. This was not an accident. Whether the enum is simple
or complex, the list of values always comes first.

Sealing Classes 367

Sealing Classes

An enum with many constructors, fields, and methods may start to resemble a full-featured
class. What if we could create a class but limit the direct subclasses to a fixed set of classes?
Enter sealed classes! A sealed class is a class that restricts which other classes may directly
extend it. These are brand new to Java 17, so expect to see at least one question about them
on the exam.

Did you happen to notice that we said directly extend in the definition of

ITE a sealed class? As you see shortly, there is a way for a class not named
in the sealed class declaration to extend it indirectly. Unless we say oth-
erwise, though, assume that we're referring to subclasses that directly
extend the sealed class.

Declaring a Sealed Class

Let’s start with a simple example. A sealed class declares a list of classes that can extend it,
while the subclasses declare that they extend the sealed class. Figure 7.5 declares a sealed
class with two direct subclasses.

FIGURE 7.5 Defining a sealed class

sealed keyword List of permitted classes

class keyword permits keyword l

f—%

public sealed class Bear permits Kodiak, Panda {}

final sealed public final class Kodiak extends Bear ({} Extends

ornon-sealed sealed

subclass modifier . class
public non-sealed class Panda extends Bear {}

~N A N~

Notice anything new? Java 17 includes three new keywords that you should be familiar
with for the exam. We often use final with sealed subclasses, but we get into each of these
after we cover the basics.

Sealed Class Keywords

» sealed: Indicates that a class or interface may only be extended/implemented by named
classes or interfaces

368 Chapter 7 = Beyond Classes

= permits: Used with the sealed keyword to list the classes and interfaces allowed

= non-sealed: Applied to a class or interface that extends a sealed class, indicating that it
can be extended by unspecified classes
Pretty easy so far, right? The exam is just as likely to test you on what sealed classes

cannot be used for. For example, can you see why each of these sets of declarations does
not compile?

public class sealed Frog permits GlassFrog {} // DOES NOT COMPILE
public final class GlassFrog extends Frog {}

public abstract sealed class Wolf permits Timber {}
public final class Timber extends Wolf {}
public final class MyWolf extends Wolf {} // DOES NOT COMPILE

The first example does not compile because the class and sealed modifiers are in the
wrong order. The modifier has to be before the class type. The second example does not
compile because MyWolf isn’t listed in the declaration of Wolf.

)’ Sealed classes are commonly declared with the abstract modifier,
,415 although this is certainly not required.

Declaring a sealed class with the sealed modifier is the easy part. Most of the time, if
you see a question on the exam about sealed classes, they are testing your knowledge of
whether the subclass extends the sealed class properly. There are a number of important
rules you need to know for the exam, so read the next sections carefully.

Compiling Sealed Classes

Let’s say we create a Penguin class and compile it in a new package without any other source
code. With that in mind, does the following compile?

// Penguin.java

package zoo;

public sealed class Penguin permits Emperor {}

No, it does not! Why? The answer is that a sealed class needs to be declared (and com-
piled) in the same package as its direct subclasses. But what about the subclasses themselves?
They must each extend the sealed class. For example, the following does not compile.

// Penguin.java
package zoo;
public sealed class Penguin permits Emperor {} // DOES NOT COMPILE

Sealing Classes 369

// Emperor.java
package zoo;
public final class Emperor {}

Even though the Emperor class is declared, it does not extend the Penguin class.

y But wait, there’s more! In Chapter 12, “Modules,” you learn about named
,&TE modules, which allow sealed classes and their direct subclasses in differ-
ent packages, provided they are in the same named module.

Specifying the Subclass Modifier

While some types, like interfaces, have a certain number of implicit modifiers, sealed classes
do not. Every class that directly extends a sealed class must specify exactly one of the follow-
ing three modifiers: final, sealed, or non-sealed. Remember this rule for the exam!

A final Subclass

The first modifier we’re going to look at that can be applied to a direct subclass of a sealed
class is the final modifier.

public sealed class Antelope permits Gazelle {}
public final class Gazelle extends Antelope {}

public class George extends Gazelle {} // DOES NOT COMPILE
Just as with a regular class, the final modifier prevents the subclass Gazelle from being

extended further.

A sealed Subclass
Next, let’s look at an example using the sealed modifier:

public sealed class Mammal permits Equine {}
public sealed class Equine extends Mammal permits Zebra {}

public final class Zebra extends Equine {}

The sealed modifier applied to the subclass Equine means the same kind of rules that
we applied to the parent class Mammal must be present. Namely, Equine defines its own list
of permitted subclasses. Notice in this example that Zebra is an indirect subclass of Mammal
but is not named in the Mammal class.

370 Chapter 7 = Beyond Classes

Despite allowing indirect subclasses not named in Mammal, the list of classes that can
inherit Mammal is still fixed. If you have a reference to a Mamma'l object, it must be a Mammal,
Equine, or Zebra.

A non-sealed Subclass

The non-sealed modifier is used to open a sealed parent class to potentially unknown sub-
classes. Let’s modify our earlier example to allow MyWolf to compile without modifying the
declaration of Wolf:

public sealed class Wolf permits Timber {}
public non-sealed class Timber extends Wolf {}

public class MyWolf extends Timber {}

In this example, we are able to create an indirect subclass of Wolf, called MyWolf, not
named in the declaration of Wolf. Also notice that MyWolf is not final, so it may be
extended by any subclass, such as MyFurrywWolf.

public class MyFurryWolf extends MyWolf {}

At first glance, this might seem a bit counterintuitive. After all, we were able to create sub-
classes of Wo'lf that were not declared in Wolf. So is Wolf still sealed? Yes, but that’s thanks
to polymorphism. Any instance of MyWolf or MyFurryWolf is also an instance of Timber,
which is named in the Wo'lf declaration. We discuss polymorphism more toward the end of
this chapter.

P sealed subclass, remember that the person writing the sealed class can
see the declaration of all direct subclasses at compile time. They can
decide whether to allow the non-sealed subclass to be supported.

% If you're still worried about opening a sealed class too much with a non-

Omitting the permits Clause

Up until now, all of the examples you’ve seen have required a permits clause when
declaring a sealed class, but this is not always the case. Imagine that you have a Snake.java
file with two top-level classes defined inside it:

// Snake.java
public sealed class Snake permits Cobra {}
final class Cobra extends Snake {}

Sealing Classes n

In this case, the permits clause is optional and can be omitted. The extends keyword is
still required in the subclass, though:

// Snake.java
public sealed class Snake {}
final class Cobra extends Snake {}

If these classes were in separate files, this code would not compile! This rule also applies
to sealed classes with nested subclasses.

// Snake.java
public sealed class Snake {
final class Cobra extends Snake {}

Referencing Nested Subclasses

While it makes the code easier to read if you omit the permits clause for nested sub-
classes, you are welcome to name them. However, the syntax might be different than
you expect.

public sealed class Snake permits Cobra { // DOES NOT COMPILE
final class Cobra extends Snake {}

}

This code does not compile because Cobra requires a reference to the Snake namespace.
The following fixes this issue:

public sealed class Snake permits Snake.Cobra {
final class Cobra extends Snake {}

}

When all of your subclasses are nested, we strongly recommend omitting the
permits class.

We cover nested classes shortly. For now, you just need to know that a nested class is a
class defined inside another class and that the omit rule also applies to nested classes.
Table 7.3 is a handy reference to these cases.

372 Chapter 7 = Beyond Classes

TABLE 7.3 Usage of the permits clause in sealed classes

Location of direct subclasses permits clause

In a different file from the sealed class Required

In the same file as the sealed class Permitted, but not required
Nested inside of the sealed class Permitted, but not required

Sealing Interfaces

Besides classes, interfaces can also be sealed. The idea is analogous to classes, and many of
the same rules apply. For example, the sealed interface must appear in the same package or
named module as the classes or interfaces that directly extend or implement it.

One distinct feature of a sealed interface is that the permits list can apply to a class that
implements the interface or an interface that extends the interface.

// Sealed -interface
public sealed dinterface Swims permits Duck, Swan, Floats {}

// Classes permitted to implement sealed interface
public final class Duck implements Swims {}
public final class Swan implements Swims {}

// Interface permitted to extend sealed qinterface
public non-sealed interface Floats extends Swims {}

What about the modifier applied to interfaces that extend the sealed interface? Well,
remember that interfaces are implicitly abstract and cannot be marked final. For
this reason, interfaces that extend a sealed interface can only be marked sealed or
non-sealed. They cannot be marked final.

Reviewing Sealed Class Rules

Any time you see a sealed class on the exam, pay close attention to the subclass declaration
and modifiers.

Sealed Class Rules

» Sealed classes are declared with the sealed and permits modifiers.

» Sealed classes must be declared in the same package or named module as their direct
subclasses.

Encapsulating Data with Records 373

= Direct subclasses of sealed classes must be marked final, sealed, or non-sealed.

» The permits clause is optional if the sealed class and its direct subclasses are declared
within the same file or the subclasses are nested within the sealed class.

» Interfaces can be sealed to limit the classes that implement them or the interfaces that
extend them.

@ Real World Scenario

Why Have Sealed Classes?

In Chapter 3, “Making Decisions,” you learned about switch expressions and pattern
matching. Imagine if we could treat a sealed class like an enum in a switch expression by
applying pattern matching. Given a sealed class Fish with two direct subclasses, it might
look something like this:

public void printName(Fish fish) {
System.out.println(switch(fish) {
case Trout t -> t.getTroutName();
case Bass b -> b.getBassName();
1
}

If Fish wasn't sealed, the switch expression would require a default branch, or the
code would not compile. Since it’s sealed, the compiler knows all the options! The good
news is that this feature is on the way, but the bad news is that it’s still in Preview in Java 17
and not officially released. We just wanted to give you an idea of where some of these new
features were heading.

Encapsulating Data with Records

We saved the best new Java type for last! If you’ve heard anything about the new features in
Java, you have probably heard about records. Records are exciting because they remove a
ton of boilerplate code. Before we get into records, it helps to have some context of why they
were added to the language, so we start with encapsulation.

374 Chapter 7 = Beyond Classes

Understanding Encapsulation

A POJO, which stands for Plain Old Java Object, is a class used to model and pass data
around, often with few or no complex methods (hence the “plain” part of the defini-
tion). You might have also heard of a JavaBean, which is POJO that has some additional
rules applied.

Let’s create a simple POJO with two fields:

public class Crane {
int numberEggs;
String name;
public Crane(int numberEggs, String name) {
this.numberEggs = numberEggs;
this.name = name;

Uh oh, the fields are package access. Why do we care? That means someone outside the
class in the same package could change these values and create invalid data such as this:

public class Poacher {
public void badActor() {
var mother = new Crane(5, "Cathy");
mother.numberEggs = -100;

This is clearly no good. We do not want the mother Crane to have a negative number
of eggs! Encapsulation to the rescue. Encapsulation is a way to protect class members by
restricting access to them. In Java, it is commonly implemented by declaring all instance vari-
ables private. Callers are required to use methods to retrieve or modify instance variables.

Encapsulation is about protecting a class from unexpected use. It also allows us to modify
the methods and behavior of the class later without someone already having direct access
to an instance variable within the class. For example, we can change the data type of an in-
stance variable but maintain the same method signatures. In this manner, we maintain full
control over the internal workings of a class.

Let’s take a look at the newly encapsulated (and immutable) Crane class:

public final class Crane {
private final int numberEggs;
private final String name;
public Crane(int numberEggs, String name) {
if (numberEggs >= 0) this.numberEggs = numberEggs; // guard condition

a » W N =

Encapsulating Data with Records 375

6: else throw new IllegalArgumentException();
7 this.name = name;

8: }

9: public int getNumberEggs() { // getter
10: return numberEggs;

11: }

12: public String getName() { // getter
13: return name;

14: }

15: }

Note that the instance variables are now private on lines 2 and 3. This means only code
within the class can read or write their values. Since we wrote the class, we know better than
to set a negative number of eggs. We added a method on lines 9-11 to read the value, which
is called an accessor method or a getter.

You might have noticed that we marked the class and its instance variables final, and we
don’t have any mutator methods, or setters, to modify the value of the instance variables.
That’s because we want our class to be immutable in addition to being well encapsulated.

As you saw in Chapter 6, the immutable objects pattern is an object-oriented design pattern
in which an object cannot be modified after it is created. Instead of modifying an immutable
object, you create a new object that contains any properties from the original object you
want copied over.

To review, remember that data (an instance variable) is private and getters/setters
are public for encapsulation. You don’t even have to provide getters and setters. As long
as the instance variables are private, you are good. For example, the following class
is well encapsulated, although it is not terribly useful since it doesn’t declare any non-
private methods:

public class Vet {
private String name = "Dr Rogers";
private int yearsExperience = 25;

You must omit the setters for a class to be immutable. Review Chapter 6 for the addi-
tional rules on creating immutable objects.

Applying Records

Our Crane class was 15 lines long. We can write that much more succinctly, as shown in
Figure 7.6. Putting aside the guard clause on numberEggs in the constructor for a moment,
this record is equivalent and immutable!

376 Chapter 7 = Beyond Classes

FIGURE 7.6 Defining arecord

record keyword

List of fields surrounded by parentheses
Record name

| i3 .

public record Crane (int numberEggs, String name) { }

May declare optional constructors, methods, and constants

Wow! It’s only one line long! A record is a special type of data-oriented class in which the
compiler inserts boilerplate code for you.

In fact, the compiler inserts much more than the 14 lines we wrote earlier. As a bonus, the
compiler inserts useful implementations of the Object methods equals (), hashCode(),
and toString(). We’ve covered a lot in one line of code!

Now imagine that we had 10 data fields instead of 2. That’s a lot of methods we are saved
from writing. And we haven’t even talked about constructors! Worse yet, any time someone
changes a field, dozens of lines of related code may need to be updated. For example, name
may be used in the constructor, toString(), equals () method, and so on. If we have an
application with hundreds of POJOs, a record can save us valuable time.

Creating an instance of a Crane and printing some fields is easy:

var mommy = new Crane(4, "Cammy");
System.out.println(mommy.numberEggs()); // 4
System.out.println(mommy.name()); // Cammy

A few things should stand out here. First, we never defined any constructors or methods
in our Crane declaration. How does the compiler know what to do? Behind the scenes, it
creates a constructor for you with the parameters in the same order in which they appear in
the record declaration. Omitting or changing the type order will lead to compiler errors:

var mommyl = new Crane("Cammy", 4); // DOES NOT COMPILE
var mommy2 = new Crane("Cammy"); // DOES NOT COMPILE

For each field, it also creates an accessor as the field name, plus a set of parentheses.
Unlike traditional POJOs or JavaBeans, the methods don’t have the prefix get or is. Just a
few more characters that records save you from having to type! Finally, records override a
number of methods in Object for you.

Members Automatically Added to Records

= Constructor: A constructor with the parameters in the same order as the record
declaration

= Accessor method: One accessor for each field

Encapsulating Data with Records 3n

= equals(): A method to compare two elements that returns true if each field is equal in
terms of equals()

= hashCode(): A consistent hashCode () method using all of the fields

= toString(): A toString() implementation that prints each field of the record in a
convenient, easy-to-read format

The following shows examples of the new methods. Remember that the println()
method will call the toString() method automatically on any object passed to it.

var father = new Crane(0, "Craig");
System.out.println(father); // Crane[numberEggs=0, name=Craig]

var copy = new Crane(0, "Craig");

System.out.println(copy); // Crane[numberEggs=0, name=Craig]
System.out.printin(father.equals(copy)); // true
System.out.println(father.hashCode() + ", " + copy.hashCode()); // 1007, 1007

That’s the basics of records. We say “basics” because there’s a lot more you can do with
them, as you see in the next sections.

Given our one-line declaration of Crane, imagine how much code and

TE work would be required to write an equivalent class. It could easily take
40+ lines! It might be a fun exercise to try to write all the methods that
records supply.

Fun fact: it is legal to have a record without any fields. It is simply declared with the
record keyword and parentheses:

public record Crane() {}

Not the kind of thing you’d use in your own code, but it could come up on the exam.

Understanding Record Immutability

As you saw, records don’t have setters. Every field is inherently final and cannot be modified
after it has been written in the constructor. In order to “modify” a record, you have to make
a new object and copy all of the data you want to preserve.

var cousin = new Crane(3, "Jenny");
var friend = new Crane(cousin.numberEggs(), "Janeice");

Just as interfaces are implicitly abstract, records are also implicitly final. The final
modifier is optional but assumed.

public final record Crane(int numberEggs, String name) {}
Like enums, that means you can’t extend or inherit a record.

public record BlueCrane() extends Crane {} // DOES NOT COMPILE

378 Chapter 7 = Beyond Classes

Also like enums, a record can implement a regular or sealed interface, provided it imple-
ments all of the abstract methods.

public dinterface Bird {}
public record Crane(int numberEggs, String name) implements Bird {}

P sons to make data-oriented classes immutable. Doing so can lead to less
error-prone code, as a new object is established any time the data is mod-
ified. It also makes them inherently thread-safe and usable in concurrent
frameworks.

é/ Although well beyond the scope of this book, there are some good rea-

Declaring Constructors

What if you need to declare a record with some guards as we did earlier? In this section, we
cover two ways we can accomplish this with records.

The Long Constructor

First, we can just declare the constructor the compiler normally inserts automatically, which
we refer to as the long constructor.

public record Crane(int numberEggs, String name) {
public Crane(int numberEggs, String name) {
if (numberEggs < 0) throw new IllegalArgumentException();
this.numberEggs = numberEggs;
this.name = name;

The compiler will not insert a constructor if you define one with the same list of param-
eters in the same order. Since each field is final, the constructor must set every field. For
example, this record does not compile:

public record Crane(int numberEggs, String name) {
public Crane(int numberEggs, String name) {} // DOES NOT COMPILE

While being able to declare a constructor is a nice feature of records, it’s also problematic.
If we have 20 fields, we’ll need to declare assignments for every one, introducing the boiler-
plate we sought to remove. Oh, bother!

Encapsulating Data with Records 379

Compact Constructors

Luckily, the authors of Java added the ability to define a compact constructor for records. A
compact constructor is a special type of constructor used for records to process validation
and transformations succinctly. It takes no parameters and implicitly sets all fields. Figure 7.7
shows an example of a compact constructor.

FIGURE 7.7 Declaring a compact constructor

public record Crane (int numberEggs, String name) {
. K— No parentheses or constructor parameters
public Crane {
Custom validation

if (numberEggs < 0) throw new IllegalArgumentException () ;

Compact
constructor
name = name.toUpperCase() ;

Refers to input parameters (not instance members)

——

Long constructor implicitly called at end of compact constructor

Great! Now we can check the values we want, and we don’t have to list all the con-
structor parameters and trivial assignments. Java will execute the full constructor after the
compact constructor. You should also remember that a compact constructor is declared
without parentheses, as the exam might try to trick you on this. As shown in Figure 7.7, we
can even transform constructor parameters as we discuss more in the next section.

You might think that you need custom methods for every field in the

ITE record, like the negative check we did with setNumberEggs(). In
practice, many POJOs are created for general-purpose use with little
validation.

Transforming Parameters

Compact constructors give you the opportunity to apply transformations to any of the input
values. See if you can figure out what the following compact constructor does:

public record Crane(int numberEggs, String name) {
public Crane {
if (name == null || name.length() < 1)
throw new IllegalArgumentException();
name = name.substring(0,1).toUpperCase()
+ name.substring(1).toLowerCase();

380 Chapter 7 = Beyond Classes

Give up? It validates the string, then formats it such that only the first letter is capitalized.
As before, Java calls the full constructor after the compact constructor but with the modified
constructor parameters.

While compact constructors can modify the constructor parameters, they cannot modify
the fields of the record. For example, this does not compile:

public record Crane(int numberEggs, String name) {
public Crane {
this.numberEggs = 103 // DOES NOT COMPILE

Removing the th1is reference allows the code to compile, as the constructor parameter is
modified instead.

' Although we covered both the long and compact forms of record con-
P structors in this section, it is highly recommended that you stick with the
compact form unless you have a good reason not to.

Overloaded Constructors

You can also create overloaded constructors that take a completely different list of parame-
ters. They are more closely related to the long-form constructor and don’t use any of the syn-
tactical features of compact constructors.

public record Crane(int numberEggs, String name) {
public Crane(String firstName, String lastName) {
this(0, firstName + " " + lastName);

The first line of an overloaded constructor must be an explicit call to another constructor
via this (). If there are no other constructors, the long constructor must be called. Contrast
this with what you learned about in Chapter 6, where calling super () or this() was often
optional in constructor declarations. Also, unlike compact constructors, you can only trans-
form the data on the first line. After the first line, all of the fields will already be assigned,
and the object is immutable.

public record Crane(int numberEggs, String name) {
public Crane(int numberEggs, String firstName, String lastName) {
this(numberkEggs + 1, firstName + " " + lastName);
numberEggs = 103 // NO EFFECT (applies to parameter, not instance field)
this.numberEggs = 203 // DOES NOT COMPILE

Encapsulating Data with Records 381

As you saw in Chapter 6, you also can’t declare two record constructors that call each
other infinitely or as a cycle.

public record Crane(int numberEggs, String name) {
public Crane(String name) {
this(1l); // DOES NOT COMPILE
}
public Crane(int numberEggs) {
this(""); // DOES NOT COMPILE

Customizing Records

Since records are data-oriented, we’ve focused on the features of records you are likely to
use. Records actually support many of the same features as a class. Here are some of the
members that records can include and that you should be familiar with for the exam:

» Overloaded and compact constructors

» Instance methods including overriding any provided methods (accessors, equals(),
hashCode (), toString())

= Nested classes, interfaces, annotations, enum, and records

As an illustrative example, the following overrides two instance methods using the
optional @Override annotation:

public record Crane(int numberEggs, String name) {
@override public int numberEggs() { return 10; }
@override public String toString() { return name; }

While you can add methods, static fields, and other data types, you cannot add instance
fields outside the record declaration, even if they are private. Doing so defeats the purpose
of using a record and could break immutability!

public record Crane(int numberEggs, String name) {
private static 1int type = 10;
public int size; // DOES NOT COMPILE
private boolean friendly; // DOES NOT COMPILE

Records also do not support instance initializers. All initialization for the fields of a
record must happen in a constructor.

382 Chapter 7 = Beyond Classes

P bers as a class, try to keep them simple. Like the POJOs and JavaBeans
they were born out of, the more complicated they get, the less usable
they become.

é/ While it's a useful feature that records support many of the same mem-

This is the second time we’ve mentioned nested types, the first being with sealed classes
and now records. Don’t worry; we’re covering them next!

Creating Nested Classes

A nested class is a class that is defined within another class. A nested class can come in one
of four flavors.

» Inner class: A non-static type defined at the member level of a class

» Static nested class: A static type defined at the member level of a class

» Local class: A class defined within a method body

» Anonymous class: A special case of a local class that does not have a name

There are many benefits of using nested classes. They can define helper classes and restrict
them to the containing class, thereby improving encapsulation. They can make it easy to
create a class that will be used in only one place. They can even make the code cleaner and
easier to read.

When used improperly, though, nested classes can sometimes make the code harder to
read. They also tend to tightly couple the enclosing and inner class, but there may be cases
where you want to use the inner class by itself. In this case, you should move the inner class
out into a separate top-level class.

Unfortunately, the exam tests edge cases where programmers wouldn’t typically use
a nested class. This tends to create code that is difficult to read, so please never do this
in practice!

, By convention, and throughout this chapter, we often use the term nested

ITE class to refer to all nested types, including nested interfaces, enums,
records, and annotations. You might even come across literature that
refers to all of them as inner classes. We agree that this can be confusing!

Declaring an Inner Class

An inner class, also called a member inner class, is a non-static type defined at the member
level of a class (the same level as the methods, instance variables, and constructors). Because
they are not top-level types, they can use any of the four access levels, not just public and
package access.

Creating Nested Classes 383

Inner classes have the following properties:
» Can be declared public, protected, package, or private
» Can extend a class and implement interfaces
» Can be marked abstract or final
» Can access members of the outer class, including private members

The last property is pretty cool. It means that the inner class can access variables in
the outer class without doing anything special. Ready for a complicated way to print H+i
three times?

1: public class Home {

2 private String greeting = "Hi"; // Outer class instance variable
3

4 protected class Room { // Inner class declaration

5: public 1int repeat = 3

6 public void enter() {

7 for (int i = 0; i < repeat; i++) greet(greeting);

8 }

9: private static void greet(String message) {

10: System.out.println(message);

11: }

12: 1

13:

14: public void enterRoom() { // Instance method in outer class
15: var room = new Room(); // Create the 1inner class instance
16: room.enter();

17: }

18: public static void main(String[] args) {

19: var home = new Home(); // Create the outer class instance
20: home.enterRoom();

21: } }

An inner class declaration looks just like a stand-alone class declaration except that it
happens to be located inside another class. Line 7 shows that the inner class just refers to
greeting as if it were available in the Room class. This works because it is, in fact, available.
Even though the variable is private, it is accessed within that same class.

Since an inner class is not static, it has to be called using an instance of the outer class.
That means you have to create two objects. Line 19 creates the outer Home object, while
line 15 creates the inner Room object. It’s important to notice that line 15 doesn’t require an
explicit instance of Home because it is an instance method within Home. This works because
enterRoom () is an instance method within the Home class. Both Room and enterRoom() are
members of Home.

384 Chapter 7 = Beyond Classes

Nested Classes Can Now Have static Members

Eagle-eyed readers may have noticed that we included a static method in our inner Room
class on line 9. In Java 11, this would have resulted in a compiler error. Previously, only
static nested classes were allowed to include static methods. With the introduction of
records in Java 16, the existing rule that prevented an inner class from having any static
members (other than static constants) was removed. All four types of nested classes can
now define static variables and methods!

Instantiating an Instance of an Inner Class

There is another way to instantiate Room that looks odd at first. Okay, well, maybe not just
at first. This syntax isn’t used often enough to get used to it:

20: public static void main(String[] args) {

21: var home = new Home();

22: Room room = home.new Room(); // Create the dinner class instance
23: room.enter();

24 }

Let’s take a closer look at lines 21 and 22. We need an instance of Home to create a Room.
We can’t just call new Room() inside the static main() method, because Java won’t
know which instance of Home it is associated with. Java solves this by calling new as if it
were a method on the room variable. We can shorten lines 21-23 to a single line:

21: new Home().new Room().enter(); // Sorry, it looks ugly to us too!

Creating .class Files for Inner Classes

Compiling the Home . java class with which we have been working creates two class files.
You should be expecting the Home . class file. For the inner class, the compiler creates
Home$Room. class.You don’t need to know this syntax for the exam. We mention it so that
you aren’t surprised to see files with $ appearing in your directories. You do need to under-
stand that multiple class files are created from a single . java file.

Referencing Members of an Inner Class

Inner classes can have the same variable names as outer classes, making scope a little tricky.
There is a special way of calling this to say which variable you want to access. This is
something you might see on the exam but, ideally, not in the real world.

Creating Nested Classes 385

In fact, you aren’t limited to just one inner class. While the following is common on the
exam, please never do this in code you write. Here is how to nest multiple classes and access
a variable with the same name in each:

1: public class A {

2: private int x = 10;

3: class B {

4: private int x = 20;

5: class C {

6: private int x = 30;

7: public void allTheX() {

8: System.out.println(x); // 30
9: System.out.println(this.x); // 30
10: System.out.println(B.this.x); // 20
11: System.out.println(A.this.x); // 10
12: } 1l

13: public static void main(String[] args) {

14: A a = new A();

15: A.B b = a.new B()}

16: A.B.C ¢ = b.new C();

17: c.allTheX();

18: }}

Yes, this code makes us cringe too. It has two nested classes. Line 14 instantiates the
outermost one. Line 15 uses the awkward syntax to instantiate a B. Notice that the type is
A.B. We could have written B as the type because that is available at the member level of A.
Java knows where to look for it. On line 16, we instantiate a C. This time, the A.B.C type
is necessary to specify. C is too deep for Java to know where to look. Then line 17 calls a
method on the instance variable c.

Lines 8 and 9 are the type of code that we are used to seeing. They refer to the instance
variable on the current class—the one declared on line 6, to be precise. Line 10 uses this in a
special way. We still want an instance variable. But this time, we want the one on the B class,
which is the variable on line 4. Line 11 does the same thing for class A, getting the variable
from line 2.

Inner Classes Require an Instance

Take a look at the following and see whether you can figure out why two of the three con-
structor calls do not compile:

public class Fox {
private class Den {}

386 Chapter 7 = Beyond Classes

public void goHome() {
new Den();

}

public static void visitFriend() {
new Den(); // DOES NOT COMPILE

public class Squirrel {
public void visitFox() {
new Den(); // DOES NOT COMPILE

}
The first constructor call compiles because goHome () is an instance method, and therefore
the call is associated with the th1is instance.The second call does not compile because it is
called inside a static method.You can still call the constructor, but you have to explicitly
give it a reference to a Fox instance.

The last constructor call does not compile for two reasons. Even though it is an in-
stance method, it is not an instance method inside the Fox class. Adding a Fox reference
would not fix the problem entirely, though. Den is private and not accessible in the
Squirrel class.

Creating a static Nested Class

A static nested class is a static type defined at the member level. Unlike an inner class, a static
nested class can be instantiated without an instance of the enclosing class. The trade-off,
though, is that it can’t access instance variables or methods declared in the outer class.

In other words, it is like a top-level class except for the following:

» The nesting creates a namespace because the enclosing class name must be used to
refer to it.

» It can additionally be marked private or protected.
= The enclosing class can refer to the fields and methods of the static nested class.
Let’s take a look at an example:

public class Park {
static class Ride {
private int price = 6;

B N S

Creating Nested Classes 387

5 public static void main(String[] args) {

6: var ride = new Ride();

T: System.out.println(ride.price);

8: 11}
Line 6 instantiates the nested class. Since the class is static, you do not need an instance

of Park to use it. You are allowed to access private instance variables, as shown on line 7.

Writing a Local Class

A local class is a nested class defined within a method. Like local variables, a local class
declaration does not exist until the method is invoked, and it goes out of scope when the
method returns. This means you can create instances only from within the method. Those
instances can still be returned from the method. This is just how local variables work.

Local classes are not limited to being declared only inside methods. For
OTE example, they can be declared inside constructors and initializers. For
simplicity, we limit our discussion to methods in this chapter.

Local classes have the following properties:
= They do not have an access modifier.
» They can be declared final or abstract.

» They have access to all fields and methods of the enclosing class (when defined in an
instance method).

» They can access final and effectively final local variables.

Remember when we presented effectively final in Chapter 5? Well, we

ITE said it would come in handy later, and it’s later! If you need a refresher on
final and effectively final, turn back to Chapter 5 now. Don’t worry;
we'll wait!

Ready for an example? Here’s a complicated way to multiply two numbers:

public class PrintNumbers {
private int length = 5;
public void calculate() {
final int width = 20;
class Calculator {
public void multiply() {
System.out.print(length * width);

© 0 N o U b W N B

388 Chapter 7 = Beyond Classes

10: var calculator = new Calculator();
11: calculator.multiply();

12: }

13: public static void main(String[] args) {
14: var printer = new PrintNumbers();

15: printer.calculate(); // 100

16: }

17: }

Lines 5-9 are the local class. That class’s scope ends on line 12, where the method ends.
Line 7 refers to an instance variable and a final local variable, so both variable references
are allowed from within the local class.

Earlier, we made the statement that local variable references are allowed if they are final
or effectively final. As an illustrative example, consider the following:

public void processData() {
final int length = 5;
int width = 10;
int height = 2;
class VolumeCalculator {
public int multiply() {
return length x width * height; // DOES NOT COMPILE

}
width = 2;

The length and height variables are final and effectively final, respectively, so nei-
ther causes a compilation issue. On the other hand, the width variable is reassigned during
the method, so it cannot be effectively final. For this reason, the local class declaration does
not compile.

Why Can Local Classes Only Access final or Effectively Final Variables?

Earlier, we mentioned that the compiler generates a separate .class file for each inner
class. A separate class has no way to refer to a local variable. However, if the local variable
is final or effectively final, Java can handle it by passing a copy of the value or reference
variable to the constructor of the local class. If it weren’t final or effectively final, these
tricks wouldn’t work because the value could change after the copy was made.

Creating Nested Classes 389

Defining an Anonymous Class

An anonymous class is a specialized form of a local class that does not have a name. It is
declared and instantiated all in one statement using the new keyword, a type name with
parentheses, and a set of braces {}. Anonymous classes must extend an existing class or
implement an existing interface. They are useful when you have a short implementation that
will not be used anywhere else. Here’s an example:

1: public class ZooGiftShop {

2 abstract class SaleTodayOnly {

3 abstract int dollarsOff();

4 }

5: public int admission(int basePrice) {

6 SaleTodayOnly sale = new SaleTodayOnly() {
7 int dollarsOff() { return 33 }

8 }; // Don't forget the semicolon!

9: return basePrice - sale.dollarsOff();

10: } }

Lines 2—4 define an abstract class. Lines 6-8 define the anonymous class. Notice
how this anonymous class does not have a name. The code says to instantiate a new
SaleTodayOnly object. But wait: SaleTodayOnly is abstract. This is okay because we
provide the class body right there—anonymously. In this example, writing an anonymous
class is equivalent to writing a local class with an unspecified name that extends
SaleTodayOnly and immediately uses it.

Pay special attention to the semicolon on line 8. We are declaring a local variable on these
lines. Local variable declarations are required to end with semicolons, just like other Java
statements—even if they are long and happen to contain an anonymous class.

Now we convert this same example to implement an interface instead of extending an
abstract class:

1: public class ZooGiftShop {

2 interface SaleTodayOnly {

3 int dollarsOff();

4 }

5: public int admission(int basePrice) {

6 SaleTodayOnly sale = new SaleTodayOnly() {
7 public int dollarsOff() { return 3; }

8 };

9 return basePrice - sale.dollarsOff();

10: } }

390 Chapter 7 = Beyond Classes

The most interesting thing here is how little has changed. Lines 2—4 declare an
interface instead of an abstract class. Line 7 is public instead of using default access
since interfaces require public methods. And that is it. The anonymous class is the same
whether you implement an interface or extend a class! Java figures out which one you want
automatically. Just remember that in this second example, an instance of a class is created on
line 6, not an interface.

But what if we want to both implement an interface and extend a class? You can’t do
so with an anonymous class unless the class to extend is java.lang.0bject. The Object
class doesn’t count in the rule. Remember that an anonymous class is just an unnamed local
class. You can write a local class and give it a name if you have this problem. Then you can
extend a class and implement as many interfaces as you like. If your code is this complex, a
local class probably isn’t the most readable option anyway.

You can even define anonymous classes outside a method body. The following may look
like we are instantiating an interface as an instance variable, but the {} after the interface
name indicates that this is an anonymous class implementing the interface:

public class Gorilla {
interface Climb {}
Climb climbing = new Climb() {};

@ Real World Scenario

Anonymous Classes and Lambda Expressions

Prior to Java 8, anonymous classes were frequently used for asynchronous tasks and event
handlers. For example, the following shows an anonymous class used as an event handler
in a JavaFX application:

var redButton = new Button();
redButton.setOnAction(new EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {
System.out.println("Red button pressed!");

b;

Since the introduction of lambda expressions, anonymous classes are now often replaced
with much shorter implementations:

Button redButton = new Button();
redButton.setOnAction(e -> System.out.println(""Red button pressed!"));

We cover lambda expressions in detail in the next chapter.

Reviewing Nested Classes

Creating Nested Classes 391

For the exam, make sure that you know the information in Table 7.4 about which syntax
rules are permitted in Java.

TABLE 7.4 Modifiers in nested classes

Permitted modifiers Inner class static nested class Local class Anonymous class
Access modifiers All All None None

abstract Yes Yes Yes No

final Yes Yes Yes No

You should also know the information in Table 7.5 about types of access. For example,
the exam might try to trick you by having a static class access an outer class instance vari-

able without a reference to the outer class.

TABLE 7.5 Nested class access rules

static

Inner class nested class Local class Anonymous class
Can extend aclass Yes Yes Yes No—must have exactly
or implement any one superclass or one
number of inter- interface
faces?
Can access instance Yes No Yes (if declared Yes (if declared in an
members of enclos- in an instance instance method)
ing class? method)
Can access local N/A N/A Yes (if final or Yes (if final or effectively

variables of enclos-
ing method?

effectively final)

final)

392 Chapter 7 = Beyond Classes

Understanding Polymorphism

We conclude this chapter with a discussion of polymorphism, the property of an object
to take on many different forms. To put this more precisely, a Java object may be
accessed using:

= A reference with the same type as the object

= A reference that is a superclass of the object

= A reference that defines an interface the object implements or inherits

Furthermore, a cast is not required if the object is being reassigned to a supertype or inter-
face of the object. Phew, that’s a lot! Don’t worry; it’ll make sense shortly.
Let’s illustrate this polymorphism property with the following example:
public class Primate {
public boolean hasHair() {
return true;

public interface HasTail {
public abstract boolean isTailStriped();

public class Lemur extends Primate implements HasTail {

public boolean 1isTailStriped() {
return false;

}

public int age = 10;

public static void main(String[] args) {
Lemur lemur = new Lemur();
System.out.printin(lemur.age);

HasTail hasTail = lemur;
System.out.println(hasTail.isTailStriped());

Primate primate = lemur;
System.out.println(primate.hasHair());

1}

Understanding Polymorphism 393

This code compiles and prints the following output:

10
false
true

The most important thing to note about this example is that only one object, Lemur, is
created. Polymorphism enables an instance of Lemur to be reassigned or passed to a method
using one of its supertypes, such as Primate or HasTail.

Once the object has been assigned to a new reference type, only the methods and vari-
ables available to that reference type are callable on the object without an explicit cast. For
example, the following snippets of code will not compile:

HasTail hasTail = new Lemur();
System.out.println(hasTail.age); // DOES NOT COMPILE

Primate primate = new Lemur();
System.out.println(primate.isTailStriped()); // DOES NOT COMPILE

In this example, the reference hasTail has direct access only to methods defined with
the HasTai 1 interface; therefore, it doesn’t know that the variable age is part of the object.
Likewise, the reference primate has access only to methods defined in the Primate class,
and it doesn’t have direct access to the isTailStriped() method.

Object vs. Reference

In Java, all objects are accessed by reference, so as a developer you never have direct

access to the object itself. Conceptually, though, you should consider the object as the entity
that exists in memory, allocated by the Java Runtime Environment. Regardless of the type
of the reference you have for the object in memory, the object itself doesn’t change. For
example, since all objects inherit java.lang.0Object, they can all be reassigned to
java.lang.Object, as shown in the following example:

Lemur lemur = new Lemur();
Object lemurAsObject = lemur;

Even though the Lemur object has been assigned to a reference with a different type, the
object itself has not changed and still exists as a Lemur object in memory. What has changed,
then, is our ability to access methods within the Lemur class with the lemurAsObject ref-
erence. Without an explicit cast back to Lemur, as you see in the next section, we no longer
have access to the Lemur properties of the object.

We can summarize this principle with the following two rules:

1. The type of the object determines which properties exist within the object in memory.

2. The type of the reference to the object determines which methods and variables are
accessible to the Java program.

394 Chapter 7 = Beyond Classes

It therefore follows that successfully changing a reference of an object to a new reference
type may give you access to new properties of the object; but remember, those properties
existed before the reference change occurred.

Using the Lemur example, we illustrate this property in Figure 7.8.

FIGURE 7.8 Object vs. reference

Reference of interface HasTail

hasTail \

Reference of class Lemur

Lemur object in memory

age 10

lemur
hasHair ()
isTailStriped ()

Reference of class Primate

primate /

N1/

As you can see in the figure, the same object exists in memory regardless of which
reference is pointing to it. Depending on the type of the reference, we may only have
access to certain methods. For example, the hasTa11 reference has access to the method
isTailStriped() but doesn’t have access to the variable age defined in the Lemur class.
As you learn in the next section, it is possible to reclaim access to the variable age by explic-
itly casting the hasTai 1 reference to a reference of type Lemur.

@ Real World Scenario

Using Interface References

When working with a group of objects that implement a common interface, it is considered
a good coding practice to use an interface as the reference type.This is especially common
with collections that you learn about in Chapter 9, “Collections and Generics.” Consider the
following method:

public void sortAndPrintZooAnimals(List<String> animals) {
Collections.sort(animals);
for(String a : animals) System.out.println(a);

}

This method sorts and prints animals in alphabetical order. At no point is this class inter-
ested in what the actual underlying object for animals is. It might be an ArrayList or
another type.The point is, our code works on any of these types because we used the inter-
face reference type rather than a class type.

Understanding Polymorphism 395

Casting Objects

In the previous example, we created a single instance of a Lemur object and accessed it via
superclass and interface references. Once we changed the reference type, though, we lost
access to more specific members defined in the subclass that still exist within the object. We
can reclaim those references by casting the object back to the specific subclass it came from:

Lemur lemur = new Lemur();

Primate primate = lemur; // Implicit Cast to supertype

Lemur lemur2 (Lemur)primate; // Explicit Cast to subtype

Lemur lemur3 = primate; // DOES NOT COMPILE (missing cast)

In this example, we first create a Lemur object and implicitly cast it to a Primate ref-
erence. Since Lemur is a subtype of Primate, this can be done without a cast operator. We
then cast it back to a Lemur object using an explicit cast, gaining access to all of the methods
and fields in the Lemur class. The last line does not compile because an explicit cast is
required. Even though the object is stored in memory as a Lemur object, we need an explicit
cast to assign it to Lemur.

Casting objects is similar to casting primitives, as you saw in Chapter 2, “Operators.”
When casting objects, you do not need a cast operator if casting to an inherited supertype.
This is referred to as an implicit cast and applies to classes or interfaces the object inherits.
Alternatively, if you want to access a subtype of the current reference, you need to perform
an explicit cast with a compatible type. If the underlying object is not compatible with the
type, then a ClassCastException will be thrown at runtime.

When reviewing a question on the exam that involves casting and polymorphism, be sure
to remember what the instance of the object actually is. Then, focus on whether the compiler
will allow the object to be referenced with or without explicit casts.

We summarize these concepts into a set of rules for you to memorize for the exam:

1. Casting a reference from a subtype to a supertype doesn’t require an explicit cast.
Casting a reference from a supertype to a subtype requires an explicit cast.

At runtime, an invalid cast of a reference to an incompatible type results in a
ClassCastException being thrown.

4. The compiler disallows casts to unrelated types.

Disallowed Casts

The first three rules are just a review of what we’ve said so far. The last rule is a bit more
complicated. The exam may try to trick you with a cast that the compiler knows is not per-
mitted (aka impossible). In the previous example, we were able to cast a Primate reference to
a Lemur reference because Lemur is a subclass of Primate and therefore related. Consider this
example instead:

public class Bird {}

396 Chapter 7 = Beyond Classes

public class Fish {
public static void main(String[] args) {
Fish fish = new Fish();
Bird bird = (Bird)fish; // DOES NOT COMPILE

In this example, the classes Fish and Bird are not related through any class hierarchy
that the compiler is aware of; therefore, the code will not compile. While they both extend
Object implicitly, they are considered unrelated types since one cannot be a subtype of
the other.

Casting Interfaces

While the compiler can enforce rules about casting to unrelated types for classes, it cannot

always do the same for interfaces. Remember, instances support multiple inheritance, which

limits what the compiler can reason about them. While a given class may not implement an

interface, it’s possible that some subclass may implement the interface. When holding a refer-

ence to a particular class, the compiler doesn’t know which specific subtype it is holding.
Let’s try an example. Do you think the following program compiles?

. interface Canine {}
: interface Dog {}
: class Wolf implements Canine {}

public static void main(String[] args) {
Wolf wolfy = new Wolf();
Dog badWolf = (Dog)wolfy;

Pl

In this program, a Wo'lf object is created and then assigned to a Wolf reference type on
line 7. With interfaces, the compiler has limited ability to enforce many rules because even
though a reference type may not implement an interface, one of its subclasses could. There-
fore, it allows the invalid cast to the Dog reference type on line 8, even though Dog and
Wolf are not related. Fear not, even though the code compiles, it still throws a
ClassCastException at runtime.

This limitation aside, the compiler can enforce one rule around interface casting. The
compiler does not allow a cast from an interface reference to an object reference if the object
type cannot possibly implement the interface, such as if the class is marked final. For
example, if the Wolf interface is marked final on line 3, then line 8 no longer compiles.
The compiler recognizes that there are no possible subclasses of Wolf capable of implement-
ing the Dog interface.

1
2
3
4:
5: public class BadCasts {
6
7
8
9

Understanding Polymorphism 397

The instanceof Operator

In Chapter 3, we presented the instanceof operator with pattern matching. The instanceof
operator can be used to check whether an object belongs to a particular class or interface
and to prevent a ClassCastException at runtime. Consider the following example:

1: class Rodent {}

3: public class Capybara extends Rodent {

4 public static void main(String[] args) {

5: Rodent rodent = new Rodent();

6 var capybara = (Capybara)rodent; // ClassCastException
7
8

: 1

This program throws an exception on line 6. We can replace line 6 with the following.

6: if(rodent instanceof Capybara c) {
7: // Do stuff
8: }

Now the code snippet doesn’t throw an exception at runtime and performs the cast only
if the instanceof operator is successful.

Just as the compiler does not allow casting an object to unrelated types, it also does not
allow instanceof to be used with unrelated types. We can demonstrate this with our unrelated
Bird and Fish classes:

public class Bird {}

public class Fish {
public static void main(String[] args) {
Fish fish = new Fish();
if (fish instanceof Bird b) { // DOES NOT COMPILE
// Do stuff

Polymorphism and Method Overriding

In Java, polymorphism states that when you override a method, you replace all calls to it,
even those defined in the parent class. As an example, what do you think the following code
snippet outputs?

class Penguin {
public int getHeight() { return 3; }

398 Chapter 7 = Beyond Classes

public void printInfo() {
System.out.print(this.getHeight());

public class EmperorPenguin extends Penguin {
public int getHeight() { return 8; }
public static void main(String []fish) {
new EmperorPenguin().printInfo();

If you said 8, then you are well on your way to understanding polymorphism. In
this example, the object being operated on in memory is an EmperorPenguin. The
getHeight () method is overridden in the subclass, meaning all calls to it are replaced at
runtime. Despite printInfo() being defined in the Penguin class, calling getHeight ()
on the object calls the method associated with the precise object in memory, not the current
reference type where it is called. Even using the th1is reference, which is optional in this
example, does not call the parent version because the method has been replaced.

Polymorphism’s ability to replace methods at runtime via overriding is one of the most
important properties of Java. It allows you to create complex inheritance models with sub-
classes that have their own custom implementation of overridden methods. It also means
the parent class does not need to be updated to use the custom or overridden method. If the
method is properly overridden, then the overridden version will be used in all places that it
is called.

Remember, you can choose to limit polymorphic behavior by marking methods final,
which prevents them from being overridden by a subclass.

Calling the Parent Version of an Overridden Method

Just because a method is overridden doesn’t mean the parent method is completely inac-
cessible. We can use the super reference that you learned about in Chapter 6 to access it.
How can you modify our previous example to print 3 instead of 8? You could try

calling super.getHeight() in the parent Penguin class:

class Penguin {
public int getHeight() { return 3; }
public void printInfo() {
System.out.print(super.getHeight()); // DOES NOT COMPILE

Understanding Polymorphism 399

Unfortunately, this does not compile, as super refers to the superclass of Penguin; in this
case, Object.The solution is to override printInfo() in the child EmperorPenguin
class and use super there.

public class EmperorPenguin extends Penguin {
public int getHeight() { return 8; }
public void printInfo() {
System.out.print(super.getHeight());
}
public static void main(String []fish) {
new EmperorPenguin().printInfo(); // 3

Overriding vs. Hiding Members

While method overriding replaces the method everywhere it is called, static method and
variable hiding do not. Strictly speaking, hiding members is not a form of polymorphism
since the methods and variables maintain their individual properties. Unlike method overrid-
ing, hiding members is very sensitive to the reference type and location where the member is
being used.

Let’s take a look at an example:

class Penguin {
public static int getHeight() { return 3; }
public void printInfo() {
System.out.println(this.getHeight());

public class CrestedPenguin extends Penguin {
public static int getHeight() { return 8; }
public static void main(String... fish) {
new CrestedPenguin().printInfo();

The CrestedPenguin example is nearly identical to our previous
EmperorPenguin example, although as you probably already guessed, it prints 3 instead of
8. The getHeight () method is static and is therefore hidden, not overridden. The result
is that calling getHeight () in CrestedPenguin returns a different value than calling it in

400 Chapter 7 = Beyond Classes

Pengusin, even if the underlying object is the same. Contrast this with overriding a method,
where it returns the same value for an object regardless of which class it is called in.

What about the fact that we used this to access a static method in
this.getHeight()? As discussed in Chapter 5, while you are permitted to use an instance
reference to access a static variable or method, doing so is often discouraged. The com-
piler will warn you when you access static members in a non-static way. In this case,
the this reference had no impact on the program output.

Besides the location, the reference type can also determine the value you get when you are
working with hidden members. Ready? Let’s try a more complex example:

class Marsupial {
protected int age = 2;
public static boolean isBiped() {
return false;

13

public class Kangaroo extends Marsupial {
protected int age = 6;
public static boolean isBiped() {
return true;

public static void main(String[] args) {
Kangaroo joey = new Kangaroo();
Marsupial moey = joey;
System.out.println(joey.isBiped());
System.out.println(moey.isBiped());
System.out.println(joey.age);
System.out.println(moey.age);

I

The program prints the following:

true
false
6

2

In this example, only one object (of type Kangaroo) is created and stored in memory!
Since static methods can only be hidden, not overridden, Java uses the reference type to
determine which version of isBiped() should be called, resulting in joey.isBiped()
printing true and moey.isBiped() printing false.

Summary 401

Likewise, the age variable is hidden, not overridden, so the reference type is used to
determine which value to output. This results in joey.age returning 6 and moey . age
returning 2.

For the exam, make sure you understand these examples, as they show how hidden and
overridden methods are fundamentally different. In practice, overriding methods is the cor-
nerstone of polymorphism and an extremely powerful feature.

@ Real World Scenario

Don’t Hide Members in Practice

Although Java allows you to hide variables and static methods, it is considered an
extremely poor coding practice. As you saw in the previous example, the value of the var-
iable or method can change depending on what reference is used, making your code very
confusing, difficult to follow, and challenging for others to maintain. This is further com-
pounded when you start modifying the value of the variable in both the parent and child
methods, since it may not be clear which variable you're updating.

When you're defining a new variable or static method in a child class, it is consid-

ered good coding practice to select a name that is not already used by an inherited
member. Redeclaring private methods and variables is considered less problematic,
though, because the child class does not have access to the variable in the parent class to
begin with.

Summary

In this chapter, we presented numerous topics in advanced object-oriented design, covering
many top-level types beyond classes. We started with interfaces and described how they can
support multiple inheritance. Remember, interfaces and their members can include a number
of implicit modifiers inserted by the compiler automatically. We then covered all six types of
interface members you need to know for the exam: abstract methods, static constants,
default methods, static methods, private methods, and private static methods.

We next moved on to enums, which are compile-time constant properties. Simple enums
are composed of a list of values, while complex enums can include constructors, methods,
and fields. Enums can also be used in switch statements and expressions. When an enum
method is marked abstract, each enum value must provide an implementation.

Moving on to new topics in Java, we covered sealed classes and how they allow classes to
function like enumerated types in which only certain subclasses are permitted. For the exam,

402 Chapter 7 = Beyond Classes

it’s important to remember that the subclasses of a sealed class must be marked finatl,
sealed, or non-sealed. If the subclasses of the sealed class are defined in the same file,
then the permits clause may be omitted in the sealed class declaration. Finally, sealed inter-
faces may be used to limit which classes can implement an interface, which interfaces may
extend an interface, or both.

Records are another new feature available in Java. Records are a compact way of
declaring an immutable and encapsulated POJO in which the compiler adds a lot of the boil-
erplate code for you. Remember, encapsulation is the practice of preventing external callers
from accessing the internal components of an object. Records include automatic creation of
the accessor methods, a long constructor, and useful implementations of equals (), hashCode(),
and toString(). Records can include overloaded and compact constructors to support data
validation and transformation. Records do not permit instance variables, since this could
break immutability, but they do allow methods, static members, and nested types.

We then moved on to nested types. For simplicity, we focused on nested classes and
covered each of the four types. An inner class requires an instance of the outer class to use,
while a stat+c nested class does not. A local class is commonly defined within a method or
block. Local classes can only access local variables that are final and effectively final. Anony-
mous classes are a special type of local class that does not have a name. Anonymous classes
are required to extend exactly one class or implement one interface. Inner, local, and anony-
mous classes can access private members of the class in which they are defined, provided the
latter two are used inside an instance method.

We concluded this chapter with a discussion of polymorphism, which is central to the
Java language, and showed how objects can be accessed in a variety of forms. Make sure you
understand when casts are needed for accessing objects, and be able to spot the difference
between compile-time and runtime cast problems.

Exam Essentials

Be able to write code that creates, extends, and implements interfaces. Interfaces are spe-
cialized abstract types that focus on abstract methods and constant variables. An interface
may extend any number of interfaces and, in doing so, inherits their abstract methods. An
interface cannot extend a class, nor can a class extend an interface. A class may implement
any number of interfaces.

Know which interface methods an interface method can reference. Non-static
private, default, and abstract interface methods are associated with an instance

of an interface. Non-static private and default interface methods may reference
any method within the interface declaration. Alternatively, static interface methods are
associated with class membership and can only reference other static members. Finally,
private methods can only be referenced within the interface declaration.

Exam Essentials 403

Be able to create and use enum types. An enum is a data structure that defines a list of
values. If the enum does not contain any other elements, the semicolon (;) after the values
is optional. An enum can be used in switch statements and contain instance variables,
constructors, and methods. Enum constructors are implicitly private. Enums can include
methods, both as members or within individual enum values. If the enum declares an
abstract method, each enum value must implement it.

Be able to recognize when sealed classes are being correctly used. A sealed class is one
that defines a list of permitted subclasses that extend it. Be able to use the correct modifier
(final, sealed, or non-sealed) with sealed classes. Understand when the permits clause
may be excluded.

Identify properly encapsulated classes. Instance variables in encapsulated classes are
private. All code that retrieves the value or updates it uses methods. Encapsulated classes
may include accessor (getter) or mutator (setter) methods, although this is not required.

Understand records and know which members the compiler is adding automati-

cally. Records are encapsulated and immutable types in which the compiler inserts a long
constructor, accessor methods, and useful implementations of equals (), hashCode(), and
toString(). Each of these elements may be overridden. Be able to recognize compact con-
structors and know that they are used only for validation and transformation of constructor
parameters, not for accessing fields. Recognize that when a record is declared with an in-
stance member, it does not compile.

Be able to declare and use nested classes. There are four types of nested types: inner
classes, static classes, local classes, and anonymous classes. Instantiating an inner class
requires an instance of the outer class. On the other hand, static nested classes can be cre-
ated without a reference to the outer class. Local and anonymous classes cannot be declared
with an access modifier. Anonymous classes are limited to extending a single class or imple-
menting one interface.

Understand polymorphism. An object may take on a variety of forms, referred to as poly-
morphism. The object is viewed as existing in memory in one concrete form but is accessible
in many forms through reference variables. Changing the reference type of an object may
grant access to new members, but the members always exist in memory.

404 Chapter 7 = Beyond Classes

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. Which of the following are valid record declarations? (Choose all that apply.)

public record Iguana(int age) {
private static final int age = 10; }

public final record Gecko() {}

public abstract record Chameleon() {
private static String name; }

public record BeardedDragon(boolean fun) {
@Override public boolean fun() { return false; } }

public record Newt(long size) {
@Override public boolean equals(Object obj) { return false; }
public void setSize(long size) {
this.size = size;

33

Iguana

Gecko
Chameleon
BeardedDragon
Newt

mmOoOOwP

None of the above

2. Which of the following statements can be inserted in the blank line so that the code will com-
pile successfully? (Choose all that apply.)
interface CanHop {}
public class Frog implements CanHop {
public static void main(String[] args) {
frog = new TurtleFrog();

}
class BrazilianHornedFrog extends Frog {}
class TurtleFrog extends Frog {}

Review Questions

A. Frog

B. TurtleFrog

C. BrazilianHornedFrog
D. CanHop

E. var

F. Long

G.

None of the above; the code contains a compilation error.

What is the result of the following program?

public class Favorites {

enum Flavors {
VANILLA, CHOCOLATE, STRAWBERRY
static final Flavors DEFAULT = STRAWBERRY;

}

public static void main(String[] args) {
for(final var e : Flavors.values())

System.out.print(e.ordinal()+" ");

}
A. 012
123
Exactly one line of code does not compile.

B

Cc

D. More than one line of code does not compile.

E. The code compiles but produces an exception at runtime.
F

None of the above

What is the output of the following program?

public sealed class ArmoredAnimal permits Armadillo {
public ArmoredAnimal(int size) {}
@override public String toString() { return "Strong"; }
public static void main(String[] a) {
var ¢ = new Armadillo(10, null);
System.out.println(c);

}

class Armadillo extends ArmoredAnimal {
@override public String toString() { return "Cute"; }
public Armadillo(int size, String name) {
super(size);

405

406

moom»

Chapter 7 = Beyond Classes

Strong

Cute

The program does not compile.

The code compiles but produces an exception at runtime.

None of the above

Which statements about the following program are correct? (Choose all that apply.)

1
2
3
4
5:
6
7
8
9

10:
11:

Mmoo wp

interface HasExoskeleton {

double size = 2.0f;

abstract int getNumberOfSections();
}

abstract class Insect implements HasExoskeleton {
abstract int getNumberOflLegs();
}

public class Beetle extends Insect {
int getNumberOfLegs() { return 6; }
int getNumberOfSections(int count) { return 1; }

}

It compiles without issue.

The code will produce a ClassCastException if called at runtime.
The code will not compile because of line 2.

The code will not compile because of line 5.

The code will not compile because of line 8.

The code will not compile because of line 10.

Which statements about the following program are correct? (Choose all that apply.)

1
2
3
4
5:
6
7
8
9

o WP

: public abstract interface Herbivore {

int amount = 10;
public void eatGrass();
public abstract int chew() { return 13; }

. abstract class IsAPlant extends Herbivore {

Object eatGrass(int season) { return null; }

-

It compiles and runs without issue.
The code will not compile because of line 1.

The code will not compile because of line 2.

Review Questions 407

D. The code will not compile because of line 4.
E. The code will not compile because of line 7.

FE The code will not compile because line 8 contains an invalid method override.

What is the output of the following program?

1: 1interface Aquatic {
2 int getNumOfGills(int p);
3: }
4: public class ClownFish implements Aquatic {
5: String getNumOfGills() { return "14"; }
6 int getNumOfGills(int input) { return 15; }
7 public static void main(String[] args) {
8 System.out.println(new ClownFish().getNumOfGills(-1));
9: } 1}
14
15

The code will not compile because of line 4.
The code will not compile because of line 5.

The code will not compile because of line 6.

mmoOoOo WP

None of the above

When inserted in order, which modifiers can fill in the blank to create a properly encapsu-
lated class? (Choose all that apply.)
public class Rabbits {
int numRabbits = 0;
void multiply() {
numRabbits *= 6;

int getNumberOfRabbits() {
return numRabbits;

—

private, public, and public
private, protected, and private
private, private,and protected
public, public,and public

The class cannot be properly encapsulated since multiply () does not begin with set.

mmOO®mP

None of the above

408

10.

Chapter 7 = Beyond Classes

Which of the following statements can be inserted in the blank so that the code will compile
successfully? (Choose all that apply.)
abstract class Snake {}
class Cobra extends Snake {}
class GardenSnake extends Cobra {}
public class SnakeHandler {

private Snake snakey;

public void setSnake(Snake mySnake) { this.snakey = mySnake; }

public static void main(String[] args) {

new SnakeHandler () .setSnake()3

new Cobra()

new Snake()

new Object()

new String("Snake")
new GardenSnake()
null

None of the above. The class does not compile, regardless of the value inserted in the
blank.

GmMmMmQoOoOo WP

What types can be inserted in the blanks on the lines marked X and Z that allow the code to
compile? (Choose all that apply.)
interface Walk { private static List move() { return null; } }
interface Run extends Walk { public ArrayList move(); }
class Leopard implements Walk {
public — move() { // X
return null;

}
}
class Panther implements Run {
public — move() { // Z
return null;
}
}

Integer on the line marked X
ArrayList on the line marked X

List on the line marked X

Oo6wp

List on the line marked Z

Review Questions

E. ArrayList on the line marked Z

F

None of the above, since the Run interface does not compile

G. The code does not compile for a different reason.

11. What is the result of the following code? (Choose all that apply.)

12.

13.

=

O 0 N O 0 b W N

mmoOoOow>»

public class Movie {
private int butter = 5;
private Movie() {}
protected class Popcorn {
private Popcorn() {}
public static int butter = 10;
public void startMovie() {
System.out.println(butter);

}

public static void main(String[] args) {
var movie = new Movie();
Movie.Popcorn in = new Movie().new Popcorn();
in.startMovie();

13

The output is 5.

The output is 10.

Line 6 generates a compiler error.
Line 12 generates a compiler error.
Line 13 generates a compiler error.

The code compiles but produces an exception at runtime.

Which of the following are true about encapsulation? (Choose all that apply.)

A
B.
C.
D
E

It allows getters.

It allows setters.

It requires specific naming conventions.
It requires pubic instance variables.

It requires private instance variables.

What is the result of the following program?

public class Weather {

enum Seasons {

WINTER, SPRING, SUMMER, FALL

409

410

14.

15.

GmMmQooOowp

Chapter 7 = Beyond Classes

public static void main(String[] args) {
Seasons v = null;
switch (v) {
case Seasons.SPRING -> System.out.print("s");
case Seasons.WINTER -> System.out.print("w");
case Seasons.SUMMER -> System.out.print("m");
default -> System.out.println("missing data"); }

s

w

m

missing data

Exactly one line of code does not compile.
More than one line of code does not compile.

The code compiles but produces an exception at runtime.

Which statements about sealed classes are correct? (Choose all that apply.)

A.
B.

& mMmDoO

A sealed interface restricts which subinterfaces may extend it.

A sealed class cannot be indirectly extended by a class that is not listed in its permits
clause.

A sealed class can be extended by an abstract class.

A sealed class can be extended by a subclass that uses the non-sealed modifier.
A sealed interface restricts which subclasses may implement it.

A sealed class cannot contain any nested subclasses.

None of the above

Which lines, when entered independently into the blank, allow the code to print
Not scared at runtime? (Choose all that apply.)

public class Ghost {

public static void boo() {
System.out.println("Not scared");
}
protected final class Spirit {
public void boo() {
System.out.println("Booo!!!");

16.

17.

}

A
B
C.
D.
E
F
G

Review Questions a

public static void main(String... haunt) {
var g = new Ghost().new Spirit() {};

)

g.boo ()
g.super.boo()

new Ghost() .boo()
g.Ghost.boo()

new Spirit().boo()
Ghost.boo()

None of the above

The following code appears in a file named Ostrich.java. What is the result of compiling
the source file?

D.
E.

1
2
3
4:
5
6

¢ public class Ostrich {

private int count;
static class OstrichWrangler {
public 1int stampede() {
return count;

} 1}

The code compiles successfully, and one bytecode file is generated: Ostrich.class.

The code compiles successfully, and two bytecode files are generated: Ostrich.class
and OstrichWrangler.class.

The code compiles successfully, and two bytecode files are generated: Ostrich.class
and Ostrich$OstrichWrangler.class.

A compiler error occurs on line 3.

A compiler error occurs on line 5.

Which lines of the following interface declarations do not compile? (Choose all that apply.)

1:
2:

©O© 00 N o 0 b~ W

public interface Omnivore {
int amount = 10;
static boolean gather = true;
static void eatGrass() {}
int findMore() { return 2; }
default float rest() { return 2; }
protected int chew() { return 13; }
private static void eatLeaves() {}

12 Chapter 7 = Beyond Classes

All of the lines compile without issue.
Line 2
Line 3
Line 4
Line §
Line 6
Line 7
Line 8

IomMmMOUOO® P>

18. What is printed by the following program?
public class Deer {
enum Food {APPLES, BERRIES, GRASS}
protected class Diet {
private Food getFavorite() {
return Food.BERRIES;

}

public static void main(String[] seasons) {
System.out.print(switch(new Diet().getFavorite()) {
case APPLES -> "a";
case BERRIES -> "b";
default -> "c";
1)
11

a

b

c

The code declaration of the Diet class does not compile.
The main () method does not compile.

The code compiles but produces an exception at runtime.

GmMmQooOowP

None of the above

19. Which of the following are printed by the Bear program? (Choose all that apply.)

public class Bear {
enum FOOD {
BERRIES, INSECTS {
public boolean isHealthy() { return true; }},
FISH, ROOTS, COOKIES, HONEY;
public abstract boolean disHealthy();

20.

21.

Review Questions 13

public static void main(String[] args) {
System.out.print(FOOD.INSECTS);
System.out.print(FOOD.INSECTS.ordinal());
System.out.print(FOOD.INSECTS.isHealthy());
System.out.print(FOOD.COOKIES. isHealthy());

}

}

A. dnsects

B. INSECTS

C. 0

D. 1

E. false

F true

G. The code does not compile.

Which statements about polymorphism and method inheritance are correct? (Choose all

that apply.)

A. Given an arbitrary instance of a class, it cannot be determined until runtime which over-
ridden method will be executed in a parent class.

B. It cannot be determined until runtime which hidden method will be executed in a parent
class.

C. Marking a method static prevents it from being overridden or hidden.

D. Marking a method final prevents it from being overridden or hidden.

E. The reference type of the variable determines which overridden method will be called at
runtime.

F. The reference type of the variable determines which hidden method will be called at run-

time.

Given the following record declaration, which lines of code can fill in the blank and allow
the code to compile? (Choose all that apply.)

public record RabbitFood(int size, String brand, LocalDate expires) {

}

A.
B.

public static int MAX_STORAGE = 100;
public RabbitFood() {

size = MAX_STORAGE
this.size = 10

M4 Chapter 7 = Beyond Classes

C. +if(expires.isAfter(LocalDate.now())) throw new
RuntimeException()

D. +if(brand==null) super.brand = "Unknown"
E. throw new RuntimeException()
F. None of the above

22. Which of the following can be inserted in the rest () method? (Choose all that apply.)

public class Lion {
class Cub {}
static class Den {}
static void rest() {

Pl
Cub a = Lion.new Cub()
Lion.Cub b = new Lion().Cub()

Lion.Cub ¢ = new Lion().new Cub()

var d = new Den()
var e = Lion.new Cub()
Lion.Den f = Lion.new Den()

Lion.Den g = new Lion.Den()

IOGMMmMOO WP

var h = new Cub()

23. Given the following program, what can be inserted into the blank line that would allow it to
print Swim! at runtime?
interface Swim {
default void perform() { System.out.print("Swim!"); }
}
interface Dance {
default void perform() { System.out.print("Dance!"); }
}
public class Penguin implements Swim, Dance {
public void perform() { System.out.print("Smile!"); }
private void doShow() {

}
public static void main(String[] eggs) {
new Penguin().doShow();

24.

25.

Review Questions 45

super.perform()
Swim.perform()
super.Swim.perform()
Swim.super.perform()

The code does not compile regardless of what is inserted into the blank.

mmOoOoO®P

The code compiles, but due to polymorphism, it is not possible to produce the requested
output without creating a new object.

Which lines of the following interface do not compile? (Choose all that apply.)
1: public interface BigCat {

2: abstract String getName();

3: static int hunt() { getName(); return 5; }

4: default void climb() { rest(); }

5 private void roar() { getName(); climb(); hunt(); }

6 private static boolean sneak() { roar(); return true; }
7. private int rest() { return 2; };

8: }
Line 2
Line 3
Line 4
Line 5§
Line 6
Line 7

None of the above

emMmoowp

What does the following program print?

1: public class Zebra {

2 private int x = 24;

3 public int hunt() {

4 String message = "x is ";
5: abstract class Stripes {
6 private int x = 0;

7 public void print() {
8 System.out.print(message + Zebra.this.x);
9: }

10: }

11: var s = new Stripes() {};
12: s.print();

13: return x;

416 Chapter 7 = Beyond Classes

14: }

15: public static void main(String[] args) {
16: new Zebra().hunt();

17: 1}

A. x is 0

x is 24
Line 6 generates a compiler error.

B

C

D. Line 8 generates a compiler error.
E. Line 11 generates a compiler error.
F.

None of the above

26. Which statements about the following enum are true? (Choose all that apply.)

public enum Animals {

MAMMAL (true), INVERTEBRATE(Boolean.FALSE), BIRD(false),
REPTILE(false), AMPHIBIAN(false), FISH(false) {

public int swim() { return 4; }

final boolean hasHair;
public Animals(boolean hasHair) {

1

2

3

4

5: }
6:

7

8 this.hasHair = hasHair;
9

}

10: public boolean hasHair() { return hasHair; }
11: public int swim() { return 0; }

Compiler error on line 2
Compiler error on line 3
Compiler error on line 7
Compiler error on line 8
Compiler error on line 10

Compiler error on another line

emMmoowp

The code compiles successfully.
27. Assuming a record is defined with at least one field, which components does the compiler
always insert, each of which may be overridden or redeclared? (Choose all that apply.)
A. A no-argument constructor
B. An accessor method for each field
C. The toString() method
D. The equals() method

28.

29.

Review Questions 47

E. A mutator method for each field
F. A sort method for each field
G. The hashCode() method

Which of the following classes and interfaces do not compile? (Choose all that apply.)

public abstract class Camel { void travel(); }
public interface EatsGrass { private abstract int chew(); }

public abstract class Elephant {
abstract private class SleepsAlot {
abstract int sleep();
i

public class Eagle { abstract soar(); }

public interface Spider { default void crawl() {} }

Camel
EatsGrass
Elephant
Eagle
Spider

mmOO®mP

None of the classes or interfaces compile.

How many lines of the following program contain a compilation error?

1 class Primate {

2 protected int age = 2;
3 { age = 1; }

4 public Primate() {

5: this().age = 3;

6: }

70}

8 public class Orangutan {
9: protected int age = 4;
10: { age = 5; }

11: public Orangutan() {
12: this().age = 6;

13: }

14: public static void main(String[] bananas) {

418 Chapter 7 = Beyond Classes

15: final Primate x = (Primate)new Orangutan();
16: System.out.println(x.age);

17: }

18: }

A. None, and the program prints 1 at runtime.

B. None, and the program prints 3 at runtime.

C. None, but it causes a ClassCastException at runtime.
D. 1

E. 2

F 3

G. 4

30. Assuming the following classes are declared as top-level types in the same file, which classes
contain compiler errors? (Choose all that apply.)

sealed class Bird {
public final class Flamingo extends Bird {}
sealed class Monkey {}
class EmperorTamarin extends Monkey {}
non-sealed class Mandrill extends Monkey {}
sealed class Friendly extends Mandrill permits Silly {}

final class Silly {}

A. Bird

B. Monkey

C. EmperorTamarin
D. Mandrill

E. Friendly

F Silly

G.

All of the classes compile without issue.

Lambdas and
Functional Interfaces

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Utilizing Java Object-Oriented Approach

Understand variable scopes, use local variable type inference,
apply encapsulation, and make objects immutable

Create and use interfaces, identify functional interfaces, and
utilize private, static, and default interface methods

In this chapter, we start by introducing lambdas, a new piece
of syntax. Lambdas allow you to specify code that will be run
later in the program.

Next, we introduce the concept of functional interfaces, showing how to write your own
and identify whether an interface is a functional interface. After that, we introduce another
new piece of syntax: method references. These are like a shorter form of lambdas.

Then we introduce the functional interfaces you need to know for the exam. Finally, we
emphasize how variables fit into lambdas.

Lambdas, method references, and functional interfaces are used quite a bit in Chapter 9,
“Collections and Generics” and Chapter 10, “Streams.”

Writing Simple Lambdas

Java is an object-oriented language at heart. You’ve seen plenty of objects by now.
Functional programming is a way of writing code more declaratively. You specify what you
want to do rather than dealing with the state of objects. You focus more on expressions
than loops.

Functional programming uses lambda expressions to write code. A lambda expression is a
block of code that gets passed around. You can think of a lambda expression as an unnamed
method existing inside an anonymous class like the ones you saw in Chapter 7, “Beyond
Classes.” It has parameters and a body just like full-fledged methods do, but it doesn’t have a
name like a real method. Lambda expressions are often referred to as lambdas for short. You
might also know them as closures if Java isn’t your first language. If you had a bad experi-
ence with closures in the past, don’t worry. They are far simpler in Java.

Lambdas allow you to write powerful code in Java. In this section, we cover an example
of why lambdas are helpful and the syntax of lambdas.

Looking at a Lambda Example

Our goal is to print out all the animals in a list according to some criteria. We show you how to
do this without lambdas to illustrate how lambdas are useful. We start with the Animal record:

public record Animal(String species, boolean canHop, boolean canSwim) { }

Writing Simple Lambdas o

The Animal record has three fields. Let’s say we have a list of animals, and we want to pro-
cess the data based on a particular attribute. For example, we want to print all animals that can
hop. We can define an interface to generalize this concept and support a large variety of checks:

public interface CheckTrait {
boolean test(Animal a);

The first thing we want to check is whether the Animal can hop. We provide a class that
implements our interface:

public class CheckIfHopper implements CheckTrait {
public boolean test(Animal a) {
return a.canHop();

This class may seem simple—and it is. This is part of the problem that lambdas solve. Just
bear with us for a bit. Now we have everything we need to write our code to find out if an
Animal can hop:

1: dmport java.util.x*;

2 public class TraditionalSearch {

3 public static void main(String[] args) {

4:

5: // list of animals

6 var animals = new ArrayList<Animal>();

7 animals.add(new Animal("fish", false, true));

8 animals.add(new Animal("kangaroo", true, false));
9 animals.add(new Animal("rabbit", true, false));
10: animals.add(new Animal("turtle", false, true));
11:

12: // pass class that does check

13: print(animals, new CheckIfHopper());

14: }

15: private static void print(List<Animal> animals, CheckTrait checker) {
16: for (Animal animal : animals) {

17:

18: // General check

19: if (checker.test(animal))

20: System.out.print(animal + " ");

21: }

22: System.out.println();

23: }

24: }

422 Chapter 8 = Lambdas and Functional Interfaces

Line 6 shows configuring an ArrayList with a specific type of Animal. The print()
method on line 15 is very general—it can check for any trait. This is good design. It
shouldn’t need to know what specifically we are searching for in order to print a list
of animals.

What happens if we want to print the Animals that swim? Sigh. We need to write another
class, CheckIfSwims. Granted, it is only a few lines, but it is a whole new file. Then we need
to add a new line under line 13 that instantiates that class. That’s two things just to do
another check.

Why can’t we specify the logic we care about right here? It turns out that we can, with
lambda expressions. We could repeat the whole class here and make you find the one line
that changed. Instead, we just show you that we can keep our print () method declaration
unchanged. Let’s replace line 13 with the following, which uses a lambda:

13: print(animals, a -> a.canHop());

Don’t worry that the syntax looks a little funky. You’ll get used to it, and we describe it
in the next section. We also explain the bits that look like magic. For now, just focus on how
easy it is to read. We are telling Java that we only care if an Animal can hop.

It doesn’t take much imagination to figure out how we would add logic to get the
Animals that can swim. We only have to add one line of code—no need for an extra class to
do something simple. Here’s that other line:

13: print(animals, a -> a.canSwim());

How about Animals that cannot swim?
13: print(animals, a -> !a.canSwim());

The point is that it is really easy to write code that uses lambdas once you get the basics
in place. This code uses a concept called deferred execution. Deferred execution means that
code is specified now but will run later. In this case, “later” is inside the print () method
body, as opposed to when it is passed to the method.

Learning Lambda Syntax

One of the simplest lambda expressions you can write is the one you just saw:

a -> a.canHop()

Lambdas work with interfaces that have exactly one abstract method. In this case, Java
looks at the CheckTradit interface, which has one method. The lambda in our example sug-
gests that Java should call a method with an Animal parameter that returns a boolean value
that’s the result of a.canHop (). We know all this because we wrote the code. But how does
Java know?

Java relies on context when figuring out what lambda expressions mean. Context
refers to where and how the lambda is interpreted. For example, if we see someone in line
to enter the zoo and they have their wallet out, it is fair to assume they want to buy zoo

Writing Simple Lambdas 423

tickets. Alternatively, if they are in the concession line with their wallet out, they are prob-
ably hungry.

Referring to our earlier example, we passed the lambda as the second parameter of the
print method ():

print(animals, a -> a.canHop());

The print() method expects a CheckTratit as the second parameter:

private static void print(List<Animal> animals, CheckTrait checker) { ... }

Since we are passing a lambda instead, Java tries to map our lambda to the abstract
method declaration in the CheckTrait interface:

boolean test(Animal a);

Since that interface’s method takes an Animal, the lambda parameter has to be an
Animal. And since that interface’s method returns a boolean, we know the lambda returns
a boolean.

The syntax of lambdas is tricky because many parts are optional. These two lines do the
exact same thing:

a -> a.canHop()

(Animal a) -> { return a.canHop(); }

Let’s look at what is going on here. The first example, shown in Figure 8.1, has three parts:
» A single parameter specified with the name a
» The arrow operator (->) to separate the parameter and body

» A body that calls a single method and returns the result of that method

FIGURE 8.1 Lambda syntax omitting optional parts

Parameter name /‘ Body

a -> a.canHop ()

Arrow

The second example shows the most verbose form of a lambda that returns a boolean
(see Figure 8.2):

= A single parameter specified with the name a and stating that the type is Animal
» The arrow operator (->) to separate the parameter and body

»= A body that has one or more lines of code, including a semicolon and a
return statement

424 Chapter 8 = Lambdas and Functional Interfaces

FIGURE 8.2 Lambda syntax including optional parts

Parameter name /‘ Body

A
r A

(Animal a) -> { return a.canHop(); }

T

Arrow

The parentheses around the lambda parameters can be omitted only if there is a single
parameter and its type is not explicitly stated. Java does this because developers commonly
use lambda expressions this way and can do as little typing as possible.

It shouldn’t be news to you that we can omit braces when we have only a single statement.
We did this with 1 f statements and loops already. Java allows you to omit a return state-
ment and semicolon (;) when no braces are used. This special shortcut doesn’t work when you
have two or more statements. At least this is consistent with using {3} to create blocks of code
elsewhere.

The syntax in Figure 8.1 and Figure 8.2 can be mixed and matched. For example, the fol-
lowing are valid:

a -> { return a.canHop(); }
(Animal a) -> a.canHop()

Here's a fun fact: s -> {} is a valid lambda. If there is no code on the
TE right side of the expression, you don’t need the semicolon or return
statement.

Table 8.1 shows examples of valid lambdas that return a boolean.

TABLE 8.1 Valid lambdas that return a boolean

Lambda # of parameters
() -> true 0
X => x.startsWith("test") 1
(String x) -> x.startsWith("test") 1
(x, y) => { return x.startsWith("test"); } 2

(String x, String y) -> x.startsWith("test") 2

Writing Simple Lambdas 425

The first row takes zero parameters and always returns the boolean value true. The
second row takes one parameter and calls a method on it, returning the result. The third row
does the same, except that it explicitly defines the type of the variable. The final two rows
take two parameters and ignore one of them—there isn’t a rule that says you must use all
defined parameters.

Now let’s make sure you can identify invalid syntax for each row in Table 8.2, where
each lambda is supposed to return a boolean. Make sure you understand what’s wrong
with these.

TABLE 8.2 Invalid lambdas that should return a boolean

Invalid lambda Reason
X, y —> x.startsWith("fish") Missing parentheses on left
x => { x.startsWith("camel"); } Missing return on right

x => { return x.startsWith("giraffe") } Missing semicolon inside braces

String x -> x.endsWith("eagle") Missing parentheses on left

Remember that the parentheses are optional only when there is one parameter and it
doesn’t have a type declared. Those are the basics of writing a lambda. At the end of the
chapter, we cover additional rules about using variables in a lambda.

Assigning Lambdas to var
Why do you think this line of code doesn’t compile?

var invalid = (Animal a) -> a.canHop(); // DOES NOT COMPILE

Remember when we talked about Java inferring information about the lambda from the
context? Well, var assumes the type based on the context as well. There's not enough con-
text here! Neither the lambda nor var have enough information to determine what type of
functional interface should be used.

426 Chapter 8 = Lambdas and Functional Interfaces

Coding Functional Interfaces

Earlier in the chapter, we declared the CheckTra1it interface, which has exactly one method
for implementers to write. Lambdas have a special relationship with such interfaces. In fact,
these interfaces have a name. A functional interface is an interface that contains a single
abstract method. Your friend Sam can help you remember this because it is officially known
as a single abstract method (SAM) rule.

Defining a Functional Interface

Let’s take a look at an example of a functional interface and a class that implements it:

@FunctionalInterface
public interface Sprint {
public void sprint(int speed);

public class Tiger implements Sprint {
public void sprint(int speed) {
System.out.println("Animal is sprinting fast! " + speed);

In this example, the Sprint interface is a functional interface because it contains exactly
one abstract method, and the Tiger class is a valid class that implements the interface.

The @Functionallnterface Annotation

The @FunctionalInterface annotation tells the compiler that you intend for the code to
be a functional interface. If the interface does not follow the rules for a functional interface,
the compiler will give you an error.

@Functionallnterface
public interface Dance { // DOES NOT COMPILE

void move();

void rest();
}
Java includes @FunctionalInterface on some, but not all, functional interfaces. This
annotation means the authors of the interface promise it will be safe to use in a lambda
in the future. However, just because you don’t see the annotation doesn’t mean it's not a
functional interface. Remember that having exactly one abstract method is what makes it a
functional interface, not the annotation.

Coding Functional Interfaces 427

Consider the following four interfaces. Given our previous Sprint functional interface,
which of the following are functional interfaces?

public interface Dash extends Sprint {}

public interface Skip extends Sprint {
void skip();

public interface Sleep {
private void snore() {}
default int getZzz() { return 1; }

public interface Climb {
void reach();
default void fall() {}
static int getBackUp() { return 100; }
private static boolean checkHeight() { return true; }

All four of these are valid interfaces, but not all of them are functional interfaces. The
Dash interface is a functional interface because it extends the Sprint interface and inherits
the single abstract method sprint (). The Skip interface is not a valid functional inter-
face because it has two abstract methods: the inherited sprint () method and the declared
skip () method.

The Sleep interface is also not a valid functional interface. Neither snore () nor getZzz ()
meets the criteria of a single abstract method. Even though default methods function like
abstract methods, in that they can be overridden in a class implementing the interface, they
are insufficient for satisfying the single abstract method requirement.

Finally, the Climb interface is a functional interface. Despite defining a slew of methods, it
contains only one abstract method: reach().

Adding Object Methods

All classes inherit certain methods from Object. For the exam, you should know the follow-
ing Object method signatures:

= public String toString()
= public boolean equals(Object)
= public 1int hashCode()

We bring this up now because there is one exception to the single abstract method rule
that you should be familiar with. If a functional interface includes an abstract method with

428 Chapter 8 = Lambdas and Functional Interfaces

the same signature as a public method found in Object, those methods do not count
toward the single abstract method test. The motivation behind this rule is that any class that
implements the interface will inherit from Object, as all classes do, and therefore always
implement these methods.

)/ Since Java assumes all classes extend from Object, you also cannot

,@TE declare an interface method that is incompatible with Object. For
example, declaring an abstract method int toString() in an inter-
face would not compile since Object’s version of the method returns a
String.

Let’s take a look at an example. Is the Soar class a functional interface?

public interface Soar {
abstract String toString();

It is not. Since toString() is a public method implemented in Object, it does not
count toward the single abstract method test. On the other hand, the following implementa-
tion of Dive is a functional interface:

public interface Dive {
String toString();
public boolean equals(Object 0);
public abstract int hashCode();
public void dive();

The dive () method is the single abstract method, while the others are not counted since
they are public methods defined in the Object class.

Be wary of examples that resemble methods in the Object class but are not actu-
ally defined in the Object class. Do you see why the following is not a valid functional
interface?

public interface Hibernate {
String toString();
public boolean equals(Hibernate 0);
public abstract int hashCode();
public void rest();

Despite looking a lot like our Dive interface, the Hibernate interface uses
equals(Hibernate) instead of equals(Object). Because this does not match the
method signature of the equals (0Object) method defined in the Object class, this inter-
face is counted as containing two abstract methods: equals (Hibernate) and rest().

Using Method References 429

Using Method References

Method references are another way to make the code easier to read, such as simply men-
tioning the name of the method. Like lambdas, it takes time to get used to the new syntax. In
this section, we show the syntax along with the four types of method references. We also mix
in lambdas with method references.

Suppose we are coding a duckling that is trying to learn how to quack. First we have a
functional interface:

public interface LearnToSpeak {
void speak(String sound);

Next, we discover that our duckling is lucky. There is a helper class that the duckling can
work with. We’ve omitted the details of teaching the duckling how to quack and left the part
that calls the functional interface:

public class DuckHelper {
public static void teacher(String name, LearnToSpeak trainer) {
// Exercise patience (omitted)
trainer.speak(name);

Finally, it is time to put it all together and meet our little Duckling. This code imple-
ments the functional interface using a lambda:

public class Duckling {
public static void makeSound(String sound) {
LearnToSpeak learner = s -> System.out.println(s);
DuckHelper.teacher (sound, learner);

Not bad. There’s a bit of redundancy, though. The lambda declares one parameter named
s. However, it does nothing other than pass that parameter to another method. A method
reference lets us remove that redundancy and instead write this:

LearnToSpeak learner = System.out::println;

The : : operator tells Java to call the println() method later. It will take a little while to
get used to the syntax. Once you do, you may find your code is shorter and less distracting
without writing as many lambdas.

Remember that :: is like a lambda, and it is used for deferred execution
TE with a functional interface. You can even imagine the method reference

as a lambda if it helps you.

430 Chapter 8 = Lambdas and Functional Interfaces

A method reference and a lambda behave the same way at runtime. You can pretend the
compiler turns your method references into lambdas for you.
There are four formats for method references:
* static methods
» Instance methods on a particular object
» Instance methods on a parameter to be determined at runtime

= Constructors

Let’s take a brief look at each of these in turn. In each example, we show the method ref-
erence and its lambda equivalent. For now, we create a separate functional interface for each
example. In the next section, we introduce built-in functional interfaces so you don’t have to
keep writing your own.

Calling static Methods

For the first example, we use a functional interface that converts a doub'le to a long:

interface Converter {
long round(double num);

We can implement this interface with the round () method in Math. Here we assign a
method reference and a lambda to this functional interface:

14: Converter methodRef = Math::round;

15: Converter lambda = x -> Math.round(x);

16:

17: System.out.println(methodRef.round(1600.1)); // 100

On line 14, we reference a method with one parameter, and Java knows that it’s like a
lambda with one parameter. Additionally, Java knows to pass that parameter to the method.

Wait a minute. You might be aware that the round () method is overloaded—it can take a
double or a float. How does Java know that we want to call the version with a double? With
both lambdas and method references, Java infers information from the context. In this case,
we said that we were declaring a Converter, which has a method taking a double parameter.
Java looks for a method that matches that description. If it can’t find it or finds multiple
matches, then the compiler will report an error. The latter is sometimes called an ambiguous
type error.

Calling Instance Methods on a Particular Object

For this example, our functional interface checks if a String starts with a specified value:

interface StringStart {
boolean beginningCheck(String prefix);

Using Method References 431

Conveniently, the String class has a startsWith() method that takes one parameter
and returns a boolean. Let’s look at how to use method references with this code:

18: var str = "Zoo";

19: StringStart methodRef = str::startsWith;

20: StringStart lambda = s -> str.startsWith(s);

21:

22: System.out.println(methodRef.beginningCheck("A")); // false

Line 19 shows that we want to call str.startsWith() and pass a single parameter to
be supplied at runtime. This would be a nice way of filtering the data in a list.

A method reference doesn’t have to take any parameters. In this example, we create a
functional interface with a method that doesn’t take any parameters but returns a value:

interface StringChecker {
boolean check();

We implement it by checking if the String is empty:
18: var str = "";
19: StringChecker methodRef = str::isEmpty;
20: StringChecker lambda = () -> str.isEmpty();
21:
22: System.out.print(methodRef.check()); // true

Since the method on String is an instance method, we call the method reference on an
instance of the String class.

While all method references can be turned into lambdas, the opposite is not always true.
For example, consider this code:
var str = "";
StringChecker lambda = () -> str.startsWith("Zoo");

How might we write this as a method reference? You might try one of the following:

StringChecker methodReference = str::startsWith; // DOES NOT COMPILE

StringChecker methodReference = str::startsWith("Zoo"); // DOES NOT COMPILE

Neither of these works! While we can pass the str as part of the method reference,
there’s no way to pass the "Zoo" parameter with it. Therefore, it is not possible to write this
lambda as a method reference.

432 Chapter 8 = Lambdas and Functional Interfaces

Calling Instance Methods on a Parameter

This time, we are going to call the same instance method that doesn’t take any parameters.
The trick is that we will do so without knowing the instance in advance. We need a different
functional interface this time since it needs to know about the String:

interface StringParameterChecker {
boolean check(String text);

We can implement this functional interface as follows:

23: StringParameterChecker methodRef = String::isEmpty;
24: StringParameterChecker lambda = s -> s.isEmpty();

25:

26: System.out.println(methodRef.check("Zoo")); // false

Line 23 says the method that we want to call is declared in String. It looks like a
static method, but it isn’t. Instead, Java knows that isEmpty () is an instance method that
does not take any parameters. Java uses the parameter supplied at runtime as the instance on
which the method is called.

Compare lines 23 and 24 with lines 19 and 20 of our instance example. They look sim-
ilar, although one references a local variable named str, while the other only references the
functional interface parameters.

You can even combine the two types of instance method references. Again, we need a new
functional interface that takes two parameters:

interface StringTwoParameterChecker {
boolean check(String text, String prefix);

Pay attention to the parameter order when reading the implementation:

26: StringTwoParameterChecker methodRef = String::startsWith;

27: StringTwoParameterChecker lambda = (s, p) -> s.startsWith(p);
28:

29: System.out.println(methodRef.check("Zoo", "A")); // false

Since the functional interface takes two parameters, Java has to figure out what they
represent. The first one will always be the instance of the object for instance methods. Any
others are to be method parameters.

Remember that line 26 may look like a static method, but it is really a method ref-
erence declaring that the instance of the object will be specified later. Line 27 shows some
of the power of a method reference. We were able to replace two lambda parameters
this time.

Using Method References 433

Calling Constructors

A constructor reference is a special type of method reference that uses new instead of a
method and instantiates an object. For this example, our functional interface will not take
any parameters but will return a String:

interface EmptyStringCreator {
String create();

To call this, we use new as if it were a method name:

30: EmptyStringCreator methodRef = String::new;

31: EmptyStringCreator lambda = () -> new String();

32:

33: var myString = methodRef.create();

34: System.out.println(myString.equals("Snake")); // false

It expands like the method references you have seen so far. In the previous example, the
lambda doesn’t have any parameters.

Method references can be tricky. This time we create a functional interface that takes one
parameter and returns a result:

interface StringCopier {
String copy(String value);

In the implementation, notice that line 32 in the following example has the same method
reference as line 30 in the previous example:
32: StringCopier methodRef = String::new;
33: StringCopier lambda = x -> new String(x);
34:
35: var myString = methodRef.copy("Zebra");
36: System.out.println(myString.equals("Zebra")); // true

This means you can’t always determine which method can be called by looking at the
method reference. Instead, you have to look at the context to see what parameters are used
and if there is a return type. In this example, Java sees that we are passing a String param-
eter and calls the constructor of String that takes such a parameter.

Reviewing Method References

Reading method references is helpful in understanding the code. Table 8.3 shows the four
types of method references. If this table doesn’t make sense, please reread the previous sec-
tion. It can take a few tries before method references start to add up.

434 Chapter 8 = Lambdas and Functional Interfaces

TABLE 8.3 Method references

Type Before colon After colon Example

static methods Class name Method Math::random
name

Instance methods on a particular Instance variable Method str::startsWith

object name name

Instance methods on a parameter Class name Method String::isEmpty
name

Constructor Class name new String: :new

Working with Built-in Functional
Interfaces

It would be inconvenient to write your own functional interface any time you want to write
a lambda. Luckily, a large number of general-purpose functional interfaces are provided for
you. We cover them in this section.

The core functional interfaces in Table 8.4 are provided in the java.util. function
package. We cover generics in the next chapter, but for now, you just need to know that
<T> allows the interface to take an object of a specified type. If a second type parameter is
needed, we use the next letter, U. If a distinct return type is needed, we choose R for return as
the generic type.

TABLE 8.4 Common functional interfaces

Functional interface Return type Method name # of parameters
Supplier<T> T get() 0
Consumer<T> void accept(T) 1(T)
BiConsumer<T, U> void accept(T,U) 2 (T, U)
Predicate<T> boolean test(T) 1(T)
BiPredicate<T, U> boolean test(T,U) 2 (T, U)

Function<T, R> R apply(T) 1(T)

Working with Built-in Functional Interfaces 435

Functional interface Return type Method name # of parameters
BiFunction<T, U, R> R apply(T,U) 2 (T, U)
UnaryOperator<T> T apply (T) 1(T)
BinaryOperator<T> T apply(T,T) 2(T, T)

For the exam, you need to memorize Table 8.4. We will give you lots of practice in this
section to help make it memorable. Before you ask, most of the time we don’t assign the
implementation of the interface to a variable. The interface name is implied, and it is passed
directly to the method that needs it. We are introducing the names so that you can better
understand and remember what is going on. By the next chapter, we will assume that you
have this down and stop creating the intermediate variable.

You learn about a few more functional interfaces later in the book. In the

ITE next chapter, we cover Comparator. In Chapter 13, “Concurrency,” we
discuss Runnable and Callable. These may show up on the exam when
you are asked to recognize functional interfaces.

Let’s look at how to implement each of these interfaces. Since both lambdas and method
references appear all over the exam, we show an implementation using both where possible.
After introducing the interfaces, we also cover some convenience methods available on these
interfaces.

Implementing Supplier

A Supplier is used when you want to generate or supply values without taking any input. The
Supplier interface is defined as follows:

@FunctionalInterface
public interface Supplier<T> {
T get();

You can create a LocalDate object using the factory method now (). This example shows
how to use a Supplier to call this factory:
Supplier<LocalDate> sl = LocalDate::now;
Supplier<LocalDate> s2 = () -> LocalDate.now();

LocalDate d1 = sl.get();
LocalDate d2 = s2.get();

436 Chapter 8 = Lambdas and Functional Interfaces

System.out.println(dl); // 2022-02-20
System.out.println(d2); // 2022-02-20

This example prints a date twice. It’s also a good opportunity to review static method
references. The LocalDate: : now method reference is used to create a Supplier to assign
to an intermediate variable s1. A Supplier is often used when constructing new objects.
For example, we can print two empty StringBuilder objects:

Supplier<StringBuilder> sl = StringBuilder: :new;
Supplier<StringBuilder> s2 = () -> new StringBuilder();

System.out.println(sl.get()); // Empty string
System.out.println(s2.get()); // Empty string

This time, we used a constructor reference to create the object. We’ve been using generics
to declare what type of Supplier we are using. This can be a little long to read. Can you
figure out what the following does? Just take it one step at a time:

Supplier<ArraylList<String>> s3 = ArrayList::new;
ArrayList<String> al = s3.get();
System.out.println(al); // []

We have a Supplier of a certain type. That type happens to be ArrayList<String>.
Then calling get () creates a new instance of ArrayList<String>, which is the generic
type of the Supplier—in other words, a generic that contains another generic. Be sure to
look at the code carefully when this type of thing comes up.

Notice how we called get () on the functional interface. What would happen if we tried to
print out s3 itself?

System.out.println(s3);

The code prints something like this:
functionalinterface.BuiltIns$$Lambdasl/0x0000000800066840@4909b8da

That’s the result of calling toString() on a lambda. Yuck. This actually does mean
something. Our test class is named BuiltIns, and it is in a package that we created named
functionalinterface. Then comes $$, which means that the class doesn’t exist in a class
file on the file system. It exists only in memory. You don’t need to worry about the rest.

Implementing Consumer and BiConsumer

You use a Consumer when you want to do something with a parameter but not return
anything. BiConsumer does the same thing, except that it takes two parameters. The interfaces
are defined as follows:

@FunctionalInterface
public interface Consumer<T> {

Working with Built-in Functional Interfaces 437

void accept(T t);
// omitted default method

@FunctionalInterface

public interface BiConsumer<T, U> {
void accept(T t, U u);
// omitted default method

P can remember it from English words like binary (0 or 1) or bicycle (two

é/ You'll notice this pattern. Bi means two. It comes from Latin, but you
wheels). Always add another parameter when you see Bi.

Printing is a common use of the Consumer interface:

Consumer<String> cl = System.out::println;
Consumer<String> c2 = x -> System.out.println(x);

cl.accept("Annie"); // Annie
c2.accept("Annie"); // Annie

BiConsumer is called with two parameters. They don’t have to be the same type. For
example, we can put a key and a value in a map using this interface:

var map = new HashMap<String, Integer>();
BiConsumer<String, Integer> bl = map::put;
BiConsumer<String, Integer> b2 = (k, v) -> map.put(k, v);

bl.accept("chicken", 7);
b2.accept("chick", 1);

System.out.println(map); // {chicken=7, chick=1}

The output is {chicken=7, chick=1}, which shows that both BiConsumer implemen-
tations were called. When declaring b1, we used an instance method reference on an object
since we want to call a method on the local variable map. The code to instantiate b1 is a
good bit shorter than the code for b2. This is probably why the exam is so fond of method
references.

As another example, we use the same type for both generic parameters:

var map = new HashMap<String, String>();
BiConsumer<String, String> bl = map::put;
BiConsumer<String, String> b2 = (k, v) -> map.put(k, v);

438 Chapter 8 = Lambdas and Functional Interfaces

bl.accept("chicken", "Cluck");
b2.accept("chick", "Tweep");

System.out.println(map); // {chicken=Cluck, chick=Tweep}

This shows that a BiConsumer can use the same type for both the T and U generic
parameters.

Implementing Predicate and BiPredicate

Predicate is often used when filtering or matching. Both are common operations. A BiPredicate
is just like a Predicate, except that it takes two parameters instead of one. The interfaces are
defined as follows:

@FunctionalInterface
public interface Predicate<T> {
boolean test(T t);
// omitted default and static methods

@FunctionalInterface

public interface BiPredicate<T, U> {
boolean test(T t, U u);
// omitted default methods

You can use a Predicate to test a condition.
Predicate<String> pl = String::isEmpty;
Predicate<String> p2 = x -> x.isEmpty();

System.out.println(pl.test("")); // true
System.out.println(p2.test("")); // true

This prints true twice. More interesting is a BiPredicate. This example also prints
true twice:
BiPredicate<String, String> bl = String::startsWith;
BiPredicate<String, String> b2 =
(string, prefix) -> string.startsWith(prefix);

System.out.println(bl.test("chicken", "chick")); // true
System.out.println(b2.test("chicken", "chick")); // true

Working with Built-in Functional Interfaces 439

The method reference includes both the instance variable and parameter for
startsWith(). This is a good example of how method references save quite a lot of typ-
ing. The downside is that they are less explicit, and you really have to understand what
is going on!

Implementing Function and BiFunction

A Function is responsible for turning one parameter into a value of a potentially different
type and returning it. Similarly, a BiFunction is responsible for turning two parameters into a
value and returning it. The interfaces are defined as follows:
@FunctionalInterface
public interface Function<T, R> {

R apply(T t);

// omitted default and static methods

@FunctionalInterface

public interface BiFunction<T, U, R> {
R apply(T t, U u);
// omitted default method

For example, this function converts a String to the length of the String:

Function<String, Integer> fl = String::length;
Function<String, Integer> f2 = x -> x.length();

System.out.printin(fl.apply("cluck")); // 5
System.out.println(f2.apply("cluck")); // 5

This function turns a String into an Integer. Well, technically, it turns the String into
an int, which is autoboxed into an Integer. The types don’t have to be different. The fol-
lowing combines two String objects and produces another String:

BiFunction<String, String, String> bl = String::concat;
BiFunction<String, String, String> b2 =
(string, toAdd) -> string.concat(toAdd);

System.out.printin(bl.apply("baby ", "chick")); // baby chick
System.out.printin(b2.apply("baby ", "chick")); // baby chick

The first two types in the BiFunction are the input types. The third is the result type.
For the method reference, the first parameter is the instance that concat() is called on, and
the second is passed to concat ().

440 Chapter 8 = Lambdas and Functional Interfaces

Implementing UnaryOperator and BinaryOperator

UnaryOperator and BinaryOperator are special cases of a Function. They require all
type parameters to be the same type. A UnaryOperator transforms its value into one of the
same type. For example, incrementing by one is a unary operation. In fact, UnaryOperator
extends Function. A BinaryOperator merges two values into one of the same type. Add-
ing two numbers is a binary operation. Similarly, BinaryOperator extends BiFunction.
The interfaces are defined as follows:

@FunctionalInterface

public interface UnaryOperator<T> extends Function<T, T> {
// omitted static method

@FunctionalInterface
public interface BinaryOperator<T> extends BiFunction<T, T, T> {
// omitted static methods

This means the method signatures look like this:

T apply(T t); // UnaryOperator

T apply(T t1, T t2); // BinaryOperator

In the Javadoc, you’ll notice that these methods are inherited from the
Function/BiFunction superclass. The generic declarations on the subclass are what force
the type to be the same. For the unary example, notice how the return type is the same type
as the parameter.

UnaryOperator<String> ul = String::toUpperCase;
UnaryOperator<String> u2 = x -> x.toUpperCase();

System.out.println(ul.apply("chirp")); // CHIRP
System.out.println(u2.apply("chirp")); // CHIRP

This prints CHIRP twice. We don’t need to specify the return type in the generics
because UnaryOperator requires it to be the same as the parameter. And now here’s the
binary example:

BinaryOperator<String> bl = String::concat;
BinaryOperator<String> b2 = (string, toAdd) -> string.concat(toAdd);

System.out.println(bl.apply("baby ", "chick")); // baby chick
System.out.println(b2.apply("baby ", "chick")); // baby chick

Working with Built-in Functional Interfaces an

Notice that this does the same thing as the BiFunction example. The code is more suc-
cinct, which shows the importance of using the best functional interface. It’s nice to have one
generic type specified instead of three.

Checking Functional Interfaces

It’s really important to know the number of parameters, types, return value, and method
name for each of the functional interfaces. Now would be a good time to memorize
Table 8.4 if you haven’t done so already. Let’s do some examples to practice.

What functional interface would you use in these three situations?

= Returns a String without taking any parameters
= Returns a Boolean and takes a String

» Returns an Integer and takes two Integers

Ready? Think about what your answers are before continuing. Really. You have to
know this cold. Okay. The first one is a Supplier<String> because it generates an object
and takes zero parameters. The second one is a Function<String,Boolean> because
it takes one parameter and returns another type. It’s a little tricky. You might think it is a
Predicate<String>. Note that a Predicate returns a boolean primitive and not a
Boolean object.

Finally, the third one is either a BinaryOperator<Integer> or a
BiFunction<Integer,Integer,Integer>. Since BinaryOperator is a special case of
BiFunction, either is a correct answer. BinaryOperator<Integer> is the better answer
of the two since it is more specific.

Let’s try this exercise again but with code. It’s harder with code. The first thing you do is
look at how many parameters the lambda takes and whether there is a return value. What
functional interface would you use to fill in the blanks for these?

6: — <List> exl = x -> "".,equals(x.get(0));
7: _— <long> ex2 = (Long 1) -> System.out.println(l);
8: __ <String, String> ex3 = (sl1, s2) -> false;

Again, think about the answers before continuing. Ready? Line 6 passes one List param-
eter to the lambda and returns a boolean. This tells us that it is a Predicate or Function.
Since the generic declaration has only one parameter, it is a Predicate.

Line 7 passes one Long parameter to the lambda and doesn’t return anything. This tells
us that it is a Consumer. Line 8 takes two parameters and returns a boolean. When you see
a boolean returned, think Predicate unless the generics specify a Boolean return type. In this
case, there are two parameters, so it is a BiPredicate.

Are you finding these easy? If not, review Table 8.4 again. We aren’t kidding. You need to
know the table really well. Now that you are fresh from studying the table, we are going to
play “identify the error.” These are meant to be tricky:

6: Function<List<String>> exl = x -> x.get(0); // DOES NOT COMPILE
7: UnaryOperator<Long> ex2 = (Long 1) -> 3.14; // DOES NOT COMPILE

442 Chapter 8 = Lambdas and Functional Interfaces

Line 6 claims to be a Function. A Function needs to specify two generic types: the
input parameter type and the return value type. The return value type is missing from line 6,
causing the code not to compile. Line 7 is a UnaryOperator, which returns the same type
as it is passed in. The example returns a double rather than a Long, causing the code not
to compile.

Using Convenience Methods on Functional Interfaces

By definition, all functional interfaces have a single abstract method. This doesn’t mean they
can have only one method, though. Several of the common functional interfaces provide a
number of helpful default interface methods.

Table 8.5 shows the convenience methods on the built-in functional interfaces that you
need to know for the exam. All of these facilitate modifying or combining functional inter-
faces of the same type. Note that Table 8.5 shows only the main interfaces. The BiConsumer,
BiFunction, and BiPredicate interfaces have similar methods available.

TABLE 8.5 Convenience methods

Interface instance Method return type Method name Method parameters
Consumer Consumer andThen() Consumer
Function Function andThen () Function
Function Function compose () Function
Predicate Predicate and() Predicate
Predicate Predicate negate() —

Predicate Predicate or() Predicate

Let’s start with these two Pred-icate variables:
Predicate<String> egg = s -> s.contains("egg");

Predicate<String> brown = s => s.contains("brown");

Now we want a Predicate for brown eggs and another for all other colors of eggs. We
could write this by hand, as shown here:

Predicate<String> brownEggs = s -> s.contains("egg") && s.contains("brown");
Predicate<String> otherEggs = s -> s.contains("egg") && !s.contains("brown");

Working with Built-in Functional Interfaces 443

This works, but it’s not great. It’s a bit long to read, and it contains duplication. What if
we decide the letter e should be capitalized in egg? We’d have to change it in three variables:
egg, brownEggs, and otherEggs. A better way to deal with this situation is to use two of
the default methods on Predicate.

Predicate<String> brownEggs = egg.and(brown);
Predicate<String> otherEggs = egg.and(brown.negate());

Neat! Now we are reusing the logic in the original Predicate variables to build two new
ones. It’s shorter and clearer what the relationship is between variables. We can also change
the spelling of egg in one place, and the other two objects will have new logic because they
reference it.

Moving on to Consumer, let’s take a look at the andThen () method, which runs two
functional interfaces in sequence:

Consumer<String> cl = x => System.out.print("1: " + x);
Consumer<String> c2 = x -> System.out.print(",2: " + x);

Consumer<String> combined = cl.andThen(c2);
combined.accept("Annie"); // 1: Annie,2: Annie

Notice how the same parameter is passed to both c1 and c2. This shows that the
Consumer instances are run in sequence and are independent of each other. By contrast, the
compose () method on Function chains functional interfaces. However, it passes along the
output of one to the input of another.

Function<Integer, Integer> before = x -> x + 1;
Function<Integer, Integer> after = x -> x * 2;

Function<Integer, Integer> combined = after.compose(before);
System.out.println(combined.apply(3)); // 8

This time, the before runs first, turning the 3 into 4. Then the after runs, doubling the
4 to 8. All of the methods in this section are helpful for simplifying your code as you work
with functional interfaces.

Learning the Functional Interfaces for Primitives

Remember when we told you to memorize Table 8.4 with the common functional interfaces?
Did you? If you didn’t, go do it now. We’ll wait. We are about to make it more involved.
There are also a large number of special functional interfaces for primitives. These are useful
in Chapter 10 when we cover streams and optionals.

444 Chapter 8 = Lambdas and Functional Interfaces

Most of them are for the double, int, and long types. There is one exception, which is
BooleanSupplier. We cover that before introducing the functional interfaces for double,
int, and long.

Functional Interfaces for boolean
BooleanSupplier is a separate type. It has one method to implement:

@FunctionalInterface
public interface BooleanSupplier {
boolean getAsBoolean();

It works just as you’ve come to expect from functional interfaces. Here’s an example:

12: BooleanSupplier bl = () -> true;

13: BooleanSupplier b2 = () -> Math.random()> .5;
14: System.out.println(bl.getAsBoolean()); // true
15: System.out.println(b2.getAsBoolean()); // false

Lines 12 and 13 each create a BooleanSupplier, which is the only functional interface
for boolean. Line 14 prints true, since it is the result of b1. Line 15 prints true or false,
depending on the random value generated.

Functional Interfaces for double, int, and long

Most of the functional interfaces are for double, int, and long. Table 8.6 shows the
equivalent of Table 8.4 for these primitives. You probably won’t be surprised that you have
to memorize it. Luckily, you’ve memorized Table 8.4 by now and can apply what you’ve
learned to Table 8.6.

TABLE 8.6 Common functional interfaces for primitives

Functional interfaces Return type Single abstract method # of parameters
DoubleSupplier double getAsDouble 0
IntSupplier int getAsInt

LongSupplier long getAslLong

DoubleConsumer void accept 1 (double)
IntConsumer 1(int)
LongConsumer 1 (long)
DoublePredicate boolean test 1 (doub'le)
IntPredicate 1(int)
LongPred-icate 1 (long)
DoubleFunction<R> R apply 1 (doub'le)
IntFunction<R> 1(int)

LongFunction<R> 1 (long)

Working with Variables in Lambdas 445

Functional interfaces Return type Single abstract method # of parameters
DoubleUnaryOperator double applyAsDouble 1 (double)
IntUnaryOperator int applyAsInt 1(int)
LongUnaryOperator long applyAsLong 1 (long)
DoubleBinaryOperator double applyAsDouble 2 (double,
IntBinaryOperator dint applyAsInt double)
LongBinaryOperator long applyAsLong 2(int, int)

2 (long, long)

There are a few things to notice that are different between Table 8.4 and Table 8.6:

= Generics are gone from some of the interfaces, and instead the type name tells us what
primitive type is involved. In other cases, such as IntFunction, only the return type
generic is needed because we’re converting a primitive int into an object.

= The single abstract method is often renamed when a primitive type is returned.

In addition to Table 8.4 equivalents, some interfaces are specific to primitives. Table 8.7
lists these.

We’ve been using functional interfaces for a while now, so you should have a good grasp

of how to read the table. Let’s do one example just to be sure. Which functional interface
would you use to fill in the blank to make the following code compile?

var d = 1.0;
fl=x->1;

fl.applyAsInt(d);

When you see a question like this, look for clues. You can see that the functional interface
in question takes a double parameter and returns an int. You can also see that it has a single
abstract method named applyAsInt. The DoubleToIntFunction and ToIntFunction
functional interfaces meet all three of those criteria.

Working with Variables in Lambdas

Now that we’ve learned about functional interfaces, we will use them to show different
approaches for variables. They can appear in three places with respect to lambdas: the
parameter list, local variables declared inside the lambda body, and variables referenced from
the lambda body. All three of these are opportunities for the exam to trick you. We explore
each one so you’ll be alert when tricks show up!

446

Chapter 8 = Lambdas and Functional Interfaces

TABLE 8.7 Primitive-specific functional interfaces

Functional interfaces

Return type

Single abstract method

of parameters

ToDoubleFunction<T> double
ToIntFunction<T> int
ToLongFunction<T> long
ToDoubleBiFunction<T, U> double
ToIntBiFunction<T, U> int
ToLongBiFunction<T, U> long
DoubleToIntFunction int
DoubleToLongFunction long
IntToDoubleFunction double
IntTolLongFunction long
LongToDoubleFunction double
LongToIntFunction int
ObjDoubleConsumer<T> void

ObjIntConsumer<T>

ObjLongConsumer<T>

applyAsDouble
applyAsInt
applyAsLong

applyAsDouble
applyAsInt
applyAsLong

applyAsInt
applyAsLong
applyAsDouble
applyAsLong
applyAsDouble
applyAsInt

accept

1(T)

2(T, V)

1 (double)
1 (double)
1(int)
1(int)

1 (long)

1 (long)

2 (T, double)
2 (T,1int)
2 (T, long)

Listing Parameters

Earlier in this chapter, you learned that specifying the type of parameters is optional. Addi-
tionally, var can be used in place of the specific type. That means that all three of these state-
ments are interchangeable:

Predicate<String> p
Predicate<String> p
Predicate<String> p

X -> true;
(var x) -> true;

(String x) -> true;

The exam might ask you to identify the type of the lambda parameter. In our example,
the answer is String. How did we figure that out? A lambda infers the types from the sur-
rounding context. That means you get to do the same.

In this case, the lambda is being assigned to a Predicate that takes a String. Another
place to look for the type is in a method signature. Let’s try another example. Can you figure

out the type of x?

public void whatAmI() {
consume((var x) -> System.out.print(x), 123);

Working with Variables in Lambdas 447

public void consume(Consumer<Integer> c, int num) {
c.accept(num);

If you guessed Integer, you were right. The whatAmI () method creates a lambda to be
passed to the consume () method. Since the consume () method expects an Integer as the
generic, we know that is what the inferred type of x will be.

But wait; there’s more. In some cases, you can determine the type without even seeing the
method signature. What do you think the type of x is here?

public void counts(List<Integer> list) {
list.sort((var x, var y) -> x.compareTo(y));

The answer is again Integer. Since we are sorting a list, we can use the type of the list to
determine the type of the lambda parameter.

Since lambda parameters are just like method parameters, you can add modifiers to them.
Specifically, you can add the final modifier or an annotation, as shown in this example:

public void counts(List<Integer> list) {
list.sort((final var x, @Deprecated var y) -> x.compareTo(y));

While this tends to be uncommon in real life, modifiers such as these have been known to
appear in passing on the exam.

Parameter List Formats

You have three formats for specifying parameter types within a lambda: without types, with
types, and with var.The compiler requires all parameters in the lambda to use the same
format. Can you see why the following are not valid?

5: (var x, y) -> "Hello" // DOES NOT COMPILE
6: (var x, Integer y) -> true // DOES NOT COMPILE
7: (String x, var y, Integer z) -> true // DOES NOT COMPILE
8: (Integer x, y) -> "goodbye" // DOES NOT COMPILE

Lines 5 needs to remove var from x or add it to y. Next, lines 6 and 7 need to use the type
or var consistently. Finally, line 8 needs to remove Integer from x or add a type to y.

448 Chapter 8 = Lambdas and Functional Interfaces

Using Local Variables Inside a Lambda Body

While it is most common for a lambda body to be a single expression, it is legal to define a
block. That block can have anything that is valid in a normal Java block, including local var-
iable declarations.

The following code does just that. It creates a local variable named c that is scoped to the
lambda block:

(a, b) => { dint ¢ = 0; return 5; }
Now let’s try another one. Do you see what’s wrong here?

(a, b) -> { int a = 0; return 5; } // DOES NOT COMPILE

We tried to redeclare a, which is not allowed. Java doesn’t let you create a local variable
with the same name as one already declared in that scope. While this kind of error is less
likely to come up in real life, it has been known to appear on the exam!

Now let’s try a hard one. How many syntax errors do you see in this method?

11: public void variables(int a) {

12: int b = 1;

13: Predicate<Integer> pl = a -> {
14: int b = 0;

15: int ¢ = 0;

16: return b == ¢; }

17: }

There are three syntax errors. The first is on line 13. The variable a was already used in
this scope as a method parameter, so it cannot be reused. The next syntax error comes on
line 14, where the code attempts to redeclare local variable b. The third syntax error is quite
subtle and on line 16. See it? Look really closely.

The variable p1 is missing a semicolon at the end. There is a semicolon before the }, but
that is inside the block. While you don’t normally have to look for missing semicolons,
lambdas are tricky in this space, so beware!

@ Real World Scenario

Keep Your Lambdas Short

Having a lambda with multiple lines and a return statement is often a clue that you
should refactor and put that code in a method. For example, the previous example could be
rewritten as

Predicate<Integer> pl = a -> returnSame(a);

This simpler form can be further refactored to use a method reference:

Working with Variables in Lambdas

Predicate<Integer> pl = this::returnSame;

You might be wondering why this is so important. In Chapter 10, lambdas and method
references are used in chained method calls. The shorter the lambda, the easier it is to
read the code.

449

Referencing Variables from the Lambda Body

Lambda bodies are allowed to reference some variables from the surrounding code. The
following code is legal:

public class Crow {
private String color;
public void caw(String name) {
String volume = "loudly";
Consumer<String> consumer = s ->
System.out.println(name + " says "
+ volume + " that she is " + color);

This shows that a lambda can access an instance variable, method parameter, or local var-

iable under certain conditions. Instance variables (and class variables) are always allowed.

The only thing lambdas cannot access are variables that are not final or effectively final. If

you need a refresher on effectively final, see Chapter 5, “Methods.”

It gets even more interesting when you look at where the compiler errors occur when the

variables are not effectively final.

2 public class Crow {

3 private String color;

4 public void caw(String name) {

5 String volume = "loudly";

6: name = "Caty";

7 color = "black";

8

9: Consumer<String> consumer = s ->

10: System.out.println(name + " says " // DOES NOT COMPILE
11: + volume + " that she is " + color); // DOES NOT COMPILE
12: volume = "softly";

13: }

14: }

450 Chapter 8 = Lambdas and Functional Interfaces

In this example, the method parameter name is not effectively final because it is set on
line 6. However, the compiler error occurs on line 10. It’s not a problem to assign a value to
a non-final variable. However, once the lambda tries to use it, we do have a problem. The
variable is no longer effectively final, so the lambda is not allowed to use the variable.

The variable volume is not effectively final either since it is updated on line 12. In this
case, the compiler error is on line 11. That’s before the reassignment! Again, the act of
assigning a value is only a problem from the point of view of the lambda. Therefore, the
lambda has to be the one to generate the compiler error.

To review, make sure you’ve memorized Table 8.8.

TABLE 8.8 Rules for accessing a variable from a lambda body inside a method

Variable type Rule

Instance variable Allowed

Static variable Allowed

Local variable Allowed if final or effectively final
Method parameter Allowed if final or effectively final
Lambda parameter Allowed

Summary

We spent a lot of time in this chapter teaching you how to use lambda expressions, and with
good reason. The next two chapters depend heavily on your ability to create and use lambda
expressions. We recommend that you understand this chapter well before moving on.

Lambda expressions, or lambdas, allow passing around blocks of code. The full syntax
looks like this:

(String a, String b) -> { return a.equals(b); }
The parameter types can be omitted. When only one parameter is specified without a

type, the parentheses can also be omitted. The braces and return statement can be omitted
for a single statement, making the short form as follows:

a -> a.equals(b)
Lambdas can be passed to a method expecting an instance of a functional interface. A

lambda can define parameters or variables in the body as long as their names are different from
existing local variables. The body of a lambda is allowed to use any instance or class variables.

Exam Essentials 451

Additionally, it can use any local variables or method parameters that are final or effec-
tively final.

A method reference is a compact syntax for writing lambdas that refer to methods. There
are four types: static methods, instance methods on a particular object, instance methods on
a parameter, and constructor references.

A functional interface has a single abstract method. Any functional interface can be
implemented with a lambda expression. You must know the built-in functional interfaces.

You should review the tables in the chapter. While there are many tables, some share
common patterns, making it easier to remember them. You absolutely must memorize
Table 8.4, which lists the common functional interfaces.

Exam Essentials

Write simple lambda expressions. Look for the presence or absence of optional elements
in lambda code. Parameter types are optional. Braces and the return keyword are optional
when the body is a single statement. Parentheses are optional when only one parameter is
specified and the type is implicit.

Determine whether a variable can be used in a lambda body. Local variables and method
parameters must be final or effectively final to be referenced. This means the code must
compile if you were to add the final keyword to these variables. Instance and class vari-
ables are always allowed.

Translate method references to the “long form” lambda. Be able to convert method refer-
ences into regular lambda expressions and vice versa. For example, System.out: :print
and x -> System.out.print(x) are equivalent. Remember that the order of method
parameters is inferred when using a method reference.

Determine whether an interface is a functional interface. Use the single abstract method
(SAM) rule to determine whether an interface is a functional interface. Other interface
method types (default, private, static, and private static) do not count toward
the single abstract method count, nor do any public methods with signatures found

in Object.

Identify the correct functional interface given the number of parameters, return type, and
method name—and vice versa. The most common functional interfaces are Supplier,
Consumer, Function, and Predicate. There are also binary versions and primitive ver-
sions of many of these methods. You can use the number of parameters and return type to
tell them apart.

452 Chapter 8 = Lambdas and Functional Interfaces

Review Questions

The answers to the chapter review questions can be found in the Appendix.

1. What is the result of the following class?

1: dmport java.util.function.x*;
2
3 public class Panda {
4 int age;
5: public static void main(String[] args) {
6 Panda pl = new Panda();
7 pl.age = 1;
8 check(pl, p -> p.age < 5);
9 }
10: private static void check(Panda panda,
11: Predicate<Panda> pred) {
12: String result =
13: pred.test(panda) ? "match" : "not match";
14: System.out.print(result);
15: } }
match
not match

Compiler error on line 8
Compiler error on lines 10 and 11

Compiler error on lines 12 and 13

mmOO®mP

A runtime exception is thrown.

2. What is the result of the following code?

interface Climb {
boolean isTooHigh(int height, int limit);

1

2

3

4:

5: public class Climber {
6: public static void main(String[] args) {

7 check((h, m) -> h.append(m).isEmpty(), 5);

8 }

9: private static void check(Climb climb, int height) {
10: if (climb.isTooHigh(height, 10))

11: System.out.println("too high");

Review Questions 453

12: else

13: System.out.println("ok");
14: }

15: }

ok
too high

A

B

C. Compiler error on line 7

D. Compiler error on line 10

E. Compiler error on a different line
E

A runtime exception is thrown.

Which statements about functional interfaces are true? (Choose all that apply.)
A. A functional interface can contain default and private methods.
B. A functional interface can be defined as a class or an interface.

C. Abstract methods with signatures that are contained in pub1ic methods of
java.lang.Object do not count toward the abstract method count for a functional
interface.

D. A functional interface cannot contain static or private static methods.

E. A functional interface must be marked with the @FunctionalInterface annotation.
Which lambda can replace the MySecret class to return the same value? (Choose all

that apply.)

interface Secret {
String magic(double d);

class MySecret implements Secret {
public String magic(double d) {
return "Poof";

I

(e) -> "Poof"

(e) -> {"Poof"}
(e) -> { String e
(e) -> { String e = ""; return "Poof"; }
(e) -> { String e ""; return "Poof" }
(e) -> { String f = ""; return "Poof"; }

nn ; IIPOO-F" }

Mmoo wp

454 Chapter 8 = Lambdas and Functional Interfaces

5. Which of the following functional interfaces contain an abstract method that returns a primi-
tive value? (Choose all that apply.)

BooleanSupplier
CharSupplier
DoubleSupplier
FloatSupplier
IntSupplier

mmOoOOwWP»>

StringSupplier

6. Which of the following lambda expressions can be passed to a function of Predicate<String>
type? (Choose all that apply.)
A. s -> s.isEmpty()
B. s --> s.isEmpty()

(String s) -> s.isEmpty()

(String s) --> s.isEmpty()

(StringBuilder s) -> s.isEmpty()

mmo o

(StringBuilder s) --> s.isEmpty()

7. Which of these statements is true about the following code?

public void method() {
x((var x) -> {}, (var x, var y) -> false);

}

public void x(Consumer<String> x, BinaryOperator<Boolean> y) {}

The code does not compile because of one of the variables named x.
The code does not compile because of one of the variables named y.

A

B

C. The code does not compile for another reason.

D. The code compiles, and the x in each lambda refers to the same type.
E

The code compiles, and the x in each lambda refers to a different type.

8. Which of the following is equivalent to this code? (Choose all that apply.)

UnaryOperator<Integer> u = x -> X * X;
BiFunction<Integer> f = x -> xxx;
BiFunction<Integer, Integer> f = x —-> x*x;
BinaryOperator<Integer, Integer> f = x -> xxx;
Function<Integer> f = x -> x*Xx;

Function<Integer, Integer> f = x -> x*Xx;

mmOoOO®PpP

None of the above

Review Questions

9. Which statements are true? (Choose all that apply.)

The Consumer interface is good for printing out an existing value.
The Supplier interface is good for printing out an existing value.
The IntegerSupplier interface returns an int.

The Predicate interface returns an int.

moowp»

The Function interface has a method named test ().
F. The Predicate interface has a method named test ().

10. Which of the following can be inserted without causing a compilation error? (Choose all
that apply.)

public void remove(List<Character> chars) {

char end = 'z';
Predicate<Character> predicate = ¢ -> {
char start = 'a'; return start <= ¢ && c <= end; };

// INSERT LINE HERE

}

A. char start = 'a';
B. char ¢ = 'x';

C. chars = null;

D. end = '1';

E. None of the above

11. How many times is true printed out by this code?

import java.util.function.Predicate;
public class Fantasy {
public static void scary(String animal) {
var dino = s -> "dino".equals(animal);
var dragon = s -> "dragon".equals(animal);
var combined = dino.or(dragon);
System.out.println(combined.test(animal));
}
public static void main(String[] args) {
scary("dino");
scary("dragon");
scary("unicorn");

455

456 Chapter 8 = Lambdas and Functional Interfaces

One
Two
Three

The code does not compile.

moom»

A runtime exception is thrown.

12. What does the following code output?

Function<Integer, Integer> s = a -> a + 4;
Function<Integer, Integer> t = a -> a * 3;
Function<Integer, Integer> c = s.compose(t);
System.out.print(c.apply(1));

A 7

B. 15

C. The code does not compile because of the data types in the lambda expressions.
D. The code does not compile because of the compose () call.

E. The code does not compile for another reason.

13. Which is true of the following code?
int length = 3;

for (int i = 03 1i<3; i++) {

if (i%2 == 0) {
Supplier<Integer> supplier = () -> length; // A
System.out.println(supplier.get()); // B

} else {
int j = 1;
Supplier<Integer> supplier = () -> j; // C
System.out.println(supplier.get()); // D

The first compiler error is on line A.
The first compiler error is on line B.
The first compiler error is on line C.

The first compiler error is on line D.

moow»

The code compiles successfully.

Review Questions 457

14. Which of the following are valid lambda expressions? (Choose all that apply.)
A. (Wolf w, var c) -> 39

(final Camel c) -> {3}

(a,b,c) -> {int b = 3; return 2;}

(x,y) —-> new RuntimeException()

(var y) -> return 0;

() -> {float r}

(Cat a, b) —> {}

@mMmoow

15. Which lambda expression, when entered into the blank line in the following code, causes the
program to print hahaha? (Choose all that apply.)
import java.util.function.Predicate;
public class Hyena {
private int age = 1;
public static void main(String[] args) {
var p = new Hyena();
double height = 10;
int age = 1;
testLaugh(p,)3
age = 2;

}
static void testLaugh(Hyena panda, Predicate<Hyena> joke) {

var r = joke.test(panda) ? "hahaha" : "silence";
System.out.print(r);

[

var —-> p.age <= 10
shenzi -> age==

p —-> true

age==

shenzi -> age==2

h -> h.age < 5

G. None of the above, as the code does not compile

Mmoo ® >

16. Which of the following can be inserted without causing a compilation error? (Choose all
that apply.)
public void remove(List<Character> chars) {
char end = 'z';

458 Chapter 8 = Lambdas and Functional Interfaces

// INSERT LINE HERE

Predicate<Character> predicate = ¢ -> {
char start = 'a'; return start <= ¢ && c <= end; };

char start = 'a';
char ¢ = 'x';
chars = null;

end = '1';

None of the above

moowp

17. What is the result of running the following class?

1: dmport java.util.function.x*;
2
3: public class Panda {
4 int age;
5: public static void main(String[] args) {
6 Panda pl = new Panda();
7 pl.age = 1;
8 check(pl, p -> {p.age < 5});
9 }
10: private static void check(Panda panda,
11: Predicate<Panda> pred) {
12: String result = pred.test(panda)
13: ? "match" : "not match";
14: System.out.print(result);
15: } }
match
not match

Compiler error on line 8
Compiler error on line 10

Compiler error on line 12

mmoU oW

A runtime exception is thrown.

18.

19.

20.

Review Questions

Which functional interfaces complete the following code? For line 7, assume m and n are
instances of functional interfaces that exist and have the same type as y. (Choose three.)

6: — x = String::new;
7: — y = m.andThen(n);
8: z=a->at+t a;

BinaryConsumer<String, String>
BiConsumer<String, String>
BinaryFunction<String, String>
BiFunction<String, String>
Predicate<String>
Supplier<String>
UnaryOperator<String>

IOomMmMOO®>

UnaryOperator<String, String>

Which of the following compiles and prints out the entire set? (Choose all that apply.)
Set<?> set = Set.of("lion", "tiger", "bear");

var s = Set.copyOf(set);

Consumer<0Object> consumer = s
s.forEach(consumer) ;

A. () -> System.out.println(s)
s —=> System.out.println(s)
(s) -> System.out.println(s)
System.out.println(s)
System::out::println

mmo o

System.out::println

459

Which lambdas can replace the new Sloth () call in the main() method and produce the

same output at runtime? (Choose all that apply.)
import java.util.List;
interface Yawn {
String yawn(double d, List<Integer> time);
}
class Sloth implements Yawn {
public String yawn(double zzz, List<Integer> time) {
return "Sleep: " + zzz;

I

460 Chapter 8 = Lambdas and Functional Interfaces

public class Vet {
public static String takeNap(Yawn y) {
return y.yawn (10, null);

}
public static void main(String... unused) {
System.out.print(takeNap(new Sloth()));
I
A. (z,f) -> { String x = ""; return "Sleep: " + x }
B. (t,s) -> { String t = ""; return "Sleep: " + t; }
C. (w,q) -> {"Sleep: " + w}
D. (e,u) -> { String g = ""; "Sleep: " + e }
E. (a,b) -> "Sleep: " + (double)(b==null ? a : a)
F. (r,k) -> { String g = ""; return "Sleep:"; }
G. None of the above, as the program does not compile

21. Which of the following are valid functional interfaces? (Choose all that apply.)

public interface Transport {
public int go();
public boolean equals(Object 0);

public abstract class Car {
public abstract Object swim(double speed, int duration);

public interface Locomotive extends Train {
public int getSpeed();
public dinterface Train extends Transport {}

abstract interface Spaceship extends Transport {
default int blastOff();

Review Questions 461

public interface Boat {
int hashCode();
int hashCode(String input);

[’

Boat

Car
Locomotive
Spaceship
Transport

Train

G mMmOoOO WP

None of these is a valid functional interface.

Collections
and Generics

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Working with Arrays and Collections

Create Java arrays, List, Set, Map, and Deque collections, and
add, remove, update, retrieve and sort their elements

In this chapter, we introduce the Java Collections Framework
classes and interfaces you need to know for the exam. The thread-
safe collection types are discussed in Chapter 13, “Concurrency.”

As you may remember from Chapter 8, “Lambdas and Functional Interfaces,” we covered
lambdas, method references, and built-in functional interfaces. Many of these are used in this
chapter. Please go back and review Table 8.4 if the functional interfaces are unfamiliar.

Next, we cover details about Comparator and Comparable. Finally, we discuss how to
create your own classes and methods that use generics so that the same class can be used
with many types.

Using Common Collection APls

A collection is a group of objects contained in a single object. The Java Collections Frame-
work is a set of classes in java.util for storing collections. There are four main interfaces
in the Java Collections Framework.

= List: A list is an ordered collection of elements that allows duplicate entries. Elements
in a list can be accessed by an int index.

= Set: A set is a collection that does not allow duplicate entries.

» Queue: A gqueue is a collection that orders its elements in a specific order for processing.
A Deque is a subinterface of Queue that allows access at both ends.

= Map: A map is a collection that maps keys to values, with no duplicate keys allowed. The
elements in a map are key/value pairs.

Figure 9.1 shows the Collection interface, its subinterfaces, and some classes that
implement the interfaces that you should know for the exam. The interfaces are shown in
rectangles, with the classes in rounded boxes.

Notice that Map doesn’t implement the Collection interface. It is considered part of the
Java Collections Framework even though it isn’t technically a Collection. It is a collection
(note the lowercase), though, in that it contains a group of objects. The reason maps are
treated differently is that they need different methods due to being key/value pairs.

Using Common Collection APIs 465

FIGURE 9.1 Java Collections Framework

Collection

A

Map

List Queue Set < AL)
ArrayList CHashSet) C TreeSet)

LinkedList

In this section, we discuss the common methods that the Collections API provides to the
implementing classes. Many of these methods are convenience methods that could be imple-
mented in other ways but make your code easier to write and read. This is why they are
convenient.

In this section, we use ArrayList and HashSet as our implementation classes, but they
can apply to any class that inherits the Collection interface. We cover the specific prop-
erties of each Collection class in the next section.

Using the Diamond Operator
When constructing a Java Collections Framework, you need to specify the type that will go
inside. We could write code using generics like the following;:

List<Integer> list = new ArraylList<Integer>();

You might even have generics that contain other generics, such as this:

Map<Long,List<Integer>> mapLists = new HashMap<Long,List<Integer>>();

That’s a lot of duplicate code to write! Luckily, the diamond operator (<>) is a shorthand
notation that allows you to omit the generic type from the right side of a statement when
the type can be inferred. It is called the diamond operator because <> looks like a diamond.
Compare the previous declarations with these new, much shorter versions:

List<Integer> list = new ArrayList<>();
Map<Long,List<Integer>> mapOfLists = new HashMap<>();

To the compiler, both these declarations and our previous ones are equivalent. To us,
though, the latter is a lot shorter and easier to read.

466 Chapter 9 = Collections and Generics

The diamond operator cannot be used as the type in a variable declaration. It can be
used only on the right side of an assignment operation. For example, neither of the follow-
ing compiles:

List<> list = new ArraylList<Integer>(); // DOES NOT COMPILE

class InvalidUse {
void use(List<> data) {} // DOES NOT COMPILE

Adding Data

The add () method inserts a new element into the Collection and returns whether it was suc-
cessful. The method signature is as follows:

public boolean add(E element)

Remember that the Collections Framework uses generics. You will see E appear frequently.
It means the generic type that was used to create the collection. For some Collection types,
add () always returns true. For other types, there is logic as to whether the add () call was
successful. The following shows how to use this method:

: Collection<String> list = new ArrayList<>();

System.out.println(list.add("Sparrow")); // true
System.out.println(list.add("Sparrow")); // true

Collection<String> set = new HashSet<>();
System.out.println(set.add("Sparrow")); // true
System.out.println(set.add("Sparrow")); // false

O o N o b~ W

A List allows duplicates, making the return value true each time. A Set does not
allow duplicates. On line 9, we tried to add a duplicate so that Java returns false from the
add () method.

Removing Data
The remove () method removes a single matching value in the Collection and returns whether it
was successful. The method signature is as follows:
public boolean remove(Object object)

This time, the boolean return value tells us whether a match was removed. The follow-
ing shows how to use this method:

3: Collection<String> birds = new ArrayList<>();
4: birds.add("hawk"); // [hawk]

Using Common Collection APIs 467

5: birds.add("hawk"); // [hawk, hawk]
6: System.out.println(birds.remove("cardinal")); // false

7: System.out.println(birds.remove("hawk")); // true

8: System.out.println(birds); // [hawk]

Line 6 tries to remove an element that is not in birds. It returns false because no such
element is found. Line 7 tries to remove an element that is in birds, so it returns true.
Notice that it removes only one match.

Counting Elements
The isEmpty () and size () methods look at how many elements are in the Collection. The
method signatures are as follows:
public boolean isEmpty()
public int size()
The following shows how to use these methods:

Collection<String> birds = new ArrayList<>();
System.out.println(birds.isEmpty()); // true

System.out.printin(birds.size()); /] ©
birds.add("hawk"); // [hawk]
birds.add("hawk") // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); /] 2

At the beginning, b1 rds has a size of 0 and is empty. It has a capacity that is greater than 0.
After we add elements, the size becomes positive, and it is no longer empty.

Clearing the Collection

The clear () method provides an easy way to discard all elements of the Collection. The method
signature is as follows:
public void clear()

The following shows how to use this method:

Collection<String> birds = new ArrayList<>();

birds.add("hawk"); // [hawk]
birds.add("hawk"); // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); /] 2

birds.clear(); /1 1]

468 Chapter 9 = Collections and Generics

System.out.println(birds.isEmpty()); // true
System.out.printin(birds.size()); // 0

After calling clear (), birds is back to being an empty ArrayList of size 0.

Check Contents

The contains () method checks whether a certain value is in the Collection. The method
signature is as follows:

public boolean contains(Object object)

The following shows how to use this method:
Collection<String> birds = new ArraylList<>();
birds.add("hawk"); // [hawk]
System.out.println(birds.contains("hawk")); // true
System.out.println(birds.contains("robin")); // false

The contains () method calls equals () on elements of the ArrayList to see whether
there are any matches.

Removing with Conditions

The removeIf () method removes all elements that match a condition. We can specify what
should be deleted using a block of code or even a method reference.

The method signature looks like the following. (We explain what the ? super means in
the “Working with Generics” section later in this chapter.)

public boolean removeIf (Predicate<? super E> filter)

It uses a Predicate, which takes one parameter and returns a boolean. Let’s take a
look at an example:

4: Collection<String> list = new ArrayList<>();

5: list.add("Magician");

6: list.add("Assistant");

7: System.out.println(list); // [Magician, Assistant]
8: list.removeIf(s -> s.startsWith("A"));

9: System.out.println(list); // [Magician]

Line 8 shows how to remove all of the String values that begin with the letter A. This
allows us to make the Assistant disappear. Let’s try an example with a method reference:

11: Collection<String> set = new HashSet<>();

12: set.add("Wand");
13: set.add("");

Using Common Collection APIs 469

14: set.removeIf(String::isEmpty); // s -> s.isEmpty()
15: System.out.println(set); // [Wand]
On line 14, we remove any empty String objects from set. The comment on that line

shows the lambda equivalent of the method reference. Line 15 shows that the removeIf()
method successfully removed one element from 1ist.

Iterating

There’s a forEach () method that you can call on a Collection instead of writing a loop. It uses a
Consumer that takes a single parameter and doesn’t return anything. The method signature is
as follows:

public void forEach(Consumer<? super T> action)

Cats like to explore, so let’s print out two of them using both method references
and lambdas:
Collection<String> cats = List.of("Annie", "Ripley");
cats.forEach(System.out::println);
cats.forEach(c -> System.out.println(c));

The cats have discovered how to print their names. Now they have more time to play
(as do we)!

Other Iteration Approaches

There are other ways to iterate through a Collection. For example, in Chapter 3, “Making
Decisions,” you saw how to loop through a list using an enhanced for loop.

for (String element: coll)
System.out.println(element);

You may see another older approach used.

Iterator<String> iter = coll.iterator();
while(iter.hasNext()) {
String string = dter.next();
System.out.println(string);
}

Pay attention to the difference between these techniques.The hasNext () method checks
whether there is a next value. In other words, it tells you whether next () will execute
without throwing an exception.The next () method actually moves the Iterator to the
next element.

470 Chapter 9 = Collections and Generics

Determining Equality

There is a custom implementation of equals () so you can compare two Collections to compare
the type and contents. The implementation will vary. For example, ArrayList checks order,
while HashSet does not.

boolean equals(Object object)

The following shows an example:

23: var listl = List.of(1, 2);

24: var list2 = List.of(2, 1);

25: var setl = Set.of(1, 2);

26: var set2 = Set.of(2, 1);

27:

28: System.out.println(listl.equals(list2)); // false
29: System.out.println(setl.equals(set2)); // true
30: System.out.println(listl.equals(setl)); // false

Line 28 prints false because the elements are in a different order, and a List cares
about order. By contrast, line 29 prints true because a Set is not sensitive to order. Finally,
line 30 prints false because the types are different.

Unboxing nulls

Java protects us from many problems with Collections. However, it is still possible to
write a NullPointerException:

3: var heights = new ArrayList<Integer>();
4: heights.add(null);
5: 1dnt h = heights.get(0); // NullPointerException

On line 4, we add a null to the list. This is legal because a nul1l reference can be assigned
to any reference variable. On line 5, we try to unbox that null to an int primitive.This is a
problem. Java tries to get the int value of null. Since calling any method on null gives a
NullPointerException, thatis just what we get. Be careful when you see null in rela-
tion to autoboxing.

Using the List Interface an

Using the List Interface

Now that you’re familiar with some common Collection interface methods, let’s move on
to specific interfaces. You use a list when you want an ordered collection that can contain
duplicate entries. For example, a list of names may contain duplicates, as two animals can
have the same name. Items can be retrieved and inserted at specific positions in the list based
on an int index, much like an array. Unlike an array, though, many List implementations can
change in size after they are declared.

Lists are commonly used because there are many situations in programming where you
need to keep track of a list of objects. For example, you might make a list of what you want
to see at the zoo: first, see the lions, because they go to sleep early; second, see the pandas,
because there is a long line later in the day; and so forth.

Figure 9.2 shows how you can envision a List. Each element of the List has an index,
and the indexes begin with zero.

FIGURE 9.2 Exampleofalist

List
Ordered index Data
0 lions
1 pandas
2 zebras

Sometimes you don’t care about the order of elements in a list. List is like the “go to”
data type. When we make a shopping list before going to the store, the order of the list hap-
pens to be the order in which we thought of the items. We probably aren’t attached to that
particular order, but it isn’t hurting anything.

While the classes implementing the List interface have many methods, you need to know
only the most common ones. Conveniently, these methods are the same for all of the imple-
mentations that might show up on the exam.

The main thing all List implementations have in common is that they are ordered and
allow duplicates. Beyond that, they each offer different functionality. We look at the imple-
mentations that you need to know and the available methods.

Pay special attention to which names are classes and which are inter-
OTE faces. The exam may ask you which is the best class or which is the best
interface for a scenario.

472 Chapter 9 = Collections and Generics

Comparing List Implementations

An ArrayList s like a resizable array. When elements are added, the ArrayList automatically
grows. When you aren’t sure which collection to use, use an ArrayList.

The main benefit of an ArrayList is that you can look up any element in constant time.
Adding or removing an element is slower than accessing an element. This makes an ArrayList
a good choice when you are reading more often than (or the same amount as) writing to the
ArraylList.

A LinkedList is special because it implements both List and Deque. It has all the methods
of a List. It also has additional methods to facilitate adding or removing from the beginning
and/or end of the list.

The main benefits of a LinkedL1ist are that you can access, add to, and remove from the
beginning and end of the list in constant time. The trade-off is that dealing with an arbitrary
index takes linear time. This makes a LinkedL1ist a good choice when you’ll be using it
as Deque. As you saw in Figure 9.1, a LinkedList implements both the List and Deque
interfaces.

Creating a List with a Factory

When you create a List of type ArrayList or LinkedL1ist, you know the type. There are
a few special methods where you get a List back but don’t know the type. These methods
let you create a List including data in one line using a factory method. This is convenient,
especially when testing. Some of these methods return an immutable object. As we saw in
Chapter 6, “Class Design,” an immutable object cannot be changed or modified. Table 9.1
summarizes these three lists.

TABLE 9.1 Factory methods to create a List

Can add Canreplace Can delete

Method Description elements? elements? elements?
Arrays. Returns fixed size No Yes No
asList(varargs) list backed by an

array
List.of(varargs) Returns immutable No No No

list
List. Returns immutable No No No

copyOf(collection) listwith copy of
original collection’s
values

Using the List Interface 473

Let’s take a look at an example of these three methods:

16: String[] array = new String[] {"a", "b", "c"};

17: List<String> asList = Arrays.asList(array); // [a, b, c]
18: List<String> of = List.of(array); // [a, b, c]
19: List<String> copy = List.copyOf(asList); // [a, b, c]
20:

21: array[0] = "z";

22:

23: System.out.println(asList); // [z, b, c]
24: System.out.println(of); // [a, b, c]
25: System.out.println(copy); // [a, b, c]
26:

27: aslList.set(0, "x");

28: System.out.println(Arrays.toString(array)); // [x, b, c]
29:

30: copy.add("y"); // UnsupportedOperationException

Line 17 creates a List that is backed by an array. Line 21 changes the array, and line
23 reflects that change. Lines 27 and 28 show the other direction where changing the List
updates the underlying array. Lines 18 and 19 create an immutable List. Line 30 shows it is
immutable by throwing an exception when trying to add a value. All three lists would throw
an exception when adding or removing a value. The of and copy lists would also throw one
on trying to update an element.

Creating a List with a Constructor

Most Collections have two constructors that you need to know for the exam. The following
shows them for LinkedList:

var linkedl = new LinkedList<String>();
var linked2 = new LinkedList<String>(linkedl);

The first says to create an empty LinkedL1ist containing all the defaults. The second tells
Java that we want to make a copy of another LinkedList. Granted, linked1 is empty in
this example, so it isn’t particularly interesting.

ArrayList has an extra constructor you need to know. We now show the three constructors:

var listl = new ArrayList<String>();

var list2 = new ArrayList<String>(listl);
var list3 = new ArrayList<String>(10);

The first two are the common constructors you need to know for all Collections. The
final example says to create an ArraylList containing a specific number of slots, but again
not to assign any. You can think of this as the size of the underlying array.

474 Chapter 9 = Collections and Generics

Using var with ArraylList
Consider this code, which mixes var and generics:

var strings = new ArraylList<String>();
strings.add("a");
for (String s: strings) { }

The type of var is ArrayList<String>.This means you can add a String or loop
through the String objects. What if we use the diamond operator with var?

var list = new ArrayList<>();

Believe it or not, this does compile.The type of the var is ArrayList<Object>. Since
there isn't a type specified for the generic, Java has to assume the ultimate superclass.This
is a bit silly and unexpected, so please don’t write it. But if you see it on the exam, you'll
know what to expect. Now can you figure out why this doesn’t compile?

var list = new ArrayList<>();
list.add("a");
for (String s: list) { } // DOES NOT COMPILE

The type of var is ArrayList<Object>. Since there isn't a type in the diamond operator,
Java has to assume the most generic option it can. Therefore, it picks Object, the ultimate
superclass. Adding a String to the list is fine.You can add any subclass of Object. How-
ever, in the loop, we need to use the Object type rather than String.

Working with List Methods

The methods in the List interface are for working with indexes. In addition to the inherited
Collection methods, the method signatures that you need to know are in Table 9.2.

TABLE 9.2 List methods

Method Description

public boolean add(E element) Adds element to end (available on all
CollectionAPIs).

public void add(int -index, Adds element at index and moves the rest

E element) toward the end.

public E get(int index) Returns element at index.

public E remove(int index) Removes element at index and moves the rest

toward the front.

Using the List Interface 475

Method Description

public default void replaceAll(Replaces each element in list with result of
UnaryOperator<E> op) operator.

public E set(int index, E e) Replaces element at index and returns original.

Throws IndexOutOfBoundsException if
index is invalid.

public default void sort(Sorts list. We cover this later in the chapter in
Comparator<? super E> c) the “Sorting Data” section.

The following statements demonstrate most of these methods for working with a List:

3: List<String> list = new ArrayList<>();

4: list.add("SD"); // [SD]

5: Tlist.add(0, "NY"); // [NY,SD]

6: list.set(1, "FL"); // [NY,FL]

7: System.out.println(list.get(0)); // NY

8: Tlist.remove("NY"); // [FL]

9: Tlist.remove(0); /] []

10: list.set(0, "?"); // IndexOutOfBoundsException

On line 3, 1ist starts out empty. Line 4 adds an element to the end of the list. Line 5
adds an element at index 0 that bumps the original index 0 to index 1. Notice how the
ArrayList is now automatically one larger. Line 6 replaces the element at index 1 with a
new value.

Line 7 uses the get () method to print the element at a specific index. Line 8 removes the
element matching NY. Finally, line 9 removes the element at index 0, and 1ist is empty again.

Line 10 throws an IndexOutOfBoundsException because there are no elements in
the List. Since there are no elements to replace, even index 0 isn’t allowed. If line 10 were
moved up between lines 4 and 3, the call would succeed.

The output would be the same if you tried these examples with LinkedList. Although the
code would be less efficient, it wouldn’t be noticeable until you had very large lists.

Now let’s take a look at the replaceA11() method. It uses a UnaryOperator that takes one
parameter and returns a value of the same type:

var numbers = Arrays.asList(1l, 2, 3);
numbers.replaceAll(x -> x*2);
System.out.println(numbers); /l [2, 4, 6]

This lambda doubles the value of each element in the list. The replaceAl1() method
calls the lambda on each element of the list and replaces the value at that index.

476 Chapter 9 = Collections and Generics

Overloaded remove() Methods

We've now seen two overloaded remove () methods.The one from Collection removes
an object that matches the parameter. By contrast, the one from List removes an element
at a specified index.

This gets tricky when you have an Integer type. What do you think the following prints?

31: var list = new LinkedList<Integer>();
32: list.add(3);

33: list.add(2);

34: list.add(1);

35: list.remove(2);

36: list.remove(Integer.valueOf(2));

37: System.out.println(list);

The correct answer is [3]. Let's look at how we got there. At the end of line 34, we have
[3, 2, 1].Line 35 passes a primitive, which means we are requesting deletion of the
element at index 2.This leaves us with [3, 2].Then line 36 passes an Integer object,
which means we are deleting the value 2. That brings us to [3].

Since calling remove () with an int uses the index, an index that doesn’t exist
will throw an exception. For example, list.remove (100) throws an
IndexOutOfBoundsException.

Converting from List to an Array

Since an array can be passed as a vararg, Table 9.1 covered how to convert an array to a List.
You should also know how to do the reverse. Let’s start with turning a List into an array:

13: List<String> list = new ArrayList<>();

14: list.add("hawk");

15: list.add("robin");

16: Object[] objectArray = list.toArray();

17: String[] stringArray = list.toArray(new String[0]);
18: list.clear();

19: System.out.println(objectArray.length); /] 2
20: System.out.println(stringArray.length); /] 2

Line 16 shows that a List knows how to convert itself to an array. The only problem is
that it defaults to an array of class Object. This isn’t usually what you want. Line 17 spec-
ifies the type of the array and does what we want. The advantage of specifying a size of ©

Using the Set Interface 477

for the parameter is that Java will create a new array of the proper size for the return value.
If you like, you can suggest a larger array to be used instead. If the List fits in that array, it
will be returned. Otherwise, a new array will be created.

Also, notice that line 18 clears the original List. This does not affect either array. The array
is a newly created object with no relationship to the original List. It is simply a copy.

Using the Set Interface

You use a Set when you don’t want to allow duplicate entries. For example, you might want
to keep track of the unique animals that you want to see at the zoo. You aren’t concerned
with the order in which you see these animals, but there isn’t time to see them more than
once. You just want to make sure you see the ones that are important to you and remove
them from the set of outstanding animals to see after you see them.

Figure 9.3 shows how you can envision a Set. The main thing that all Set implementa-
tions have in common is that they do not allow duplicates. We look at each implementation
that you need to know for the exam and how to write code using Set.

FIGURE 9.3 Example of a Set

Set

pandas

zebras

Comparing Set Implementations

A HashSet stores its elements in a bash table, which means the keys are a hash and the
values are an Object. This means that the HashSet uses the hashCode () method of the
objects to retrieve them more efficiently. Remember that a valid hashCode () doesn’t mean
every object will get a unique value, but the method is often written so that hash values are
spread out over a large range to reduce collisions.

The main benefit is that adding elements and checking whether an element is in the set
both have constant time. The trade-off is that you lose the order in which you inserted the
elements. Most of the time, you aren’t concerned with this in a Set anyway, making HashSet
the most common set.

478 Chapter 9 = Collections and Generics

A TreeSet stores its elements in a sorted tree structure. The main benefit is that the set is
always in sorted order. The trade-off is that adding and checking whether an element exists
takes longer than with a HashSet, especially as the tree grows larger.

Figure 9.4 shows how you can envision HashSet and TreeSet being stored. HashSet is
more complicated in reality, but this is fine for the purpose of the exam.

FIGURE 9.4 Examples of a HashSet and TreeSet

HashSet TreeSet
hashCode () value Data
-995544615 pandas
-705903059 zebras @ @
102978519 lions

For the exam, you don’t need to know how to create a hash or tree set (the implementa-
tion can be complex). Phew! You just need to know how to use them!

Working with Set Methods

Like a List, you can create an immutable Set in one line or make a copy of an existing one.

Set<Character> letters = Set.of('z', 'o', '0');
Set<Character> copy = Set.copyOf(letters);

Those are the only extra methods you need to know for the Set interface for the exam!
You do have to know how sets behave with respect to the traditional Collection methods.
You also have to know the differences between the types of sets. Let’s start with HashSet:

3: Set<Integer> set = new HashSet<>();

4: boolean bl = set.add(66); // true

5: boolean b2 = set.add(10); // true

6: boolean b3 = set.add(66); // false

7: boolean b4 = set.add(8); // true

8: set.forEach(System.out::println);
This code prints three lines:

66

8

10

Using the Queue and Deque Interfaces 479

The add () methods should be straightforward. They return true unless the Integer
is already in the set. Line 6 returns false, because we already have 66 in the set, and a set
must preserve uniqueness. Line 8 prints the elements of the set in an arbitrary order. In this
case, it happens not to be sorted order or the order in which we added the elements.

Remember that the equals () method is used to determine equality. The hashCode ()
method is used to know which bucket to look in so that Java doesn’t have to look through
the whole set to find out whether an object is there. The best case is that hash codes are
unique and Java has to call equals () on only one object. The worst case is that all imple-
mentations return the same hashCode () and Java has to call equals() on every element of
the set anyway.

Now let’s look at the same example with TreeSet:

3: Set<Integer> set = new TreeSet<>();

4: boolean bl = set.add(66); // true

5: boolean b2 = set.add(10); // true

6: boolean b3 = set.add(66); // false

7: boolean b4 = set.add(8); // true

8: set.forEach(System.out::println);
This time, the code prints the following:

8

10

66

The elements are printed out in their natural sorted order. Numbers implement the
Comparable interface in Java, which is used for sorting. Later in the chapter, you learn how
to create your own Comparab’le objects.

Using the Queue and Deque Interfaces

You use a Queue when elements are added and removed in a specific order. You can think of
a queue as a line. For example, when you want to enter a stadium and someone is waiting in
line, you get in line behind that person. And if you are British, you get in the queue behind
that person, making this really easy to remember! This is a FIFO (first-in, first-out) queue.

A Deque (double-ended queue), often pronounced “deck,” is different from a regular
queue in that you can insert and remove elements from both the front (head) and back (tail).
Think, “Dr. Woodie Flowers, come right to the front! You are the only one who gets this spe-
cial treatment. Everyone else will have to start at the back of the line.”

You can envision a double-ended queue as shown in Figure 9.5.

FIGURE 9.5 Example of a Deque

Front (head) —> (Rover)—(Spot)—(Bella) <— Back (tail

480 Chapter 9 = Collections and Generics

Supposing we are using this as a FIFO queue. Rover is first, which means he was first to
arrive. Bella is last, which means she was last to arrive and has the longest wait remaining.
All queues have specific requirements for adding and removing the next element. Beyond
that, they each offer different functionality. We look at the implementations you need to
know and the available methods.

Comparing Deque Implementations

You saw LinkedList earlier in the List section. In addition to being a list, it is a Deque.
The main benefit of a LinkedL1ist is that it implements both the List and Deque
interfaces. The trade-off is that it isn’t as efficient as a “pure” queue. You can use the
ArrayDeque class if you don’t need the List methods.

Working with Queue and Deque Methods

The Queue interface contains six methods, shown in Table 9.3. There are three pieces of
functionality and versions of the methods that throw an exception or use the return type,
such as null, for all information. We’ve bolded the ones that throw an exception when
something goes wrong, like trying to read from an empty Queue.

TABLE 9.3 Queue methods

Functionality Methods

Add to back public boolean add(E e)
public boolean offer(E e)

Read from front public E element ()
public E peek()

Get and remove from front public E remove()
public E poll()

Let’s show a simple queue example:

Queue<Integer> queue = new LinkedList<>();
queue.add(10);
queue.add(4);
System.out.println(queue.remove()); // 10
System.out.println(queue.peek()); /] 4

0 N o b

Using the Queue and Deque Interfaces 481

Lines 5 and 6 add elements to the queue. Line 7 asks the first element waiting the longest
to come off the queue. Line 8 checks for the next entry in the queue while leaving it in place.

Next, we move on to the Deque interface. Since the Deque interface supports double-
ended queues, it inherits all Queue methods and adds more so that it is clear if we are
working with the front or back of the queue. Table 9.4 shows the methods when using it as a
double-ended queue.

TABLE 9.4 Deque methods

Functionality Methods

Add to front public void addFirst(E e)
public boolean offerFirst(E e)

Add to back public void addLast(E e)
public boolean offerLast(E e)

Read from front public E getFirst()
public E peekFirst()

Read from back public E getLast()
public E peekLast()

Get and remove from front public E removeFirst()
public E pollFirst()

Get and remove from back public E removelLast()
public E pollLast()

Let’s try an example that works with both ends of the queue:

Deque<Integer> deque = new LinkedList<>();

This is more complicated, so we use Figure 9.6 to show what the queue looks like at each
step of the code.

Lines 13 and 14 successfully add an element to the front and back of the queue, respec-
tively. Some queues are limited in size, which would cause offering an element to the queue
to fail. You won’t encounter a scenario like that on the exam. Line 15 looks at the first
element in the queue, but it does not remove it. Lines 16 and 17 remove the elements from
the queue, one from each end. This results in an empty queue. Lines 18 and 19 try to look at
the first element of the queue, which results in nu11.

482 Chapter 9 = Collections and Generics

FIGURE 9.6 Working with a Deque

13: deque.offerFirst(10); // true

14: deque.offerLast (4); // true o
15: deque.peekFirst() ; // 10 °
16: deque.pollFirst () ; // 10 @

17: deque.pollLast () ; // 4

18: deque.pollFirst () ; // null

19: deque.peekFirst () ; // null

In addition to FIFO queues, there are LIFO (last-in, first-out) queues, which are com-
monly referred to as stacks. Picture a stack of plates. You always add to or remove from the
top of the stack to avoid a mess. Luckily, we can use the same double-ended queue imple-
mentations. Different methods are used for clarity, as shown in Table 9.5.

TABLE 9.5 Using aDeque as a stack

Functionality Methods

Add to the front/top public void push(E e)
Remove from the front/top public E pop()

Get first element public E peek()

Let’s try another one using the Deque as a stack:

Deque<Integer> stack = new ArrayDeque<>();

This time, Figure 9.7 shows what the stack looks like at each step of the code. Lines 13
and 14 successfully put an element on the front/top of the stack. The remaining code looks
at the front as well.

When using a Deque, it is really important to determine if it is being used as a FIFO
queue, a LIFO stack, or a double-ended queue. To review, a FIFO queue is like a line of peo-
ple. You get on in the back and off in the front. A LIFO stack is like a stack of plates. You
put the plate on the top and take it off the top. A double-ended queue uses both ends.

FIGURE 9.7 Working with a stack

13:

14:

15:

16:

17:

18:

stack.

stack

stack.

stack.

stack

stack.

push (10) ;

.push(4) ;

peek () ;

poll () ;

.poll () ;

peek () ;

Using the Map Interface

1

D ED
/] 4
// 10
// null

Using the Map Interface

You use a Map when you want to identify values by a key. For example, when you use the
contact list in your phone, you look up “George” rather than looking through each phone

number in turn.

483

You can envision a Map as shown in Figure 9.8. You don’t need to know the names of the
specific interfaces that the different maps implement, but you do need to know that TreeMap

is sorted.

FIGURE 9.8 Example of a Map

The main thing that all Map classes have in common is that they have keys and values.
Beyond that, they each offer different functionality. We look at the implementations you

Map
Key Value
George 555-555-5555
May 777-777-7777

need to know and the available methods.

Map.of() and Map.copyOf()

Just like List and Set, there is a factory method to create a Map.You pass any number of
pairs of keys and values.

Map.of("keyl", "valuel", "key2", "value2");

484 Chapter 9 = Collections and Generics

Unlike List and Set, this is less than ideal. Passing keys and values is harder to read
because you have to keep track of which parameter is which. Luckily, there is a better way.
Map also provides a method that lets you supply key/value pairs.

Map.ofEntries(
Map.entry("keyl", "valuel"),
Map.entry("key2", "value2"));

Now we can’t forget to pass a value. If we leave out a parameter, the entry () method
won’'t compile. Conveniently, Map.copyOf (map) works just like the List and Set inter-
face copyOf () methods.

Comparing Map Implementations

A HashMap stores the keys in a hash table. This means that it uses the hashCode () method of
the keys to retrieve their values more efficiently.

The main benefit is that adding elements and retrieving the element by key both have
constant time. The trade-off is that you lose the order in which you inserted the elements.
Most of the time, you aren’t concerned with this in a map anyway. If you were, you could
use LinkedHashMap, but that’s not in scope for the exam.

A TreeMap stores the keys in a sorted tree structure. The main benefit is that the keys are
always in sorted order. Like a TreeSet, the trade-off is that adding and checking whether a
key is present takes longer as the tree grows larger.

Working with Map Methods

Given that Map doesn’t extend Collection, more methods are specified on the Map interface.
Since there are both keys and values, we need generic type parameters for both. The class
uses K for key and V for value. The methods you need to know for the exam are in Table 9.6.
Some of the method signatures are simplified to make them easier to understand.

TABLE 9.6 Map methods

Method Description

public void clear() Removes all keys and values from map.
public boolean containskey(Object key) Returns whether key is in map.

public boolean containsValue(Returns whether value is in map.
Object value)

public Set<Map.Entry<K,V>> entrySet() Returns Set of key/value pairs.

Using the Map Interface

485

Method

Description

public void forEach(
BiConsumer<K key, V value>)

public V get(Object key)

public V getOrDefault(Object key,
V defaultValue)

public boolean isEmpty()
public Set<K> keySet()

public V merge(K key, V value,
Function(kV, V, V> func))

public V put(K key, V value)

public V putIfAbsent(K key, V value)

public V remove(Object key)
public V replace(K key, V value)
public void replaceAll(
BiFunction<K, V, V> func)

public int size()

public Collection<V> values()

Loops through each key/value pair.

Returns value mapped by key or null if
none is mapped.

Returns value mapped by key or default
value if none is mapped.

Returns whether map is empty.
Returns set of all keys.

Sets value if key not set. Runs function
if key is set, to determine new value.
Removes if value is nul1l.

Adds or replaces key/value pair. Returns
previous value or null.

Adds value if key not present and returns
null. Otherwise, returns existing value.

Removes and returns value mapped to
key. Returns null if none.

Replaces value for given key if key is set.
Returns original value or null if none.

Replaces each value with results of
function.

Returns number of entries (key/value
pairs) in map.

Returns Collection of all values.

While Table 9.6 is a pretty long list of methods, don’t worry; many of the names are
straightforward. Also, many exist as a convenience. For example, containsKey () can be
replaced with a get () call that checks if the result is null. Which one you use is up to you.

486 Chapter 9 = Collections and Generics

Calling Basic Methods

Let’s start out by comparing the same code with two Map types. First up is HashMap:

Map<String, String> map = new HashMap<>();
map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
System.out.print(key + ","); // koala,giraffe,lion,

Here we use the put () method to add key/value pairs to the map and get () to get a
value given a key. We also use the keySet () method to get all the keys.

Java uses the hashCode () of the key to determine the order. The order here happens not
to be sorted order or the order in which we typed the values. Now let’s look at TreeMap:

Map<String, String> map = new TreeMap<>();
map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
System.out.print(key + ","); // giraffe,koala,lion,

TreeMap sorts the keys as we would expect. If we called values () instead of keySet (),
the order of the values would correspond to the order of the keys.
With our same map, we can try some boolean checks:

System.out.println(map.contains("lion")); // DOES NOT COMPILE
System.out.println(map.containsKey("lion")); // true
System.out.println(map.containsValue("lion")); // false
System.out.println(map.size()); // 3

map.clear();

System.out.println(map.size()); // 0
System.out.println(map.isEmpty()); // true

The first line is a little tricky. The contains () method is on the Collection interface
but not the Map interface. The next two lines show that keys and values are checked sepa-
rately. We can see that there are three key/value pairs in our map. Then we clear out the con-
tents of the map and see that there are zero elements and it is empty.

In the following sections, we show Map methods you might not be as familiar with.

Using the Map Interface 487

Iterating through a Map

You saw the forEach () method earlier in the chapter. Note that it works a little differently on
a Map. This time, the lambda used by the forEach () method has two parameters: the key and
the value. Let’s look at an example, shown here:

Map<Integer, Character> map = new HashMap<>();
map.put(l, 'a');
map.put(2, 'b');
map.put(3, 'c');
map.forEach((k, v) -> System.out.println(v));

The lambda has both the key and value as the parameters. It happens to print out the
value but could do anything with the key and/or value. Interestingly, since we don’t care
about the key, this particular code could have been written with the values() method and
a method reference instead.
map.values().forEach(System.out::println);

Another way of going through all the data in a map is to get the key/value pairs in a Set.
Java has a static interface inside Map called Entry. It provides methods to get the key and
value of each pair.

map.entrySet().forEach(e ->
System.out.println(e.getKey() + " " + e.getValue()));

Getting Values Safely

The get () method returns null if the requested key is not in the map. Sometimes you
prefer to have a different value returned. Luckily, the getOrDefault() method makes this
easy. Let’s compare the two methods:

3: Map<Character, String> map = new HashMap<>();

4: map.put('x', "spot");

5: System.out.println("X marks the " + map.get('x'));

6: System.out.println("X marks the " + map.getOrDefault('x', ""));

7: System.out.println("Y marks the " + map.get('y'));

8: System.out.println("Y marks the " + map.getOrDefault('y', ""));
This code prints the following:

X marks the spot

X marks the spot

Y marks the null

Y marks the

488 Chapter 9 = Collections and Generics

As you can see, lines 5 and 6 have the same output because get () and getOrDefault()
behave the same way when the key is present. They return the value mapped by that key.
Lines 7 and 8 give different output, showing that get () returns null when the key is not
present. By contrast, getOrDefault () returns the empty string we passed as a parameter.

Replacing Values

These methods are similar to the List ver