

OCP
Oracle® Certified Professional

Java SE 17 Developer
Study Guide

Exam 1Z0-829

Scott Selikoff

Jeanne Boyarsky

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada and the United Kingdom.

978-1-119-86458-5
978-1-119-86460-8 (ebk.)
978-1-119-86459-2 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation.
This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should
be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information does
not mean that the author or the publisher endorses the information the organization or Website may provide or
recommendations it may make. Further, readers should be aware the Internet Websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2022932106

Trademarks: WILEY, the Wiley logo, Sybex, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Oracle and java are registered trademarks of Oracle, Inc. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

Cover image: © Jeremy Woodhouse/Getty Images

Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

For my mom who I love dearly: you get one penny for each page of this book

that you read.

—Scott

To the Java conference scene and its post-COVID recovery.

—Jeanne

Acknowledgments
Scott and Jeanne would like to thank numerous individuals for their contributions to this
book. Thank you to Kezia Endsley and Archana Pragash for guiding us through the process
and making the book better in many ways. Thank you to Janeice DelVecchio for being our
technical editor as we wrote this book. Janeice pointed out many subtle errors in addition
to the big ones. Thank you to Elena Felder for being our technical proofreader and finding
the errors that we managed to sneak by Janeice. And a special thank you to our copy editor
Tiffany Taylor, for finding subtle errors that everyone (including us!) missed. This book also
wouldn’t be possible without many people at Wiley, including Kenyon Brown, Pete Gaughan,
Christine O’Connor, and many others.

Scott could not have reached this point without his wife, Patti, and family, whose love
and support make this book possible. He would like to thank his twin daughters, Olivia
and Sophia, and youngest daughter, Elysia, for their patience and understanding and bring-
ing him a cup of cold brew coffee when it was “time for Daddy to work in his office!” Scott
would like to extend his gratitude to his wonderfully patient co-author, Jeanne, on this,
their eighth book. He doesn’t know how she puts up with him, but he’s glad she does and
is thrilled at the quality of books we produce. Finally, Scott would like to thank his mother,
Barbara Selikoff (a retired teacher), for teaching him the value of education, and his father,
Mark Selikoff, for instilling in him the benefits of working hard.

Jeanne would personally like to thank everyone who kept her sane during the COVID
pandemic, especially Dani, Elena, Janeice, Joslyn, Norm, Rodrigo, Scott, and Wendy, along
with the NYJavaSIG leadership team. She would also like to thank the KCDC (Kansas City
Development Conference) leadership team for holding the first in-person conference she
attended where she could test book material on unsuspecting attendees. Scott was a great co-
author, improving everything Jeanne wrote while writing his own chapters. A big thank you
to everyone at CodeRanch.com who asked and responded to questions and comments about
our books. Finally, Jeanne would like to thank all of the new programmers at
CodeRanch.com and FIRST robotics teams FRC 694 and FTC 310/479/8365 for the
constant reminders of how new programmers think.

Both Scott and Jeanne would like to give a big thank you to the readers of our books.
Hearing from all of you who enjoyed the book and passed the exam is a great feeling. We’d
also like to thank those who pointed out errors and made suggestions for improvements
to the Java 17 book. As of January 2022, the top two were Tomasz Kasprzyk and Jos
Roseboom.

http://coderanch.com
http://coderanch.com

About the Authors
Scott Selikoff is a professional software developer and author with over 20 years of expe-
rience developing full-stack database-driven systems. Skilled in a plethora of software
languages and platforms, Scott currently works as a Staff Software Engineer at Google, spe-
cializing in Architecture and Cloud Services.

A native of Toms River, New Jersey, Scott achieved his Bachelor of Arts degree from
Cornell University in Mathematics and Computer Science in 2002 after three years of study.
In 2003, he received his Master of Engineering degree in Computer Science, also from Cor-
nell University. As someone with a deep love of education, Scott has always enjoyed teaching
others new concepts. Scott is a Leader of the Garden State Java User Group, helping to facil-
itate discussions and exchange of ideas within the community. He’s also taught lectures at
multiple universities and conferences.

Scott lives in New Jersey with his loving wife, Patti; three amazing daughters, twins Olivia
and Sophia and little Elysia; a very playful dog, Georgette; and three silly cats, Snowball,
Sugar, and Minnie Mouse. In his spare time, he plays violin in the Toms River
Multigenerational Orchestra. You can find out more about Scott at www.linkedin.com/
in/selikoff or follow him on Twitter @ScottSelikoff.

Jeanne Boyarsky was selected as a Java Champion in 2019 and is a leader of the
NYJavaSIG. She has worked as a Java developer for more than 20 years at a bank in
New York City where she develops, mentors, and conducts training. Besides being a senior
moderator at CodeRanch.com in her free time, she works on the forum code base. Jeanne
also mentors the programming division of a FIRST robotics team, where she works with stu-
dents just getting started with Java. She also speaks at several conferences each year.

Jeanne got her Bachelor of Arts degree in 2002 and her Master in Computer Information
Technology degree in 2005. She enjoyed getting her Master’s degree in an online program
while working full time. This was before online education was cool! Jeanne is also a
Distinguished Toastmaster and a Scrum Master. You can find out more about Jeanne at
www.jeanneboyarsky.com or follow her on Twitter @JeanneBoyarsky.

Scott and Jeanne are both moderators on the CodeRanch.com forums and can be
reached there for question and comments. They also co-author a technical blog called Down
Home Country Coding at www.selikoff.net.

In addition to this book, Scott and Jeanne are authors of seven best-selling Java books:

■■ OCA: Java 8 Programmer I Study Guide (Sybex, 2015)

■■ OCP: Java 8 Programmer II Study Guide (Sybex, 2016)

■■ OCA / OCP Java 8 Programmer Practice Tests (Sybex, 2017)

■■ OCP Java 11 Programmer I Study Guide (Sybex, 2019)

■■ OCP Java 11 Programmer II Study Guide (Sybex, 2020)

■■ OCP Java 11 Developer Complete Study Guide (Sybex, 2020)

■■ OCP Java 11 Practice Tests (Sybex, 2021)

They are currently in the process of writing an OCP Java 17 Developer Practice Tests
book due out later this year.

http://www.linkedin.com/in/selikoff
http://www.linkedin.com/in/selikoff
http://coderanch.com
http://www.jeanneboyarsky.com
http://coderanch.com
http://www.selikoff.net

About the Technical Editor
Janeice DelVecchio has been a professional software developer for 12 years and has had a
lifelong love of programming and computers. Editing technical books is a fun task for her
because she likes finding and fixing defects of all types. In her day job she uses a very broad
range of skills with technologies including cloud computing, process automation, advanced
unit testing, and devops. She also volunteers at CodeRanch.com, where she runs the Java
class known as the Cattle Drive. She is an expert with the Java programming language. If
you ask her which language is the best, she will tell you that languages are tools and to pick
the one that fits your use case. The first language she learned was BASIC, and one day she
hopes to learn gaming development. In her spare time, she enjoys cooking, solving puzzles,
playing video games, and raising chickens. She loves eating sushi, drinking craft beer,
and petting dogs – her guilty pleasure is 1980s pop music. She lives in Litchfield County,
Connecticut.

About the Technical Proofreader
Elena Felder got into Java development back when the language lacked even generics, and
she is delighted that the language, its tooling, and its community have continued growing
and adapting to successfully keep up with the ever-changing world. She proofread one of
Jeanne and Scott’s first Java 8 Certification Study Guide chapters for fun and ended up doing
it professionally ever since.

Contents at a Glance

Introduction	 xxiii

Assessment Test	 xlv

Chapter 1	 Building Blocks	 1

Chapter 2	 Operators	 65

Chapter 3	 Making Decisions	 101

Chapter 4	 Core APIs	 155

Chapter 5	 Methods	 219

Chapter 6	 Class Design	 275

Chapter 7	 Beyond Classes	 345

Chapter 8	 Lambdas and Functional Interfaces	 419

Chapter 9	 Collections and Generics	 463

Chapter 10	 Streams	 531

Chapter 11	 Exceptions and Localization	 591

Chapter 12	 Modules	 661

Chapter 13	 Concurrency	 721

Chapter 14	 I/O	 785

Chapter 15	 JDBC	 863

Appendix 	 Answers to the Review Questions	 909

Index	 963

Contents

Introduction	 xxiii

Assessment Test	 xlv

Chapter 1	 Building Blocks	 1

Learning about the Environment	 2
Major Components of Java	 2
Downloading a JDK	 3

Understanding the Class Structure	 4
Fields and Methods	 4
Comments	 5
Classes and Source Files	 7

Writing a main() Method	 8
Creating a main() Method	 8
Passing Parameters to a Java Program	 9

Understanding Package Declarations and Imports	 11
Packages	 12
Wildcards	 13
Redundant Imports	 13
Naming Conflicts	 15
Creating a New Package	 16
Compiling and Running Code with Packages	 16
Compiling to Another Directory	 18
Compiling with JAR Files	 20
Creating a JAR File	 20
Ordering Elements in a Class	 21

Creating Objects	 23
Calling Constructors	 23
Reading and Writing Member Fields	 24
Executing Instance Initializer Blocks	 24
Following the Order of Initialization	 25

Understanding Data Types	 26
Using Primitive Types	 27
Using Reference Types	 29
Distinguishing between Primitives and Reference Types	 30
Creating Wrapper Classes	 31
Defining Text Blocks	 32

Declaring Variables	 34
Identifying Identifiers	 35
Declaring Multiple Variables	 36

x  Contents

Initializing Variables	 38
Creating Local Variables	 38
Passing Constructor and Method Parameters	 40
Defining Instance and Class Variables	 41
Inferring the Type with var	 41

Managing Variable Scope	 45
Limiting Scope	 45
Tracing Scope	 46
Applying Scope to Classes	 47
Reviewing Scope	 48

Destroying Objects	 48
Understanding Garbage Collection	 48
Tracing Eligibility	 49

Summary	 51
Exam Essentials	 52
Review Questions	 54

Chapter 2	 Operators	 65

Understanding Java Operators	 66
Types of Operators	 66
Operator Precedence	 67

Applying Unary Operators	 69
Complement and Negation Operators	 70
Increment and Decrement Operators	 71

Working with Binary Arithmetic Operators	 72
Arithmetic Operators	 72
Numeric Promotion	 75

Assigning Values	 77
Assignment Operator	 77
Casting Values	 77
Compound Assignment Operators	 81
Return Value of Assignment Operators	 82

Comparing Values	 83
Equality Operators	 83
Relational Operators	 84
Logical Operators	 87
Conditional Operators	 88

Making Decisions with the Ternary Operator	 90
Summary	 92
Exam Essentials	 92
Review Questions	 94

Chapter 3	 Making Decisions	 101

Creating Decision-Making Statements	 102
Statements and Blocks	 102
The if Statement	 103

Contents  xi

The else Statement	 104
Shortening Code with Pattern Matching	 106

Applying switch Statements	 110
The switch Statement	 110
The switch Expression	 115

Writing while Loops	 121
The while Statement	 121
The do/while Statement	 123
Infinite Loops	 123

Constructing for Loops	 124
The for Loop	 124
The for-each Loop	 129

Controlling Flow with Branching	 131
Nested Loops	 131
Adding Optional Labels	 132
The break Statement	 133
The continue Statement	 135
The return Statement	 137
Unreachable Code	 138
Reviewing Branching	 139

Summary	 139
Exam Essentials	 140
Review Questions	 142

Chapter 4	 Core APIs	 155

Creating and Manipulating Strings	 156
Concatenating	 157
Important String Methods	 158
Method Chaining	 169

Using the StringBuilder Class	 170
Mutability and Chaining	 171
Creating a StringBuilder	 172
Important StringBuilder Methods	 172

Understanding Equality	 175
Comparing equals() and ==	 175
The String Pool	 176

Understanding Arrays	 178
Creating an Array of Primitives	 179
Creating an Array with Reference Variables	 180
Using an Array	 182
Sorting	 183
Searching	 184
Comparing	 185
Using Methods with Varargs	 187
Working with Multidimensional Arrays	 188

xii  Contents

Calculating with Math APIs	 190
Finding the Minimum and Maximum	 190
Rounding Numbers	 191
Determining the Ceiling and Floor	 191
Calculating Exponents	 192
Generating Random Numbers	 192

Working with Dates and Times	 192
Creating Dates and Times	 193
Manipulating Dates and Times	 197
Working with Periods	 199
Working with Durations	 202
Period vs. Duration	 204
Working with Instants	 205
Accounting for Daylight Saving Time	 206

Summary	 208
Exam Essentials	 209
Review Questions	 210

Chapter 5	 Methods	 219

Designing Methods	 220
Access Modifiers	 221
Optional Specifiers	 222
Return Type	 224
Method Name	 226
Parameter List	 226
Method Signature	 227
Exception List	 227
Method Body	 228

Declaring Local and Instance Variables	 228
Local Variable Modifiers	 229
Effectively Final Variables	 230
Instance Variable Modifiers	 231

Working with Varargs	 232
Creating Methods with Varargs	 232
Calling Methods with Varargs	 233
Accessing Elements of a Vararg	 234
Using Varargs with Other Method Parameters	 234

Applying Access Modifiers	 235
Private Access	 235
Package Access	 236
Protected Access	 237
Public Access	 242
Reviewing Access Modifiers	 242

Contents  xiii

Accessing static Data	 243
Designing static Methods and Variables	 243
Accessing a static Variable or Method	 244
Class vs. Instance Membership	 245
static Variable Modifiers	 248
static Initializers	 250
static Imports	 251

Passing Data among Methods	 253
Passing Objects	 253
Returning Objects	 255
Autoboxing and Unboxing Variables	 256

Overloading Methods	 258
Reference Types	 259
Primitives	 260
Autoboxing	 261
Arrays	 261
Varargs	 261
Putting It All Together	 262

Summary	 263
Exam Essentials	 264
Review Questions	 265

Chapter 6	 Class Design	 275

Understanding Inheritance	 276
Declaring a Subclass	 276
Class Modifiers	 278
Single vs. Multiple Inheritance	 279
Inheriting Object	 279

Creating Classes	 281
Extending a Class	 281
Applying Class Access Modifiers	 282
Accessing the this Reference	 283
Calling the super Reference	 284

Declaring Constructors	 286
Creating a Constructor	 286
The Default Constructor	 287
Calling Overloaded Constructors with this()	 289
Calling Parent Constructors with super()	 292

Initializing Objects	 297
Initializing Classes	 297
Initializing final Fields	 298
Initializing Instances	 300

xiv  Contents

Inheriting Members	 304
Overriding a Method	 305
Redeclaring private Methods	 311
Hiding Static Methods	 311
Hiding Variables	 313
Writing final Methods	 314

Creating Abstract Classes	 315
Introducing Abstract Classes	 315
Declaring Abstract Methods	 317
Creating a Concrete Class	 318
Creating Constructors in Abstract Classes	 320
Spotting Invalid Declarations	 321

Creating Immutable Objects	 323
Declaring an Immutable Class	 323
Performing a Defensive Copy	 325

Summary	 326
Exam Essentials	 327
Review Questions	 330

Chapter 7	 Beyond Classes	 345

Implementing Interfaces	 346
Declaring and Using an Interface	 346
Extending an Interface	 348
Inheriting an Interface	 349
Inserting Implicit Modifiers	 351
Declaring Concrete Interface Methods	 353

Working with Enums	 361
Creating Simple Enums	 361
Using Enums in switch Statements	 363
Adding Constructors, Fields, and Methods	 364

Sealing Classes	 367
Declaring a Sealed Class	 367
Compiling Sealed Classes	 368
Specifying the Subclass Modifier	 369
Omitting the permits Clause	 370
Sealing Interfaces	 372
Reviewing Sealed Class Rules	 372

Encapsulating Data with Records	 373
Understanding Encapsulation	 374
Applying Records	 375
Understanding Record Immutability	 377
Declaring Constructors	 378
Customizing Records	 381

Creating Nested Classes	 382

Contents  xv

Declaring an Inner Class	 382
Creating a static Nested Class	 386
Writing a Local Class	 387
Defining an Anonymous Class	 389
Reviewing Nested Classes	 391

Understanding Polymorphism	 392
Object vs. Reference	 393
Casting Objects	 395
The instanceof Operator	 397
Polymorphism and Method Overriding	 397
Overriding vs. Hiding Members	 399

Summary	 401
Exam Essentials	 402
Review Questions	 404

Chapter 8	 Lambdas and Functional Interfaces	 419

Writing Simple Lambdas	 420
Looking at a Lambda Example	 420
Learning Lambda Syntax	 422

Coding Functional Interfaces	 426
Defining a Functional Interface	 426
Adding Object Methods	 427

Using Method References	 429
Calling static Methods	 430
Calling Instance Methods on a Particular Object	 430
Calling Instance Methods on a Parameter	 432
Calling Constructors	 433
Reviewing Method References	 433

Working with Built-in Functional Interfaces	 434
Implementing Supplier	 435
Implementing Consumer and BiConsumer	 436
Implementing Predicate and BiPredicate	 438
Implementing Function and BiFunction	 439
Implementing UnaryOperator and BinaryOperator	 440
Checking Functional Interfaces	 441
Using Convenience Methods on Functional Interfaces	 442
Learning the Functional Interfaces for Primitives	 443

Working with Variables in Lambdas	 445
Listing Parameters	 446
Using Local Variables inside a Lambda Body	 448
Referencing Variables from the Lambda Body	 449

Summary	 450
Exam Essentials	 451
Review Questions	 452

xvi  Contents

Chapter 9	 Collections and Generics	 463

Using Common Collection APIs	 464
Using the Diamond Operator	 465
Adding Data	 466
Removing Data	 466
Counting Elements	 467
Clearing the Collection	 467
Check Contents	 468
Removing with Conditions	 468
Iterating	 469
Determining Equality	 470

Using the List Interface	 471
Comparing List Implementations	 472
Creating a List with a Factory	 472
Creating a List with a Constructor	 473
Working with List Methods	 474
Converting from List to an Array	 476

Using the Set Interface	 477
Comparing Set Implementations	 477
Working with Set Methods	 478

Using the Queue and Deque Interfaces	 479
Comparing Deque Implementations	 480
Working with Queue and Deque Methods	 480

Using the Map Interface	 483
Comparing Map Implementations	 484
Working with Map Methods	 484
Calling Basic Methods	 486
Iterating through a Map	 487
Getting Values Safely	 487
Replacing Values	 488
Putting if Absent	 488
Merging Data	 488

Comparing Collection Types	 490
Sorting Data	 492

Creating a Comparable Class	 492
Comparing Data with a Comparator	 496
Comparing Comparable and Comparator	 497
Comparing Multiple Fields	 498
Sorting and Searching	 500
Sorting a List	 503

Working with Generics	 503
Creating Generic Classes	 504
Understanding Type Erasure	 506

Contents  xvii

Implementing Generic Interfaces	 509
Writing Generic Methods	 510
Creating a Generic Record	 512
Bounding Generic Types	 512
Putting It All Together	 517

Summary	 519
Exam Essentials	 520
Review Questions	 521

Chapter 10	 Streams	 531

Returning an Optional	 532
Creating an Optional	 533
Dealing with an Empty Optional	 534

Using Streams	 536
Understanding the Pipeline Flow	 536
Creating Stream Sources	 539
Using Common Terminal Operations	 541
Using Common Intermediate Operations	 549
Putting Together the Pipeline	 553

Working with Primitive Streams	 557
Creating Primitive Streams	 557
Mapping Streams	 560
Using Optional with Primitive Streams	 562
Summarizing Statistics	 564

Working with Advanced Stream Pipeline Concepts	 565
Linking Streams to the Underlying Data	 565
Chaining Optionals	 566
Using a Spliterator	 569
Collecting Results	 570

Summary	 578
Exam Essentials	 579
Review Questions	 581

Chapter 11	 Exceptions and Localization	 591

Understanding Exceptions	 592
The Role of Exceptions	 592
Understanding Exception Types	 593
Throwing an Exception	 596
Calling Methods That Throw Exceptions	 598
Overriding Methods with Exceptions	 599
Printing an Exception	 600

Recognizing Exception Classes	 600
RuntimeException Classes	 601
Checked Exception Classes	 604
Error Classes	 605

xviii  Contents

Handling Exceptions	 605
Using try and catch Statements	 606
Chaining catch Blocks	 607
Applying a Multi-catch Block	 609
Adding a finally Block	 611

Automating Resource Management	 615
Introducing Try-with-Resources	 615
Basics of Try-with-Resources	 616
Applying Effectively Final	 620
Understanding Suppressed Exceptions	 621

Formatting Values	 624
Formatting Numbers	 624
Formatting Dates and Times	 625
Customizing the Date/Time Format	 626

Supporting Internationalization and Localization	 629
Picking a Locale	 630
Localizing Numbers	 632
Localizing Dates	 637
Specifying a Locale Category	 638

Loading Properties with Resource Bundles	 639
Creating a Resource Bundle	 640
Picking a Resource Bundle	 641
Selecting Resource Bundle Values	 643
Formatting Messages	 645
Using the Properties Class	 645

Summary	 646
Exam Essentials	 647
Review Questions	 648

Chapter 12	 Modules	 661

Introducing Modules	 662
Exploring a Module	 663
Benefits of Modules	 664

Creating and Running a Modular Program	 664
Creating the Files	 665
Compiling Our First Module	 666
Running Our First Module	 668
Packaging Our First Module	 669

Updating Our Example for Multiple Modules	 669
Updating the Feeding Module	 670
Creating a Care Module	 670
Creating the Talks Module	 672
Creating the Staff Module	 674

Contents  xix

Diving into the Module Declaration	 675
Exporting a Package	 676
Requiring a Module Transitively	 677
Opening a Package	 679

Creating a Service	 680
Declaring the Service Provider Interface	 681
Creating a Service Locator	 682
Invoking from a Consumer	 684
Adding a Service Provider	 685
Reviewing Directives and Services	 686

Discovering Modules	 687
Identifying Built-in Modules	 688
Getting Details with java	 690
Describing with jar	 693
Learning about Dependencies with jdeps	 693
Using the --jdk-internals Flag	 695
Using Module Files with jmod	 696
Creating Java Runtimes with jlink	 696
Reviewing Command-Line Options	 697

Comparing Types of Modules	 700
Named Modules	 701
Automatic Modules	 701
Unnamed Modules	 704
Reviewing Module Types	 704

Migrating an Application	 704
Determining the Order	 705
Exploring a Bottom-Up Migration Strategy	 706
Exploring a Top-Down Migration Strategy	 707
Splitting a Big Project into Modules	 709
Failing to Compile with a Cyclic Dependency	 709

Summary	 711
Exam Essentials	 712
Review Questions	 713

Chapter 13	 Concurrency	 721

Introducing Threads	 722
Understanding Thread Concurrency	 723
Creating a Thread	 724
Distinguishing Thread Types	 725
Managing a Thread’s Life Cycle	 727
Polling with Sleep	 727
Interrupting a Thread	 729

Creating Threads with the Concurrency API	 730
Introducing the Single-Thread Executor	 730

xx  Contents

Shutting Down a Thread Executor	 731
Submitting Tasks	 732
Waiting for Results	 733
Scheduling Tasks	 737
Increasing Concurrency with Pools	 739

Writing Thread-Safe Code	 740
Understanding Thread-Safety	 740
Accessing Data with volatile	 741
Protecting Data with Atomic Classes	 742
Improving Access with Synchronized Blocks	 744
Synchronizing on Methods	 746
Understanding the Lock Framework	 747
Orchestrating Tasks with a CyclicBarrier	 751

Using Concurrent Collections	 754
Understanding Memory Consistency Errors	 754
Working with Concurrent Classes	 755
Obtaining Synchronized Collections	 757

Identifying Threading Problems	 758
Understanding Liveness	 758
Managing Race Conditions	 761

Working with Parallel Streams	 761
Creating Parallel Streams	 762
Performing a Parallel Decomposition	 762
Processing Parallel Reductions	 764

Summary	 770
Exam Essentials	 770
Review Questions	 772

Chapter 14	 I/O	 785

Referencing Files and Directories	 786
Conceptualizing the File System	 786
Creating a File or Path	 789

Operating on File and Path	 793
Using Shared Functionality	 793
Handling Methods That Declare IOException	 797
Providing NIO.2 Optional Parameters	 797
Interacting with NIO.2 Paths	 799
Creating, Moving, and Deleting Files and Directories	 805
Comparing Files with isSameFile() and mismatch()	 809

Introducing I/O Streams	 811
Understanding I/O Stream Fundamentals	 811
Learning I/O Stream Nomenclature	 812

Reading and Writing Files	 817
Using I/O Streams	 817

Contents  xxi

Enhancing with Files	 820
Combining with newBufferedReader()

and newBufferedWriter()	 822
Reviewing Common Read and Write Methods	 823

Serializing Data	 824
Applying the Serializable Interface	 825
Marking Data transient	 827
Ensuring That a Class Is Serializable	 827
Storing Data with ObjectOutputStream and

ObjectInputStream	 828
Understanding the Deserialization Creation Process	 830

Interacting with Users	 832
Printing Data to the User	 832
Reading Input as an I/O Stream	 833
Closing System Streams	 833
Acquiring Input with Console	 834

Working with Advanced APIs	 837
Manipulating Input Streams	 838
Discovering File Attributes	 840
Traversing a Directory Tree	 843
Searching a Directory	 847

Review of Key APIs	 848
Summary	 850
Exam Essentials	 851
Review Questions	 852

Chapter 15	 JDBC	 863

Introducing Relational Databases and SQL	 864
Identifying the Structure of a Relational Database	 866
Writing Basic SQL Statements	 867

Introducing the Interfaces of JDBC	 868
Connecting to a Database	 870

Building a JDBC URL	 870
Getting a Database Connection	 871

Working with a PreparedStatement	 873
Obtaining a PreparedStatement	 874
Executing a PreparedStatement	 875
Working with Parameters	 878
Updating Multiple Records	 881

Getting Data from a ResultSet	 882
Reading a ResultSet	 882
Getting Data for a Column	 885
Using Bind Variables	 887

Calling a CallableStatement	 887

xxii  Contents

Calling a Procedure without Parameters	 888
Passing an IN Parameter	 889
Returning an OUT Parameter	 889
Working with an INOUT Parameter	 890
Comparing Callable Statement Parameters	 891
Using Additional Options	 891

Controlling Data with Transactions	 892
Committing and Rolling Back	 892
Bookmarking with Savepoints	 894
Reviewing Transaction APIs	 895

Closing Database Resources	 895
Summary	 897
Exam Essentials	 898
Review Questions	 900

Appendix 	 Answers to the Review Questions	 909

Chapter 1: Building Blocks	 910
Chapter 2: Operators	 913
Chapter 3: Making Decisions	 916
Chapter 4: Core APIs	 921
Chapter 5: Methods	 924
Chapter 6: Class Design	 927
Chapter 7: Beyond Classes	 932
Chapter 8: Lambdas and Functional Interfaces	 936
Chapter 9: Collections and Generics	 939
Chapter 10: Streams	 942
Chapter 11: Exceptions and Localization	 945
Chapter 12: Modules	 949
Chapter 13: Concurrency	 951
Chapter 14: I/O	 955
Chapter 15: JDBC	 959

Index	 963

Introduction
This book is for those looking to obtain an Oracle Certified Professional: Java SE 17
Developer or Java Foundations Certified Junior Associate title. This book is also for those
looking to gain a deeper understanding and appreciation of Java. Not only do we want you
to pass your exams, but we also want to help you to improve yourself and become a better
professional software developer.

The book provides detailed preparation for the following Oracle certification exams:

1Z0-829 Exam: Java SE 17 Developer   The Developer exam covers a wide variety of
core topics in Java 17 including classes, interfaces, streams, collections, concurrency,
and modules.

1Z0-811 Exam: Java Foundations   The Foundations exam is a junior-level certification
exam that contains a variety of introductory and basic Java 8 topics.

In this introduction, we start by covering important information about the various exams.
We then move on to information about how this book is structured. Finally, we conclude
with an assessment test so you can see how much studying lies ahead of you.

Understanding the Exam
At the end of the day, the exam is a list of questions. The more you know about the struc-
ture of the exam, the better you are likely to do. For example, knowing how many ques-
tions the exam contains allows you to better manage your progress and time remaining.
In this section, we discuss the details of the exam, along with some history of previous
certification exams.

Choosing Which Exam to Take
Java is now over 25 years old, celebrating being “born” in 1995. As with anything 25 years
old, there is a good amount of history and variation between different versions of Java. Over
the years, the certification exams have changed to cover different topics. The number of
exams and names of certifications have also changed.

For Java 17, Oracle has simplified things. Becoming an Oracle Certified Professional
now requires passing only one exam, not two, and there are no Java 17 upgrade exams.
Regardless of the previous certifications you hold, everyone takes the same, single Java 17
exam to become an Oracle Certified Professional.

This means your only choice is between the Java 17 OCP exam and the Java Foundations
exam. Our advice is to only take the Java Foundations exam if your employer has specifi-
cally asked you to. While it is an easier exam, it targets a very old version of Java and is not
meant for professionals who work with Java every day.

xxiv  Introduction

Considering the Exam Objectives
Oracle provides a list of objectives to guide you on what to study for each exam. Each
objective defines a list of subobjectives that provide additional details about the objective.
Unfortunately, the objectives don’t encompass the full amount of material needed to
pass the exam.

So how do you know what to study? By reading this study guide, of course! We’ve spent
years studying the certification exams in all of their forms and have carefully cultivated
topics, material, and practice questions that we are confident can lead to successfully passing
the exam. More recently, we’ve worked hand-in-hand with Oracle helping to create and
refine the objectives and material for the Java 11 and Java 17 exams.

As a starting point, you should review the list of objectives presented in this introduction
and mark down the ones that are unfamiliar to you. This list, along with the Assessment Test
at the end of this introduction, will give you a rough idea of how much you are going to
need to study for the exam.

Changes to the Exams
Table I.1 shows the information about the exams at the time of publishing.

Oracle has a tendency to fiddle with the length of the exam and the passing score once it
comes out. Oracle also likes to “tweak” the exam objectives over time. It wouldn’t be a sur-
prise for Oracle to make minor changes to the exam objectives, the number of questions, or
the passing score after this book goes to print.

If there are any changes to the exam after this book is published, we will post them on the
book page of our blog:

www.selikoff.net/ocp17

Scope of Objectives
In previous certification exams, the list of exam objectives tended to include specific topics,
classes, and APIs that you needed to know for the exam. For example, take a look at an
objective for the OCP 8 exam (1Z0-809):

TABLE I .1   Exam information

Exam Length # of Questions Passing Score

1Z0-829 Java SE 17 Developer 90 minutes 50 68%

1Z0-811 Java Foundations 150 minutes 75 65%

http://www.selikoff.net/ocp17

Introduction  xxv

■■ Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FileInputStream,
FileOutputStream, ObjectOutputStream, ObjectInputStream, and PrintWriter in the
java.io package.

Now compare it with the equivalent objective for the OCP 17 exam (1Z0-829):

■■ Read and write console and file data using I/O Stream.

Notice the difference? The older version is more detailed and describes specific classes you
need to understand. The newer version is a lot vaguer. It also gives the exam writers a lot
more freedom to insert a new feature without having to update the list of objectives.

Choosing the Correct Answer(s)
Each exam consists entirely of multiple-choice questions. There are between four and seven
possible answers. If a question has more than one answer, the question specifically states
exactly how many correct answers there are. This book does not do that. We say Choose all
that apply to make the questions harder. This means the questions in this book are generally
harder than those on the exam. The idea is to give you more practice so you can spot the
correct answer more easily on the real exam.

Reading the Exam Code
Many of the questions on each exam are code snippets rather than full classes. Saving space
by not including imports and/or class definitions leaves room for lots of other code. You
should only focus on import statements when the question specifically asks about them.

For example, it is common to come across classes on the exam with import statements and
portions omitted, like so:

public class Zoo implements Serializable {
 String name;
 // Getters/Setters/Constructors omitted
}

In this case, you can assume that java.io.Serializable is imported and that methods
like getName() and setName(), as well as related constructors, exist. For instance, we
would expect this code to compile:

var name = new Zoo("Java Zoo").getName();

Encountering Out-of-Scope Material
When you take an exam, you may see some questions that appear to be out of scope. Don’t
panic! Often, these questions do not require knowing anything about the topic to answer the

xxvi  Introduction

question. For example, after reading this book, you should be able to spot that the following
does not compile, even if you’ve never heard of the java.util.logging.Logger class.

final Logger myLogger = Logger.getAnonymousLogger();
myLogger = Logger.getLogger(String.class.getName());

The classes and methods used in this question are not in scope for the exam, but the
reason it does not compile is. In particular, you should know that you cannot reassign a vari-
able marked final.

See? Not so scary, is it? Expect to see at least a few structures on the exam that you are
not familiar with. If they aren’t part of your exam preparation material, then you don’t need
to understand them to answer the question.

Reviewing Question Types
The following list of topics is meant to give you an idea of the types of questions and odd-
ities that you might come across on the exam. Being aware of these categories of questions
can help you get a higher score on an exam.

Questions with Extra Information Provided   Imagine the question includes a state-
ment that XMLParseException is a checked exception. It’s fine if you don’t know
what an XMLParseException is or what XML is, for that matter. (If you are won-
dering, it is a format for data.) This question is a gift. You know the question is about
exception handling.

Questions with Embedded Questions   To answer some questions on the exam, you
may have to answer two or three subquestions. For example, the question may contain
two blank lines and ask you to choose the two answers that fill in each blank. In some
cases, the two answer choices are not related, which means you’re really answering
multiple questions, not just one! These questions are among the most difficult and
time-consuming on the exam because they contain multiple, often independent, ques-
tions to answer. Unfortunately, the exam does not give partial credit, so take care when
answering questions like these.

Questions with Unfamiliar APIs   If you see a class or method that wasn’t covered in
this book, assume that it works as you would expect. Some of these APIs you might
come across, such as SecurityManager, were on the Java 11 exam and are not part of
the Java 17 exams. Assume that the part of the code using that API is correct, and look
very hard for other errors.

Questions with Made-Up or Incorrect Concepts   In the context of a word problem, the
exam may bring up a term or concept that does not make any sense, such as saying an
interface inherits from a class, which is not a correct statement. In other cases, the exam
may use a keyword that does not exist in Java, like struct. For these, you just have to
read carefully and recognize when the exam is using invalid terminology.

Introduction  xxvii

Questions That Are Really Out of Scope   When introducing new questions, Oracle
includes them as unscored questions at first. This allows the exam creators to see how
real exam takers do without impacting your score. You will still receive the number of
questions the exam lists. However, a few of them may not count. These unscored ques-
tions may contain out-of-scope material or even errors. They will not be marked as
unscored, so you still have to do your best to answer them. Follow the previous advice
to assume that anything you haven’t seen before is correct. That will cover you if the
question is being counted!

Like all exams, the Oracle Certified Professional: Java SE 17 Developer
or Java Foundations Certified Junior Associate certification from Oracle
is updated periodically and may eventually be retired or replaced. At
some point, after Oracle is no longer offering this exam, the old editions
of our books and online tools will be retired. If you have purchased this
book after the exam was retired or are attempting to register in the Sybex
online learning environment after the exam was retired, please know that
we make no guarantees that this exam’s online Sybex tools will be avail-
able once the exam is no longer available.

Reading This Book
It might help to have some idea about how this book has been written. This section contains
details about some of the common structures and features you find in this book, where to go
for additional help, and how to obtain bonus material for this book.

Who Should Buy This Book
If you want to obtain the OCP 17 Java programmer certification, this book is definitely for
you. If you want to acquire a solid foundation in Java and your goal is to prepare for the
exam, then this book is also for you. You’ll find clear explanations of the concepts you need
to grasp and plenty of help to achieve the high level of professional competency you need in
order to succeed in your chosen field.

This book is intended to be understandable to anyone who has a tiny bit of Java
knowledge. If you’ve never read a Java book before, we recommend starting with a book
that teaches programming from the beginning and then returning to this study guide.

This book is for anyone from high school students to those beginning their programming
journey to experienced professionals who need a review for the certification.

xxviii  Introduction

How This Book Is Organized
This book is divided into 15 chapters, plus supplementary online material: a glossary of
important terms, 500+ flash cards, and three practice exams that simulate the real exam.

Unlike the exam objectives, we organize our chapters organically so that each chapter
builds on the material of the previous chapters. We also want to make things easier to learn
and remember. This means some chapters cover multiple objectives.

The chapters are organized as follows:

■■ Chapter 1: Building Blocks describes the basics of Java, such as how to run a program.
It covers variables such as primitives, object data types, and scoping variables. It also
discusses garbage collection.

■■ Chapter 2: Operators explains operations with variables. It also talks about casting and
the precedence of operators.

■■ Chapter 3: Making Decisions covers core logical constructs such as decision statements,
pattern matching, and loops.

■■ Chapter 4: Core APIs works with String, StringBuilder, arrays, and dates.

■■ Chapter 5: Methods explains how to design and write methods. It also introduces access
modifiers, which are used throughout the book.

■■ Chapter 6: Class Design covers class structure, constructors, inheritance, and initializa-
tion. It also teaches you how to create abstract classes and overload methods.

■■ Chapter 7: Beyond Classes introduces many top-level types (other than classes),
including interfaces, enums, sealed classes, records, and nested classes. It also covers
polymorphism.

■■ Chapter 8: Lambdas and Functional Interfaces shows how to use lambdas, method ref-
erences, and built-in functional interfaces.

■■ Chapter 9: Collections and Generics demonstrates method references, generics with
wildcards, and Collections. The Collections portion covers many common interfaces,
classes, and methods that are useful for the exam and in everyday software development.

■■ Chapter 10: Streams explains stream pipelines in detail. It also covers the Optional class.
If you want to become skilled at creating streams, read this chapter more than once!

■■ Chapter 11: Exceptions and Localization demonstrates the different types of exception
classes and how to apply them to build more resilient programs. It concludes with local-
ization and formatting, which allow your program to gracefully support multiple coun-
tries or languages.

■■ Chapter 12: Modules details the benefits of the new module feature. It shows how to
compile and run module programs from the command line. Additionally, it describes
services and how to migrate an application to a modular infrastructure.

■■ Chapter 13: Concurrency introduces the concept of thread life cycle and thread-safety.
It teaches you how to build multithreaded programs using the Concurrency API and
parallel streams.

Introduction  xxix

■■ Chapter 14: I/O introduces you to managing files and directories using the I/O and
NIO.2 APIs. It covers a number of I/O stream classes, teaches you how to serialize data,
and shows how to interact with a user. Additionally, it includes techniques for using
streams to traverse and search the file system.

■■ Chapter 15: JDBC provides the basics of working with databases in Java, including
working with stored procedures and transactions.

At the end of each chapter, you’ll find a few elements you can use to prepare
for the exam:

Summary   This section reviews the most important topics that were covered in the
chapter and serves as a good review.

Exam Essentials   This section summarizes highlights that were covered in the chapter.
You should be able to convey the information described.

Review Questions   Each chapter concludes with at least 20 review questions. You
should answer these questions and check your answers against the ones provided in the
Appendix. If you can’t answer at least 80 percent of these questions correctly, go back
and review the chapter, or at least those sections that seem to be giving you difficulty.

The review questions, assessment tests, practice exams, and other
code samples included in this book are not derived from the real exam
questions, so don’t memorize them! Learning the underlying topic not
only helps you pass the exam but also makes you a higher-quality pro-
grammer in the workplace—the ultimate goal of a certification.

To get the most out of this book, you should read each chapter from start to finish before
going to the chapter-end elements. They are most useful for checking and reinforcing your
understanding. Even if you’re already familiar with a topic, you should skim the chapter.
There are a number of subtleties to Java that you could easily not encounter even when
working with Java for years. For instance, the following does compile:

var $num = (Integer)null;

Even an experienced Java developer might be taken aback by this one. The exam requires
you to know these kinds of subtleties.

Conventions Used in This Book
This book uses certain typographic styles to help you quickly identify important information
and to avoid confusion over the meaning of words, such as on-screen prompts. In particular,
look for the following styles:

■■ Italicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

xxx  Introduction

■ A monospaced font indicates code or command-line text. We often use bold to high-
light important words or methods within a code sample.

■ Italicized monospaced text indicates a variable.

In addition to these text conventions, which can apply to individual words or entire para-
graphs, a few conventions highlight segments of text.

A tip is something to call particular attention to an aspect of working with
a language feature or API.

A note indicates information that’s useful or interesting. It is often
something to pay special attention to for the exam.

Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

A real-world scenario is a type of sidebar that describes a task or an example that’s particu-
larly grounded in the real world. This is something that is useful in the real world but is not
going to show up on the exam.

Getting Help
Both of the authors are moderators at CodeRanch.com. This site is a quite large and active
programming forum that is friendly toward Java beginners. It has a forum just for this exam
called Programmer Certification. It also has a forum called Beginning Java for non-exam-
specific questions. As you read the book, feel free to ask your questions in either of those
forums. It could be that you are having trouble compiling a class or are just plain confused
about something. You’ll get an answer from a knowledgeable Java programmer. It might
even be one of us!

Remember to check our book page before taking the exam. It contains any recent updates
Oracle makes to the exam.

www.selikoff.net/ocp17

http://coderanch.com
http://www.selikoff.net/ocp17

Introduction  xxxi

Interactive Online Learning Environment and Test Bank
We’ve put together some really great online tools to help you pass the exams. The interac-
tive online learning environment that accompanies this study guide provides a test bank and
study tools to help you prepare for the exam. By using these tools, you can dramatically
increase your chances of passing the exam on your first try.

To register and gain access to this interactive online learning environment, please
visit this URL:

www.wiley.com/go/Sybextestprep

The online test bank includes the following:

Three Practice Exams   Many practice questions are provided throughout this book
and online, including the assessment test, which you’ll find at the end of this introduc-
tion, and the chapter tests, which include the review questions at the end of each chapter.
In addition, there are three bonus practice exams. Use these questions to test your
knowledge of the study guide material. The online test bank runs on multiple devices.

500+ Flashcards   The online test bank includes two sets of flashcards specifically writ-
ten to hit you hard, so don’t get discouraged if you don’t ace your way through them
at first! They’re there to ensure that you’re really ready for the exam. And no worries—
armed with the review questions, practice exams, and flashcards, you’ll be more than
prepared when exam day comes! Questions are provided in digital flashcard format (a
question followed by a single correct answer). You can use the flashcards to reinforce
your learning and provide last-minute test prep before the exam.

Additional Resources   A glossary of key terms from this book and their definitions is
available as a fully searchable PDF.

Studying for the Exam
This section includes suggestions and recommendations for how you should prepare for the
certification exam. Rather than just reading this book, we recommend writing and executing
programs as part of the study process. How you study can be just as important as what
you study.

Creating a Study Plan
Rome wasn’t built in a day, so you shouldn’t attempt to study for the exam in only one day.
Even if you have been certified with a previous version of Java, the new test includes features
and components unique to Java 12–17.

http://www.wiley.com/go/Sybextestprep

xxxii  Introduction

Once you have decided to take the test, you should construct a study plan that fits with
your schedule. We recommend that you set aside some amount of time each day, even if it’s
just a few minutes during lunch, to read or practice for the exam. The idea is to keep your
momentum going throughout the exam preparation process. The more consistent you are in
how you study, the better prepared you are for the exam. Try to avoid taking a few days or
weeks off from studying, or you’re likely to spend a lot of time relearning existing material
instead of moving on to new material.

Creating and Running the Code
Although some people can learn Java just by reading a textbook, that’s not how we recom-
mend that you study for a certification exam. We want you to be writing your own Java
sample applications throughout this book so that you don’t just learn the material but
understand the material as well. For example, it may not be obvious why the following line
of code does not compile, but if you try to compile it yourself, the Java compiler tells you
the problem:

float value = 102.0; // DOES NOT COMPILE

A lot of people post the question “Why doesn’t this code compile?”
on the CodeRanch.com forum. If you’re stuck or just curious about a
behavior in Java, we encourage you to post to the forum. There are a lot
of nice people in the Java community standing by to help you.

Sample Test Class
Throughout this book, we present numerous code snippets and ask you whether they’ll com-
pile or not and what their output is. You can place these snippets inside a simple Java appli-
cation that starts, executes the code, and terminates. You can accomplish this by compiling
and running a public class containing a main() method and adding the necessary import state-
ments, such as the following:

// Add any necessary import statements here
public class TestClass {
 public static void main(String[] args) {
 // Add test code here

 // Add any print statements here
 System.out.println("Hello World!");
 }
}

http://coderanch.com

Introduction  xxxiii

This application isn’t particularly interesting—it just outputs Hello World! and exits.
That said, you could insert many of the code snippets presented in this book in the main()
method to determine whether the code compiles, as well as what the code outputs when it
does compile.

IDE Software

While studying for an exam, you should develop code using a text editor and command-
line Java compiler. Some of you may have prior experience with integrated development
environments (IDEs) such as Eclipse, IntelliJ, and Visual Studio Code. An IDE is a software
application that facilitates software development for computer programmers. Although
such tools are extremely valuable in developing software, they can interfere with your
ability to spot problems readily on an exam.

Identifying Your Weakest Link
The review questions in each chapter are designed to help you home in on those features of
the Java language where you may be weak and that are required knowledge for the exam.
For each chapter, you should note which questions you got wrong, understand why you got
them wrong, and study those areas even more. After you’ve reread the chapter and written
lots of code, you can do the review questions again. In fact, you can take the review ques-
tions over and over to reinforce your learning, as long as you explain to yourself why each
answer is correct.

“Overstudying” the Online Practice Exams

Although we recommend reading this book and writing your own sample applications mul-
tiple times, redoing the online practice exams over and over can have a negative impact in
the long run. For example, some individuals study the practice exams so much that they
end up memorizing the answers. In this scenario, they can easily become overconfident;
that is, they can achieve perfect scores on the practice exams but may fail the actual exam.

xxxiv  Introduction

Applying Test-Taking Strategies
This section includes suggestions you can use when you take the exam. If you’re an experi-
enced test taker or you’ve taken a certification test before, most of this should be common
knowledge. For those who are taking the exam for the first time, don’t worry! We present a
number of practical tips and strategies to help you prepare for the exam.

Using the Provided Writing Material
Depending on your particular testing center, you may be provided with a sheet of blank
paper or a whiteboard to use to help you answer questions. In our experience, a whiteboard
with a marker and an eraser are more commonly handed out. If you sit down and you are
not provided with anything, make sure to ask for such materials. If you aren’t given an
eraser, feel free to ask for a second whiteboard page.

After first checking whether the code compiles, it is time to understand what the program
does! One of the most useful applications of writing material is tracking the state of primi-
tive and reference variables. For example, let’s say you encountered the following code snip-
pet on a question about garbage collection:

Object o = new Turtle();
Mammal m = new Monkey();
Animal a = new Rabbit();
o = m;

In a situation like this, it can be helpful to draw a diagram of the current state of the var-
iable references. As each reference variable changes which object it points to, you erase or
cross out the arrow between them and draw a new one to a different object.

Using the writing material to track state is also useful for complex questions that involve
a loop, especially questions with embedded loops. For example, the value of a variable might
change five or more times during a loop execution. You should make use of the provided
writing material to improve your score.

While you cannot bring any outside material into an exam, you can write
down material at the start of the exam. For example, if you have trouble
remembering which functional interfaces take which generic arguments,
it might be helpful to draw a table at the start of the exam on the provided
writing material. You can then use this information to answer multiple
questions.

Introduction  xxxv

Understanding the Question
The majority of questions on the exam contain code snippets and ask you to answer ques-
tions about them. For those items containing code snippets, the number-one question we rec-
ommend that you answer before attempting to solve the question is this:

Does the code compile?

It sounds simple, but many people dive into answering the question without checking
whether the code actually compiles. If you can determine whether a particular set of code
compiles and what line or lines cause it to not compile, answering the question often
becomes easy.

If all of the answers to a question are printed values, aka there is no Does
not compile option, consider that question a gift. It means every line does
compile, and you may be able to use information from this question to
answer other questions!

Applying the Process of Elimination
Although you might not immediately know the correct answer to a question, if you can
reduce the question from five answers to three, your odds of guessing the correct answer are
markedly improved. Moreover, if you can reduce a question from four answers to two, you’ll
double your chances of guessing the correct answer!

In some cases, you may be able to eliminate answer choices without even reading the
question. If you come across such questions on the exam, consider it a gift. Can you cor-
rectly answer the following question in which the application code has been left out?

1.	 Which line, when inserted independently at line m1, allows the code to compile?

- Code Omitted -

A.	 public abstract final int swim();
B.	 public abstract void swim();
C.	 public abstract swim();
D.	 public abstract void swim() {}
E.	 public void swim() {}

Without reading the code or knowing what line m1 is, we can eliminate three of the five
answer choices. Options A, C, and D contain invalid declarations, leaving us with options B
and E as the only possible correct answers.

xxxvi  Introduction

In previous versions of the exam, the test-taking software allowed you to
eliminate an option by right-clicking on it. The option was then presented
with a strike-through line over it. Unfortunately, Oracle no longer offers
this feature, so you’ll need to use provided writing material to keep track
of option choices. Hopefully, Oracle will bring back this feature with
an update!

Skipping Difficult Questions
The exam software includes an option to “mark” a question and review all marked ques-
tions at the end of the exam. If you are pressed for time, answer a question as best you can
and then mark it to come back to later.

All questions are weighted equally, so spending 10 minutes answering five questions cor-
rectly is a lot better use of your time than spending 10 minutes on a single question. If you
finish the exam early, you have the option of reviewing the marked questions as well as all of
the questions on the exam, if you choose.

Being Suspicious of Strong Words
Many questions on the exam include answer choices with descriptive sentences rather than
lines of code. When you see such questions, be wary of any answer choice that includes
strong words such as “must,” “all,” or “cannot.” If you think about the complexities of
programming languages, it is rare for a rule to have no exceptions or special cases. There-
fore, if you are stuck between two answers and one of them uses “must” while the other uses
“can” or “may,” you are better off picking the one with the weaker word since it is a more
ambiguous statement.

Choosing the Best Answer
Sometimes you read a question and immediately spot a compiler error that tells you exactly
what the question is asking. Other times, though, you may stare at a method declaration for
a couple of minutes and have no idea what the answer is. Unlike some other standardized
tests, there’s no penalty for answering a question incorrectly versus leaving it blank. If you’re
nearly out of time or you just can’t decide on an answer, select a random option and move
on. If you’ve been able to eliminate even one answer choice, then your guess is better than
blind luck.

Answer All Questions!

You should set a hard stop at five minutes of time remaining on the exam to ensure
that you’ve answered each and every question. Remember, if you fail to answer a question,
you’ll definitely get it wrong and lose points; but if you guess, there’s at least a chance
that you’ll be correct. There’s no harm in guessing!

Introduction  xxxvii

When in doubt, we generally recommend picking a random answer that includes “Does not
compile” if available, although which choice you select is not nearly as important as making
sure that you do not leave any questions unanswered on the exam!

Getting a Good Night’s Rest
Although a lot of people are inclined to cram as much material as they can in the hours
leading up to an exam, most studies have shown that this is a poor test-taking strategy.
The best thing we can recommend that you do before taking an exam is to get a good
night’s rest!

Given the length of the exam and the number of questions, the exam can be quite drain-
ing, especially if this is your first time taking a certification exam. You might come in expect-
ing to be done 30 minutes early, only to discover that you are only a quarter of the way
through the exam with half the time remaining. At some point, you may begin to panic,
and it is in these moments that these test-taking skills are most important. Just remember to
take a deep breath, stay calm, eliminate as many wrong answers as you can, and make sure
to answer every question. It is for stressful moments like these that being well rested with a
good night’s sleep is most beneficial!

Taking the Exam
So you’ve decided to take the exam? We hope so, if you’ve bought this book! In this
section, we discuss the process of scheduling and taking the exam, along with various
options for each.

Scheduling the Exam
The exam is administered by Pearson VUE and can be taken at any Pearson VUE testing
center. To find a testing center or register for the exam, go to:

certview.oracle.com

Next, choose Manage Exam at Pearson | VUE. If you have any trouble navigating the
website, see our tips at

www.selikoff.net/exam-signup

If you haven’t been to the testing center before, we recommend visiting in advance. Some
testing centers are nice and professionally run. Others stick you in a small closet with lots
of people talking around you. You don’t want to be taking the test with people complaining
about their broken laptops nearby!

http://certview.oracle.com
http://www.selikoff.net/exam-signup

xxxviii  Introduction

At this time, you can reschedule the exam without penalty until up to 24 hours before.
This means you can register for a convenient time slot well in advance, knowing that you
can delay if you aren’t ready by that time. Rescheduling is easy and can be done completely
on the Pearson VUE website. This may change, so check the rules before paying.

Taking an Online Proctored Exam
Pearson VUE offers the ability to take the exam at your home or office via the OnVUE ser-
vice. You schedule a specific date and time to take it remotely from your personal or work
computer. This option is especially appealing for those who live far from a testing center or
may have health concerns about taking the exam in person.

Before scheduling an online proctored exam, we strongly recommend you review the list
of requirements on Pearson VUE’s website:

www.pearsonvue.com/oracle/onvue

We encourage you to take the exam anywhere you are comfortable and feel safe. That
said, taking an online proctored exam is a very different experience from taking an exam
at a testing center. The following highlights some aspects of the online proctored exam pro-
cess that we feel are important. Please check Pearson VUE’s website for additional details, as
these are subject to change:

■■ Your laptop or desktop computer must meet certain minimal requirements, must include
a camera/microphone, and must not have any additional monitors. Tablets and touch-
screens are not permitted.

■■ You must have a stable Internet connection (wired Ethernet recommended) and not be
behind a corporate firewall or VPN.

■■ You will be closely monitored live by a proctor during the entire exam, as well as being
recorded. Moving out of view of the camera, looking at your cell phone, or using the
restroom is strictly prohibited.

■■ Your work area must be well lit and your desk clear of all material. Prior to starting the
exam, the proctor will ask you to turn your camera around your area to ensure that no
inappropriate materials are in reach or in view.

■■ Writing material during the exam is provided in the form of an online digital white-
board within the exam software.

■■ You should take the test at a location where you can ensure privacy. No one else is per-
mitted to be in the room or see your exam. If someone does enter inadvertently, you
must tell them to leave immediately.

■■ The exam software monitors eye and head movements. You may get a warning message
while taking the exam if it appears you are looking away from the screen too much.

The choice between taking the exam at a testing center or at home is a personal one.
Think carefully about which is best for your needs.

http://www.pearsonvue.com/oracle/onvue

Introduction  xxxix

The Day of the Exam
The exam requires two forms of ID, including one that is government issued. See Pearson’s
list of acceptable IDs here:

www.pearsonvue.com/policies/1S.pdf

When taking the exam in person, try not to bring too much extra with you, as it will not
be allowed into the exam room. While you are allowed to check your belongings, it is better
to leave extra items at home or in the car.

You are not allowed to bring paper, your phone, and the like into the exam room with
you. Some centers are stricter than others. At one center, even tissues were taken away from
us! Most centers allow you to keep your ID and money. They watch you take the exam,
though, so don’t even think about writing notes on money.

As we mentioned earlier, the testing center will give you writing materials to use during
the exam, either scratch paper or a whiteboard. If you aren’t given these materials, remember
to ask. These items are collected at the end of the exam.

While you cannot bring any belongings into the testing room, some
noisy testing centers offer earplugs. If your testing center has a lot of
background noise (like cars honking or construction), it doesn’t hurt to
ask the proctor for a pair of earplugs before you start the exam.

Finding Out Your Score
As soon as you complete your exam, you find out if you passed. To get your actual score,
you’ll need to wait until you can check online. Many test-takers check their score from a
mobile device as they are walking out of the test center.

CertView usually updates shortly after you finish your exam but can take up to an hour
in some cases. In addition to your score, you’ll also see the objectives for which you got a
question wrong. Once you have passed the 1Z0-829 exam and fulfilled the required
prerequisites, the OCP 17 title is granted within a few days.

Oracle has partnered with Credly Acclaim, which is an Open Badges
platform. Upon obtaining a certification from Oracle, you also receive a
“badge” that you can choose to share publicly with current or prospec-
tive employers.

Objective Map
This book has been written to cover every objective on both the Developer and
Foundation exams.

http://www.pearsonvue.com/policies/1S.pdf

xl  Introduction

Java SE 17 Developer (1Z0-829)
The following table provides a breakdown of this book’s exam coverage for the Java SE 17
Developer (1Z0-829) exam, showing you the chapter where each objective or subobjective
is covered.

Exam Objective Chapter

Handling date, time, text, numeric and boolean values

Use primitives and wrapper classes including Math API, parentheses, type
promotion, and casting to evaluate arithmetic and boolean expressions

1, 2, 4

Manipulate text, including text blocks, using String and
StringBuilder classes

4

Manipulate date, time, duration, period, instant and time-zone objects
using Date-Time API

4

Controlling Program Flow

Create program flow control constructs including if/else, switch statements
and expressions, loops, and break and continue statements

3

Utilizing Java Object-Oriented Approach

Declare and instantiate Java objects including nested class objects, and
explain the object life-cycle including creation, reassigning references, and
garbage collection

1, 7

Create classes and records, and define and use instance and static fields and
methods, constructors, and instance and static initializers

5, 6, 7

Implement overloading, including var-arg methods 5

Understand variable scopes, use local variable type inference, apply encap-
sulation, and make objects immutable

1, 6, 7, 8

Implement polymorphism and differentiate object type versus reference
type. Perform type casting, identify object types using instanceof operator
and pattern matching

3, 6, 7

Create and use interfaces, identify functional interfaces, and utilize private,
static, and default interface methods

7, 8

Create and use enumerations with fields, methods and constructors 7

Handling Exceptions

Handle exceptions using try/catch/finally, try-with-resources, and multi-
catch blocks, including custom exceptions

11

Introduction  xli

Exam Objective Chapter

Working with Arrays and Collections

Create Java arrays, List, Set, Map, and Deque collections, and add, remove,
update, retrieve and sort their elements

4, 9

Working with Streams and Lambda expressions

Use Java object and primitive Streams, including lambda expressions
implementing functional interfaces, to supply, filter, map, consume,
and sort data

10

Perform decomposition, concatenation and reduction, and grouping and
partitioning on sequential and parallel streams

10, 13

Packaging and deploying Java code and use the Java Platform
Module System

Define modules and their dependencies, expose module content including
for reflection. Define services, producers, and consumers

12

Compile Java code, produce modular and non-modular jars, runtime
images, and implement migration using unnamed and automatic modules

12

Managing concurrent code execution

Create worker threads using Runnable and Callable, manage the thread
lifecycle, including automations provided by different Executor services
and concurrent API

13

Develop thread-safe code, using different locking mechanisms and
concurrent API

13

Process Java collections concurrently including the use of parallel streams 13

Using Java I/O API

Read and write console and file data using I/O Streams 14

Serialize and de-serialize Java objects 14

Create, traverse, read, and write Path objects and their properties using
java.nio.file API

14

Accessing databases using JDBC

Create connections, create and execute basic, prepared and callable state-
ments, process query results and control transactions using JDBC API

15

Implementing Localization

Implement localization using locales, resource bundles, parse and
format messages, dates, times, and numbers including currency and
percentage values

11

xlii  Introduction

Java Foundations (1Z0-811)
The following table provides a breakdown of this book’s exam coverage for the Java Foun-
dations (1Z0-811) exam, showing you the chapter where each objective or subobjective
is covered.

A few topics are on the Java Foundations exam but not the 1Z0-829.
Those are covered here:

www.selikoff.net/java-foundations

Additionally, the objectives may be updated if Oracle updates the Java Foun-
dations exam for a later version of Java. Check our website for those updates
as well.

Exam Objective Chapter

What is Java?

Describe the features of Java 1

Describe the real-world applications of Java 1 + online

Java Basics

Describe the Java Development Kit (JDK) and the Java Runtime
Environment (JRE)

1

Describe the components of object-oriented programming 1

Describe the components of a basic Java program 1

Compile and execute a Java program 1

Basic Java Elements

Identify the conventions to be followed in a Java program 1

Use Java reserved words 1

Use single-line and multi-line comments in Java programs 1

Import other Java packages to make them accessible in your code 1

Describe the java.lang package 1

Working with Java Data Types

Declare and initialize variables including a variable using final 1

Cast a value from one data type to another including automatic and
manual promotion

2

http://www.selikoff.net/java-foundations

Introduction  xliii

Exam Objective Chapter

Declare and initialize a String variable 1

Working with Java Operators

Use basic arithmetic operators to manipulate data
including +, -, *, /, and %

2

Use the increment and decrement operators 2

Use relational operators including ==, !=, >, >=, <, and <= 2

Use arithmetic assignment operators 2

Use conditional operators including &&, ||, and ? 2

Describe the operator precedence and use of parentheses 2

Working with the String Class

Develop code that uses methods from the String class 4

Format Strings using escape sequences including %d, %n, and %s 11

Working with Random and Math Classes

Use the Random class Online

Use the Math class 4

Using Decision Statements

Use the decision making statement (if-then and if-then-else) 3

Use the switch statement 3

Compare how == differs between primitives and objects 4

Compare two String objects by using the compareTo and
equals methods

4

Using Looping Statements

Describe looping statements 3

Use a for loop including an enhanced for loop 3

Use a while loop 3

Use a do- while loop 3

Compare and contrast the for, while, and do-while loops 3

Develop code that uses break and continue statements 3

xliv  Introduction

Exam Objective Chapter

Debugging and Exception Handling

Identify syntax and logic errors 1, 2, 3

Use exception handling 11

Handle common exceptions thrown 11

Use try and catch blocks 11

Arrays and ArrayLists

Use a one-dimensional array 4

Create and manipulate an ArrayList 9

Traverse the elements of an ArrayList by using iterators and loops
including the enhanced for loop

9

Compare an array and an ArrayList 4, 9

Classes and Constructors

Create a new class including a main method 1

Use the private modifier 5

Describe the relationship between an object and its members 6

Describe the difference between a class variable, an instance variable,
and a local variable

1, 6

Develop code that creates an object’s default constructor and modifies
the object’s fields

6

Use constructors with and without parameters 6

Develop code that overloads constructors 6

Java Methods

Describe and create a method 5

Create and use accessor and mutator methods 5

Create overloaded methods 5

Describe a static method and demonstrate its use within a program 5

Introduction  xlv

Assessment Test
Use the following assessment test to gauge your current level of skill in Java for the
1Z0-829. This test is designed to highlight some topics for your strengths and weaknesses so
that you know which chapters you might want to read multiple times. Even if you do well
on the assessment test, you should still read the book from cover to cover, as the real exams
are quite challenging.

1.	 What is the result of executing the following code snippet?

41: final int score1 = 8, score2 = 3;
42: char myScore = 7;
43: var goal = switch (myScore) {
44: default -> {if(10>score1) yield "unknown";}
45: case score1 -> "great";
46: case 2, 4, 6 -> "good";
47: case score2, 0 -> {"bad";}
48: };
49: System.out.println(goal);

A.	 unknown
B.	 great
C.	 good
D.	 bad
E.	 unknowngreatgoodbad
F.	 Exactly one line needs to be changed for the code to compile.

G.	 Exactly two lines need to be changed for the code to compile.

H.	 None of the above

2.	 What is the output of the following code snippet?

int moon = 9, star = 2 + 2 * 3;
float sun = star>10 ? 1 : 3;
double jupiter = (sun + moon) - 1.0f;
int mars = --moon <= 8 ? 2 : 3;
System.out.println(sun+", "+jupiter+", "+mars);

A.	 1, 11, 2
B.	 3.0, 11.0, 2
C.	 1.0, 11.0, 3
D.	 3.0, 13.0, 3
E.	 3.0f, 12, 2
F.	 The code does not compile because one of the assignments requires an explicit numeric

cast.

xlvi  Introduction

3.	 Which changes, when made independently, guarantee the following code snippet prints 100 at
runtime? (Choose all that apply.)

List<Integer> data = new ArrayList<>();
IntStream.range(0,100).parallel().forEach(s -> data.add(s));
System.out.println(data.size());

A.	 Change data to an instance variable and mark it volatile.

B.	 Remove parallel() in the stream operation.

C.	 Change forEach() to forEachOrdered() in the stream operation.

D.	 Change parallel() to serial() in the stream operation.

E.	 Wrap the lambda body with a synchronized block.

F.	 The code snippet will always print 100 as is.

4.	 What is the output of this code?

20: Predicate<String> empty = String::isEmpty;
21: Predicate<String> notEmpty = empty.negate();
22:
23: var result = Stream.generate(() -> "")
24: .filter(notEmpty)
25: .collect(Collectors.groupingBy(k -> k))
26: .entrySet()
27: .stream()
28: .map(Entry::getValue)
29: .flatMap(Collection::stream)
30: .collect(Collectors.partitioningBy(notEmpty));
31: System.out.println(result);

A.	 It outputs {}.

B.	 It outputs {false=[], true=[]}.

C.	 The code does not compile.

D.	 The code does not terminate.

5.	 What is the result of the following program?

1: public class MathFunctions {
2: public static void addToInt(int x, int amountToAdd) {
3: x = x + amountToAdd;
4: }
5: public static void main(String[] args) {
6: var a = 15;
7: var b = 10;
8: MathFunctions.addToInt(a, b);
9: System.out.println(a); } }

Assessment Test  xlvii

A.	 10
B.	 15
C.	 25
D.	 Compiler error on line 3

E.	 Compiler error on line 8

F.	 None of the above

6.	 Suppose that we have the following property files and code. What values are printed on lines
8 and 9, respectively?

Penguin.properties
name=Billy
age=1

Penguin_de.properties
name=Chilly
age=4

Penguin_en.properties
name=Willy

5: Locale fr = new Locale("fr");
6: Locale.setDefault(new Locale("en", "US"));
7: var b = ResourceBundle.getBundle("Penguin", fr);
8: System.out.println(b.getString("name"));
9: System.out.println(b.getString("age"));

A.	 Billy and 1
B.	 Billy and null
C.	 Willy and 1
D.	 Willy and null
E.	 Chilly and null
F.	 The code does not compile.

7.	 What is guaranteed to be printed by the following code? (Choose all that apply.)

int[] array = {6,9,8};
System.out.println("B" + Arrays.binarySearch(array,9));
System.out.println("C" + Arrays.compare(array,
 new int[] {6, 9, 8}));
System.out.println("M" + Arrays.mismatch(array,
 new int[] {6, 9, 8}));

xlviii  Introduction

A.	 B1
B.	 B2
C.	 C-1
D.	 C0
E.	 M-1
F.	 M0
G.	 The code does not compile.

8.	 Which functional interfaces complete the following code, presuming variable r exists?
(Choose all that apply.)

6: x = r.negate();
7: y = () -> System.out.println();
8: z = (a, b) -> a - b;

A.	 BinaryPredicate<Integer, Integer>
B.	 Comparable<Integer>
C.	 Comparator<Integer>
D.	 Consumer<Integer>
E.	 Predicate<Integer>
F.	 Runnable
G.	 Runnable<Integer>

9.	 Suppose you have a module named com.vet. Where could you place the following
module-info.java file to create a valid module?

public module com.vet {
 exports com.vet;
}

A.	 At the same level as the com folder

B.	 At the same level as the vet folder

C.	 Inside the vet folder

D.	 None of the above

10.	 What is the output of the following program? (Choose all that apply.)

1: interface HasTail { private int getTailLength(); }
2: abstract class Puma implements HasTail {
3: String getTailLength() { return "4"; }
4: }
5: public class Cougar implements HasTail {
6: public static void main(String[] args) {
7: var puma = new Puma() {};

Assessment Test  xlix

8: System.out.println(puma.getTailLength());
9: }
10: public int getTailLength(int length) { return 2; }
11: }

A.	 2
B.	 4
C.	 The code will not compile because of line 1.

D.	 The code will not compile because of line 3.

E.	 The code will not compile because of line 5.

F.	 The code will not compile because of line 7.

G.	 The code will not compile because of line 10.

H.	 The output cannot be determined from the code provided.

11.	 Which lines in Tadpole.java give a compiler error? (Choose all that apply.)

// Frog.java
1: package animal;
2: public class Frog {
3: protected void ribbit() { }
4: void jump() { }
5: }

// Tadpole.java
1: package other;
2: import animal.*;
3: public class Tadpole extends Frog {
4: public static void main(String[] args) {
5: Tadpole t = new Tadpole();
6: t.ribbit();
7: t.jump();
8: Frog f = new Tadpole();
9: f.ribbit();
10: f.jump();
11: } }

A.	 Line 5

B.	 Line 6

C.	 Line 7

D.	 Line 8

E.	 Line 9

F.	 Line 10

G.	 All of the lines compile.

l  Introduction

12.	 Which of the following can fill in the blanks in order to make this code compile?

 a = .getConnection(
 url, userName, password);

 b = a.prepareStatement(sql);
 c = b.executeQuery();

if (c.next()) System.out.println(c.getString(1));

A.	 Connection, Driver, PreparedStatement, ResultSet
B.	 Connection, DriverManager, PreparedStatement, ResultSet
C.	 Connection, DataSource, PreparedStatement, ResultSet
D.	 Driver, Connection, PreparedStatement, ResultSet
E.	 DriverManager, Connection, PreparedStatement, ResultSet
F.	 DataSource, Connection, PreparedStatement, ResultSet

13.	 Which of the following statements can fill in the blank to make the code compile success-
fully? (Choose all that apply.)

Set<? extends RuntimeException> mySet = new ();

A.	 HashSet<? extends RuntimeException>
B.	 HashSet<Exception>
C.	 TreeSet<RuntimeException>
D.	 TreeSet<NullPointerException>
E.	 None of the above

14.	 Assume that birds.dat exists, is accessible, and contains data for a Bird object. What is
the result of executing the following code? (Choose all that apply.)

1: import java.io.*;
2: public class Bird {
3: private String name;
4: private transient Integer age;
5:
6: // Getters/setters omitted
7:
8: public static void main(String[] args) {
9: try(var is = new ObjectInputStream(
10: new BufferedInputStream(
11: new FileInputStream("birds.dat")))) {
12: Bird b = is.readObject();
13: System.out.println(b.age);
14: } } }

Assessment Test  li

A.	 It compiles and prints 0 at runtime.

B.	 It compiles and prints null at runtime.

C.	 It compiles and prints a number at runtime.

D.	 The code will not compile because of lines 9–11.

E.	 The code will not compile because of line 12.

F.	 It compiles but throws an exception at runtime.

15.	 Which of the following are valid instance members of a class? (Choose all that apply.)

A.	 var var = 3;
B.	 Var case = new Var();
C.	 void var() {}
D.	 int Var() { var _ = 7; return _;}
E.	 String new = "var";
F.	 var var() { return null; }

16.	 Which is true if the table is empty before this code is run? (Choose all that apply.)

var sql = "INSERT INTO people VALUES(?, ?, ?)";
conn.setAutoCommit(false);

try (var ps = conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE)) {

 ps.setInt(1, 1);
 ps.setString(2, "Joslyn");
 ps.setString(3, "NY");
 ps.executeUpdate();

 Savepoint sp = conn.setSavepoint();

 ps.setInt(1, 2);
 ps.setString(2, "Kara");
 ps.executeUpdate();

 conn. ;
}

lii  Introduction

A.	 If the blank line contains rollback(), there are no rows in the table.

B.	 If the blank line contains rollback(), there is one row in the table.

C.	 If the blank line contains rollback(sp), there are no rows in the table.

D.	 If the blank line contains rollback(sp), there is one row in the table.

E.	 The code does not compile.

F.	 The code throws an exception because the second update does not set all the parameters.

17.	 Which is true if the contents of path1 start with the text Howdy? (Choose two.)

System.out.println(Files.mismatch(path1,path2));

A.	 If path2 doesn’t exist, the code prints -1.

B.	 If path2 doesn’t exist, the code prints 0.

C.	 If path2 doesn’t exist, the code throws an exception.

D.	 If the contents of path2 start with Hello, the code prints -1.

E.	 If the contents of path2 start with Hello, the code prints 0.

F.	 If the contents of path2 start with Hello, the code prints 1.

18.	 Which of the following types can be inserted into the blank to allow the program to compile
successfully? (Choose all that apply.)

1: import java.util.*;
2: final class Amphibian {}
3: abstract class Tadpole extends Amphibian {}
4: public class FindAllTadpoles {
5: public static void main(String... args) {
6: var tadpoles = new ArrayList<Tadpole>();
7: for (var amphibian : tadpoles) {
8: tadpole = amphibian;
9: } } }

A.	 List<Tadpole>
B.	 Boolean
C.	 Amphibian
D.	 Tadpole
E.	 Object
F.	 None of the above

19.	 What is the result of compiling and executing the following program?

1: public class FeedingSchedule {
2: public static void main(String[] args) {
3: var x = 5;
4: var j = 0;

Assessment Test  liii

5: OUTER: for (var i = 0; i < 3;)
6: INNER: do {
7: i++;
8: x++;
9: if (x> 10) break INNER;
10: x += 4;
11: j++;
12: } while (j <= 2);
13: System.out.println(x);
14: } }

A.	 10
B.	 11
C.	 12
D.	 17
E.	 The code will not compile because of line 5.

F.	 The code will not compile because of line 6.

20.	 When printed, which String gives the same value as this text block?

var pooh = """
 "Oh, bother." -Pooh
 """.indent(1);
System.out.print(pooh);

A.	 "\n\"Oh, bother.\" -Pooh\n"
B.	 "\n \"Oh, bother.\" -Pooh\n"
C.	 " \"Oh, bother.\" -Pooh\n"
D.	 "\n\"Oh, bother.\" -Pooh"
E.	 "\n \"Oh, bother.\" -Pooh"
F.	 " \"Oh, bother.\" -Pooh"
G.	 None of the above

21.	 A(n) module always contains a module-info.java file, while a(n)
 module always exports all its packages to other modules.

A.	 automatic, named

B.	 automatic, unnamed

C.	 named, automatic

D.	 named, unnamed

E.	 unnamed, automatic

F.	 unnamed, named

G.	 None of the above

liv  Introduction

22.	 What is the result of the following code?

22: var treeMap = new TreeMap<Character, Integer>();
23: treeMap.put('k', 1);
24: treeMap.put('k', 2);
25: treeMap.put('m', 3);
26: treeMap.put('M', 4);
27: treeMap.replaceAll((k, v) -> v + v);
28: treeMap.keySet()
29: .forEach(k -> System.out.print(treeMap.get(k)));

A.	 268
B.	 468
C.	 2468
D.	 826
E.	 846
F.	 8246
G.	 None of the above

23.	 Which of the following lines can fill in the blank to print true? (Choose all that apply.)

10: public static void main(String[] args) {
11: System.out.println(test());
12: }
13: private static boolean test(Function<Integer, Boolean> b) {
14: return b.apply(5);
15: }

A.	 i::equals(5)
B.	 i -> {i == 5;}
C.	 (i) -> i == 5
D.	 (int i) -> i == 5
E.	 (int i) -> {return i == 5;}
F.	 (i) -> {return i == 5;}

24.	 How many times is the word true printed?

var s1 = "Java";
var s2 = "Java";
var s3 = s1.indent(1).strip();
var s4 = s3.intern();
var sb1 = new StringBuilder();
sb1.append("Ja").append("va");

Assessment Test  lv

System.out.println(s1 == s2);
System.out.println(s1.equals(s2));
System.out.println(s1 == s3);
System.out.println(s1 == s4);
System.out.println(sb1.toString() == s1);
System.out.println(sb1.toString().equals(s1));

A.	 Once

B.	 Twice

C.	 Three times

D.	 Four times

E.	 Five times

F.	 The code does not compile.

25.	 What is the output of the following program?

1: class Deer {
2: public Deer() {System.out.print("Deer");}
3: public Deer(int age) {System.out.print("DeerAge");}
4: protected boolean hasHorns() { return false; }
5: }
6: public class Reindeer extends Deer {
7: public Reindeer(int age) {System.out.print("Reindeer");}
8: public boolean hasHorns() { return true; }
9: public static void main(String[] args) {
10: Deer deer = new Reindeer(5);
11: System.out.println("," + deer.hasHorns());
12: } }

A.	 ReindeerDeer,false
B.	 DeerAgeReindeer,true
C.	 DeerReindeer,true
D.	 DeerReindeer,false
E.	 ReindeerDeer,true
F.	 DeerAgeReindeer,false
G.	 The code will not compile because of line 4.

H.	 The code will not compile because of line 12.

lvi  Introduction

26.	 Which of the following are true? (Choose all that apply.)

private static void magic(Stream<Integer> s) {
 Optional o = s
 .filter(x -> x < 5)
 .limit(3)
 .max((x, y) -> x-y);
 System.out.println(o.get());
}

A.	 magic(Stream.empty()); runs infinitely.

B.	 magic(Stream.empty()); throws an exception.

C.	 magic(Stream.iterate(1, x -> x++)); runs infinitely.

D.	 magic(Stream.iterate(1, x -> x++)); throws an exception.

E.	 magic(Stream.of(5, 10)); runs infinitely.

F.	 magic(Stream.of(5, 10)); throws an exception.

G.	 The method does not compile.

27.	 Assuming the following declarations are top-level types declared in the same file, which suc-
cessfully compile? (Choose all that apply.)

record Music() {
 final int score = 10;
}
record Song(String lyrics) {
 Song {
 this.lyrics = lyrics + "Hello World";
 }
}
sealed class Dance {}
record March() {
 @Override String toString() { return null; }
}
class Ballet extends Dance {}

A.	 Music
B.	 Song
C.	 Dance
D.	 March
E.	 Ballet
F.	 None of them compile.

Assessment Test  lvii

28.	 Which of the following expressions compile without error? (Choose all that apply.)

A.	 int monday = 3 + 2.0;
B.	 double tuesday = 5_6L;
C.	 boolean wednesday = 1 > 2 ? !true;
D.	 short thursday = (short)Integer.MAX_VALUE;
E.	 long friday = 8.0L;
F.	 var saturday = 2_.0;
G.	 None of the above

29.	 What is the result of executing the following application?

final var cb = new CyclicBarrier(3,
 () -> System.out.println("Clean!")); // u1
ExecutorService service = Executors.newSingleThreadExecutor();
try {
 IntStream.generate(() -> 1)
 .limit(12)
 .parallel()
 .forEach(i -> service.submit(() -> cb.await())); // u2
} finally { service.shutdown(); }

A.	 It outputs Clean! at least once.

B.	 It outputs Clean! exactly four times.

C.	 The code will not compile because of line u1.

D.	 The code will not compile because of line u2.

E.	 It compiles but throws an exception at runtime.

F.	 It compiles but waits forever at runtime.

30.	 Which statement about the following method is true?

5: public static void main(String... unused) {
6: System.out.print("a");
7: try (StringBuilder reader = new StringBuilder()) {
8: System.out.print("b");
9: throw new IllegalArgumentException();
10: } catch (Exception e || RuntimeException e) {
11: System.out.print("c");
12: throw new FileNotFoundException();
13: } finally {
14: System.out.print("d");
15: } }

lviii  Introduction

A.	 It compiles and prints abc.

B.	 It compiles and prints abd.

C.	 It compiles and prints abcd.

D.	 One line contains a compiler error.

E.	 Two lines contain a compiler error.

F.	 Three lines contain a compiler error.

G.	 It compiles but prints an exception at runtime.

Answers to Assessment Test  lix

Answers to Assessment Test

1.	 G.  The question does not compile because line 44 and line 47 do not always return a value
in the case block, which is required when a switch expression is used in an assignment
operation. Line 44 is missing a yield statement when the if statement evaluates to false,
while line 47 is missing a yield statement entirely. Since two lines don’t compile, option G
is the answer. For more information, see Chapter 3.

2.	 B.  Initially, moon is assigned a value of 9, while star is assigned a value of 8. The multi-
plication operator (*) has a higher order of precedence than the addition operator (+), so it
gets evaluated first. Since star is not greater than 10, sun is assigned a value of 3, which is
promoted to 3.0f as part of the assignment. The value of jupiter is (3.0f + 9) - 1.0,
which is 11.0f. This value is implicitly promoted to double when it is assigned. In the last
assignment, moon is decremented from 9 to 8, with the value of the expression returned as 8.
Since 8 less than or equal to 8 is true, mars is set to a value of 2. The final output is 3.0,
11.0, 2, making option B the correct answer. Note that while Java outputs the decimal
for both float and double values, it does not output the f for float values. For more
information, see Chapter 2.

3.	 B, C, E.  The code may print 100 without any changes, but since the data class is not thread-
safe, this behavior is not guaranteed. For this reason, option F is incorrect. Option A is also
incorrect, as volatile does not guarantee thread-safety. Options B and C are correct, as
they both cause the stream to apply the add() operation in a synchronized manner. Option
D is incorrect, as serial() is not a stream method. Option E is correct. Synchronization
will cause each thread to wait so that the List is modified one element at a time. For more
information, see Chapter 13.

4.	 D.  First, this mess of code does compile. However, the source is an infinite stream. The filter
operation will check each element in turn to see whether any are not empty. While nothing
passes the filter, the code does not terminate. Therefore, option D is correct. For more
information, see Chapter 10.

5.	 B.  The code compiles successfully, so options D and E are incorrect. The value of a cannot be
changed by the addToInt() method, no matter what the method does, because only a copy
of the variable is passed into the parameter x. Therefore, a does not change, and the output
on line 9 is 15 which is option B. For more information, see Chapter 5.

6.	 C.  Java will use Penguin_en.properties as the matching resource bundle on line 7.
Since there is no match for French, the default locale is used. Line 8 finds a matching
key in the Penguin_en.properties file. Line 9 does not find a match in the
Penguin_en.properties file; therefore, it has to look higher up in the hierarchy to
Penguin.properties. This makes option C the answer. For more information, see
Chapter 11.

7.	 D, E.  The array is allowed to use an anonymous initializer because it is in the same line as
the declaration. The results of the binary search are undefined since the array is not sorted.
Since the question asks about guaranteed output, options A and B are incorrect.

lx  Introduction

Option D is correct because the compare() method returns 0 when the arrays are the same
length and have the same elements. Option E is correct because the mismatch() method
returns a -1 when the arrays are equivalent. For more information, see Chapter 4.

8.	 C, E, F.  First, note that option A is incorrect because the interface should be BiPredicate
and not BinaryPredicate. Line 6 requires you to know that negate() is a convenience
method on Predicate. This makes option E correct. Line 7 takes zero parameters and
doesn’t return anything, making it a Runnable. Remember that Runnable doesn’t use
generics. This makes option F correct. Finally, line 8 takes two parameters and returns an
int. Option C is correct. Comparable is there to mislead you since it takes only one param-
eter in its single abstract method. For more information, see Chapter 8.

9.	 D.  If this were a valid module-info.java file, it would need to be placed at the root
directory of the module, which is option A. However, a module is not allowed to use the
public access modifier. Option D is correct because the provided file does not compile
regardless of placement in the project. For more information, see Chapter 12.

10.	 C.  The getTailLength() method in the interface is private; therefore, it must include
a body. For this reason, line 1 is the only line that does not compile and option C is correct.
Line 3 uses a different return type for the method, but since it is private in the interface, it
is not considered an override. Note that line 7 defines an anonymous class using the abstract
Puma parent class. For more information, see Chapter 7.

11.	 C, E, F.  The jump() method has package access, which means it can be accessed only
from the same package. Tadpole is not in the same package as Frog, causing lines 7
and 10 to trigger compiler errors and giving us options C and F. The ribbit() method has
protected access, which means it can only be accessed from a subclass reference or in the
same package. Line 6 is fine because Tadpole is a subclass. Line 9 does not compile and
our final answer is option E because the variable reference is to a Frog, which doesn’t grant
access to the protected method. For more information, see Chapter 5.

12.	 B.  DataSource isn’t on the exam, so any question containing one is wrong. The key vari-
ables used in running a query are Connection, PreparedStatement, and ResultSet.
A Connection is obtained through a DriverManager, making option B correct. For more
information, see Chapter 15.

13.	 C, D.  The mySet declaration defines an upper bound of type RuntimeException.
This means that classes may specify RuntimeException or any subclass of
RuntimeException as the type parameter. Option B is incorrect because Exception is a
superclass, not a subclass, of RuntimeException. Option A is incorrect because the wild-
card cannot occur on the right side of the assignment. Options C and D compile and are the
answers. For more information, see Chapter 9.

14.	 D, E.  Line 10 includes an unhandled checked IOException, while line 11 includes an
unhandled checked FileNotFoundException, making option D correct. Line 12 does not
compile because is.readObject() must be cast to a Bird object to be assigned to b. It
also does not compile because it includes two unhandled checked exceptions, IOException
and ClassNotFoundException, making option E correct. If a cast operation were added
on line 12 and the main() method were updated on line 8 to declare the various checked

Answers to Assessment Test  lxi

exceptions, the code would compile but throw an exception at runtime since Bird does not
implement Serializable. Finally, if the class did implement Serializable, the program
would print null at runtime, as that is the default value for the transient field age. For
more information, see Chapter 14.

15.	 C.  Option A is incorrect because var is only allowed as a type for local variables, not in-
stance members. Options B and E are incorrect because new and case are reserved words
and cannot be used as identifiers. Option C is correct, as var can be used as a method name.
Option D is incorrect because a single underscore (_) cannot be used as an identifier. Finally,
option F is incorrect because var cannot be specified as the return type of a method. For
more information, see Chapter 1.

16.	 A, D.  This code is correct, eliminating options E and F. JDBC will use the existing parameter
set if you don’t replace it. This means Kara’s row will be set to use NY as the third param-
eter. Rolling back to a savepoint throws out any changes made since. This leaves Joslyn and
eliminates Kara, making option D correct. Rolling back without a savepoint brings us back
to the beginning of the transaction, which is option A. For more information, see Chapter 15.

17.	 C, F.  Option C is correct as mismatch() throws an exception if the files do not exist unless
they both refer to the same file. Additionally, option F is correct because the first index that
differs is returned, which is the second character. Since Java uses zero-based indexes, this is 1.
For more information, see Chapter 14.

18.	 F.  The Amphibian class is marked final, which means line 3 triggers a compiler error and
option F is correct. For more information, see Chapter 6.

19.	 C.  The code compiles and runs without issue; therefore, options E and F are incorrect. This
type of problem is best examined one loop iteration at a time:

■■ On the first iteration of the outer loop, i is 0, so the loop continues.

■■ On the first iteration of the inner loop, i is updated to 1 and x to 6. The if statement
branch is not executed, and x is increased to 10 and j to 1.

■■ On the second iteration of the inner loop (since j = 1 and 1 <= 2), i is updated to 2
and x to 11. At this point, the if branch will evaluate to true for the remainder of
the program run, which causes the flow to break out of the inner loop each time it
is reached.

■■ On the second iteration of the outer loop (since i = 2), i is updated to 3 and x to 12. As
before, the inner loop is broken since x is still greater than 10.

■■ On the third iteration of the outer loop, the outer loop is broken, as i is already not less
than 3. The most recent value of x, 12, is output, so the answer is option C.

For more information, see Chapter 3.

20.	 C.  First, note that the text block has the closing """ on a separate line, which means there
is a new line at the end and rules out options D, E, and F. Additionally, text blocks don’t
start with a new line, ruling out options A and B. Therefore, option C is correct. For more
information, see Chapter 1.

lxii  Introduction

21.	 C.  Only named modules are required to have a module-info.java file, ruling out options
A, B, E, and F. Unnamed modules are not readable by any other types of modules, ruling
out option D. Automatic modules always export all packages to other modules, making the
answer option C. For more information, see Chapter 12.

22.	 E.  When the same key is put into a Map, it overrides the original value. This means that line
23 could be omitted and the code would be the same, and there are only three key/value
pairs in the map. TreeMap sorts its keys, making the order M followed by k followed by m.
Remember that natural sort ordering has uppercase before lowercase. The replaceAll()
method runs against each element in the map, doubling the value. Finally, we iterate through
each key, printing 846 and making option E correct. For more information, see Chapter 9.

23.	 C, F.  Option A looks like a method reference. However, it doesn’t call a valid method, nor
can method references take parameters. The Predicate interface takes a single param-
eter and returns a boolean. Lambda expressions with one parameter are allowed to omit
the parentheses around the parameter list, making option C correct. The return state-
ment is optional when a single statement is in the body, making option F correct. Option
B is incorrect because a return statement must be used if braces are included around the
body. Options D and E are incorrect because the type is Integer in the predicate and int
in the lambda. Autoboxing works for collections, not inferring predicates. If these two were
changed to Integer, they would be correct. For more information, see Chapter 8.

24.	 D.  String literals are used from the string pool. This means that s1 and s2 refer to the
same object and are equal. Therefore, the first two print statements print true. While the
indent() and strip() methods create new String objects and the third statement prints
false, the intern() method reverts the String to the one from the string pool. There-
fore, the fourth print statement prints true. The fifth print statement prints false because
toString() uses a method to compute the value, and it is not from the string pool. The
final print statement again prints true because equals() looks at the values of String
objects. Since four are true, option D is the answer. For more information, see Chapter 4.

25.	 C.  The Reindeer object is instantiated using the constructor that takes an int value. Since
there is no explicit call to the parent constructor, the compiler inserts super() as the first
line of the constructor on line 7. The parent constructor is called, and Deer is printed on line
2. The flow returns to the constructor on line 7, with Reindeer being printed. Next, the
hasHorns() method is called. The reference type is Deer, and the underlying object type
is Reindeer. Since Reindeer correctly overrides the hasHorns() method, the version in
Reindeer is called, with line 11 printing ,true. Therefore, option C is correct. For more
information, see Chapter 6.

26.	 B, F.  Calling get() on an empty Optional causes an exception to be thrown, making
option B correct. Option F is also correct because filter() makes the Optional empty
before it calls get(). Option C is incorrect because the infinite stream is made finite by the
intermediate limit() operation. Options A and E are incorrect because the source streams
are not infinite. Therefore, the call to max() sees only three elements and terminates. For
more information, see Chapter 10.

Answers to Assessment Test  lxiii

27.	 C.  Music does not compile because records cannot include instance variables not listed in
the declaration of the record, as it could break immutability. Song does not compile because
a compact constructor cannot set an instance variable. The record would compile if this
were removed from the compact constructor, as compact constructors can modify input
parameters. March does not compile because it is an invalid override; it reduces the visibility
of the toString() method from public to package access. Ballet does not compile
because the subclass of a sealed class must be marked final, sealed, or non-sealed.
Since the only one that compiles is Dance, option C is the answer. For more information, see
Chapter 7.

28.	 B, D.  Option A does not compile, as the expression 3 + 2.0 is evaluated as a double,
and a double requires an explicit cast to be assigned to an int. Option B compiles without
issue, as a long value can be implicitly cast to a double. Option C does not compile
because the ternary operator (? :) is missing a colon (:), followed by a second expression.
Option D is correct. Even though the int value is larger than a short, it is explicitly cast to
a short, which means the value will wrap around to fit in a short. Option E is incorrect,
as you cannot use a decimal (.) with the long (L) postfix. Finally, option F is incorrect, as an
underscore cannot be used next to a decimal point. For more information, see Chapter 2.

29.	 F.  The code compiles without issue. The key to understanding this code is to notice that our
thread executor contains only one thread, but our CyclicBarrier limit is 3. Even though
12 tasks are all successfully submitted to the service, the first task will block forever on the
call to await(). Since the barrier is never reached, nothing is printed, and the program
hangs, making option F correct. For more information, see Chapter 13.

30.	 F.  Line 5 does not compile as the FileNotFoundException thrown on line 12 is not han-
dled or declared by the method. Line 7 does not compile because StringBuilder does not
implement AutoCloseable and is therefore not compatible with a try-with-resource state-
ment. Finally, line 10 does not compile as RuntimeException is a subclass of Exception
in the multi-catch block, making it redundant. Since this method contains three compiler
errors, option F is the correct answer. For more information, see Chapter 11.

Building Blocks

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Handling date, time, text, numeric and boolean values

■■ Use primitives and wrapper classes including Math API,

parentheses, type promotion, and casting to evaluate

arithmetic and boolean expressions

✓✓ Utilizing Java Object-Oriented Approach

■■ Declare and instantiate Java objects including nested class

objects, and explain the object life-cycle including creation,

reassigning references, and garbage collection

■■ Understand variable scopes, use local variable type inference,

apply encapsulation, and make objects immutable

Chapter

1

Welcome to the beginning of your journey to achieve a Java
17 certification. We assume this isn’t the first Java program-
ming book you’ve read. Although we do talk about the basics,

we do so only because we want to make sure you have all the terminology and detail you
need for the exam. If you’ve never written a Java program before, we recommend you pick
up an introductory book on Java 8 or higher. Examples include Head First Java, 3rd Edition
(O’Reilly Media, 2022) and Beginning Programming with Java for Dummies (For Dummies,
2021). Then come back to this certification study guide.

As the old saying goes, you have to learn how to walk before you can run. Likewise, you
have to learn the basics of Java before you can build complex programs. In this chapter, we
present the basics of Java packages, classes, variables, and data types, along with the aspects
of each that you need to know for the exam. For example, you might use Java every day but
be unaware that you cannot create a variable called 3dMap or this. The exam expects you
to know and understand the rules behind these principles. While most of this chapter should
be review, there may be aspects of the Java language that are new to you since they don’t
come up in practical use often.

Learning about the Environment
The Java environment consists of understanding a number of technologies. In the following
sections, we go over the key terms and acronyms you need to know and then discuss what
software you need to study for the exam.

Major Components of Java
The Java Development Kit (JDK) contains the minimum software you need to do Java
development. Key commands include:

■■ javac: Converts .java source files into .class bytecode

■■ java: Executes the program

■■ jar: Packages files together

■■ javadoc: Generates documentation

The javac program generates instructions in a special format called bytecode that
the java command can run. Then java launches the Java Virtual Machine (JVM) before

Learning about the Environment  3

running the code. The JVM knows how to run bytecode on the actual machine it is on. You
can think of the JVM as a special magic box on your machine that knows how to run your
.class file within your particular operating system and hardware.

Where Did the JRE Go?

In Java 8 and earlier, you could download a Java Runtime Environment (JRE) instead of the
full JDK. The JRE was a subset of the JDK that was used for running a program but could
not compile one. Now, people can use the full JDK when running a Java program. Alterna-
tively, developers can supply an executable that contains the required pieces that would
have been in the JRE.

When writing a program, there are common pieces of functionality and algorithms that
developers need. Luckily, we do not have to write each of these ourselves. Java comes with
a large suite of application programming interfaces (APIs) that you can use. For example,
there is a StringBuilder class to create a large String and a method in Collections
to sort a list. When writing a program, it is helpful to determine what pieces of your assign-
ment can be accomplished by existing APIs.

You might have noticed that we said the JDK contains the minimum software you need.
Many developers use an integrated development environment (IDE) to make writing and
running code easier. While we do not recommend using one while studying for the exam, it
is still good to know that they exist. Common Java IDEs include Eclipse, IntelliJ IDEA, and
Visual Studio Code.

Downloading a JDK
Every six months, Oracle releases a new version of Java. Java 17 came out in September
2021. This means that Java 17 will not be the latest version when you download the JDK to
study for the exam. However, you should still use Java 17 to study with since this is a Java
17 exam. The rules and behavior can change with later versions of Java. You wouldn’t want
to get a question wrong because you studied with a different version of Java!

You can download Oracle’s JDK on the Oracle website, using the same account you use
to register for the exam. There are many JDKs available, the most popular of which, besides
Oracle’s JDK, is OpenJDK.

Many versions of Java include preview features that are off by default but that you can
enable. Preview features are not on the exam. To avoid confusion about when a feature was
added to the language, we will say “was officially introduced in” to denote when it was
moved out of preview.

4  Chapter 1  ■  Building Blocks

Check Your Version of Java

Before we go any further, please take this opportunity to ensure that you have the right ver-
sion of Java on your path.

 javac -version
 java -version

Both of these commands should include version number 17.

Understanding the Class Structure
In Java programs, classes are the basic building blocks. When defining a class, you describe
all the parts and characteristics of one of those building blocks. In later chapters, you see
other building blocks such as interfaces, records, and enums.

To use most classes, you have to create objects. An object is a runtime instance of a class
in memory. An object is often referred to as an instance since it represents a single represen-
tation of the class. All the various objects of all the different classes represent the state of
your program. A reference is a variable that points to an object.

In the following sections, we look at fields, methods, and comments. We also explore the
relationship between classes and files.

Fields and Methods
Java classes have two primary elements: methods, often called functions or procedures in
other languages, and fields, more generally known as variables. Together these are called the
members of the class. Variables hold the state of the program, and methods operate on that
state. If the change is important to remember, a variable stores that change. That’s all classes
really do. It’s the programmer’s job to create and arrange these elements in such a way that
the resulting code is useful and, ideally, easy for other programmers to understand.

The simplest Java class you can write looks like this:

1: public class Animal {
2: }

Java calls a word with special meaning a keyword, which we’ve marked bold in the
previous snippet. Throughout the book, we often bold parts of code snippets to call
attention to them. Line 1 includes the public keyword, which allows other classes to use
it. The class keyword indicates you’re defining a class. Animal gives the name of the class.
Granted, this isn’t an interesting class, so let’s add your first field.

1: public class Animal {
2: String name;
3: }

Understanding the Class Structure  5

The line numbers aren’t part of the program; they’re just there to make
the code easier to talk about.

On line 2, we define a variable named name. We also declare the type of that variable to
be String. A String is a value that we can put text into, such as "this is a string".
String is also a class supplied with Java. Next we can add methods.

1: public class Animal {
2: String name;
3: public String getName() {
4: return name;
5: }
6: public void setName(String newName) {
7: name = newName;
8: }
9: }

On lines 3–5, we define a method. A method is an operation that can be called. Again,
public is used to signify that this method may be called from other classes. Next comes
the return type—in this case, the method returns a String. On lines 6–8 is another method.
This one has a special return type called void. The void keyword means that no value at all
is returned. This method requires that information be supplied to it from the calling method;
this information is called a parameter. The setName() method has one parameter named
newName, and it is of type String. This means the caller should pass in one String param-
eter and expect nothing to be returned.

The method name and parameter types are called the method signature. In this example,
can you identify the method name and parameters?

public int numberVisitors(int month) {
 return 10;
}

The method name is numberVisitors. There’s one parameter named month,
which is of type int, which is a numeric type. Therefore, the method signature is
numberVisitors(int).

Comments
Another common part of the code is called a comment. Because comments aren’t executable
code, you can place them in many places. Comments can make your code easier to read.
While the exam creators are trying to make the code harder to read, they still use comments
to call attention to line numbers. We hope you use comments in your own code. There are
three types of comments in Java. The first is called a single-line comment:

// comment until end of line

6  Chapter 1  ■  Building Blocks

A single-line comment begins with two slashes. The compiler ignores anything you type
after that on the same line. Next comes the multiple-line comment:

/* Multiple
 * line comment
 */

A multiple-line comment (also known as a multiline comment) includes anything starting
from the symbol /* until the symbol */. People often type an asterisk (*) at the beginning of
each line of a multiline comment to make it easier to read, but you don’t have to. Finally, we
have a Javadoc comment:

/**
 * Javadoc multiple-line comment
 * @author Jeanne and Scott
 */

This comment is similar to a multiline comment, except it starts with /**. This special
syntax tells the Javadoc tool to pay attention to the comment. Javadoc comments have a
specific structure that the Javadoc tool knows how to read. You probably won’t see a
Javadoc comment on the exam. Just remember it exists so you can read up on it online when
you start writing programs for others to use.

As a bit of practice, can you identify which type of comment each of the following six
words is in? Is it a single-line or a multiline comment?

/*
 * // anteater
 */

// bear

// // cat

// /* dog */

/* elephant */
/*
 * /* ferret */
 */

Did you look closely? Some of these are tricky. Even though comments technically aren’t
on the exam, it is good to practice looking at code carefully.

Understanding the Class Structure  7

Okay, on to the answers. The comment containing anteater is in a multiline comment.
Everything between /* and */ is part of a multiline comment—even if it includes a single-line
comment within it! The comment containing bear is your basic single-line comment. The
comments containing cat and dog are also single-line comments. Everything from // to the
end of the line is part of the comment, even if it is another type of comment. The comment
containing elephant is your basic multiline comment, even though it only takes up one line.

The line with ferret is interesting in that it doesn’t compile. Everything from the first /* to
the first */ is part of the comment, which means the compiler sees something like this:

/* */ */

We have a problem. There is an extra */. That’s not valid syntax—a fact the compiler is
happy to inform you about.

Classes and Source Files
Most of the time, each Java class is defined in its own .java file. In this chapter, the only top-
level type is a class. A top-level type is a data structure that can be defined independently
within a source file. For the majority of the book, we work with classes as the top-level type,
but in Chapter 7, “Beyond Classes,” we present other top-level types, as well as nested types.

A top-level class is often public, which means any code can call it. Interestingly, Java does
not require that the type be public. For example, this class is just fine:

1: class Animal {
2: String name;
3: }

You can even put two types in the same file. When you do so, at most one of the top-
level types in the file is allowed to be public. That means a file containing the following is
also fine:

1: public class Animal {
2: private String name;
3: }
4: class Animal2 {}

If you do have a public type, it needs to match the filename. The declaration
public class Animal2 would not compile in a file named Animal.java. In Chapter 5,
“Methods,” we discuss what access options are available other than public.

Noticing a pattern yet? This chapter includes numerous references to
topics that we go into in more detail in later chapters. If you’re an expe-
rienced Java developer, you’ll notice we keep a lot of the examples and
rules simple in this chapter. Don’t worry; we have the rest of the book to
present more rules and complicated edge cases!

8  Chapter 1  ■  Building Blocks

Writing a main() Method
A Java program begins execution with its main() method. In this section, you learn how to
create one, pass a parameter, and run a program. The main() method is often called an entry
point into the program, because it is the starting point that the JVM looks for when it begins
running a new program.

Creating a main() Method
The main() method lets the JVM call our code. The simplest possible class with a main()
method looks like this:

1: public class Zoo {
2: public static void main(String[] args) {
3: System.out.println("Hello World");
4: }
5: }

This code prints Hello World. To compile and execute this code, type it into a file called
Zoo.java and execute the following:

javac Zoo.java
java Zoo

If it prints Hello World, you were successful. If you do get error messages, check that
you’ve installed the Java 17 JDK, that you have added it to the PATH, and that you didn’t
make any typos in the example. If you have any of these problems and don’t know what
to do, post a question with the error message you received in the Beginning Java forum at
CodeRanch:

www.coderanch.com/forums/f-33/java

To compile Java code with the javac command, the file must have the extension .java.
The name of the file must match the name of the public class. The result is a file of bytecode
with the same name but with a .class filename extension. Remember that bytecode consists
of instructions that the JVM knows how to execute. Notice that we must omit the .class
extension to run Zoo.class.

The rules for what a Java file contains, and in what order, are more detailed than what we
have explained so far (there is more on this topic later in the chapter). To keep things simple
for now, we follow this subset of the rules:

■■ Each file can contain only one public class.

■■ The filename must match the class name, including case, and have a .java extension.

■■ If the Java class is an entry point for the program, it must contain a valid main() method.

Let’s first review the words in the main() method’s signature, one at a time. The keyword
public is what’s called an access modifier. It declares this method’s level of exposure to
potential callers in the program. Naturally, public means full access from anywhere in the
program. You learn more about access modifiers in Chapter 5.

http://www.coderanch.com/forums/f-33/java

Writing a main() Method  9

The keyword static binds a method to its class so it can be called by just the class name,
as in, for example, Zoo.main(). Java doesn’t need to create an object to call the main()
method—which is good since you haven’t learned about creating objects yet! In fact, the
JVM does this, more or less, when loading the class name given to it. If a main() method
doesn’t have the right keywords, you’ll get an error trying to run it. You see static again in
Chapter 6, “Class Design.”

The keyword void represents the return type. A method that returns no data returns con-
trol to the caller silently. In general, it’s good practice to use void for methods that change an
object’s state. In that sense, the main() method changes the program state from started to fin-
ished. We explore return types in Chapter 5 as well. (Are you excited for Chapter 5 yet?)

Finally, we arrive at the main() method’s parameter list, represented as an array of
java.lang.String objects. You can use any valid variable name along with any of these
three formats:

String[] args
String options[]
String... friends

The compiler accepts any of these. The variable name args is common because it hints
that this list contains values that were read in (arguments) when the JVM started. The char-
acters [] are brackets and represent an array. An array is a fixed-size list of items that are
all of the same type. The characters ... are called varargs (variable argument lists). You
learn about String in this chapter. Arrays are in Chapter 4, “Core APIs,” and varargs are in
Chapter 5.

Optional Modifiers in main() Methods

While most modifiers, such as public and static, are required for main() methods,
there are some optional modifiers allowed.

 public final static void main(final String[] args) {}

In this example, both final modifiers are optional, and the main() method is a valid
entry point with or without them. We cover the meaning of final methods and parameters
in Chapter 6.

Passing Parameters to a Java Program
Let’s see how to send data to our program’s main() method. First, we modify the Zoo
program to print out the first two arguments passed in:

public class Zoo {
 public static void main(String[] args) {

10  Chapter 1  ■  Building Blocks

 System.out.println(args[0]);
 System.out.println(args[1]);
 }
}

The code args[0] accesses the first element of the array. That’s right: array indexes begin
with 0 in Java. To run it, type this:

javac Zoo.java
java Zoo Bronx Zoo

The output is what you might expect:

Bronx
Zoo

The program correctly identifies the first two “words” as the arguments. Spaces are used
to separate the arguments. If you want spaces inside an argument, you need to use quotes as
in this example:

javac Zoo.java
java Zoo "San Diego" Zoo

Now we have a space in the output:

San Diego
Zoo

Finally, what happens if you don’t pass in enough arguments?

javac Zoo.java
java Zoo Zoo

Reading args[0] goes fine, and Zoo is printed out. Then Java panics. There’s no second
argument! What to do? Java prints out an exception telling you it has no idea what to do
with this argument at position 1. (You learn about exceptions in Chapter 11, “Exceptions
and Localization.”)

Zoo
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
 Index 1 out of bounds for length 1
 at Zoo.main(Zoo.java:4)

To review, the JDK contains a compiler. Java class files run on the JVM and therefore run
on any machine with Java rather than just the machine or operating system they happened
to have been compiled on.

Understanding Package Declarations and Imports  11

Single-File Source-Code

If you get tired of typing both javac and java every time you want to try a code example,
there’s a shortcut. You can instead run

 java Zoo.java Bronx Zoo

There is a key difference here. When compiling first, you omitted the .java extension
when running java. When skipping the explicit compilation step, you include this
extension. This feature is called launching single-file source-code programs and is useful for
testing or for small programs. The name cleverly tells you that it is designed for when your
program is one file.

Understanding Package Declarations
and Imports
Java comes with thousands of built-in classes, and there are countless more from developers
like you. With all those classes, Java needs a way to organize them. It handles this in a way
similar to a file cabinet. You put all your pieces of paper in folders. Java puts classes in
packages. These are logical groupings for classes.

We wouldn’t put you in front of a file cabinet and tell you to find a specific paper. Instead,
we’d tell you which folder to look in. Java works the same way. It needs you to tell it which
packages to look in to find code.

Suppose you try to compile this code:

public class NumberPicker {
 public static void main(String[] args) {
 Random r = new Random(); // DOES NOT COMPILE
 System.out.println(r.nextInt(10));
 }
}

The Java compiler helpfully gives you an error that looks like this:
error: cannot find symbol

This error could mean you made a typo in the name of the class. You double-check and
discover that you didn’t. The other cause of this error is omitting a needed import statement.
A statement is an instruction, and import statements tell Java which packages to look in for
classes. Since you didn’t tell Java where to look for Random, it has no clue.

Trying this again with the import allows the code to compile.

12  Chapter 1  ■  Building Blocks

import java.util.Random; // import tells us where to find Random
public class NumberPicker {
 public static void main(String[] args) {
 Random r = new Random();
 System.out.println(r.nextInt(10)); // a number 0-9
 }
}

Now the code runs; it prints out a random number between 0 and 9. Just like arrays, Java
likes to begin counting with 0.

In Chapter 5, we cover another type of import referred to as a static
import. It allows you to make static members of a class known, often
so you can use variables and method names without having to keep spec-
ifying the class name.

Packages
As you saw in the previous example, Java classes are grouped into packages. The import
statement tells the compiler which package to look in to find a class. This is similar to how
mailing a letter works. Imagine you are mailing a letter to 123 Main Street, Apartment 9.
The mail carrier first brings the letter to 123 Main Street. Then the carrier looks for the
mailbox for apartment number 9. The address is like the package name in Java.
The apartment number is like the class name in Java. Just as the mail carrier only looks
at apartment numbers in the building, Java only looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service starts with the
top level, looking at your country first. You start reading a package name at the beginning
too. For example, if it begins with java, this means it came with the JDK. If it starts with
something else, it likely shows where it came from using the website name in reverse. For
example, com.wiley.javabook tells us the code is associated with the wiley.com web-
site or organization. After the website name, you can add whatever you want. For example,
com.wiley.java.my.name also came from wiley.com. Java calls more detailed packages
child packages. The package com.wiley.javabook is a child package of com.wiley. You
can tell because it’s longer and thus more specific.

You’ll see package names on the exam that don’t follow this convention. Don’t be sur-
prised to see package names like a.b.c. The rule for package names is that they are mostly
letters or numbers separated by periods (.). Technically, you’re allowed a couple of other
characters between the periods (.). You can even use package names of websites you don’t
own if you want to, such as com.wiley, although people reading your code might be con-
fused! The rules are the same as for variable names, which you see later in this chapter. The
exam may try to trick you with invalid variable names. Luckily, it doesn’t try to trick you by
giving invalid package names.

http://wiley.com
http://com.wiley.java.my.name
http://wiley.com

Understanding Package Declarations and Imports  13

In the following sections, we look at imports with wildcards, naming conflicts with
imports, how to create a package of your own, and how the exam formats code.

Wildcards
Classes in the same package are often imported together. You can use a shortcut to import all
the classes in a package.

import java.util.*; // imports java.util.Random among other things
public class NumberPicker {
 public static void main(String[] args) {
 Random r = new Random();
 System.out.println(r.nextInt(10));
 }
}

In this example, we imported java.util.Random and a pile of other classes. The * is
a wildcard that matches all classes in the package. Every class in the java.util package
is available to this program when Java compiles it. The import statement doesn’t bring in
child packages, fields, or methods; it imports only classes directly under the package. Let’s
say you wanted to use the class AtomicInteger (you learn about that one in Chapter 13,
“Concurrency”) in the java.util.concurrent.atomic package. Which import or
imports support this?

import java.util.*;
import java.util.concurrent.*;
import java.util.concurrent.atomic.*;

Only the last import allows the class to be recognized because child packages are not
included with the first two.

You might think that including so many classes slows down your program execution, but
it doesn’t. The compiler figures out what’s actually needed. Which approach you choose is
personal preference—or team preference, if you are working with others on a team. Listing
the classes used makes the code easier to read, especially for new programmers. Using the
wildcard can shorten the import list. You’ll see both approaches on the exam.

Redundant Imports
Wait a minute! We’ve been referring to System without an import every time we printed
text, and Java found it just fine. There’s one special package in the Java world called
java.lang. This package is special in that it is automatically imported. You can type this
package in an import statement, but you don’t have to. In the following code, how many of
the imports do you think are redundant?

1: import java.lang.System;
2: import java.lang.*;

14  Chapter 1  ■  Building Blocks

3: import java.util.Random;
4: import java.util.*;
5: public class NumberPicker {
6: public static void main(String[] args) {
7: Random r = new Random();
8: System.out.println(r.nextInt(10));
9: }
10: }

The answer is that three of the imports are redundant. Lines 1 and 2 are redundant because
everything in java.lang is automatically imported. Line 4 is also redundant in this example
because Random is already imported from java.util.Random. If line 3 wasn’t present,
java.util.* wouldn’t be redundant, though, since it would cover importing Random.

Another case of redundancy involves importing a class that is in the same package as the
class importing it. Java automatically looks in the current package for other classes.

Let’s take a look at one more example to make sure you understand the edge cases for
imports. For this example, Files and Paths are both in the package java.nio.file. The
exam may use packages you may never have seen before. The question will let you know
which package the class is in if you need to know that in order to answer the question.

Which import statements do you think would work to get this code to compile?

public class InputImports {
 public void read(Files files) {
 Paths.get("name");
 }
}

There are two possible answers. The shorter one is to use a wildcard to import both at the
same time.
import java.nio.file.*;

The other answer is to import both classes explicitly.

import java.nio.file.Files;
import java.nio.file.Paths;

Now let’s consider some imports that don’t work.

import java.nio.*; // NO GOOD - a wildcard only matches
 // class names, not "file.Files"

import java.nio.*.*; // NO GOOD - you can only have one wildcard
 // and it must be at the end

import java.nio.file.Paths.*; // NO GOOD - you cannot import methods
 // only class names

Understanding Package Declarations and Imports  15

Naming Conflicts
One of the reasons for using packages is so that class names don’t have to be unique across
all of Java. This means you’ll sometimes want to import a class that can be found in mul-
tiple places. A common example of this is the Date class. Java provides implementations of
java.util.Date and java.sql.Date. What import statement can we use if we want the
java.util.Date version?

public class Conflicts {
 Date date;
 // some more code
}

The answer should be easy by now. You can write either import java.util.*; or
import java.util.Date;. The tricky cases come about when other imports are present.

import java.util.*;
import java.sql.*; // causes Date declaration to not compile

When the class name is found in multiple packages, Java gives you a compiler error. In
our example, the solution is easy—remove the import java.sql.* that we don’t need. But
what do we do if we need a whole pile of other classes in the java.sql package?

import java.util.Date;
import java.sql.*;

Ah, now it works! If you explicitly import a class name, it takes precedence over any
wildcards present. Java thinks, “The programmer really wants me to assume use of the
java.util.Date class.”

One more example. What does Java do with “ties” for precedence?

import java.util.Date;
import java.sql.Date;

Java is smart enough to detect that this code is no good. As a programmer, you’ve claimed
to explicitly want the default to be both the java.util.Date and java.sql.Date imple-
mentations. Because there can’t be two defaults, the compiler tells you the imports are
ambiguous.

If You Really Need to Use Two Classes with the Same Name

Sometimes you really do want to use Date from two different packages. When this hap-
pens, you can pick one to use in the import statement and use the other’s fully qualified
class name. Or you can drop both import statements and always use the fully qualified
class name.

 public class Conflicts {
 java.util.Date date;
 java.sql.Date sqlDate;
 }

16  Chapter 1  ■  Building Blocks

Creating a New Package
Up to now, all the code we’ve written in this chapter has been in the default package. This is
a special unnamed package that you should use only for throwaway code. You can tell the
code is in the default package, because there’s no package name. On the exam, you’ll see the
default package used a lot to save space in code listings. In real life, always name your pack-
ages to avoid naming conflicts and to allow others to reuse your code.

Now it’s time to create a new package. The directory structure on your computer is
related to the package name. In this section, just read along. We cover how to compile and
run the code in the next section.

Suppose we have these two classes:

package packagea;
public class ClassA {}

package packageb;
import packagea.ClassA;
public class ClassB {
 public static void main(String[] args) {
 ClassA a;
 System.out.println("Got it");
 }
}

When you run a Java program, Java knows where to look for those package names.
In this case, running from C:\temp works because both packagea and packageb are
underneath it.

Compiling and Running Code with Packages
You’ll learn Java much more easily by using the command line to compile and test your
examples. Once you know the Java syntax well, you can switch to an IDE. But for the exam,
your goal is to know details about the language and not have the IDE hide them for you.

Follow this example to make sure you know how to use the command line. If you have
any problems following this procedure, post a question in the Beginning Java forum at
CodeRanch. Describe what you tried and what the error said.

www.coderanch.com/forums/f-33/java

The first step is to create the two files from the previous section. Table 1.1 shows the
expected fully qualified filenames and the command to get into the directory for the
next steps.

http://www.coderanch.com/forums/f-33/java

Understanding Package Declarations and Imports  17

Now it is time to compile the code. Luckily, this is the same regardless of the operating
system. To compile, type the following command:

javac packagea/ClassA.java packageb/ClassB.java

If this command doesn’t work, you’ll get an error message. Check your files carefully for
typos against the provided files. If the command does work, two new files will be created:
packagea/ClassA.class and packageb/ClassB.class.

Compiling with Wildcards

You can use an asterisk to specify that you’d like to include all Java files in a directory. This
is convenient when you have a lot of files in a package. We can rewrite the previous javac
command like this:

 javac packagea/*.java packageb/*.java

However, you cannot use a wildcard to include subdirectories. If you were to write
javac *.java, the code in the packages would not be picked up.

Now that your code has compiled, you can run it by typing the following command:

java packageb.ClassB

If it works, you’ll see Got it printed. You might have noticed that we typed ClassB
rather than ClassB.class. As discussed earlier, you don’t pass the extension when running
a program.

Figure 1.1 shows where the .class files were created in the directory structure.

TABLE 1.1   Setup procedure by operating system

Step Windows Mac/Linux

1.  Create first class. C:\temp\packagea\
ClassA.java

/tmp/packagea/ClassA.java

2.  Create second class. C:\temp\packageb\
ClassB.java

/tmp/packageb/ClassB.java

3.  Go to directory. cd C:\temp cd /tmp

18  Chapter 1  ■  Building Blocks

Compiling to Another Directory
By default, the javac command places the compiled classes in the same directory as the
source code. It also provides an option to place the class files into a different directory. The
-d option specifies this target directory.

Java options are case sensitive. This means you cannot pass -D instead
of -d.

If you are following along, delete the ClassA.class and ClassB.class files that
were created in the previous section. Where do you think this command will create the file
ClassA.class?

javac -d classes packagea/ClassA.java packageb/ClassB.java

The correct answer is in classes/packagea/ClassA.class. The package structure is
preserved under the requested target directory. Figure 1.2 shows this new structure.

packageb

packageb

ClassA.java

ClassA.class

ClassB.java

ClassB.class

packagea

classes

packagea

F IGURE 1.2   Compiling with packages and directories

packagea

packageb

ClassA.java

ClassA.class

ClassB.java

ClassB.class

F IGURE 1.1   Compiling with packages

Understanding Package Declarations and Imports  19

To run the program, you specify the classpath so Java knows where to find the classes.
There are three options you can use. All three of these do the same thing:

java -cp classes packageb.ClassB
java -classpath classes packageb.ClassB
java --class-path classes packageb.ClassB

Notice that the last one requires two dashes (--), while the first two require one dash (-).
If you have the wrong number of dashes, the program will not run.

Three Classpath Options

You might wonder why there are three options for the classpath. The -cp option is the
short form. Developers frequently choose the short form because we are lazy typists. The
-classpath and --class-path versions can be clearer to read but require more typing.

Table 1.2 and Table 1.3 review the options you need to know for the exam. There are
many other options available! And in Chapter 12, “Modules,” you learn additional options
specific to modules.

TABLE 1.2   Important javac options

Option Description

-cp <classpath>
-classpath <classpath>
--class-path <classpath>

Location of classes needed to compile the program

-d <dir> Directory in which to place generated class files

TABLE 1.3   Important java options

Option Description

-cp <classpath>
-classpath <classpath>
--class-path <classpath>

Location of classes needed to run the program

20  Chapter 1  ■  Building Blocks

Compiling with JAR Files
Just like the classes directory in the previous example, you can also specify the location
of the other files explicitly using a classpath. This technique is useful when the class files are
located elsewhere or in special JAR files. A Java archive (JAR) file is like a ZIP file of mainly
Java class files.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherLocation;c:\temp\myJar.jar" myPackage.MyClass

And on macOS/Linux, you type this:

java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar" myPackage.MyClass

The period (.) indicates that you want to include the current directory in the classpath. The
rest of the command says to look for loose class files (or packages) in someOtherLocation
and within myJar.jar. Windows uses semicolons (;) to separate parts of the classpath; other
operating systems use colons.

Just like when you’re compiling, you can use a wildcard (*) to match all the JARs in a
directory. Here’s an example:

java -cp "C:\temp\directoryWithJars*" myPackage.MyClass

This command will add to the classpath all the JARs that are in directoryWithJars. It
won’t include any JARs in the classpath that are in a subdirectory of directoryWithJars.

Creating a JAR File
Some JARs are created by others, such as those downloaded from the Internet or created
by a teammate. Alternatively, you can create a JAR file yourself. To do so, you use the jar
command. The simplest commands create a jar containing the files in the current directory.
You can use the short or long form for each option.

jar -cvf myNewFile.jar .
jar --create --verbose --file myNewFile.jar .

Alternatively, you can specify a directory instead of using the current directory.

jar -cvf myNewFile.jar -C dir .

There is no long form of the -C option. Table 1.4 lists the options you need to use the jar
command to create a JAR file. In Chapter 12, you see jar again for modules.

Understanding Package Declarations and Imports  21

Ordering Elements in a Class
Now that you’ve seen the most common parts of a class, let’s take a look at the correct order
to type them into a file. Comments can go anywhere in the code. Beyond that, you need to
memorize the rules in Table 1.5.

TABLE 1.4   Important jar options

Option Description

-c
--create

Creates a new JAR file

-v
--verbose

Prints details when working with JAR files

-f <fileName>
--file <fileName>

JAR filename

-C <directory> Directory containing files to be used to create the JAR

TABLE 1.5   Order for declaring a class

Element Example Required? Where does it go?

Package declaration package abc; No First line in the file (excluding
comments or blank lines)

import statements import
java.util.*;

No Immediately after the package
(if present)

Top-level type declaration public class C Yes Immediately after the import
(if any)

Field declarations int value; No Any top-level element within
a class

Method declarations void method() No Any top-level element within
a class

22  Chapter 1  ■  Building Blocks

Let’s look at a few examples to help you remember this. The first example contains one of
each element:

package structure; // package must be first non-comment
import java.util.*; // import must come after package
public class Meerkat { // then comes the class
 double weight; // fields and methods can go in either order
 public double getWeight() {
 return weight; }
 double height; // another field - they don't need to be together
}

So far, so good. This is a common pattern that you should be familiar with. How
about this one?

/* header */

package structure;

// class Meerkat
public class Meerkat { }

Still good. We can put comments anywhere, blank lines are ignored, and imports are
optional. In the next example, we have a problem:

import java.util.*;
package structure; // DOES NOT COMPILE
String name; // DOES NOT COMPILE
public class Meerkat { } // DOES NOT COMPILE

There are two problems here. One is that the package and import statements are
reversed. Although both are optional, package must come before import if present. The
other issue is that a field attempts a declaration outside a class. This is not allowed. Fields
and methods must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and class. Fields and
methods are easier to remember because they merely have to be inside a class.

Throughout this book, if you see two public classes in a code snippet or
question, you can assume they are in different files unless it specifically
says they are in the same .java file.

Now you know how to create and arrange a class. Later chapters show you how to create
classes with more powerful operations.

Creating Objects  23

Creating Objects
Our programs wouldn’t be able to do anything useful if we didn’t have the ability to create
new objects. Remember that an object is an instance of a class. In the following sections,
we look at constructors, object fields, instance initializers, and the order in which values are
initialized.

Calling Constructors
To create an instance of a class, all you have to do is write new before the class name and
add parentheses after it. Here’s an example:

Park p = new Park();

First you declare the type that you’ll be creating (Park) and give the variable a name (p).
This gives Java a place to store a reference to the object. Then you write new Park() to
actually create the object.

Park() looks like a method since it is followed by parentheses. It’s called a constructor,
which is a special type of method that creates a new object. Now it’s time to define a con-
structor of your own:

public class Chick {
 public Chick() {
 System.out.println("in constructor");
 }
}

There are two key points to note about the constructor: the name of the constructor
matches the name of the class, and there’s no return type. You may see a method like this
on the exam:

public class Chick {
 public void Chick() { } // NOT A CONSTRUCTOR
}

When you see a method name beginning with a capital letter and having a return type,
pay special attention to it. It is not a constructor since there’s a return type. It’s a regular
method that does compile but will not be called when you write new Chick().

The purpose of a constructor is to initialize fields, although you can put any code in there.
Another way to initialize fields is to do so directly on the line on which they’re declared. This
example shows both approaches:

public class Chicken {
 int numEggs = 12; // initialize on line
 String name;

24  Chapter 1  ■  Building Blocks

 public Chicken() {
 name = "Duke"; // initialize in constructor
 }
}

For most classes, you don’t have to code a constructor—the compiler will supply a
“do nothing” default constructor for you. There are some scenarios that do require you to
declare a constructor. You learn all about them in Chapter 6.

Reading and Writing Member Fields
It’s possible to read and write instance variables directly from the caller. In this example, a
mother swan lays eggs:

public class Swan {
 int numberEggs; // instance variable
 public static void main(String[] args) {
 Swan mother = new Swan();
 mother.numberEggs = 1; // set variable
 System.out.println(mother.numberEggs); // read variable
 }
}

The “caller” in this case is the main() method, which could be in the same class or in
another class. This class sets numberEggs to 1 and then reads numberEggs directly to print
it out. In Chapter 5, you learn how to use encapsulation to protect the Swan class from hav-
ing someone set a negative number of eggs.

You can even read values of already initialized fields on a line initializing a new field:

1: public class Name {
2: String first = "Theodore";
3: String last = "Moose";
4: String full = first + last;
5: }

Lines 2 and 3 both write to fields. Line 4 both reads and writes data. It reads the fields
first and last. It then writes the field full.

Executing Instance Initializer Blocks
When you learned about methods, you saw braces ({}). The code between the braces (some-
times called “inside the braces”) is called a code block. Anywhere you see braces is a
code block.

Creating Objects  25

Sometimes code blocks are inside a method. These are run when the method is called.
Other times, code blocks appear outside a method. These are called instance initializers. In
Chapter 6, you learn how to use a static initializer.

How many blocks do you see in the following example? How many instance initializers
do you see?

1: public class Bird {
2: public static void main(String[] args) {
3: { System.out.println("Feathers"); }
4: }
5: { System.out.println("Snowy"); }
6: }

There are four code blocks in this example: a class definition, a method declaration, an
inner block, and an instance initializer. Counting code blocks is easy: you just count the
number of pairs of braces. If there aren’t the same number of open ({) and close (}) braces
or they aren’t defined in the proper order, the code doesn’t compile. For example, you cannot
use a closed brace (}) if there’s no corresponding open brace ({) that it matches written ear-
lier in the code. In programming, this is referred to as the balanced parentheses problem, and
it often comes up in job interview questions.

When you’re counting instance initializers, keep in mind that they cannot exist inside of a
method. Line 5 is an instance initializer, with its braces outside a method. On the other hand,
line 3 is not an instance initializer, as it is only called when the main() method is executed.
There is one additional set of braces on lines 1 and 6 that constitute the class declaration.

Following the Order of Initialization
When writing code that initializes fields in multiple places, you have to keep track of the
order of initialization. This is simply the order in which different methods, constructors, or
blocks are called when an instance of the class is created. We add some more rules to the
order of initialization in Chapter 6. In the meantime, you need to remember:

■■ Fields and instance initializer blocks are run in the order in which they appear in the file.

■■ The constructor runs after all fields and instance initializer blocks have run.

Let’s look at an example:

1: public class Chick {
2: private String name = "Fluffy";
3: { System.out.println("setting field"); }
4: public Chick() {
5: name = "Tiny";
6: System.out.println("setting constructor");
7: }

26  Chapter 1  ■  Building Blocks

8: public static void main(String[] args) {
9: Chick chick = new Chick();
10: System.out.println(chick.name); } }

Running this example prints this:

setting field
setting constructor
Tiny

Let’s look at what’s happening here. We start with the main() method because that’s
where Java starts execution. On line 9, we call the constructor of Chick. Java creates a new
object. First it initializes name to "Fluffy" on line 2. Next it executes the println() state-
ment in the instance initializer on line 3. Once all the fields and instance initializers have
run, Java returns to the constructor. Line 5 changes the value of name to "Tiny", and line 6
prints another statement. At this point, the constructor is done, and then the execution goes
back to the println() statement on line 10.

Order matters for the fields and blocks of code. You can’t refer to a variable before it has
been defined:

{ System.out.println(name); } // DOES NOT COMPILE
private String name = "Fluffy";

You should expect to see a question about initialization on the exam. Let’s try one more.
What do you think this code prints out?

public class Egg {
 public Egg() {
 number = 5;
 }
 public static void main(String[] args) {
 Egg egg = new Egg();
 System.out.println(egg.number);
 }
 private int number = 3;
 { number = 4; } }

If you answered 5, you got it right. Fields and blocks are run first in order, setting number
to 3 and then 4. Then the constructor runs, setting number to 5. You see a lot more rules
and examples covering order of initialization in Chapter 6. We only cover the basics here so
you can follow the order of initialization for simple programs.

Understanding Data Types
Java applications contain two types of data: primitive types and reference types. In this sec-
tion, we discuss the differences between a primitive type and a reference type.

Understanding Data Types  27

Using Primitive Types
Java has eight built-in data types, referred to as the Java primitive types. These eight data
types represent the building blocks for Java objects, because all Java objects are just a com-
plex collection of these primitive data types. That said, a primitive is not an object in Java,
nor does it represent an object. A primitive is just a single value in memory, such as a number
or character.

The Primitive Types
The exam assumes you are well versed in the eight primitive data types, their relative sizes,
and what can be stored in them. Table 1.6 shows the Java primitive types together with their
size in bits and the range of values that each holds.

Is String a Primitive?

No, it is not. That said, String is often mistaken for a ninth primitive because Java
includes built-in support for String literals and operators. You learn more about String in
Chapter 4, but for now, just remember it’s an object, not a primitive.

TABLE 1.6   Primitive types

Keyword Type Min value Max value Default value Example

boolean true or false n/a n/a false true

byte 8-bit integral value -128 127 0 123

short 16-bit integral value -32,768 32,767 0 123

int 32-bit integral value -2,147,483,648 2,147,483,647 0 123

long 64-bit integral value -263 263 – 1 0L 123L

float 32-bit floating-point value n/a n/a 0.0f 123.45f

double 64-bit floating-point value n/a n/a 0.0 123.456

char 16-bit Unicode value 0 65,535 \u0000 'a'

28  Chapter 1  ■  Building Blocks

There’s a lot of information in Table 1.6. Let’s look at some key points:

■■ The byte, short, int, and long types are used for integer values without dec-
imal points.

■■ Each numeric type uses twice as many bits as the smaller similar type. For example,
short uses twice as many bits as byte does.

■■ All of the numeric types are signed and reserve one of their bits to cover a negative
range. For example, instead of byte covering 0 to 255 (or even 1 to 256) it actually
covers -128 to 127.

■■ A float requires the letter f or F following the number so Java knows it is a float.
Without an f or F, Java interprets a decimal value as a double.

■■ A long requires the letter l or L following the number so Java knows it is a long.
Without an l or L, Java interprets a number without a decimal point as an int in most
scenarios.

You won’t be asked about the exact sizes of these types, although you should have a gen-
eral idea of the size of smaller types like byte and short. A common question among newer
Java developers is, what is the bit size of boolean? The answer is, it is not specified and is
dependent on the JVM where the code is being executed.

Signed and Unsigned: short and char

For the exam, you should be aware that short and char are closely related, as both are
stored as integral types with the same 16-bit length. The primary difference is that short
is signed, which means it splits its range across the positive and negative integers. Alterna-
tively, char is unsigned, which means its range is strictly positive, including 0.

Often, short and char values can be cast to one another because the underlying data size
is the same. You learn more about casting in Chapter 2, “Operators.”

Writing Literals
There are a few more things you should know about numeric primitives. When a number is
present in the code, it is called a literal. By default, Java assumes you are defining an int value
with a numeric literal. In the following example, the number listed is bigger than what fits in
an int. Remember, you aren’t expected to memorize the maximum value for an int. The exam
will include it in the question if it comes up.

long max = 3123456789; // DOES NOT COMPILE

Understanding Data Types  29

Java complains the number is out of range. And it is—for an int. However, we don’t
have an int. The solution is to add the character L to the number:

long max = 3123456789L; // Now Java knows it is a long

Alternatively, you could add a lowercase l to the number. But please use the uppercase L.
The lowercase l looks like the number 1.

Another way to specify numbers is to change the “base.” When you learned how to count,
you studied the digits 0–9. This numbering system is called base 10 since there are 10 pos-
sible values for each digit. It is also known as the decimal number system. Java allows you to
specify digits in several other formats:

■■ Octal (digits 0–7), which uses the number 0 as a prefix—for example, 017.

■■ Hexadecimal (digits 0–9 and letters A–F/a–f), which uses 0x or 0X as a prefix—for
example, 0xFF, 0xff, 0XFf. Hexadecimal is case insensitive, so all of these examples
mean the same value.

■■ Binary (digits 0–1), which uses the number 0 followed by b or B as a prefix—for
example, 0b10, 0B10.

You won’t need to convert between number systems on the exam. You’ll have to recog-
nize valid literal values that can be assigned to numbers.

Literals and the Underscore Character
The last thing you need to know about numeric literals is that you can have underscores in
numbers to make them easier to read:

int million1 = 1000000;
int million2 = 1_000_000;

We’d rather be reading the latter one because the zeros don’t run together. You can add
underscores anywhere except at the beginning of a literal, the end of a literal, right before a
decimal point, or right after a decimal point. You can even place multiple underscore charac-
ters next to each other, although we don’t recommend it.

Let’s look at a few examples:

double notAtStart = _1000.00; // DOES NOT COMPILE
double notAtEnd = 1000.00_; // DOES NOT COMPILE
double notByDecimal = 1000_.00; // DOES NOT COMPILE
double annoyingButLegal = 1_00_0.0_0; // Ugly, but compiles
double reallyUgly = 1__________2; // Also compiles

Using Reference Types
A reference type refers to an object (an instance of a class). Unlike primitive types that hold
their values in the memory where the variable is allocated, references do not hold the value
of the object they refer to. Instead, a reference “points” to an object by storing the memory

30  Chapter 1  ■  Building Blocks

address where the object is located, a concept referred to as a pointer. Unlike other lan-
guages, Java does not allow you to learn what the physical memory address is. You can only
use the reference to refer to the object.

Let’s take a look at some examples that declare and initialize reference types. Suppose we
declare a reference of type String:

String greeting;

The greeting variable is a reference that can only point to a String object. A value is
assigned to a reference in one of two ways:

■■ A reference can be assigned to another object of the same or compatible type.

■■ A reference can be assigned to a new object using the new keyword.

For example, the following statement assigns this reference to a new object:

greeting = new String("How are you?");

The greeting reference points to a new String object, "How are you?". The String
object does not have a name and can be accessed only via a corresponding reference.

Distinguishing between Primitives and Reference Types
There are a few important differences you should know between primitives and reference
types. First, notice that all the primitive types have lowercase type names. All classes that
come with Java begin with uppercase. Although not required, it is a standard practice, and
you should follow this convention for classes you create as well.

Next, reference types can be used to call methods, assuming the reference is not null.
Primitives do not have methods declared on them. In this example, we can call a method on
reference since it is of a reference type. You can tell length is a method because it has () after
it. See if you can understand why the following snippet does not compile:

4: String reference = "hello";
5: int len = reference.length();
6: int bad = len.length(); // DOES NOT COMPILE

Line 6 is gibberish. No methods exist on len because it is an int primitive. Primitives
do not have methods. Remember, a String is not a primitive, so you can call methods like
length() on a String reference, as we did on line 5.

Finally, reference types can be assigned null, which means they do not currently refer to
an object. Primitive types will give you a compiler error if you attempt to assign them null. In
this example, value cannot point to null because it is of type int:

int value = null; // DOES NOT COMPILE
String name = null;

But what if you don’t know the value of an int and want to assign it to null? In that
case, you should use a numeric wrapper class, such as Integer, instead of int.

Understanding Data Types  31

Creating Wrapper Classes
Each primitive type has a wrapper class, which is an object type that corresponds to the
primitive. Table 1.7 lists all the wrapper classes along with how to create them.

There is also a valueOf() variant that converts a String into the wrapper class.
For example:

int primitive = Integer.parseInt("123");
Integer wrapper = Integer.valueOf("123");

The first line converts a String to an int primitive. The second converts a String to an
Integer wrapper class.

All of the numeric classes in Table 1.7 extend the Number class, which means they all
come with some useful helper methods: byteValue(), shortValue(), intValue(),
longValue(), floatValue(), and doubleValue(). The Boolean and Character
wrapper classes include booleanValue() and charValue(), respectively.

As you probably guessed, these methods return the primitive value of a wrapper instance,
in the type requested.

Double apple = Double.valueOf("200.99");
System.out.println(apple.byteValue()); // -56
System.out.println(apple.intValue()); // 200
System.out.println(apple.doubleValue()); // 200.99

TABLE 1.7   Wrapper classes

Primitive type Wrapper class
Wrapper class
inherits Number? Example of creating

boolean Boolean No Boolean.valueOf(true)

byte Byte Yes Byte.valueOf((byte) 1)

short Short Yes Short.valueOf((short) 1)

int Integer Yes Integer.valueOf(1)

long Long Yes Long.valueOf(1)

float Float Yes Float.valueOf((float) 1.0)

double Double Yes Double.valueOf(1.0)

char Character No Character.valueOf('c')

32  Chapter 1  ■  Building Blocks

These helper methods do their best to convert values but can result in a loss of preci-
sion. In the first example, there is no 200 in byte, so it wraps around to -56. In the sec-
ond example, the value is truncated, which means all of the numbers after the decimal are
dropped. In Chapter 5, we apply autoboxing and unboxing to show how easy Java makes it
to work with primitive and wrapper values.

Some of the wrapper classes contain additional helper methods for working with num-
bers. You don’t need to memorize these; you can assume any you are given are valid. For
example, Integer has:

■■ max(int num1, int num2), which returns the largest of the two numbers

■■ min(int num1, int num2), which returns the smallest of the two numbers

■■ sum(int num1, int num2), which adds the two numbers

Defining Text Blocks
Earlier we saw a simple String with the value "hello". What if we want to have a String
with something more complicated? For example, let’s figure out how to create a String
with this value:

"Java Study Guide"
 by Scott & Jeanne

Building this as a String requires two things you haven’t learned yet. The syntax \" lets
you say you want a " rather than to end the String, and \n says you want a new line. Both
of these are called escape characters because the backslash provides a special meaning. With
these two new skills, we can write

String eyeTest = "\"Java Study Guide\"\n by Scott & Jeanne";

While this does work, it is hard to read. Luckily, Java has text blocks, also known as
multiline strings. See Figure 1.3 for the text block equivalent.

A text block starts and ends with three double quotes ("""), and the contents don’t need
to be escaped. This is much easier to read. Notice how the type is still String. This means
the methods you learn about in Chapter 4 for String work for both a regular String and
a text block.

String textBlock = """

Start text block

Essential whitespace

End text block

Incidental whitespace

"Java Study Guide"

by Scott & Jeanne""";

F IGURE 1.3   Text block

Understanding Data Types  33

You might have noticed the words incidental and essential whitespace in the figure.
What’s that? Essential whitespace is part of your String and is important to you. Incidental
whitespace just happens to be there to make the code easier to read. You can reformat
your code and change the amount of incidental whitespace without any impact on your
String value.

Imagine a vertical line drawn on the leftmost non-whitespace character in your text
block. Everything to the left of it is incidental whitespace, and everything to the right is
essential whitespace. Let’s try an example. How many lines does this output, and how many
incidental and essential whitespace characters begin each line?

14: String pyramid = """
15: *
16: * *
17: * * *
18: """;
19: System.out.print(pyramid);

There are four lines of output. Lines 15–17 have stars. Line 18 is a line without any char-
acters. The closing triple " would have needed to be on line 17 if we didn’t want that blank
line. There are no incidental whitespace characters here. The closing """ on line 18 are the
leftmost characters, so the line is drawn at the leftmost position. Line 15 has two essential
whitespace characters to begin the line, and line 16 has one. That whitespace fills in the line
drawn to match line 18.

Table 1.8 shows some special formatting sequences and compares how they work in a
regular String and a text block.

TABLE 1.8   Text block formatting

Formatting
Meaning in
regular String

Meaning in
text block

\" " "

\""" n/a – Invalid """

\"\"\" """ """

Space (at end of line) Space Ignored

 \s Two spaces (\s is a space and preserves
leading space on the line)

Two spaces

\ (at end of line) n/a – Invalid Omits new line on
that line

34  Chapter 1  ■  Building Blocks

Let’s try a few examples. First, do you see why this doesn’t compile?

String block = """doe"""; // DOES NOT COMPILE

Text blocks require a line break after the opening """, making this one invalid. Now let’s
try a valid one. How many lines do you think are in this text block?

String block = """
 doe \
 deer""";

Just one. The output is doe deer since the \ tells Java not to add a new line before deer.
Let’s try determining the number of lines in another text block:

String block = """
 doe \n
 deer
 """;

This time we have four lines. Since the text block has the closing """ on a separate line,
we have three lines for the lines in the text block plus the explicit \n. Let’s try one more.
What do you think this outputs?

String block = """
 "doe\"\"\"
 \"deer\"""
 """;
System.out.print("*"+ block + "*");

The answer is
* "doe"""
 "deer"""
*

All of the \" escape the ". There is one space of essential whitespace on the doe and deer
lines. All the other leading whitespace is incidental whitespace.

Declaring Variables
You’ve seen some variables already. A variable is a name for a piece of memory that stores
data. When you declare a variable, you need to state the variable type along with giving it a
name. Giving a variable a value is called initializing a variable. To initialize a variable, you
just type the variable name followed by an equal sign, followed by the desired value. This
example shows declaring and initializing a variable in one line:

String zooName = "The Best Zoo";

Declaring Variables  35

In the following sections, we look at how to properly define variables in one or mul-
tiple lines.

Identifying Identifiers
It probably comes as no surprise to you that Java has precise rules about identifier names.
An identifier is the name of a variable, method, class, interface, or package. Luckily, the rules
for identifiers for variables apply to all of the other types that you are free to name.

There are only four rules to remember for legal identifiers:

■■ Identifiers must begin with a letter, a currency symbol, or a _ symbol. Currency symbols
include dollar ($), yuan (¥), euro (€), and so on.

■■ Identifiers can include numbers but not start with them.

■■ A single underscore _ is not allowed as an identifier.

■■ You cannot use the same name as a Java reserved word. A reserved word is a special
word that Java has held aside so that you are not allowed to use it. Remember that Java
is case sensitive, so you can use versions of the keywords that only differ in case. Please
don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved words. The exam will
only ask you about ones that are commonly used, such as class and for. Table 1.9 lists all
of the reserved words in Java.

TABLE 1.9   Reserved words

abstract assert boolean break byte

case catch char class const*

continue default do double else

enum extends final finally float

for goto* if implements import

instanceof int interface long native

new package private protected public

return short static strictfp super

switch synchronized this throw throws

transient try void volatile while

* The reserved words const and goto aren’t actually used in Java. They are reserved so that people com-
ing from other programming languages don’t use them by accident—and, in theory, in case Java wants to use
them one day.

36  Chapter 1  ■  Building Blocks

There are other names that you can’t use. For example, true, false, and null are literal
values, so they can’t be variable names. Additionally, there are contextual keywords like
module in Chapter 12. Prepare to be tested on these rules. The following examples are legal:

long okidentifier;
float $OK2Identifier;
boolean _alsoOK1d3ntifi3r;
char __SStillOkbutKnotsonice$;

These examples are not legal:

int 3DPointClass; // identifiers cannot begin with a number
byte hollywood@vine; // @ is not a letter, digit, $ or _
String *$coffee; // * is not a letter, digit, $ or _
double public; // public is a reserved word
short _; // a single underscore is not allowed

camelCase and snake_case

Although you can do crazy things with identifier names, please don’t. Java has conventions
so that code is readable and consistent. For example, camel case has the first letter of each
word capitalized. Method and variable names are typically written in camel case with the
first letter lowercase, such as toUpper(). Class and interface names are also written in
camel case, with the first letter uppercase, such as ArrayList.

Another style is called snake case. It simply uses an underscore (_) to separate words.
Java generally uses uppercase snake case for constants and enum values, such as
NUMBER_FLAGS.

The exam will not always follow these conventions to make questions about identifiers
trickier. By contrast, questions on other topics generally do follow standard conventions. We
recommend you follow these conventions on the job.

Declaring Multiple Variables
You can also declare and initialize multiple variables in the same statement. How many vari-
ables do you think are declared and initialized in the following example?

void sandFence() {
 String s1, s2;
 String s3 = "yes", s4 = "no";
}

Declaring Variables  37

Four String variables were declared: s1, s2, s3, and s4. You can declare many variables
in the same declaration as long as they are all of the same type. You can also initialize any or
all of those values inline. In the previous example, we have two initialized variables: s3 and
s4. The other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam will attempt to
trick you. Again, how many variables do you think are declared and initialized in the fol-
lowing code?

void paintFence() {
 int i1, i2, i3 = 0;
}

As you should expect, three variables were declared: i1, i2, and i3. However, only one
of those values was initialized: i3. The other two remain declared but not yet initialized.
That’s the trick. Each snippet separated by a comma is a little declaration of its own. The
initialization of i3 only applies to i3. It doesn’t have anything to do with i1 or i2 despite
being in the same statement. As you will see in the next section, you can’t actually use i1 or
i2 until they have been initialized.

Another way the exam could try to trick you is to show you code like this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables of different types
in the same statement. The shortcut to declare multiple variables in the same statement is
legal only when they share a type.

Legal, valid, and compiles are all synonyms in the Java exam world. We
try to use all the terminology you could encounter on the exam.

To make sure you understand this, see if you can figure out which of the following are
legal declarations:

4: boolean b1, b2;
5: String s1 = "1", s2;
6: double d1, double d2;
7: int i1; int i2;
8: int i3; i4;

Lines 4 and 5 are legal. They each declare two variables. Line 4 doesn’t initialize either
variable, and line 5 initializes only one. Line 7 is also legal. Although int does appear twice,
each one is in a separate statement. A semicolon (;) separates statements in Java. It just so
happens there are two completely different statements on the same line.

Line 6 is not legal. Java does not allow you to declare two different types in the same
statement. Wait a minute! Variables d1 and d2 are the same type. They are both of type
double. Although that’s true, it still isn’t allowed. If you want to declare multiple variables
in the same statement, they must share the same type declaration and not repeat it.

38  Chapter 1  ■  Building Blocks

Line 8 is not legal. Again, we have two completely different statements on the same line.
The second one on line 8 is not a valid declaration because it omits the type. When you see
an oddly placed semicolon on the exam, pretend the code is on separate lines and think
about whether the code compiles that way. In this case, the last two lines of code could be
rewritten as follows:

int i1;
int i2;
int i3;
i4;

Looking at the last line on its own, you can easily see that the declaration is invalid. And
yes, the exam really does cram multiple statements onto the same line—partly to try to trick
you and partly to fit more code on the screen. In the real world, please limit yourself to one
declaration per statement and line. Your teammates will thank you for the readable code.

Initializing Variables
Before you can use a variable, it needs a value. Some types of variables get this value set
automatically, and others require the programmer to specify it. In the following sections, we
look at the differences between the defaults for local, instance, and class variables.

Creating Local Variables
A local variable is a variable defined within a constructor, method, or initializer block. For
simplicity, we focus primarily on local variables within methods in this section, although the
rules for the others are the same.

Final Local Variables
The final keyword can be applied to local variables and is equivalent to declaring constants
in other languages. Consider this example:

5: final int y = 10;
6: int x = 20;
7: y = x + 10; // DOES NOT COMPILE

Both variables are set, but y uses the final keyword. For this reason, line 7 triggers a
compiler error since the value cannot be modified.

The final modifier can also be applied to local variable references. The following example
uses an int[] array object, which you learn about in Chapter 4.

5: final int[] favoriteNumbers = new int[10];
6: favoriteNumbers[0] = 10;

Initializing Variables  39

7: favoriteNumbers[1] = 20;
8: favoriteNumbers = null; // DOES NOT COMPILE

Notice that we can modify the content, or data, in the array. The compiler error isn’t until
line 8, when we try to change the value of the reference favoriteNumbers.

Uninitialized Local Variables
Local variables do not have a default value and must be initialized before use. Furthermore,
the compiler will report an error if you try to read an uninitialized value. For example, the
following code generates a compiler error:

4: public int notValid() {
5: int y = 10;
6: int x;
7: int reply = x + y; // DOES NOT COMPILE
8: return reply;
9: }

The y variable is initialized to 10. By contrast, x is not initialized before it is used in the
expression on line 7, and the compiler generates an error. The compiler is smart enough to
recognize variables that have been initialized after their declaration but before they are used.
Here’s an example:

public int valid() {
 int y = 10;
 int x; // x is declared here
 x = 3; // x is initialized here
 int z; // z is declared here but never initialized or used
 int reply = x + y;
 return reply;
}

In this example, x is declared, initialized, and used in separate lines. Also, z is declared
but never used, so it is not required to be initialized.

The compiler is also smart enough to recognize initializations that are more complex. In
this example, there are two branches of code:

public void findAnswer(boolean check) {
 int answer;
 int otherAnswer;
 int onlyOneBranch;
 if (check) {
 onlyOneBranch = 1;
 answer = 1;

40  Chapter 1  ■  Building Blocks

 } else {
 answer = 2;
 }
 System.out.println(answer);
 System.out.println(onlyOneBranch); // DOES NOT COMPILE
}

The answer variable is initialized in both branches of the if statement, so the com-
piler is perfectly happy. It knows that regardless of whether check is true or false, the
value answer will be set to something before it is used. The otherAnswer variable is not
initialized but never used, and the compiler is equally as happy. Remember, the compiler is
only concerned if you try to use uninitialized local variables; it doesn’t mind the ones you
never use.

The onlyOneBranch variable is initialized only if check happens to be true. The compiler
knows there is the possibility for check to be false, resulting in uninitialized code, and gives a
compiler error. You learn more about the if statement in Chapter 3, “Making Decisions.”

On the exam, be wary of any local variable that is declared but not initial-
ized in a single line. This is a common place on the exam that could result
in a “Does not compile” answer. Be sure to check to make sure it’s initial-
ized before it’s used on the exam.

Passing Constructor and Method Parameters
Variables passed to a constructor or method are called constructor parameters or method
parameters, respectively. These parameters are like local variables that have been pre-
initialized. The rules for initializing constructor and method parameters are the same, so we
focus primarily on method parameters.

In the previous example, check is a method parameter.

public void findAnswer(boolean check) {}

Take a look at the following method checkAnswer() in the same class:

public void checkAnswer() {
 boolean value;
 findAnswer(value); // DOES NOT COMPILE
}

The call to findAnswer() does not compile because it tries to use a variable that is not
initialized. While the caller of a method checkAnswer() needs to be concerned about the
variable being initialized, once inside the method findAnswer(), we can assume the local
variable has been initialized to some value.

Initializing Variables  41

Defining Instance and Class Variables
Variables that are not local variables are defined either as instance variables or as class vari-
ables. An instance variable, often called a field, is a value defined within a specific instance of
an object. Let’s say we have a Person class with an instance variable name of type String.
Each instance of the class would have its own value for name, such as Elysia or Sarah.
Two instances could have the same value for name, but changing the value for one does not
modify the other.

On the other hand, a class variable is one that is defined on the class level and shared
among all instances of the class. It can even be publicly accessible to classes outside the
class and doesn’t require an instance to use. In our previous Person example, a shared class
variable could be used to represent the list of people at the zoo today. You can tell a vari-
able is a class variable because it has the keyword static before it. You learn about this in
Chapter 5. For now, just know that a variable is a class variable if it has the static key-
word in its declaration.

Instance and class variables do not require you to initialize them. As soon as you declare
these variables, they are given a default value. The compiler doesn’t know what value to use
and so wants the simplest value it can give the type: null for an object, zero for the numeric
types, and false for a boolean. You don’t need to know the default value for char, but in
case you are curious, it is '\u0000' (NUL).

Inferring the Type with var
You have the option of using the keyword var instead of the type when declaring local vari-
ables under certain conditions. To use this feature, you just type var instead of the primitive
or reference type. Here’s an example:

public class Zoo {
 public void whatTypeAmI() {
 var name = "Hello";
 var size = 7;
 }
}

The formal name of this feature is local variable type inference. Let’s take that apart. First
comes local variable. This means just what it sounds like. You can only use this feature for
local variables. The exam may try to trick you with code like this:

public class VarKeyword {
 var tricky = "Hello"; // DOES NOT COMPILE
}

42  Chapter 1  ■  Building Blocks

Wait a minute! We just learned the difference between instance and local variables. The
variable tricky is an instance variable. Local variable type inference works with local vari-
ables and not instance variables.

Type Inference of var
Now that you understand the local variable part, it is time to go on to what type inference
means. The good news is that this also means what it sounds like. When you type var, you
are instructing the compiler to determine the type for you. The compiler looks at the code on
the line of the declaration and uses it to infer the type. Take a look at this example:

7: public void reassignment() {
8: var number = 7;
9: number = 4;
10: number = "five"; // DOES NOT COMPILE
11: }

On line 8, the compiler determines that we want an int variable. On line 9, we have no
trouble assigning a different int to it. On line 10, Java has a problem. We’ve asked it to
assign a String to an int variable. This is not allowed. It is equivalent to typing this:
int number = "five";

If you know a language like JavaScript, you might be expecting var to
mean a variable that can take on any type at runtime. In Java, var is still a
specific type defined at compile time. It does not change type at runtime.

For simplicity when discussing var, we are going to assume a variable declaration state-
ment is completed in a single line. You could insert a line break between the variable name
and its initialization value, as in the following example:

7: public void breakingDeclaration() {
8: var silly
9: = 1;
10: }

This example is valid and does compile, but we consider the declaration and initialization
of silly to be happening on the same line.

Examples with var
Let’s go through some more scenarios so the exam doesn’t trick you on this topic! Do you
think the following compiles?

3: public void doesThisCompile(boolean check) {
4: var question;
5: question = 1;
6: var answer;

Initializing Variables  43

7: if (check) {
8: answer = 2;
9: } else {
10: answer = 3;
11: }
12: System.out.println(answer);
13: }

The code does not compile. Remember that for local variable type inference, the compiler
looks only at the line with the declaration. Since question and answer are not assigned
values on the lines where they are defined, the compiler does not know what to make of
them. For this reason, both lines 4 and 6 do not compile.

You might find that strange since both branches of the if/else do assign a value. Alas, it is
not on the same line as the declaration, so it does not count for var. Contrast this behavior
with what we saw a short while ago when we discussed branching and initializing a local
variable in our findAnswer() method.

Now we know the initial value used to determine the type needs to be part of the same
statement. Can you figure out why these two statements don’t compile?

4: public void twoTypes() {
5: int a, var b = 3; // DOES NOT COMPILE
6: var n = null; // DOES NOT COMPILE
7: }

Line 5 wouldn’t work even if you replaced var with a real type. All the types declared on
a single line must be the same type and share the same declaration. We couldn’t write int
a, int v = 3; either.

Line 6 is a single line. The compiler is being asked to infer the type of null. This could
be any reference type. The only choice the compiler could make is Object. However, that is
almost certainly not what the author of the code intended. The designers of Java decided it
would be better not to allow var for null than to have to guess at intent.

While a var cannot be initialized with a null value without a type, it can
be reassigned a null value after it is declared, provided that the under-
lying data type is a reference type.

Let’s try another example. Do you see why this does not compile?

public int addition(var a, var b) { // DOES NOT COMPILE
 return a + b;
}

In this example, a and b are method parameters. These are not local variables. Be on the
lookout for var used with constructors, method parameters, or instance variables. Using
var in one of these places is a good exam trick to see if you are paying attention. Remember
that var is only used for local variable type inference!

44  Chapter 1  ■  Building Blocks

There’s one last rule you should be aware of: var is not a reserved word and allowed to
be used as an identifier. It is considered a reserved type name. A reserved type name means it
cannot be used to define a type, such as a class, interface, or enum. Do you think this is legal?

package var;

public class Var {
 public void var() {
 var var = "var";
 }
 public void Var() {
 Var var = new Var();
 }
}

Believe it or not, this code does compile. Java is case sensitive, so Var doesn’t introduce
any conflicts as a class name. Naming a local variable var is legal. Please don’t write code
that looks like this at your job! But understanding why it works will help get you ready for
any tricky exam questions the exam creators could throw at you.

var in the Real World

The var keyword is great for exam authors because it makes it easier to write tricky code.
When you work on a real project, you want the code to be easy to read.

Once you start having code that looks like the following, it is time to consider using var:

 PileOfPapersToFileInFilingCabinet pileOfPapersToFile =
 new PileOfPapersToFileInFilingCabinet();

You can see how shortening this would be an improvement without losing any information:

 var pileOfPapersToFile = new PileOfPapersToFileInFilingCabinet();

If you are ever unsure whether it is appropriate to use var, we recommend “Local Variable
Type Inference: Style Guidelines,” which is available at the following location.

 https://openjdk.java.net/projects/amber/LVTIstyle.html

Managing Variable Scope  45

Managing Variable Scope
You’ve learned that local variables are declared within a code block. How many variables do
you see that are scoped to this method?

public void eat(int piecesOfCheese) {
 int bitesOfCheese = 1;
}

There are two variables with local scope. The bitesOfCheese variable is declared inside
the method. The piecesOfCheese variable is a method parameter. Neither variable can be
used outside of where it is defined.

Limiting Scope
Local variables can never have a scope larger than the method they are defined in. However,
they can have a smaller scope. Consider this example:

3: public void eatIfHungry(boolean hungry) {
4: if (hungry) {
5: int bitesOfCheese = 1;
6: } // bitesOfCheese goes out of scope here
7: System.out.println(bitesOfCheese); // DOES NOT COMPILE
8: }

The variable hungry has a scope of the entire method, while the variable bitesOfCheese
has a smaller scope. It is only available for use in the if statement because it is declared inside
of it. When you see a set of braces ({}) in the code, it means you have entered a new block of
code. Each block of code has its own scope. When there are multiple blocks, you match them
from the inside out. In our case, the if statement block begins at line 4 and ends at line 6. The
method’s block begins at line 3 and ends at line 8.

Since bitesOfCheese is declared in an if statement block, the scope is limited to that
block. When the compiler gets to line 7, it complains that it doesn’t know anything about
this bitesOfCheese thing and gives an error.

Remember that blocks can contain other blocks. These smaller contained blocks can ref-
erence variables defined in the larger scoped blocks, but not vice versa. Here’s an example:

16: public void eatIfHungry(boolean hungry) {
17: if (hungry) {
18: int bitesOfCheese = 1;
19: {
20: var teenyBit = true;
21: System.out.println(bitesOfCheese);

46  Chapter 1  ■  Building Blocks

22: }
23: }
24: System.out.println(teenyBit); // DOES NOT COMPILE
25: }

The variable defined on line 18 is in scope until the block ends on line 23. Using it in the
smaller block from lines 19 to 22 is fine. The variable defined on line 20 goes out of scope on
line 22. Using it on line 24 is not allowed.

Tracing Scope
The exam will attempt to trick you with various questions on scope. You’ll probably see a
question that appears to be about something complex and fails to compile because one of
the variables is out of scope.

Let’s try one. Don’t worry if you aren’t familiar with if statements or while loops yet. It
doesn’t matter what the code does since we are talking about scope. See if you can figure out
on which line each of the five local variables goes into and out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {
12: int roomInBelly = 5;
13: if (hungry) {
14: var timeToEat = true;
15: while (amountOfFood > 0) {
16: int amountEaten = 2;
17: roomInBelly = roomInBelly - amountEaten;
18: amountOfFood = amountOfFood - amountEaten;
19: }
20: }
21: System.out.println(amountOfFood);
22: }

This method does compile. The first step in figuring out the scope is to identify the blocks
of code. In this case, there are three blocks. You can tell this because there are three sets
of braces. Starting from the innermost set, we can see where the while loop’s block starts
and ends. Repeat this process as we go on for the if statement block and method block.
Table 1.10 shows the line numbers that each block starts and ends on.

TABLE 1.10   Tracking scope by block

Line First line in block Last line in block

while 15 19

if 13 20

Method 11 22

Managing Variable Scope  47

Now that we know where the blocks are, we can look at the scope of each variable.
hungry and amountOfFood are method parameters, so they are available for the entire
method. This means their scope is lines 11 to 22. The variable roomInBelly goes into scope
on line 12 because that is where it is declared. It stays in scope for the rest of the method
and goes out of scope on line 22. The variable timeToEat goes into scope on line 14 where
it is declared. It goes out of scope on line 20 where the if block ends. Finally, the variable
amountEaten goes into scope on line 16 where it is declared. It goes out of scope on line
19 where the while block ends.

You’ll want to practice this skill a lot! Identifying blocks and variable scope needs to be
second nature for the exam. The good news is that there are lots of code examples to prac-
tice on. You can look at any code example on any topic in this book and match up braces.

Applying Scope to Classes
All of that was for local variables. Luckily, the rule for instance variables is easier: they are
available as soon as they are defined and last for the entire lifetime of the object itself. The
rule for class, aka static, variables is even easier: they go into scope when declared like the
other variable types. However, they stay in scope for the entire life of the program.

Let’s do one more example to make sure you have a handle on this. Again, try to figure
out the type of the four variables and when they go into and out of scope.

1: public class Mouse {
2: final static int MAX_LENGTH = 5;
3: int length;
4: public void grow(int inches) {
5: if (length < MAX_LENGTH) {
6: int newSize = length + inches;
7: length = newSize;
8: }
9: }
10: }

In this class, we have one class variable, MAX_LENGTH; one instance variable, length;
and two local variables, inches and newSize. The MAX_LENGTH variable is a class variable
because it has the static keyword in its declaration. In this case, MAX_LENGTH goes into
scope on line 2 where it is declared. It stays in scope until the program ends.

Next, length goes into scope on line 3 where it is declared. It stays in scope as long as
this Mouse object exists. inches goes into scope where it is declared on line 4. It goes out of
scope at the end of the method on line 9. newSize goes into scope where it is declared on line
6. Since it is defined inside the if statement block, it goes out of scope when that block ends
on line 8.

48  Chapter 1  ■  Building Blocks

Reviewing Scope
Got all that? Let’s review the rules on scope:

■■ Local variables: In scope from declaration to the end of the block

■■ Method parameters: In scope for the duration of the method

■■ Instance variables: In scope from declaration until the object is eligible for garbage
collection

■■ Class variables: In scope from declaration until the program ends

Not sure what garbage collection is? Relax: that’s our next and final section for
this chapter.

Destroying Objects
Now that we’ve played with our objects, it is time to put them away. Luckily, the JVM takes
care of that for you. Java provides a garbage collector to automatically look for objects that
aren’t needed anymore.

Remember, your code isn’t the only process running in your Java program. Java code
exists inside of a JVM, which includes numerous processes independent from your applica-
tion code. One of the most important of those is a built-in garbage collector.

All Java objects are stored in your program memory’s heap. The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your Java
application. If your program keeps instantiating objects and leaving them on the heap, even-
tually it will run out of memory and crash. Oh, no! Luckily, garbage collection solves this
problem. In the following sections, we look at garbage collection.

Understanding Garbage Collection
Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. There are many different algo-
rithms for garbage collection, but you don’t need to know any of them for the exam.

As a developer, the most interesting part of garbage collection is determining when the
memory belonging to an object can be reclaimed. In Java and other languages, eligible for
garbage collection refers to an object’s state of no longer being accessible in a program and
therefore able to be garbage collected.

Does this mean an object that’s eligible for garbage collection will be immediately garbage
collected? Definitely not. When the object actually is discarded is not under your control, but
for the exam, you will need to know at any given moment which objects are eligible for gar-
bage collection.

Think of garbage-collection eligibility like shipping a package. You can take an item, seal
it in a labeled box, and put it in your mailbox. This is analogous to making an item eligible
for garbage collection. When the mail carrier comes by to pick it up, though, is not in your

Destroying Objects  49

control. For example, it may be a postal holiday, or there could be a severe weather event.
You can even call the post office and ask them to come pick it up right away, but there’s no
way to guarantee when and if this will actually happen. Hopefully, they will come by before
your mailbox fills with packages!

Java includes a built-in method to help support garbage collection where you can suggest
that garbage collection run.

System.gc();

Just like the post office, Java is free to ignore you. This method is not guaranteed to
do anything.

Tracing Eligibility
How does the JVM know when an object is eligible for garbage collection? The JVM waits
patiently and monitors each object until it determines that the code no longer needs that
memory. An object will remain on the heap until it is no longer reachable. An object is no
longer reachable when one of two situations occurs:

■■ The object no longer has any references pointing to it.

■■ All references to the object have gone out of scope.

Objects vs. References

Do not confuse a reference with the object that it refers to; they are two different entities.
The reference is a variable that has a name and can be used to access the contents of an
object. A reference can be assigned to another reference, passed to a method, or returned
from a method. All references are the same size, no matter what their type is.

An object sits on the heap and does not have a name. Therefore, you have no way to access
an object except through a reference. Objects come in all different shapes and sizes and
consume varying amounts of memory. An object cannot be assigned to another object, and
an object cannot be passed to a method or returned from a method. It is the object that gets
garbage collected, not its reference.

name

A reference

The heap

An object

50  Chapter 1  ■  Building Blocks

Realizing the difference between a reference and an object goes a long way toward under-
standing garbage collection, the new operator, and many other facets of the Java language.
Look at this code and see whether you can figure out when each object first becomes eligible
for garbage collection:

1: public class Scope {
2: public static void main(String[] args) {
3: String one, two;
4: one = new String("a");
5: two = new String("b");
6: one = two;
7: String three = one;
8: one = null;
9: } }

When you are asked a question about garbage collection on the exam, we recommend
that you draw what’s going on. There’s a lot to keep track of in your head, and it’s easy to
make a silly mistake trying to hold it all in your memory. Let’s try it together now. Really.
Get a pencil and paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, write one and two (just the words—no
need for boxes or arrows since no objects have gone on the heap yet). On line 4, we have our
first object. Draw a box with the string "a" in it, and draw an arrow from the word one to
that box. Line 5 is similar. Draw another box with the string "b" in it this time and an arrow
from the word two. At this point, your work should look like Figure 1.4.

On line 6, the variable one changes to point to "b". Either erase or cross out the arrow
from one and draw a new arrow from one to "b". On line 7, we have a new variable, so
write the word three and draw an arrow from three to "b". Notice that three points to
what one is pointing to right now and not what it was pointing to at the beginning. This
is why you are drawing pictures. It’s easy to forget something like that. At this point, your
work should look like Figure 1.5.

Finally, cross out the line between one and "b" since line 8 sets this variable to null.
Now, we were trying to find out when the objects were first eligible for garbage collection.
On line 6, we got rid of the only arrow pointing to "a", making that object eligible for gar-
bage collection. "b" has arrows pointing to it until it goes out of scope. This means "b"
doesn’t go out of scope until the end of the method on line 9.

"a"

two

one

"b"

F IGURE 1.4   Your drawing after line 5

Summary  51

Code Formatting on the Exam

Not all questions will include package declarations and imports. Don’t worry about missing
package statements or imports unless you are asked about them. The following are
common cases where you don’t need to check the imports:

■■ Code that begins with a class name

■■ Code that begins with a method declaration

■■ Code that begins with a code snippet that would normally be inside a class or method

■■ Code that has line numbers that don’t begin with 1

You’ll see code that doesn’t have a method. When this happens, assume any necessary
plumbing code like the main() method and class definition were written correctly. You’re
just being asked if the part of the code you’re shown compiles when dropped into valid sur-
rounding code. Finally, remember that extra whitespace doesn’t matter in Java syntax. The
exam may use varying amounts of whitespace to trick you.

Summary
Java begins program execution with a main() method. The most common signature for this
method run from the command line is public static void main(String[] args).
Arguments are passed in after the class name, as in java NameOfClass firstArgument.
Arguments are indexed starting with 0.

Java code is organized into folders called packages. To reference classes in other packages,
you use an import statement. A wildcard ending an import statement means you want to
import all classes in that package. It does not include packages that are inside that one. The
package java.lang is special in that it does not need to be imported.

"a"

two

three

one

"b"

F IGURE 1.5   Your drawing after line 7

52  Chapter 1  ■  Building Blocks

For some class elements, order matters within the file. The package statement comes first
if present. Then come the import statements if present. Then comes the class declaration.
Fields and methods are allowed to be in any order within the class.

Primitive types are the basic building blocks of Java types. They are assembled into refer-
ence types. Reference types can have methods and be assigned a null value. Numeric literals
are allowed to contain underscores (_) as long as they do not start or end the literal and are
not next to a decimal point (.). Wrapper classes are reference types, and there is one for each
primitive. Text blocks allow creating a String on multiple lines using """.

Declaring a variable involves stating the data type and giving the variable a name. Var-
iables that represent fields in a class are automatically initialized to their corresponding 0,
null, or false values during object instantiation. Local variables must be specifically ini-
tialized before they can be used. Identifiers may contain letters, numbers, currency symbols,
or _. Identifiers may not begin with numbers. Local variable declarations may use the var
keyword instead of the actual type. When using var, the type is set once at compile time and
does not change.

Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables, and
local variables. Instance variables are the non-static fields of your class. Class variables are
the static fields within a class. Local variables are declared within a constructor, method, or
initializer block.

Constructors create Java objects. A constructor is a method matching the class name and
omitting the return type. When an object is instantiated, fields and blocks of code are initial-
ized first. Then the constructor is run. Finally, garbage collection is responsible for removing
objects from memory when they can never be used again. An object becomes eligible for
garbage collection when there are no more references to it or its references have all gone
out of scope.

Exam Essentials
Be able to write code using a main() method.   A main() method is usually written as
public static void main(String[] args). Arguments are referenced starting with
args[0]. Accessing an argument that wasn’t passed in will cause the code to throw an
exception.

Understand the effect of using packages and imports.   Packages contain Java classes.
Classes can be imported by class name or wildcard. Wildcards do not look at subdirecto-
ries. In the event of a conflict, class name imports take precedence. Package and import
statements are optional. If they are present, they both go before the class declaration in
that order.

Be able to recognize a constructor.   A constructor has the same name as the class. It looks
like a method without a return type.

Exam Essentials  53

Be able to identify legal and illegal declarations and initialization.   Multiple variables can
be declared and initialized in the same statement when they share a type. Local variables
require an explicit initialization; others use the default value for that type. Identifiers may
contain letters, numbers, currency symbols, or _, although they may not begin with numbers.
Also, you cannot define an identifier that is just a single underscore character _. Numeric
literals may contain underscores between two digits, such as 1_000, but not in other places,
such as _100_.0_.

Understand how to create text blocks.   A text block begins with """ on the first line. On
the next line begins the content. The last line ends with """. If """ is on its own line, a
trailing line break is included.

Be able to use var correctly.   A var is used for a local variable. A var is initialized on the
same line where it is declared, and while it can change value, it cannot change type. A var
cannot be initialized with a null value without a type, nor can it be used in multiple vari-
able declarations.

Be able to determine where variables go into and out of scope.   All variables go into scope
when they are declared. Local variables go out of scope when the block they are declared
in ends. Instance variables go out of scope when the object is eligible for garbage collection.
Class variables remain in scope as long as the program is running.

Know how to identify when an object is eligible for garbage collection.   Draw a diagram to
keep track of references and objects as you trace the code. When no arrows point to a box
(object), it is eligible for garbage collection.

54  Chapter 1  ■  Building Blocks

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which of the following are legal entry point methods that can be run from the command
line? (Choose all that apply.)

A.	 private static void main(String[] args)
B.	 public static final main(String[] args)
C.	 public void main(String[] args)
D.	 public static final void main(String[] args)
E.	 public static void main(String[] args)
F.	 public static main(String[] args)

2.	 Which answer options represent the order in which the following statements can be assem-
bled into a program that will compile successfully? (Choose all that apply.)

 X: class Rabbit {}
 Y: import java.util.*;
 Z: package animals;

A.	 X, Y, Z
B.	 Y, Z, X
C.	 Z, Y, X
D.	 Y, X
E.	 Z, X
F.	 X, Z
G.	 None of the above

3.	 Which of the following are true? (Choose all that apply.)

 public class Bunny {
 public static void main(String[] x) {
 Bunny bun = new Bunny();
 } }

A.	 Bunny is a class.

B.	 bun is a class.

C.	 main is a class.

D.	 Bunny is a reference to an object.

E.	 bun is a reference to an object.

F.	 main is a reference to an object.

G.	 The main() method doesn’t run because the parameter name is incorrect.

Review Questions  55

4.	 Which of the following are valid Java identifiers? (Choose all that apply.)

A.	 _
B.	 _helloWorld$
C.	 true
D.	 java.lang
E.	 Public
F.	 1980_s
G.	 _Q2_

5.	 Which statements about the following program are correct? (Choose all that apply.)

 2: public class Bear {
 3: private Bear pandaBear;
 4: private void roar(Bear b) {
 5: System.out.println("Roar!");
 6: pandaBear = b;
 7: }
 8: public static void main(String[] args) {
 9: Bear brownBear = new Bear();
 10: Bear polarBear = new Bear();
 11: brownBear.roar(polarBear);
 12: polarBear = null;
 13: brownBear = null;
 14: System.gc(); } }

A.	 The object created on line 9 is eligible for garbage collection after line 13.

B.	 The object created on line 9 is eligible for garbage collection after line 14.

C.	 The object created on line 10 is eligible for garbage collection after line 12.

D.	 The object created on line 10 is eligible for garbage collection after line 13.

E.	 Garbage collection is guaranteed to run.

F.	 Garbage collection might or might not run.

G.	 The code does not compile.

6.	 Assuming the following class compiles, how many variables defined in the class or method
are in scope on the line marked on line 14?

 1: public class Camel {
 2: { int hairs = 3_000_0; }
 3: long water, air=2;
 4: boolean twoHumps = true;
 5: public void spit(float distance) {
 6: var path = "";

56  Chapter 1  ■  Building Blocks

 7: { double teeth = 32 + distance++; }
 8: while(water > 0) {
 9: int age = twoHumps ? 1 : 2;
 10: short i=-1;
 11: for(i=0; i<10; i++) {
 12: var Private = 2;
 13: }
 14: // SCOPE
 15: }
 16: }
 17: }

A.	 2

B.	 3

C.	 4

D.	 5

E.	 6

F.	 7

G.	 None of the above

7.	 Which are true about this code? (Choose all that apply.)

 public class KitchenSink {
 private int numForks;

 public static void main(String[] args) {
 int numKnives;
 System.out.print("""
 "# forks = " + numForks +
 " # knives = " + numKnives +
 # cups = 0""");
 }
 }

A.	 The output includes: # forks = 0.

B.	 The output includes: # knives = 0.

C.	 The output includes: # cups = 0.

D.	 The output includes a blank line.

E.	 The output includes one or more lines that begin with whitespace.

F.	 The code does not compile.

Review Questions  57

8.	 Which of the following code snippets about var compile without issue when used in a
method? (Choose all that apply.)

A.	 var spring = null;
B.	 var fall = "leaves";
C.	 var evening = 2; evening = null;
D.	 var night = Integer.valueOf(3);
E.	 var day = 1/0;
F.	 var winter = 12, cold;
G.	 var fall = 2, autumn = 2;
H.	 var morning = ""; morning = null;

9.	 Which of the following are correct? (Choose all that apply.)

A.	 An instance variable of type float defaults to 0.

B.	 An instance variable of type char defaults to null.

C.	 A local variable of type double defaults to 0.0.

D.	 A local variable of type int defaults to null.

E.	 A class variable of type String defaults to null.

F.	 A class variable of type String defaults to the empty string "".

G.	 None of the above.

10.	 Which of the following expressions, when inserted independently into the blank line, allow
the code to compile? (Choose all that apply.)

 public void printMagicData() {
 var magic = ;
 System.out.println(magic);
 }

A.	 3_1
B.	 1_329_.0
C.	 3_13.0_
D.	 5_291._2
E.	 2_234.0_0
F.	 9___6
G.	 _1_3_5_0

11.	 Given the following two class files, what is the maximum number of imports that can be
removed and have the code still compile?

 // Water.java
 package aquarium;
 public class Water { }

58  Chapter 1  ■  Building Blocks

 // Tank.java
 package aquarium;
 import java.lang.*;
 import java.lang.System;
 import aquarium.Water;
 import aquarium.*;
 public class Tank {
 public void print(Water water) {
 System.out.println(water); } }

A.	 0

B.	 1

C.	 2

D.	 3

E.	 4

F.	 Does not compile

12.	 Which statements about the following class are correct? (Choose all that apply.)

 1: public class ClownFish {
 2: int gills = 0, double weight=2;
 3: { int fins = gills; }
 4: void print(int length = 3) {
 5: System.out.println(gills);
 6: System.out.println(weight);
 7: System.out.println(fins);
 8: System.out.println(length);
 9: } }

A.	 Line 2 generates a compiler error.

B.	 Line 3 generates a compiler error.

C.	 Line 4 generates a compiler error.

D.	 Line 7 generates a compiler error.

E.	 The code prints 0.

F.	 The code prints 2.0.

G.	 The code prints 2.

H.	 The code prints 3.

Review Questions  59

13.	 Given the following classes, which of the following snippets can independently be inserted in
place of INSERT IMPORTS HERE and have the code compile? (Choose all that apply.)

 package aquarium;
 public class Water {
 boolean salty = false;
 }

 package aquarium.jellies;
 public class Water {
 boolean salty = true;
 }

 package employee;
 INSERT IMPORTS HERE
 public class WaterFiller {
 Water water;
 }

A.	 import aquarium.*;
B.	 import aquarium.Water;

import aquarium.jellies.*;
C.	 import aquarium.*;

import aquarium.jellies.Water;
D.	 import aquarium.*;

import aquarium.jellies.*;
E.	 import aquarium.Water;

import aquarium.jellies.Water;
F.	 None of these imports can make the code compile.

14.	 Which of the following statements about the code snippet are true? (Choose all that apply.)

 3: short numPets = 5L;
 4: int numGrains = 2.0;
 5: String name = "Scruffy";
 6: int d = numPets.length();
 7: int e = numGrains.length;
 8: int f = name.length();

60  Chapter 1  ■  Building Blocks

A.	 Line 3 generates a compiler error.

B.	 Line 4 generates a compiler error.

C.	 Line 5 generates a compiler error.

D.	 Line 6 generates a compiler error.

E.	 Line 7 generates a compiler error.

F.	 Line 8 generates a compiler error.

15.	 Which of the following statements about garbage collection are correct? (Choose all
that apply.)

A.	 Calling System.gc() is guaranteed to free up memory by destroying objects eligible
for garbage collection.

B.	 Garbage collection runs on a set schedule.

C.	 Garbage collection allows the JVM to reclaim memory for other objects.

D.	 Garbage collection runs when your program has used up half the available memory.

E.	 An object may be eligible for garbage collection but never removed from the heap.

F.	 An object is eligible for garbage collection once no references to it are accessible in the
program.

G.	 Marking a variable final means its associated object will never be garbage collected.

16.	 Which are true about this code? (Choose all that apply.)

 var blocky = """
 squirrel \s
 pigeon \
 termite""";
 System.out.print(blocky);

A.	 It outputs two lines.

B.	 It outputs three lines.

C.	 It outputs four lines.

D.	 There is one line with trailing whitespace.

E.	 There are two lines with trailing whitespace.

F.	 If we indented each line five characters, it would change the output.

17.	 What lines are printed by the following program? (Choose all that apply.)

 1: public class WaterBottle {
 2: private String brand;
 3: private boolean empty;
 4: public static float code;
 5: public static void main(String[] args) {
 6: WaterBottle wb = new WaterBottle();

Review Questions  61

 7: System.out.println("Empty = " + wb.empty);
 8: System.out.println("Brand = " + wb.brand);
 9: System.out.println("Code = " + code);
 10: } }

A.	 Line 8 generates a compiler error.

B.	 Line 9 generates a compiler error.

C.	 Empty =
D.	 Empty = false
E.	 Brand =
F.	 Brand = null
G.	 Code = 0.0
H.	 Code = 0f

18.	 Which of the following statements about var are true? (Choose all that apply.)

A.	 A var can be used as a constructor parameter.

B.	 The type of a var is known at compile time.

C.	 A var cannot be used as an instance variable.

D.	 A var can be used in a multiple variable assignment statement.

E.	 The value of a var cannot change at runtime.

F.	 The type of a var cannot change at runtime.

G.	 The word var is a reserved word in Java.

19.	 Which are true about the following code? (Choose all that apply.)

 var num1 = Long.parseLong("100");
 var num2 = Long.valueOf("100");
 System.out.println(Long.max(num1, num2));

A.	 The output is 100.

B.	 The output is 200.

C.	 The code does not compile.

D.	 num1 is a primitive.

E.	 num2 is a primitive.

20.	 Which statements about the following class are correct? (Choose all that apply.)

 1: public class PoliceBox {
 2: String color;
 3: long age;
 4: public void PoliceBox() {
 5: color = "blue";
 6: age = 1200;

62  Chapter 1  ■  Building Blocks

 7: }
 8: public static void main(String []time) {
 9: var p = new PoliceBox();
 10: var q = new PoliceBox();
 11: p.color = "green";
 12: p.age = 1400;
 13: p = q;
 14: System.out.println("Q1="+q.color);
 15: System.out.println("Q2="+q.age);
 16: System.out.println("P1="+p.color);
 17: System.out.println("P2="+p.age);
 18: } }

A.	 It prints Q1=blue.

B.	 It prints Q2=1200.

C.	 It prints P1=null.

D.	 It prints P2=1400.

E.	 Line 4 does not compile.

F.	 Line 12 does not compile.

G.	 Line 13 does not compile.

H.	 None of the above.

21.	 What is the output of executing the following class?

 1: public class Salmon {
 2: int count;
 3: { System.out.print(count+"-"); }
 4: { count++; }
 5: public Salmon() {
 6: count = 4;
 7: System.out.print(2+"-");
 8: }
 9: public static void main(String[] args) {
 10: System.out.print(7+"-");
 11: var s = new Salmon();
 12: System.out.print(s.count+"-"); } }

Review Questions  63

A.	 7-0-2-1-
B.	 7-0-1-
C.	 0-7-2-1-
D.	 7-0-2-4-
E.	 0-7-1-
F.	 The class does not compile because of line 3.

G.	 The class does not compile because of line 4.

H.	 None of the above.

22.	 Given the following class, which of the following lines of code can independently replace
INSERT CODE HERE to make the code compile? (Choose all that apply.)

 public class Price {
 public void admission() {
 INSERT CODE HERE
 System.out.print(amount);
 } }

A.	 int Amount = 0b11;
B.	 int amount = 9L;
C.	 int amount = 0xE;
D.	 int amount = 1_2.0;
E.	 double amount = 1_0_.0;
F.	 int amount = 0b101;
G.	 double amount = 9_2.1_2;
H.	 double amount = 1_2_.0_0;

23.	 Which statements about the following class are true? (Choose all that apply.)

 1: public class River {
 2: int Depth = 1;
 3: float temp = 50.0;
 4: public void flow() {
 5: for (int i = 0; i < 1; i++) {
 6: int depth = 2;
 7: depth++;
 8: temp--;
 9: }

64  Chapter 1  ■  Building Blocks

 10: System.out.println(depth);
 11: System.out.println(temp); }
 12: public static void main(String... s) {
 13: new River().flow();
 14: } }

A.	 Line 3 generates a compiler error.

B.	 Line 6 generates a compiler error.

C.	 Line 7 generates a compiler error.

D.	 Line 10 generates a compiler error.

E.	 The program prints 3 on line 10.

F.	 The program prints 4 on line 10.

G.	 The program prints 50.0 on line 11.

H.	 The program prints 49.0 on line 11.

Operators

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Handling date, time, text, numeric and boolean values
■■ Use primitives and wrapper classes including Math API,

parentheses, type promotion, and casting to evaluate

arithmetic and boolean expressions

Chapter

2

The previous chapter talked a lot about defining variables,
but what can you do with a variable once it is created? This
chapter introduces operators and shows how you can use them

to combine existing variables and create new values. It shows you how to apply operators
to various primitive data types, including introducing you to operators that can be applied
to objects.

Understanding Java Operators
Before we get into the fun stuff, let’s cover a bit of terminology. A Java operator is a special
symbol that can be applied to a set of variables, values, or literals—referred to as operands—
and that returns a result. The term operand, which we use throughout this chapter, refers
to the value or variable the operator is being applied to. Figure 2.1 shows the anatomy of a
Java operation.

The output of the operation is simply referred to as the result. Figure 2.1 actually con-
tains a second operation, with the assignment operator (=) being used to store the result in
variable c.

We’re sure you have been using the addition (+) and subtraction (-) operators since you
were a little kid. Java supports many other operators that you need to know for the exam.
While many should be review for you, some (such as the compound assignment operators)
may be new to you.

Types of Operators
Java supports three flavors of operators: unary, binary, and ternary. These types of operators
can be applied to one, two, or three operands, respectively. For the exam, you need to know

var c = a + b;

Operands

Operator

Result assigned to c

F IGURE 2 .1   Java operation

Understanding Java Operators  67

a specific subset of Java operators, how to apply them, and the order in which they should
be applied.

Java operators are not necessarily evaluated from left-to-right order. In this following
example, the second expression is actually evaluated from right to left, given the specific
operators involved:

int cookies = 4;
double reward = 3 + 2 * --cookies;
System.out.print("Zoo animal receives: "+reward+" reward points");

In this example, you first decrement cookies to 3, then multiply the resulting value by 2,
and finally add 3. The value then is automatically promoted from 9 to 9.0 and assigned to
reward. The final values of reward and cookies are 9.0 and 3, respectively, with the fol-
lowing printed:

Zoo animal receives: 9.0 reward points

If you didn’t follow that evaluation, don’t worry. By the end of this chapter, solving prob-
lems like this should be second nature.

Operator Precedence
When reading a book or a newspaper, some written languages are evaluated from left to
right, while some are evaluated from right to left. In mathematics, certain operators can
override other operators and be evaluated first. Determining which operators are evaluated
in what order is referred to as operator precedence. In this manner, Java more closely follows
the rules for mathematics. Consider the following expression:

var perimeter = 2 * height + 2 * length;

Let’s apply some optional parentheses to demonstrate how the compiler evaluates this
statement:

var perimeter = ((2 * height) + (2 * length));

The multiplication operator (*) has a higher precedence than the addition operator (+), so
the height and length are both multiplied by 2 before being added together. The assignment
operator (=) has the lowest order of precedence, so the assignment to the perimeter variable
is performed last.

Unless overridden with parentheses, Java operators follow order of operation, listed in
Table 2.1, by decreasing order of operator precedence. If two operators have the same level
of precedence, then Java guarantees left-to-right evaluation for most operators other than
the ones marked in the table.

68  Chapter 2  ■  Operators

We recommend keeping Table 2.1 handy throughout this chapter. For the exam, you
need to memorize the order of precedence in this table. Note that you won’t be tested on
some operators, like the shift operators, although we recommend that you be aware of their
existence.

TABLE 2 .1   Order of operator precedence

Operator Symbols and examples Evaluation

Post-unary operators expression++, expression-- Left-to-right

Pre-unary operators ++expression, --expression Left-to-right

Other unary operators -, !, ~, +, (type) Right-to-left

Cast (Type)reference Right-to-left

Multiplication/division/modulus *, /, % Left-to-right

Addition/subtraction +, - Left-to-right

Shift operators <<, >>, >>> Left-to-right

Relational operators <, >, <=, >=, instanceof Left-to-right

Equal to/not equal to ==, != Left-to-right

Logical AND & Left-to-right

Logical exclusive OR ^ Left-to-right

Logical inclusive OR | Left-to-right

Conditional AND && Left-to-right

Conditional OR || Left-to-right

Ternary operators boolean expression ? expression1 :
expression2

Right-to-left

Assignment operators =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=, >>=,
>>>=

Right-to-left

Arrow operator -> Right-to-left

Applying Unary Operators  69

The arrow operator (->), sometimes called the arrow function or lambda
operator, is a binary operator that represents a relationship between
two operands. Although we won’t cover the arrow operator in this
chapter, you will see it used in switch expressions in Chapter 3, “Making
Decisions,” and in lambda expressions starting in Chapter 8, “Lambdas
and Functional Interfaces.”

Applying Unary Operators
By definition, a unary operator is one that requires exactly one operand, or variable, to
function. As shown in Table 2.2, they often perform simple tasks, such as increasing a
numeric variable by one or negating a boolean value.

Even though Table 2.2 includes the casting operator, we postpone discussing casting until
the “Assigning Values” section later in this chapter, since that is where it is commonly used.

TABLE 2 .2   Unary operators

Operator Examples Description

Logical
complement

!a Inverts a boolean’s logical value

Bitwise
complement

~b Inverts all 0s and 1s in a number

Plus +c Indicates a number is positive, although numbers are
assumed to be positive in Java unless accompanied by a
negative unary operator

Negation or
minus

-d Indicates a literal number is negative or negates an
expression

Increment ++e
f++

Increments a value by 1

Decrement --f
h--

Decrements a value by 1

Cast (String)i Casts a value to a specific type

70  Chapter 2  ■  Operators

Complement and Negation Operators
Since we’re going to be working with a lot of numeric operators in this chapter, let’s get the
boolean one out of the way first. The logical complement operator (!) flips the value of a
boolean expression. For example, if the value is true, it will be converted to false, and
vice versa. To illustrate this, compare the outputs of the following statements:

boolean isAnimalAsleep = false;
System.out.print(isAnimalAsleep); // false
isAnimalAsleep = !isAnimalAsleep;
System.out.print(isAnimalAsleep); // true

For the exam, you also need to know about the bitwise complement operator (~), which
flips all of the 0s and 1s in a number. It can only be applied to integer numeric types such as
byte, short, char, int, and long. Let’s try an example. For simplicity, we only show the
last four bits (instead of all 32 bits).

int value = 3; // Stored as 0011
int complement = ~value; // Stored as 1100
System.out.println(value); // 3
System.out.println(complement); // -4

Relax! You don’t need to know how to do complicated bit arithmetic on the exam, as
long as you remember this rule: to find the bitwise complement of a number, multiply it by
negative one and then subtract one.

System.out.println(-1*value - 1); // -4
System.out.println(-1*complement - 1); // 3

Moving on to more common operators, the negation operator (-) reverses the sign of a
numeric expression, as shown in these statements:

double zooTemperature = 1.21;
System.out.println(zooTemperature); // 1.21
zooTemperature = -zooTemperature;
System.out.println(zooTemperature); // -1.21
zooTemperature = -(-zooTemperature);
System.out.println(zooTemperature); // -1.21

Notice that in the last example we used parentheses, (), for the negation operator, -, to
apply the negation twice. If we had instead written --, then it would have been interpreted
as the decrement operator and printed -2.21. You will see more of that decrement oper-
ator shortly.

Based on the description, it might be obvious that some operators require the variable
or expression they’re acting on to be of a specific type. For example, you cannot apply a
negation operator (-) to a boolean expression, nor can you apply a logical complement
operator (!) to a numeric expression. Be wary of questions on the exam that try to do this,

Applying Unary Operators  71

as they cause the code to fail to compile. For example, none of the following lines of code
will compile:

int pelican = !5; // DOES NOT COMPILE
boolean penguin = -true; // DOES NOT COMPILE
boolean peacock = !0; // DOES NOT COMPILE

The first statement will not compile because in Java you cannot perform a logical
inversion of a numeric value. The second statement does not compile because you cannot
numerically negate a boolean value; you need to use the logical inverse operator. Finally,
the last statement does not compile because you cannot take the logical complement of a
numeric value, nor can you assign an integer to a boolean variable.

Keep an eye out for questions on the exam that use numeric values (such
as 0 or 1) with boolean expressions. Unlike in some other programming
languages, in Java, 1 and true are not related in any way, just as 0 and
false are not related.

Increment and Decrement Operators
Increment and decrement operators, ++ and --, respectively, can be applied to numeric var-
iables and have a high order of precedence compared to binary operators. In other words,
they are often applied first in an expression.

Increment and decrement operators require special care because the order in which they
are attached to their associated variable can make a difference in how an expression is pro-
cessed. Table 2.3 lists each of these operators.

The following code snippet illustrates this distinction:

int parkAttendance = 0;
System.out.println(parkAttendance); // 0
System.out.println(++parkAttendance); // 1

TABLE 2 .3   Increment and decrement operators

Operator Example Description

Pre-increment ++w Increases the value by 1 and returns the new value

Pre-decrement --x Decreases the value by 1 and returns the new value

Post-increment y++ Increases the value by 1 and returns the original value

Post-decrement z-- Decreases the value by 1 and returns the original value

72  Chapter 2  ■  Operators

System.out.println(parkAttendance); // 1
System.out.println(parkAttendance--); // 1
System.out.println(parkAttendance); // 0

The first pre-increment operator updates the value for parkAttendance and outputs
the new value of 1. The next post-decrement operator also updates the value of
parkAttendance but outputs the value before the decrement occurs.

For the exam, it is critical that you know the difference between expres-
sions like parkAttendance++ and ++parkAttendance. The increment
and decrement operators will be in multiple questions, and confusion
about which value is returned could cause you to lose a lot of points on
the exam.

Working with Binary
Arithmetic Operators
Next, we move on to operators that take two operands, called binary operators. Binary
operators are by far the most common operators in the Java language. They can be used
to perform mathematical operations on variables, create logical expressions, and perform
basic variable assignments. Binary operators are often combined in complex expressions
with other binary operators; therefore, operator precedence is very important in evaluating
expressions containing binary operators. In this section, we start with binary arithmetic
operators; we expand to other binary operators in later sections.

Arithmetic Operators
Arithmetic operators are those that operate on numeric values. They are shown in Table 2.4.

TABLE 2 .4   Binary arithmetic operators

Operator Example Description

Addition a + b Adds two numeric values

Subtraction c - d Subtracts two numeric values

Multiplication e * f Multiplies two numeric values

Division g / h Divides one numeric value by another

Modulus i % j Returns the remainder after division of one numeric value by
another

Working with Binary Arithmetic Operators  73

You should know all but modulus from early mathematics. If you don’t know what
modulus is, though, don’t worry—we’ll cover that shortly. Arithmetic operators also include
the unary operators, ++ and --, which we covered already. As you may have noticed in
Table 2.1, the multiplicative operators (*, /, %) have a higher order of precedence than the
additive operators (+, -). Take a look at the following expression:

int price = 2 * 5 + 3 * 4 - 8;

First, you evaluate the 2 * 5 and 3 * 4, which reduces the expression to this:

int price = 10 + 12 - 8;

Then, you evaluate the remaining terms in left-to-right order, resulting in a value of
price of 14. Make sure you understand why the result is 14 because you will likely see this
kind of operator precedence question on the exam.

All of the arithmetic operators may be applied to any Java primitives,
with the exception of boolean. Furthermore, only the addition opera-
tors + and += may be applied to String values, which results in String
concatenation. You will learn more about these operators and how they
apply to String values in Chapter 4, “Core APIs.”

Adding Parentheses
You might have noticed we said “Unless overridden with parentheses” prior to presenting
Table 2.1 on operator precedence. That’s because you can change the order of operation
explicitly by wrapping parentheses around the sections you want evaluated first.

Changing the Order of Operation

Let’s return to the previous price example. The following code snippet contains the same
values and operators, in the same order, but with two sets of parentheses added:

int price = 2 * ((5 + 3) * 4 - 8);

This time you would evaluate the addition operator 5 + 3, which reduces the expression
to the following:

int price = 2 * (8 * 4 - 8);

You can further reduce this expression by multiplying the first two values within the
parentheses:

int price = 2 * (32 - 8);

Next, you subtract the values within the parentheses before applying terms outside the
parentheses:

int price = 2 * 24;

Finally, you would multiply the result by 2, resulting in a value of 48 for price.

74  Chapter 2  ■  Operators

Parentheses can appear in nearly any question on the exam involving numeric values, so
make sure you understand how they are changing the order of operation when you see them.

When you encounter code in your professional career in which you are
not sure about the order of operation, feel free to add optional paren-
theses. While often not required, they can improve readability, especially
as you’ll see with ternary operators.

Verifying Parentheses Syntax

When working with parentheses, you need to make sure they are always valid and balanced.
Consider the following examples:

long pigeon = 1 + ((3 * 5) / 3; // DOES NOT COMPILE
int blueJay = (9 + 2) + 3) / (2 * 4; // DOES NOT COMPILE

The first example does not compile because the parentheses are not balanced. There is
a left parenthesis with no matching right parenthesis. The second example has an equal
number of left and right parentheses, but they are not balanced properly. When reading from
left to right, a new right parenthesis must match a previous left parenthesis. Likewise, all left
parentheses must be closed by right parentheses before the end of the expression.

Let’s try another example:

short robin = 3 + [(4 * 2) + 4]; // DOES NOT COMPILE

This example does not compile because Java, unlike some other programming languages,
does not allow brackets, [], to be used in place of parentheses. If you replace the brackets
with parentheses, the last example will compile just fine.

Division and Modulus Operators
As we said earlier, the modulus operator, %, may be new to you. The modulus operator,
sometimes called the remainder operator, is simply the remainder when two numbers are
divided. For example, 9 divided by 3 divides evenly and has no remainder; therefore, the
result of 9 % 3 is 0. On the other hand, 11 divided by 3 does not divide evenly; therefore,
the result of 11 % 3 is 2.

The following examples illustrate this distinction:

System.out.println(9 / 3); // 3
System.out.println(9 % 3); // 0

System.out.println(10 / 3); // 3
System.out.println(10 % 3); // 1

System.out.println(11 / 3); // 3
System.out.println(11 % 3); // 2

Working with Binary Arithmetic Operators  75

System.out.println(12 / 3); // 4
System.out.println(12 % 3); // 0

As you can see, the division results increase only when the value on the left side goes
from 11 to 12, whereas the modulus remainder value increases by 1 each time the left side is
increased until it wraps around to zero. For a given divisor y, the modulus operation results
in a value between 0 and (y - 1) for positive dividends, or 0, 1, 2 in this example.

Be sure to understand the difference between arithmetic division and modulus. For integer
values, division results in the floor value of the nearest integer that fulfills the operation,
whereas modulus is the remainder value. If you hear the phrase floor value, it just means the
value without anything after the decimal point. For example, the floor value is 4 for each of
the values 4.0, 4.5, and 4.9999999. Unlike rounding, which we’ll cover in Chapter 4, you
just take the value before the decimal point, regardless of what is after the decimal point.

The modulus operation is not limited to positive integer values in Java; it
may also be applied to negative integers and floating-point numbers. For
example, if the divisor is 5, then the modulus value of a negative number
is between -4 and 0. For the exam, though, you are not required to be
able to take the modulus of a negative integer or a floating-point number.

Numeric Promotion
Now that you understand the basics of arithmetic operators, it is vital to talk about prim-
itive numeric promotion, as Java may do things that seem unusual to you at first. As we
showed in Chapter 1, “Building Blocks,” each primitive numeric type has a bit-length. You
don’t need to know the exact size of these types for the exam, but you should know which
are bigger than others. For example, you should know that a long takes up more space than
an int, which in turn takes up more space than a short, and so on.

You need to memorize certain rules that Java will follow when applying operators to
data types:

Numeric Promotion Rules

1.	 If two values have different data types, Java will automatically promote one of the
values to the larger of the two data types.

2.	 If one of the values is integral and the other is floating-point, Java will automatically
promote the integral value to the floating-point value’s data type.

3.	 Smaller data types, namely, byte, short, and char, are first promoted to int any time
they’re used with a Java binary arithmetic operator with a variable (as opposed to a
value), even if neither of the operands is int.

4.	 After all promotion has occurred and the operands have the same data type, the result-
ing value will have the same data type as its promoted operands.

76  Chapter 2  ■  Operators

The last two rules are the ones most people have trouble with and the ones likely to trip
you up on the exam. For the third rule, note that unary operators are excluded from this
rule. For example, applying ++ to a short value results in a short value.

Let’s tackle some examples for illustrative purposes:

■■ What is the data type of x * y?

int x = 1;
long y = 33;
var z = x * y;

In this case, we follow the first rule. Since one of the values is int and the other is long,
and long is larger than int, the int value x is first promoted to a long. The result z is
then a long value.

■■ What is the data type of x + y?

double x = 39.21;
float y = 2.1;
var z = x + y;

This is actually a trick question, as the second line does not compile! As you may
remember from Chapter 1, floating-point literals are assumed to be double unless post-
fixed with an f, as in 2.1f. If the value of y was set properly to 2.1f, then the promo-
tion would be similar to the previous example, with both operands being promoted to a
double, and the result z would be a double value.

■■ What is the data type of x * y?

short x = 10;
short y = 3;
var z = x * y;

On the last line, we must apply the third rule: that x and y will both be promoted to
int before the binary multiplication operation, resulting in an output of type int. If
you were to try to assign the value to a short variable z without casting, then the code
would not compile. Pay close attention to the fact that the resulting output is not a
short, as we’ll come back to this example in the upcoming “Assigning Values” section.

■■ What is the data type of w * x / y?

short w = 14;
float x = 13;
double y = 30;
var z = w * x / y;

In this case, we must apply all of the rules. First, w will automatically be promoted to
int solely because it is a short and is being used in an arithmetic binary operation. The
promoted w value will then be automatically promoted to a float so that it can be mul-
tiplied with x. The result of w * x will then be automatically promoted to a double so
that it can be divided by y, resulting in a double value.

Assigning Values  77

When working with arithmetic operators in Java, you should always be aware of the data
type of variables, intermediate values, and resulting values. You should apply operator prece-
dence and parentheses and work outward, promoting data types along the way. In the next
section, we’ll discuss the intricacies of assigning these values to variables of a particular type.

Assigning Values
Compilation errors from assignment operators are often overlooked on the exam, in part
because of how subtle these errors can be. To be successful with the assignment operators,
you should be fluent in understanding how the compiler handles numeric promotion and
when casting is required. Being able to spot these issues is critical to passing the exam, as
assignment operators appear in nearly every question with a code snippet.

Assignment Operator
An assignment operator is a binary operator that modifies, or assigns, the variable on the
left side of the operator with the result of the value on the right side of the equation. Unlike
most other Java operators, the assignment operator is evaluated from right to left.

The simplest assignment operator is the = assignment, which you have seen already:

int herd = 1;

This statement assigns the herd variable the value of 1.
Java will automatically promote from smaller to larger data types, as you saw in the

previous section on arithmetic operators, but it will throw a compiler exception if it detects
that you are trying to convert from larger to smaller data types without casting. Table 2.5
lists the first assignment operator that you need to know for the exam. We present additional
assignment operators later in this section.

Casting Values
Seems easy so far, right? Well, we can’t really talk about the assignment operator in detail
until we’ve covered casting. Casting is a unary operation where one data type is explicitly
interpreted as another data type. Casting is optional and unnecessary when converting to a

TABLE 2 .5   Simple assignment operator

Operator Example Description

Assignment int a = 50; Assigns the value on the right to the variable on the left

78  Chapter 2  ■  Operators

larger or widening data type, but it is required when converting to a smaller or narrowing
data type. Without casting, the compiler will generate an error when trying to put a larger
data type inside a smaller one.

Casting is performed by placing the data type, enclosed in parentheses, to the left of the
value you want to cast. Here are some examples of casting:

int fur = (int)5;
int hair = (short) 2;
String type = (String) "Bird";
short tail = (short)(4 + 10);
long feathers = 10(long); // DOES NOT COMPILE

Spaces between the cast and the value are optional. As shown in the second-to-last
example, it is common for the right side to also be in parentheses. Since casting is a unary
operation, it would only be applied to the 4 if we didn’t enclose 4 + 10 in parentheses. The
last example does not compile because the type is on the wrong side of the value.

On the one hand, it is convenient that the compiler automatically casts smaller data
types to larger ones. On the other hand, it makes for great exam questions when they do the
opposite to see whether you are paying attention. See if you can figure out why none of the
following lines of code compile:

float egg = 2.0 / 9; // DOES NOT COMPILE
int tadpole = (int)5 * 2L; // DOES NOT COMPILE
short frog = 3 - 2.0; // DOES NOT COMPILE

All of these examples involve putting a larger value into a smaller data type. Don’t worry
if you don’t follow this quite yet; we cover more examples like this shortly.

In this chapter, casting is primarily concerned with converting numeric data types into
other data types. As you will see in later chapters, casting can also be applied to objects and
references. In those cases, though, no conversion is performed. Put simply, casting a numeric
value may change the data type, while casting an object only changes the reference to the
object, not the object itself.

Reviewing Primitive Assignments
See if you can figure out why each of the following lines does not compile:

int fish = 1.0; // DOES NOT COMPILE
short bird = 1921222; // DOES NOT COMPILE
int mammal = 9f; // DOES NOT COMPILE
long reptile = 192_301_398_193_810_323; // DOES NOT COMPILE

The first statement does not compile because you are trying to assign a double 1.0
to an integer value. Even though the value is a mathematic integer, by adding .0, you’re
instructing the compiler to treat it as a double. The second statement does not compile
because the literal value 1921222 is outside the range of short, and the compiler detects
this. The third statement does not compile because the f added to the end of the number

Assigning Values  79

instructs the compiler to treat the number as a floating-point value, but the assignment is to
an int. Finally, the last statement does not compile because Java interprets the literal as an
int and notices that the value is larger than int allows. The literal would need a postfix L
or l to be considered a long.

Applying Casting
We can fix three of the previous examples by casting the results to a smaller data type.
Remember, casting primitives is required any time you are going from a larger numerical
data type to a smaller numerical data type, or converting from a floating-point number to an
integral value.

int fish = (int)1.0;
short bird = (short)1921222; // Stored as 20678
int mammal = (int)9f;

What about applying casting to the last example?

long reptile = (long)192301398193810323; // DOES NOT COMPILE

This still does not compile because the value is first interpreted as an int by the compiler
and is out of range. The following fixes this code without requiring casting:
long reptile = 192301398193810323L;

Overflow and Underflow

The expressions in the previous example now compile, although there’s a cost. The second
value, 1,921,222, is too large to be stored as a short, so numeric overflow occurs, and it
becomes 20,678. Overflow is when a number is so large that it will no longer fit within the
data type, so the system “wraps around” to the lowest negative value and counts up from
there, similar to how modulus arithmetic works. There’s also an analogous underflow, when
the number is too low to fit in the data type, such as storing -200 in a byte field.

This is beyond the scope of the exam but something to be careful of in your own code. For
example, the following statement outputs a negative number:

 System.out.print(2147483647+1); // -2147483648

Since 2147483647 is the maximum int value, adding any strictly positive value to it will
cause it to wrap to the smallest negative number.

Let’s return to a similar example from the “Numeric Promotion” section earlier in
the chapter.

80  Chapter 2  ■  Operators

short mouse = 10;
short hamster = 3;
short capybara = mouse * hamster; // DOES NOT COMPILE

Based on everything you have learned up until now about numeric promotion and
casting, do you understand why the last line of this statement will not compile? As you may
remember, short values are automatically promoted to int when applying any arithmetic
operator, with the resulting value being of type int. Trying to assign a short variable with
an int value results in a compiler error, as Java thinks you are trying to implicitly convert
from a larger data type to a smaller one.

We can fix this expression by casting, as there are times that you may want to over-
ride the compiler’s default behavior. In this example, we know the result of 10 * 3 is 30,
which can easily fit into a short variable, so we can apply casting to convert the result back
to a short:

short mouse = 10;
short hamster = 3;
short capybara = (short)(mouse * hamster);

By casting a larger value into a smaller data type, you instruct the compiler to ignore its
default behavior. In other words, you are telling the compiler that you have taken additional
steps to prevent overflow or underflow. It is also possible that in your particular application
and scenario, overflow or underflow would result in acceptable values.

Last but not least, casting can appear anywhere in an expression, not just on the assign-
ment. For example, let’s take a look at a modified form of the previous example:

short mouse = 10;
short hamster = 3;
short capybara = (short)mouse * hamster; // DOES NOT COMPILE

So, what’s happening on the last line? Well, remember when we said casting was a unary
operation? That means the cast in the last line is applied to mouse, and mouse alone. After
the cast is complete, both operands are promoted to int since they are used with the binary
multiplication operator (*), making the result an int and causing a compiler error.

What if we changed the last line to the following?
short capybara = 1 + (short)(mouse * hamster); // DOES NOT COMPILE

In the example, casting is performed successfully, but the resulting value is automatically
promoted to int because it is used with the binary arithmetic operator (+).

Casting Values vs. Variables
Revisiting our third numeric promotional rule, the compiler doesn’t require casting when
working with literal values that fit into the data type. Consider these examples:

byte hat = 1;
byte gloves = 7 * 10;
short scarf = 5;
short boots = 2 + 1;

Assigning Values  81

All of these statements compile without issue. On the other hand, neither of these state-
ments compiles:

short boots = 2 + hat; // DOES NOT COMPILE
byte gloves = 7 * 100; // DOES NOT COMPILE

The first statement does not compile because hat is a variable, not a value, and both
operands are automatically promoted to int. When working with values, the compiler
had enough information to determine the writer’s intent. When working with variables,
though, there is ambiguity about how to proceed, so the compiler reports an error. The sec-
ond expression does not compile because 700 triggers an overflow for byte, which has a
maximum value of 127.

Compound Assignment Operators
Besides the simple assignment operator (=), Java supports numerous compound assignment
operators. For the exam, you should be familiar with the compound operators in Table 2.6.

Compound operators are really just glorified forms of the simple assignment operator,
with a built-in arithmetic or logical operation that applies the left and right sides of the
statement and stores the resulting value in the variable on the left side of the statement. For
example, the following two statements after the declaration of camel and giraffe are
equivalent when run independently:

int camel = 2, giraffe = 3;
camel = camel * giraffe; // Simple assignment operator
camel *= giraffe; // Compound assignment operator

TABLE 2 .6   Compound assignment operators

Operator Example Description

Addition
assignment

a += 5 Adds the value on the right to the variable on the left and
assigns the sum to the variable

Subtraction
assignment

b -= 0.2 Subtracts the value on the right from the variable on the left
and assigns the difference to the variable

Multiplication
assignment

c *= 100 Multiplies the value on the right with the variable on the left
and assigns the product to the variable

Division
assignment

d /= 4 Divides the variable on the left by the value on the right and
assigns the quotient to the variable

82  Chapter 2  ■  Operators

The left side of the compound operator can be applied only to a variable that is already
defined and cannot be used to declare a new variable. In this example, if camel were not
already defined, the expression camel *= giraffe would not compile.

Compound operators are useful for more than just shorthand—they can also save you
from having to explicitly cast a value. For example, consider the following. Can you figure
out why the last line does not compile?

long goat = 10;
int sheep = 5;
sheep = sheep * goat; // DOES NOT COMPILE

From the previous section, you should be able to spot the problem in the last line. We are
trying to assign a long value to an int variable. This last line could be fixed with an explicit
cast to (int), but there’s a better way using the compound assignment operator:

long goat = 10;
int sheep = 5;
sheep *= goat;

The compound operator will first cast sheep to a long, apply the multiplication of two
long values, and then cast the result to an int. Unlike the previous example, in which the
compiler reported an error, the compiler will automatically cast the resulting value to the
data type of the value on the left side of the compound operator.

Return Value of Assignment Operators
One final thing to know about assignment operators is that the result of an assignment is an
expression in and of itself equal to the value of the assignment. For example, the following
snippet of code is perfectly valid, if a little odd-looking:

long wolf = 5;
long coyote = (wolf=3);
System.out.println(wolf); // 3
System.out.println(coyote); // 3

The key here is that (wolf=3) does two things. First, it sets the value of the variable
wolf to be 3. Second, it returns a value of the assignment, which is also 3.

The exam creators are fond of inserting the assignment operator (=) in the middle of an
expression and using the value of the assignment as part of a more complex expression. For
example, don’t be surprised if you see an if statement on the exam similar to the following:

boolean healthy = false;
if(healthy = true)
 System.out.print("Good!");

While this may look like a test if healthy is true, it’s actually assigning healthy a
value of true. The result of the assignment is the value of the assignment, which is true,

Comparing Values  83

resulting in this snippet printing Good!. We’ll cover this in more detail in the upcoming
“Equality Operators” section.

Comparing Values
The last set of binary operators revolves around comparing values. They can be used to
check if two values are the same, check if one numeric value is less than or greater than
another, and perform Boolean arithmetic. Chances are, you have used many of the operators
in this section in your development experience.

Equality Operators
Determining equality in Java can be a nontrivial endeavor as there’s a semantic difference
between “two objects are the same” and “two objects are equivalent.” It is further compli-
cated by the fact that for numeric and boolean primitives, there is no such distinction.

Table 2.7 lists the equality operators. The equals operator (==) and not equals operator
(!=) compare two operands and return a boolean value determining whether the expressions
or values are equal or not equal, respectively.

The equality operator can be applied to numeric values, boolean values, and objects
(including String and null). When applying the equality operator, you cannot mix these
types. Each of the following results in a compiler error:

boolean monkey = true == 3; // DOES NOT COMPILE
boolean ape = false != "Grape"; // DOES NOT COMPILE
boolean gorilla = 10.2 == "Koko"; // DOES NOT COMPILE

Pay close attention to the data types when you see an equality operator on the exam. As
mentioned in the previous section, the exam creators also have a habit of mixing assignment
operators and equality operators.

boolean bear = false;

TABLE 2 .7   Equality operators

Operator Example Apply to primitives Apply to objects

Equality a == 10 Returns true if the two values
represent the same value

Returns true if the two values ref-
erence the same object

Inequality b != 3.14 Returns true if the two values
represent different values

Returns true if the two values do
not reference the same object

84  Chapter 2  ■  Operators

boolean polar = (bear = true);
System.out.println(polar); // true

At first glance, you might think the output should be false, and if the expression were
(bear == true), then you would be correct. In this example, though, the expression is
assigning the value of true to bear, and as you saw in the section on assignment operators,
the assignment itself has the value of the assignment. Therefore, polar is also assigned a
value of true, and the output is true.

For object comparison, the equality operator is applied to the references to the objects,
not the objects they point to. Two references are equal if and only if they point to the same
object or both point to null. Let’s take a look at some examples:

var monday = new File("schedule.txt");
var tuesday = new File("schedule.txt");
var wednesday = tuesday;
System.out.println(monday == tuesday); // false
System.out.println(tuesday == wednesday); // true

Even though all of the variables point to the same file information, only two references,
tuesday and wednesday, are equal in terms of == since they point to the same object.

Wait, what’s the File class? In this example, as well as during the exam,
you may be presented with class names that are unfamiliar, such as File.
Many times you can answer questions about these classes without know-
ing the specific details of these classes. In the previous example, you
should be able to answer questions that indicate monday and tuesday
are two separate and distinct objects because the new keyword is used,
even if you are not familiar with the data types of these objects.

In some languages, comparing null with any other value is always false, although this
is not the case in Java.

System.out.print(null == null); // true

In Chapter 4, we’ll continue the discussion of object equality by introducing what it
means for two different objects to be equivalent. We’ll also cover String equality and show
how this can be a nontrivial topic.

Relational Operators
We now move on to relational operators, which compare two expressions and return a
boolean value. Table 2.8 describes the relational operators you need to know for the exam.

Comparing Values  85

Numeric Comparison Operators
The first four relational operators in Table 2.8 apply only to numeric values. If the two
numeric operands are not of the same data type, the smaller one is promoted, as previously
discussed.

Let’s look at examples of these operators in action:

int gibbonNumFeet = 2, wolfNumFeet = 4, ostrichNumFeet = 2;
System.out.println(gibbonNumFeet < wolfNumFeet); // true
System.out.println(gibbonNumFeet <= wolfNumFeet); // true
System.out.println(gibbonNumFeet >= ostrichNumFeet); // true
System.out.println(gibbonNumFeet > ostrichNumFeet); // false

Notice that the last example outputs false, because although gibbonNumFeet and
ostrichNumFeet have the same value, gibbonNumFeet is not strictly greater than
ostrichNumFeet.

instanceof Operator
The final relational operator you need to know for the exam is the instanceof operator,
shown in Table 2.8. It is useful for determining whether an arbitrary object is a member of a
particular class or interface at runtime.

Why wouldn’t you know what class or interface an object is? As we will get into in
Chapter 6, “Class Design,” Java supports polymorphism. For now, all you need to know is

TABLE 2 .8   Relational operators

Operator Example Description

Less than a < 5 Returns true if the value on the left is strictly less than
the value on the right

Less than or
equal to

b <= 6 Returns true if the value on the left is less than or
equal to the value on the right

Greater than c > 9 Returns true if the value on the left is strictly greater
than the value on the right

Greater than or
equal to

3 >= d Returns true if the value on the left is greater than or
equal to the value on the right

Type comparison e instanceof
String

Returns true if the reference on the left side is an in-
stance of the type on the right side (class, interface,
record, enum, annotation)

86  Chapter 2  ■  Operators

objects can be passed around using a variety of references. For example, all classes inherit
from java.lang.Object. This means that any instance can be assigned to an Object ref-
erence. For example, how many objects are created and used in the following code snippet?

Integer zooTime = Integer.valueOf(9);
Number num = zooTime;
Object obj = zooTime;

In this example, only one object is created in memory, but there are three different ref-
erences to it because Integer inherits both Number and Object. This means that you can
call instanceof on any of these references with three different data types, and it will return
true for each of them.

Where polymorphism often comes into play is when you create a method that takes a
data type with many possible subclasses. For example, imagine that we have a function that
opens the zoo and prints the time. As input, it takes a Number as an input parameter.

public void openZoo(Number time) {}

Now, we want the function to add O'clock to the end of output if the value is a whole
number type, such as an Integer; otherwise, it just prints the value.

public void openZoo(Number time) {
 if (time instanceof Integer)
 System.out.print((Integer)time + " O'clock");
 else
 System.out.print(time);
}

We now have a method that can intelligently handle both Integer and other values. A
good exercise left for the reader is to add checks for other numeric data types such as Short,
Long, Double, and so on.

Notice that we cast the Integer value in this example. It is common to use casting with
instanceof when working with objects that can be various different types, since casting gives
you access to fields available only in the more specific classes. It is considered a good coding
practice to use the instanceof operator prior to casting from one object to a narrower type.

For the exam, you only need to focus on when instanceof is used with
classes and interfaces. Although it can be used with other high-level
types, such as records, enums, and annotations, it is not common.

Invalid instanceof
One area the exam might try to trip you up on is using instanceof with incompatible
types. For example, Number cannot possibly hold a String value, so the following causes a
compilation error:

public void openZoo(Number time) {
 if(time instanceof String) // DOES NOT COMPILE
 System.out.print(time);
}

Comparing Values  87

If the compiler can determine that a variable cannot possibly be cast to a specific class, it
reports an error.

null and the instanceof operator

What happens if you call instanceof on a null variable? For the exam, you should know that
calling instanceof on the null literal or a null reference always returns false.

System.out.print(null instanceof Object); // false

Object noObjectHere = null;
System.out.print(noObjectHere instanceof String); // false

The preceding examples both print false. It almost doesn’t matter what the right side of
the expression is. We say “almost” because there are exceptions. This example does not com-
pile, since null is used on the right side of the instanceof operator:
System.out.print(null instanceof null); // DOES NOT COMPILE

Although it may feel like you’ve learned everything there is about the
instanceof operator, there’s a lot more coming! In Chapter 3, we intro-
duce pattern matching with the instanceof operator, which was offi-
cially added in Java 16. In Chapter 7, “Beyond Classes,” we introduce
polymorphism in much more detail and show how to apply these rules to
interfaces.

Logical Operators
If you have studied computer science, you may have already come across logical operators
before. If not, no need to panic—we’ll be covering them in detail in this section.

The logical operators, (&), (|), and (^), may be applied to both numeric and boolean
data types; they are listed in Table 2.9. When they’re applied to boolean data types, they’re
referred to as logical operators. Alternatively, when they’re applied to numeric data types,
they’re referred to as bitwise operators, as they perform bitwise comparisons of the bits
that compose the number. For the exam, though, you don’t need to know anything about
numeric bitwise comparisons, so we’ll leave that educational aspect to other books.

TABLE 2 .9   Logical operators

Operator Example Description

Logical AND a & b Value is true only if both values are true.

Logical inclusive OR c | d Value is true if at least one of the values is true.

Logical exclusive OR e ^ f Value is true only if one value is true and the other is false.

88  Chapter 2  ■  Operators

You should familiarize yourself with the truth tables in Figure 2.2, where x and y are
assumed to be boolean data types.

Here are some tips to help you remember this table:

■■ AND is only true if both operands are true.

■■ Inclusive OR is only false if both operands are false.

■■ Exclusive OR is only true if the operands are different.

Let’s take a look at some examples:

boolean eyesClosed = true;
boolean breathingSlowly = true;

boolean resting = eyesClosed | breathingSlowly;
boolean asleep = eyesClosed & breathingSlowly;
boolean awake = eyesClosed ^ breathingSlowly;
System.out.println(resting); // true
System.out.println(asleep); // true
System.out.println(awake); // false

You should try these out yourself, changing the values of eyesClosed and
breathingSlowly and studying the results.

Conditional Operators
Next, we present the conditional operators, && and ||, in Table 2.10.

AND (x & y)

x =
true

y =
true

true

y =
false

x =
false

false

false

false

x =
true

y =
true

true

y =
false

x =
false

true

true

false

x =
true

y =
true

false

y =
false

x =
false

true

true

false

INCLUSIVE OR (x | y) EXCLUSIVE OR (x ^ y)

F IGURE 2 .2   The logical truth tables for &, |, and ^

Comparing Values  89

The conditional operators, often called short-circuit operators, are nearly identical to the
logical operators, & and |, except that the right side of the expression may never be evalu-
ated if the final result can be determined by the left side of the expression. For example, con-
sider the following statement:

int hour = 10;
boolean zooOpen = true || (hour < 4);
System.out.println(zooOpen); // true

Referring to the truth tables, the value zooOpen can be false only if both sides of the
expression are false. Since we know the left side is true, there’s no need to evaluate the
right side, since no value of hour will ever make this code print false. In other words,
hour could have been -10 or 892; the output would have been the same. Try it yourself
with different values for hour!

Avoiding a NullPointerException
A more common example of where conditional operators are used is checking for null
objects before performing an operation. In the following example, if duck is null, the program
will throw a NullPointerException at runtime:

if(duck!=null & duck.getAge()<5) { // Could throw a NullPointerException
 // Do something
}

The issue is that the logical AND (&) operator evaluates both sides of the expression. We
could add a second if statement, but this could get unwieldy if we have a lot of variables to
check. An easy-to-read solution is to use the conditional AND operator (&&):

if(duck!=null && duck.getAge()<5) {
 // Do something
}

In this example, if duck is null, the conditional prevents a NullPointerException
from ever being thrown, since the evaluation of duck.getAge() < 5 is never reached.

TABLE 2 .10   Conditional operators

Operator Example Description

Conditional
AND

a && b Value is true only if both values are true. If the left side is false, then
the right side will not be evaluated.

Conditional
OR

c || d Value is true if at least one of the values is true. If the left side is
true, then the right side will not be evaluated.

90  Chapter 2  ■  Operators

Checking for Unperformed Side Effects
Be wary of short-circuit behavior on the exam, as questions are known to alter a variable on
the right side of the expression that may never be reached. This is referred to as an unper-
formed side effect. For example, what is the output of the following code?

int rabbit = 6;
boolean bunny = (rabbit >= 6) || (++rabbit <= 7);
System.out.println(rabbit);

Because rabbit >= 6 is true, the increment operator on the right side of the expression
is never evaluated, so the output is 6.

Making Decisions with the
Ternary Operator
The final operator you should be familiar with for the exam is the conditional operator,
? :, otherwise known as the ternary operator. It is notable in that it is the only operator
that takes three operands. The ternary operator has the following form:
booleanExpression ? expression1 : expression2

The first operand must be a boolean expression, and the second and third operands can
be any expression that returns a value. The ternary operation is really a condensed form of a
combined if and else statement that returns a value. We cover if/else statements in a lot
more detail in Chapter 3, so for now we just use simple examples.

For example, consider the following code snippet that calculates the food amount
for an owl:

int owl = 5;
int food;
if(owl < 2) {
 food = 3;
} else {
 food = 4;
}
System.out.println(food); // 4

Compare the previous code snippet with the following ternary operator code snippet:

int owl = 5;
int food = owl < 2 ? 3 : 4;
System.out.println(food); // 4

Making Decisions with the Ternary Operator  91

These two code snippets are equivalent. Note that it is often helpful for readability to add
parentheses around the expressions in ternary operations, although doing so is certainly not
required. It is especially helpful when multiple ternary operators are used together, though.
Consider the following two equivalent expressions:

int food1 = owl < 4 ? owl > 2 ? 3 : 4 : 5;
int food2 = (owl < 4 ? ((owl > 2) ? 3 : 4) : 5);

While they are equivalent, we find the second statement far more readable. That said, it is
possible the exam could use multiple ternary operators in a single line.

For the exam, you should know that there is no requirement that second and third
expressions in ternary operations have the same data types, although it does come into play
when combined with the assignment operator. Compare the two statements following the
variable declaration:

int stripes = 7;

System.out.print((stripes > 5) ? 21 : "Zebra");

int animal = (stripes < 9) ? 3 : "Horse"; // DOES NOT COMPILE

Both expressions evaluate similar boolean values and return an int and a String,
although only the first one will compile. System.out.print() does not care that the
expressions are completely different types, because it can convert both to Object values and
call toString() on them. On the other hand, the compiler does know that "Horse" is of
the wrong data type and cannot be assigned to an int; therefore, it does not allow the code
to be compiled.

Ternary Expression and Unperformed Side Effects

As we saw with the conditional operators, a ternary expression can contain an unper-
formed side effect, as only one of the expressions on the right side will be evaluated at run-
time. Let’s illustrate this principle with the following example:

 int sheep = 1;
 int zzz = 1;
 int sleep = zzz<10 ? sheep++ : zzz++;
 System.out.print(sheep + "," + zzz); // 2,1

Notice that since the left-hand boolean expression was true, only sheep was incre-
mented. Contrast the preceding example with the following modification:

92  Chapter 2  ■  Operators

 int sheep = 1;
 int zzz = 1;
 int sleep = sheep>=10 ? sheep++ : zzz++;
 System.out.print(sheep + "," + zzz); // 1,2

Now that the left-hand boolean expression evaluates to false, only zzz is incremented.
In this manner, we see how the changes in a ternary operator may not be applied if the
particular expression is not used.

For the exam, be wary of any question that includes a ternary expression in which a variable
is modified in one of the expressions on the right-hand side.

Summary
This chapter covered a wide variety of Java operator topics for unary, binary, and ternary
operators. Hopefully, most of these operators were review for you. If not, you need to study
them in detail. It is important that you understand how to use all of the required Java oper-
ators covered in this chapter and know how operator precedence and parentheses influence
the way a particular expression is interpreted.

There will likely be numerous questions on the exam that appear to test one thing,
such as NIO.2 or exception handling, when in fact the answer is related to the misuse of a
particular operator that causes the application to fail to compile. When you see an operator
involving numbers on the exam, always check that the appropriate data types are used and
that they match each other where applicable.

Operators are used throughout the exam, in nearly every code sample, so the better you
understand this chapter, the more prepared you will be for the exam.

Exam Essentials
Be able to write code that uses Java operators.   This chapter covered a wide variety of
operator symbols. Go back and review them several times so that you are familiar with them
throughout the rest of the book.

Be able to recognize which operators are associated with which data types.   Some oper-
ators may be applied only to numeric primitives, some only to boolean values, and some
only to objects. It is important that you notice when an operator and operand(s) are mis-
matched, as this issue is likely to come up in a couple of exam questions.

Exam Essentials  93

Understand when casting is required or numeric promotion occurs.   Whenever you mix
operands of two different data types, the compiler needs to decide how to handle the result-
ing data type. When you’re converting from a smaller to a larger data type, numeric promo-
tion is automatically applied. When you’re converting from a larger to a smaller data type,
casting is required.

Understand Java operator precedence.   Most Java operators you’ll work with are binary,
but the number of expressions is often greater than two. Therefore, you must understand the
order in which Java will evaluate each operator symbol.

Be able to write code that uses parentheses to override operator precedence.   You can use
parentheses in your code to manually change the order of precedence.

94  Chapter 2  ■  Operators

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which of the following Java operators can be used with boolean variables? (Choose all
that apply.)

A.	 ==
B.	 +
C.	 --
D.	 !
E.	 %
F.	 ~
G.	 Cast with (boolean)

2.	 What data type (or types) will allow the following code snippet to compile? (Choose all
that apply.)

 byte apples = 5;
 short oranges = 10;
 _____ bananas = apples + oranges;

A.	 int
B.	 long
C.	 boolean
D.	 double
E.	 short
F.	 byte

3.	 What change, when applied independently, would allow the following code snippet to
compile? (Choose all that apply.)

 3: long ear = 10;
 4: int hearing = 2 * ear;

A.	 No change; it compiles as is.

B.	 Cast ear on line 4 to int.

C.	 Change the data type of ear on line 3 to short.

D.	 Cast 2 * ear on line 4 to int.

E.	 Change the data type of hearing on line 4 to short.

F.	 Change the data type of hearing on line 4 to long.

Review Questions  95

4.	 What is the output of the following code snippet?

 3: boolean canine = true, wolf = true;
 4: int teeth = 20;
 5: canine = (teeth != 10) ^ (wolf=false);
 6: System.out.println(canine+", "+teeth+", "+wolf);

A.	 true, 20, true
B.	 true, 20, false
C.	 false, 10, true
D.	 false, 20, false
E.	 The code will not compile because of line 5.

F.	 None of the above.

5.	 Which of the following operators are ranked in increasing or the same order of precedence?
Assume the + operator is binary addition, not the unary form. (Choose all that apply.)

A.	 +, *, %, --
B.	 ++, (int), *
C.	 =, ==, !
D.	 (short), =, !, *
E.	 *, /, %, +, ==

F.	 !, ||, &
G.	 ^, +, =, +=

6.	 What is the output of the following program?

 1: public class CandyCounter {
 2: static long addCandy(double fruit, float vegetables) {
 3: return (int)fruit+vegetables;
 4: }
 5:
 6: public static void main(String[] args) {
 7: System.out.print(addCandy(1.4, 2.4f) + ", ");
 8: System.out.print(addCandy(1.9, (float)4) + ", ");
 9: System.out.print(addCandy((long)(int)(short)2, (float)4)); } }

A.	 4, 6, 6.0
B.	 3, 5, 6
C.	 3, 6, 6
D.	 4, 5, 6
E.	 The code does not compile because of line 9.

F.	 None of the above.

96  Chapter 2  ■  Operators

7.	 What is the output of the following code snippet?

 int ph = 7, vis = 2;
 boolean clear = vis > 1 & (vis < 9 || ph < 2);
 boolean safe = (vis > 2) && (ph++ > 1);
 boolean tasty = 7 <= --ph;
 System.out.println(clear + "-" + safe + "-" + tasty);

A.	 true-true-true
B.	 true-true-false
C.	 true-false-true
D.	 true-false-false
E.	 false-true-true
F.	 false-true-false
G.	 false-false-true
H.	 false-false-false

8.	 What is the output of the following code snippet?

 4: int pig = (short)4;
 5: pig = pig++;
 6: long goat = (int)2;
 7: goat -= 1.0;
 8: System.out.print(pig + " - " + goat);

A.	 4 - 1
B.	 4 - 2
C.	 5 - 1
D.	 5 - 2
E.	 The code does not compile due to line 7.

F.	 None of the above.

9.	 What are the unique outputs of the following code snippet? (Choose all that apply.)

 int a = 2, b = 4, c = 2;
 System.out.println(a > 2 ? --c : b++);
 System.out.println(b = (a!=c ? a : b++));
 System.out.println(a > b ? b < c ? b : 2 : 1);

A.	 1
B.	 2
C.	 3
D.	 4
E.	 5
F.	 6
G.	 The code does not compile.

Review Questions  97

10.	 What are the unique outputs of the following code snippet? (Choose all that apply.)

 short height = 1, weight = 3;
 short zebra = (byte) weight * (byte) height;
 double ox = 1 + height * 2 + weight;
 long giraffe = 1 + 9 % height + 1;
 System.out.println(zebra);
 System.out.println(ox);
 System.out.println(giraffe);

A.	 1
B.	 2
C.	 3
D.	 4
E.	 5
F.	 6
G.	 The code does not compile.

11.	 What is the output of the following code?

 11: int sample1 = (2 * 4) % 3;
 12: int sample2 = 3 * 2 % 3;
 13: int sample3 = 5 * (1 % 2);
 14: System.out.println(sample1 + ", " + sample2 + ", " + sample3);

A.	 0, 0, 5
B.	 1, 2, 10
C.	 2, 1, 5
D.	 2, 0, 5
E.	 3, 1, 10
F.	 3, 2, 6
G.	 The code does not compile.

12.	 The _________ operator increases a value and returns the original value, while the _______
operator decreases a value and returns the new value.

A.	 post-increment, post-increment

B.	 pre-decrement, post-decrement

C.	 post-increment, post-decrement

D.	 post-increment, pre-decrement

E.	 pre-increment, pre-decrement

F.	 pre-increment, post-decrement

98  Chapter 2  ■  Operators

13.	 What is the output of the following code snippet?

 boolean sunny = true, raining = false, sunday = true;
 boolean goingToTheStore = sunny & raining ^ sunday;
 boolean goingToTheZoo = sunday && !raining;
 boolean stayingHome = !(goingToTheStore && goingToTheZoo);
 System.out.println(goingToTheStore + "-" + goingToTheZoo
 + "-" +stayingHome);

A.	 true-false-false
B.	 false-true-false
C.	 true-true-true
D.	 false-true-true
E.	 false-false-false
F.	 true-true-false
G.	 None of the above

14.	 Which of the following statements are correct? (Choose all that apply.)

A.	 The return value of an assignment operation expression can be void.

B.	 The inequality operator (!=) can be used to compare objects.

C.	 The equality operator (==) can be used to compare a boolean value with a numeric
value.

D.	 During runtime, the & and | operators may cause only the left side of the expression to
be evaluated.

E.	 The return value of an assignment operation expression is the value of the newly
assigned variable.

F.	 In Java, 0 and false may be used interchangeably.

G.	 The logical complement operator (!) cannot be used to flip numeric values.

15.	 Which operators take three operands or values? (Choose all that apply.)

A.	 =
B.	 &&
C.	 *=
D.	 ? :
E.	 &
F.	 ++
G.	 /

Review Questions  99

16.	 How many lines of the following code contain compiler errors?

 int note = 1 * 2 + (long)3;
 short melody = (byte)(double)(note *= 2);
 double song = melody;
 float symphony = (float)((song == 1_000f) ? song * 2L : song);

A.	 0

B.	 1

C.	 2

D.	 3

E.	 4

17.	 Given the following code snippet, what are the values of the variables after it is executed?
(Choose all that apply.)

 int ticketsTaken = 1;
 int ticketsSold = 3;
 ticketsSold += 1 + ticketsTaken++;
 ticketsTaken *= 2;
 ticketsSold += (long)1;

A.	 ticketsSold is 8.

B.	 ticketsTaken is 2.

C.	 ticketsSold is 6.

D.	 ticketsTaken is 6.

E.	 ticketsSold is 7.

F.	 ticketsTaken is 4.

G.	 The code does not compile.

18.	 Which of the following can be used to change the order of operation in an expression?
(Choose all that apply.)

A.	 []
B.	 < >
C.	 ()
D.	 \ /
E.	 { }
F.	 " "

100  Chapter 2  ■  Operators

19.	 What is the result of executing the following code snippet? (Choose all that apply.)

 3: int start = 7;
 4: int end = 4;
 5: end += ++start;
 6: start = (byte)(Byte.MAX_VALUE + 1);

A.	 start is 0.

B.	 start is -128.

C.	 start is 127.

D.	 end is 8.

E.	 end is 11.

F.	 end is 12.

G.	 The code does not compile.

H.	 The code compiles but throws an exception at runtime.

20.	 Which of the following statements about unary operators are true? (Choose all that apply.)

A.	 Unary operators are always executed before any surrounding numeric binary or ternary
operators.

B.	 The - operator can be used to flip a boolean value.

C.	 The pre-increment operator (++) returns the value of the variable before the increment is
applied.

D.	 The post-decrement operator (--) returns the value of the variable before the decrement
is applied.

E.	 The ! operator cannot be used on numeric values.

F.	 None of the above

21.	 What is the result of executing the following code snippet?

 int myFavoriteNumber = 8;
 int bird = ~myFavoriteNumber;
 int plane = -myFavoriteNumber;
 var superman = bird == plane ? 5 : 10;
 System.out.println(bird + "," + plane + "," + --superman);

A.	 -7,-8,9
B.	 -7,-8,10
C.	 -8,-8,4
D.	 -8,-8,5
E.	 -9,-8,9
F.	 -9,-8,10
G.	 None of the above

Making Decisions

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Controlling Program Flow
■■ Create program flow control constructs including if/else,

switch statements and expressions, loops, and break and con-

tinue statements

✓✓ Utilizing Java Object-Oriented Approach
■■ Implement polymorphism and differentiate object type versus

reference type. Perform type casting, identify object types

using instanceof operator and pattern matching

Chapter

3

Like many programming languages, Java is composed primarily
of variables, operators, and statements put together in some
logical order. In the last chapter, we covered how to create and

manipulate variables. Writing software is about more than managing variables, though; it
is about creating applications that can make intelligent decisions. In this chapter, we pre-
sent the various decision-making statements available to you within the language. This
knowledge will allow you to build complex functions and class structures that you’ll see
throughout this book.

Creating Decision-Making Statements
Java operators allow you to create a lot of complex expressions, but they’re limited in the
manner in which they can control program flow. Imagine you want a method to be executed
only under certain conditions that cannot be evaluated until runtime. For example, on rainy
days, a zoo should remind patrons to bring an umbrella, or on a snowy day, the zoo might
need to close. The software doesn’t change, but the behavior of the software should, depend-
ing on the inputs supplied in the moment. In this section, we discuss decision-making state-
ments including if and else, along with the new pattern matching feature.

Statements and Blocks
As you may recall from Chapter 1, “Building Blocks,” a Java statement is a complete unit of
execution in Java, terminated with a semicolon (;). In this chapter, we introduce you to var-
ious Java control flow statements. Control flow statements break up the flow of execution by
using decision-making, looping, and branching, allowing the application to selectively exe-
cute particular segments of code.

These statements can be applied to single expressions as well as a block of Java code.
As described in Chapter 1, a block of code in Java is a group of zero or more statements
between balanced braces ({}) and can be used anywhere a single statement is allowed. For
example, the following two snippets are equivalent, with the first being a single expression
and the second being a block containing the same statement:

// Single statement
patrons++;

Creating Decision-Making Statements  103

// Statement inside a block
{
 patrons++;
}

A statement or block often serves as the target of a decision-making statement. For
example, we can prepend the decision-making if statement to these two examples:

// Single statement
if(ticketsTaken > 1)
 patrons++;

// Statement inside a block
if(ticketsTaken > 1)
{
 patrons++;
}

Again, both of these code snippets are equivalent. Just remember that the target of a
decision-making statement can be a single statement or block of statements. For the rest of
the chapter, we use both forms to better prepare you for what you will see on the exam.

While both of the previous examples are equivalent, stylistically using
blocks is often preferred, even if the block has only one statement. The
second form has the advantage that you can quickly insert new lines of
code into the block, without modifying the surrounding structure.

The if Statement
Often, we want to execute a block only under certain circumstances. The if statement, as
shown in Figure 3.1, accomplishes this by allowing our application to execute a particular
block of code if and only if a boolean expression evaluates to true at runtime.

if keyword

Curly braces required for block
of multiple statements, optional
for single statement

Parentheses (required)

if (booleanExpression) {

}

F IGURE 3 .1   The structure of an if statement

104  Chapter 3  ■  Making Decisions

For example, imagine we had a function that used the hour of day, an integer value from
0 to 23, to display a message to the user:

if(hourOfDay < 11)
 System.out.println("Good Morning");

If the hour of the day is less than 11, then the message will be displayed. Now let’s say
we also wanted to increment some value, morningGreetingCount, every time the greeting
is printed. We could write the if statement twice, but luckily Java offers us a more natural
approach using a block:

if(hourOfDay < 11) {
 System.out.println("Good Morning");
 morningGreetingCount++;
}

Watch Indentation and Braces

One area where the exam writers will try to trip you up is if statements without braces
({}). For example, take a look at this slightly modified form of our example:

 if(hourOfDay < 11)
 System.out.println("Good Morning");
 morningGreetingCount++;

Based on the indentation, you might be inclined to think the variable
morningGreetingCount is only going to be incremented if hourOfDay is less than 11,
but that’s not what this code does. It will execute the print statement only if the condition is
met, but it will always execute the increment operation.

Remember that in Java, unlike some other programming languages, tabs are just
whitespace and are not evaluated as part of the execution. When you see a control flow
statement in a question, be sure to trace the open and close braces of the block, ignoring
any indentation you may come across.

The else Statement
Let’s expand our example a little. What if we want to display a different message if it is 11
a.m. or later? Can we do it using only the tools we have? Of course we can!

if(hourOfDay < 11) {
 System.out.println("Good Morning");

Creating Decision-Making Statements  105

}
if(hourOfDay >= 11) {
 System.out.println("Good Afternoon");
}

This seems a bit redundant, though, since we’re performing an evaluation on hourOfDay
twice. Luckily, Java offers us a more useful approach in the form of an else statement, as
shown in Figure 3.2.

Let’s return to this example:

if(hourOfDay < 11) {
 System.out.println("Good Morning");
} else System.out.println("Good Afternoon");

Now our code is truly branching between one of the two possible options, with the
boolean evaluation happening only once. The else operator takes a statement or block of
statements, in the same manner as the if statement. Similarly, we can append additional if
statements to an else block to arrive at a more refined example:

if(hourOfDay < 11) {
 System.out.println("Good Morning");
} else if(hourOfDay < 15) {
 System.out.println("Good Afternoon");
} else {
 System.out.println("Good Evening");
}

Optional else statement

Curly braces required for block
of multiple statements, optional
for single statement

if (booleanExpression) {

 // Branch if true

} else {

 // Branch if false

}

if keyword
Parentheses (required)

F IGURE 3 .2   The structure of an else statement

106  Chapter 3  ■  Making Decisions

In this example, the Java process will continue execution until it encounters an if state-
ment that evaluates to true. If neither of the first two expressions is true, it will execute the
final code of the else block.

Verifying That the if Statement Evaluates to a Boolean Expression

Another common way the exam may try to lead you astray is by providing code where the
boolean expression inside the if statement is not actually a boolean expression. For
example, take a look at the following lines of code:

 int hourOfDay = 1;
 if(hourOfDay) { // DOES NOT COMPILE
 ...
 }
This statement may be valid in some other programming and scripting languages, but not
in Java, where 0 and 1 are not considered boolean values.

Shortening Code with Pattern Matching
Java 16 officially introduced pattern matching with if statements and the instanceof operator.
Pattern matching is a technique of controlling program flow that only executes a section
of code that meets certain criteria. It is used in conjunction with if statements for greater
program control.

If pattern matching is new to you, be careful not to confuse it with the
Java Pattern class or regular expressions (regex). While pattern match-
ing can include the use of regular expressions for filtering, they are unre-
lated concepts.

Pattern matching is a new tool at your disposal to reduce boilerplate in your code.
Boilerplate code is code that tends to be duplicated throughout a section of code over and
over again in a similar manner. A lot of the newer enhancements to the Java language focus
on reducing boilerplate code.

To understand why this tool was added, consider the following code that takes a Number
instance and compares it with the value 5. If you haven’t seen Number or Integer, you just
need to know that Integer inherits from Number for now. You’ll see them a lot in this book!

void compareIntegers(Number number) {
 if(number instanceof Integer) {
 Integer data = (Integer)number;

Creating Decision-Making Statements  107

 System.out.print(data.compareTo(5));
 }
}

The cast is needed since the compareTo() method is defined on Integer, but not
on Number.

Code that first checks if a variable is of a particular type and then immediately casts it to
that type is extremely common in the Java world. It’s so common that the authors of Java
decided to implement a shorter syntax for it:

void compareIntegers(Number number) {
 if(number instanceof Integer data) {
 System.out.print(data.compareTo(5));
 }
}

The variable data in this example is referred to as the pattern variable. Notice that this
code also avoids any potential ClassCastException because the cast operation is executed
only if the implicit instanceof operator returns true.

Reassigning Pattern Variables

While possible, it is a bad practice to reassign a pattern variable since doing so can lead to
ambiguity about what is and is not in scope.

 if(number instanceof Integer data) {
 data = 10;
 }
The reassignment can be prevented with a final modifier, but it is better not to reassign
the variable at all.

 if(number instanceof final Integer data) {
 data = 10; // DOES NOT COMPILE
 }

Pattern Variables and Expressions
Pattern matching includes expressions that can be used to filter data out, such as in the fol-
lowing example:

void printIntegersGreaterThan5(Number number) {
 if(number instanceof Integer data && data.compareTo(5)>0)
 System.out.print(data);
}

108  Chapter 3  ■  Making Decisions

We can apply a number of filters, or patterns, so that the if statement is executed only in
specific circumstances. Notice that we’re using the pattern variable in an expression in the
same line in which it is declared.

Subtypes
The type of the pattern variable must be a subtype of the variable on the left side of the
expression. It also cannot be the same type. This rule does not exist for traditional instanceof
operator expressions, though. Consider the following two uses of the instanceof operator:

Integer value = 123;
if(value instanceof Integer) {}
if(value instanceof Integer data) {} // DOES NOT COMPILE

While the second line compiles, the last line does not compile because pattern matching
requires that the pattern variable type Integer be a strict subtype of Integer.

Limitations of Subtype Enforcement

The compiler has some limitations on enforcing pattern matching types when we mix
classes and interfaces, which will make more sense after you read Chapter 7, “Beyond
Classes.” For example, given the non-final class Number and interface List, this does
compile even though they are unrelated:

 Number value = 123;
 if(value instanceof List) {}
 if(value instanceof List data) {}

Flow Scoping
The compiler applies flow scoping when working with pattern matching. Flow scoping
means the variable is only in scope when the compiler can definitively determine its type.
Flow scoping is unlike any other type of scoping in that it is not strictly hierarchical like in-
stance, class, or local scoping. It is determined by the compiler based on the branching and
flow of the program.

Given this information, can you see why the following does not compile?

void printIntegersOrNumbersGreaterThan5(Number number) {
 if(number instanceof Integer data || data.compareTo(5)>0)
 System.out.print(data);
}

Creating Decision-Making Statements  109

If the input does not inherit Integer, the data variable is undefined. Since the compiler
cannot guarantee that data is an instance of Integer, data is not in scope, and the code
does not compile.

What about this example?

void printIntegerTwice(Number number) {
 if (number instanceof Integer data)
 System.out.print(data.intValue());
 System.out.print(data.intValue()); // DOES NOT COMPILE
}

Since the input might not have inherited Integer, data is no longer in scope after the
if statement. Oh, so you might be thinking that the pattern variable is then only in scope
inside the if statement, right? Well, not exactly! Consider the following example that
does compile:

void printOnlyIntegers(Number number) {
 if (!(number instanceof Integer data))
 return;
 System.out.print(data.intValue());
}

It might surprise you to learn this code does compile. Eek! What is going on here? The
method returns if the input does not inherit Integer. This means that when the last line of
the method is reached, the input must inherit Integer, and therefore data stays in scope
even after the if statement ends.

Flow Scoping and else Branches

If the last code sample confuses you, don’t worry: you’re not alone! Another way to think
about it is to rewrite the logic to something equivalent that uses an else statement:

 void printOnlyIntegers(Number number) {
 if (!(number instanceof Integer data))
 return;
 else
 System.out.print(data.intValue());
 }
We can now go one step further and reverse the if and else branches by inverting the
boolean expression:

 void printOnlyIntegers(Number number) {
 if (number instanceof Integer data)

110  Chapter 3  ■  Making Decisions

 System.out.print(data.intValue());
 else
 return;
 }

Our new code is equivalent to our original and better demonstrates how the compiler was
able to determine that data was in scope only when number is an Integer.

Make sure you understand the way flow scoping works. In particular, it is possible to use
a pattern variable outside of the if statement, but only when the compiler can definitively
determine its type.

Applying switch Statements
What if we have a lot of possible branches or paths for a single value? For example, we
might want to print a different message based on the day of the week. We could certainly
accomplish this with a combination of seven if or else statements, but that tends to create
code that is long, difficult to read, and often not fun to maintain:

public void printDayOfWeek(int day) {
 if(day == 0)
 System.out.print("Sunday");
 else if(day == 1)
 System.out.print("Monday");
 else if(day == 2)
 System.out.print("Tuesday");
 else if(day == 3)
 System.out.print("Wednesday");
 ...
}

Luckily, Java, along with many other languages, provides a cleaner approach. In this
section we present the switch statement, along with the newer switch expression for
controlling program flow.

The switch Statement
A switch statement, as shown in Figure 3.3, is a complex decision-making structure in
which a single value is evaluated and flow is redirected to the first matching branch, known
as a case statement. If no such case statement is found that matches the value, an optional

Applying switch Statements  111

default statement will be called. If no such default option is available, the entire switch
statement will be skipped. Notice in Figure 3.3 that case values can be combined into a
single case statement using commas.

Because switch statements can be longer than most decision-making statements, the
exam may present invalid switch syntax to see whether you are paying attention.

Combining case Values

Notice something new in Figure 3.3? Starting with Java 14, case values can now
be combined:

 switch(animal) {
 case 1,2: System.out.print("Lion");
 case 3: System.out.print("Tiger");
 }

switch keyword

Beginning curly brace (required)

Optional default that may
appear anywhere within
switch statement

Ending curly brace (required)

Parentheses (required)

switch(variableToTest) {

 case constantExpression
1
:

 // Branch for case
1

 break;

 case constantExpression
2
, constantExpression

3

 // Branch for case
2
 and case

3

 break;

 ...

 default:
 // Branch for default
}

Optional break

F IGURE 3 .3   The structure of a switch statement

112  Chapter 3  ■  Making Decisions

Prior to Java 14, the equivalent code would have been the following:

 switch(animal) {
 case 1: case 2: System.out.print("Lion");
 case 3: System.out.print("Tiger");
 }

As you see shortly, switch expressions can reduce boilerplate code even more!

See if you can figure out why each of the following switch statements does not compile:

int month = 5;

switch month { // DOES NOT COMPILE
 case 1: System.out.print("January");
}

switch(month) // DOES NOT COMPILE
 case 1: System.out.print("January");

switch(month) {
 case 1: 2: System.out.print("January"); // DOES NOT COMPILE
}

The first switch statement does not compile because it is missing parentheses around the
switch variable. The second statement does not compile because it is missing braces around
the switch body. The third statement does not compile because a comma (,) should be used
to separate combined case statements, not a colon (:).

One last note you should be aware of for the exam: a switch statement is not required to
contain any case statements. For example, this statement is perfectly valid:

switch(month) {}

Going back to our printDayOfWeek() method, we can rewrite it to use a switch state-
ment instead of if/else statements:

public void printDayOfWeek(int day) {
 switch(day) {
 case 0:
 System.out.print("Sunday");
 break;
 case 1:
 System.out.print("Monday");
 break;
 case 2:
 System.out.print("Tuesday");
 break;

 case 3:
 System.out.print("Wednesday");
 break;
 case 4:
 System.out.print("Thursday");
 break;
 case 5:
 System.out.print("Friday");
 break;
 case 6:
 System.out.print("Saturday");
 break;
 default:
 System.out.print("Invalid value");
 break;
 } }

For simplicity, we just print a message if the value is invalid. If you know about excep-
tions or have already read Chapter 11, “Exceptions and Localization,” it might make more
sense to throw an exception in the default branch if no match is found.

Exiting with break Statements
Taking a look at our previous printDayOfWeek() implementation, you’ll see a break statement
at the end of each case and default section. A break statement terminates the switch statement
and returns flow control to the enclosing process. Put simply, it ends the switch statement
immediately.

The break statements are optional, but without them the code will execute every branch
following a matching case statement, including any default statements it finds. Without break
statements in each branch, the order of case and default statements is now extremely impor-
tant. What do you think the following prints when printSeason(2) is called?

public void printSeason(int month) {
 switch(month) {
 case 1, 2, 3: System.out.print("Winter");
 case 4, 5, 6: System.out.print("Spring");
 default: System.out.print("Unknown");
 case 7, 8, 9: System.out.print("Summer");
 case 10, 11, 12: System.out.print("Fall");
 } }

It prints everything!

WinterSpringUnknownSummerFall

Applying switch Statements  113

114  Chapter 3  ■  Making Decisions

It matches the first case statement and executes all of the branches in the order they are
found, including the default statement. It is common, although certainly not required, to
use a break statement after every case statement.

The exam creators are fond of switch examples that are missing break
statements! When evaluating switch statements on the exam, always
consider that multiple branches may be visited in a single execution.

Selecting switch Data Types
As shown in Figure 3.3, a switch statement has a target variable that is not evaluated until
runtime. The type of this target can include select primitive data types (int, byte, short, char)
and their associated wrapper classes (Integer, Byte, Short, Character). The following is a list of
all data types supported by switch statements:

■■ int and Integer
■■ byte and Byte
■■ short and Short
■■ char and Character
■■ String
■■ enum values

■■ var (if the type resolves to one of the preceding types)

For this chapter, you just need to know that an enumeration, or enum, represents a fixed
set of constants, such as days of the week, months of the year, and so on. We cover enums
in more detail in Chapter 7, including showing how they can define variables, methods, and
constructors.

Notice that boolean, long, float, and double are excluded from
switch statements, as are their associated Boolean, Long, Float, and
Double classes. The reasons are varied, such as boolean having too
small a range of values and floating-point numbers having quite a wide
range of values. For the exam, though, you just need to know that they
are not permitted in switch statements.

Determining Acceptable Case Values
Not just any variable or value can be used in a case statement. First, the values in each
case statement must be compile-time constant values of the same data type as the switch
value. This means you can use only literals, enum constants, or final constant variables
of the same data type. By final constant, we mean that the variable must be marked with
the final modifier and initialized with a literal value in the same expression in which it
is declared. For example, you can’t have a case statement value that requires executing a

method at runtime, even if that method always returns the same value. For these reasons,
only the first and last case statements in the following example compile:

final int getCookies() { return 4; }
void feedAnimals() {
 final int bananas = 1;
 int apples = 2;
 int numberOfAnimals = 3;
 final int cookies = getCookies();
 switch(numberOfAnimals) {
 case bananas:
 case apples: // DOES NOT COMPILE
 case getCookies(): // DOES NOT COMPILE
 case cookies : // DOES NOT COMPILE
 case 3 * 5 :
 } }

The bananas variable is marked final, and its value is known at compile-time, so it is
valid. The apples variable is not marked final, even though its value is known, so it is
not permitted. The next two case statements, with values getCookies() and cookies, do
not compile because methods are not evaluated until runtime, so they cannot be used as the
value of a case statement, even if one of the values is stored in a final variable. The last
case statement, with value 3 * 5, does compile, as expressions are allowed as case values,
provided the value can be resolved at compile-time. They also must be able to fit in the
switch data type without an explicit cast. We go into that in more detail shortly.

Next, the data type for case statements must match the data type of the switch variable.
For example, you can’t have a case statement of type String if the switch statement variable is
of type int, since the types are incomparable.

The switch Expression
Our second implementation of printDayOfWeek() was improved but still quite long. Notice
that there was a lot of boilerplate code, along with numerous break statements. Can we do
better? Yes, thanks to the new switch expressions that were officially added to Java 14.

A switch expression is a much more compact form of a switch statement, capable of
returning a value. Take a look at the new syntax in Figure 3.4.

Because a switch expression is a compact form, there’s a lot going on in Figure 3.4!
For starters, we can now assign the result of a switch expression to a variable result. For
this to work, all case and default branches must return a data type that is compatible with
the assignment. The switch expression supports two types of branches: an expression and
a block. Each has different syntactical rules on how it must be created. More on these
topics shortly.

Applying switch Statements  115

116  Chapter 3  ■  Making Decisions

Like a traditional switch statement, a switch expression supports zero or many case
branches and an optional default branch. Both also support the new feature that allows
case values to be combined with a single case statement using commas. Unlike a tradi-
tional switch statement, though, switch expressions have special rules around when the
default branch is required.

Recall from Chapter 2, “Operators,” that -> is the arrow operator. While
the arrow operator is commonly used in lambda expressions, when it is
used in a switch expression, the case branches are not lambdas.

We can rewrite our previous printDayOfWeek() method in a much more concise
manner using case expressions:

public void printDayOfWeek(int day) {
 var result = switch(day) {
 case 0 -> "Sunday";
 case 1 -> "Monday";
 case 2 -> "Tuesday";
 case 3 -> "Wednesday";
 case 4 -> "Thursday";
 case 5 -> "Friday";
 case 6 -> "Saturday";

switch keyword

Beginning curly brace (required)

A default branch may appear anywhere within
the switch expression and is required if all
possible case statement values are not handled.

Ending curly brace (required)

Parentheses (required)

int result = switch(variableToTest) {

 case constantExpression
1
-> 5;

 case constantExpression
2
, constantExpression

3
 -> {

 yield 10;
 }

 ...

 default -> 20;
}

Arrow operator (required)

Semicolon required for case expression

Optional assignment

Required for case block if switch returns a value

Curly braces required
for case blocks

case
expression

case
block

F IGURE 3 .4   The structure of a switch expression

 default -> "Invalid value";
 };
 System.out.print(result);
}

Compare this code with the switch statement we wrote earlier. Both accomplish the
same task, but a lot of the boilerplate code has been removed, leaving the behavior we care
most about.

Notice that a semicolon is required after each switch expression. For example, the fol-
lowing code does not compile. How many semicolons is it missing?

var result = switch(bear) {
 case 30 -> "Grizzly"
 default -> "Panda"
}

The answer is three. Each case or default expression requires a semicolon as well as
the assignment itself. The following fixes the code:

var result = switch(bear) {
 case 30 -> "Grizzly";
 default -> "Panda";
};

As shown in Figure 3.4, case statements can take multiple values, separated by commas.
Let’s rewrite our printSeason() method from earlier using a switch expression:

public void printSeason(int month) {
 switch(month) {
 case 1, 2, 3 -> System.out.print("Winter");
 case 4, 5, 6 -> System.out.print("Spring");
 case 7, 8, 9 -> System.out.print("Summer");
 case 10, 11, 12 -> System.out.print("Fall");
 } }

Calling printSeason(2) prints the single value Winter. This time we don’t have to
worry about break statements, since only one branch is executed.

Most of the time, a switch expression returns a value, although
printSeason() demonstrates one in which the return type is void.
Since the type is void, it can’t be assigned to a variable. On the exam,
you are more likely to see a switch expression that returns a value, but
you should be aware that it is possible.

F IGURE 3 .4   The structure of a switch expression

Applying switch Statements  117

118  Chapter 3  ■  Making Decisions

All of the previous rules around switch data types and case values still apply, although
we have some new rules. Don’t worry if these rules are new to you or you’ve never seen the
yield keyword before; we’ll be discussing them in the following sections.

1.	 All of the branches of a switch expression that do not throw an exception must return
a consistent data type (if the switch expression returns a value).

2.	 If the switch expression returns a value, then every branch that isn’t an expression must
yield a value.

3.	 A default branch is required unless all cases are covered or no value is returned.

We cover the last rule shortly, but notice that our printSeason() example does not contain a
default branch. Since the switch expression does not return a value and assign it to a variable,
it is entirely optional.

Java 17 also supports pattern matching within switch expressions, but
since this is a Preview feature, it is not in scope for the exam.

Returning Consistent Data Types
The first rule of using a switch expression is probably the easiest. You can’t return incompat-
ible or random data types. For example, can you see why three of the lines of the following
code do not compile?

int measurement = 10;
int size = switch(measurement) {
 case 5 -> 1;
 case 10 -> (short)2;
 default -> 5;
 case 20 -> "3"; // DOES NOT COMPILE
 case 40 -> 4L; // DOES NOT COMPILE
 case 50 -> null; // DOES NOT COMPILE
};

Notice that the second case expression returns a short, but that can be implicitly cast
to an int. In this manner, the values have to be consistent with size, but they do not all
have to be the same data type. The last three case expressions do not compile because each
returns a type that cannot be assigned to the int variable.

Applying a case Block
A switch expression supports both an expression and a block in the case and default
branches. Like a regular block, a case block is one that is surrounded by braces ({}). It also
includes a yield statement if the switch expression returns a value. For example, the following
uses a mix of case expressions and blocks:

int fish = 5;
int length = 12;
var name = switch(fish) {
 case 1 -> "Goldfish";
 case 2 -> {yield "Trout";}
 case 3 -> {
 if(length > 10) yield "Blobfish";
 else yield "Green";
 }
 default -> "Swordfish";
};

The yield keyword is equivalent to a return statement within a switch expression and
is used to avoid ambiguity about whether you meant to exit the block or method around the
switch expression.

Referring to our second rule for switch expressions, yield statements are not optional if the
switch statement returns a value. Can you see why the following lines do not compile?

10: int fish = 5;
11: int length = 12;
12: var name = switch(fish) {
13: case 1 -> "Goldfish";
14: case 2 -> {} // DOES NOT COMPILE
15: case 3 -> {
16: if(length > 10) yield "Blobfish";
17: } // DOES NOT COMPILE
18: default -> "Swordfish";
19: };

Line 14 does not compile because it does not return a value using yield. Line 17 also
does not compile. While the code returns a value for length greater than 10, it does not
return a value if length is less than or equal to 10. It does not matter that length is set to
be 12; all branches must yield a value within the case block.

Watch Semicolons in switch Expressions

Unlike a regular switch statement, a switch expression can be used with the assignment
operator and requires a semicolon when doing so. Furthermore, semicolons are required
for case expressions but cannot be used with case blocks.

 var name = switch(fish) {
 case 1 -> "Goldfish" // DOES NOT COMPILE (missing semicolon)

Applying switch Statements  119

120  Chapter 3  ■  Making Decisions

 case 2 -> {yield "Trout";}; // DOES NOT COMPILE (extra semicolon)
 ...
 } // DOES NOT COMPILE (missing semicolon)

A bit confusing, right? It’s just one of those things you have to train yourself to spot
on the exam.

Covering All Possible Values
The last rule about switch expressions is probably the one the exam is most likely to try to
trick you on: a switch expression that returns a value must handle all possible input values.
And as you saw earlier, when it does not return a value, it is optional.

Let’s try this out. Given the following code, what is the value of type if canis is 5?

String type = switch(canis) { // DOES NOT COMPILE
 case 1 -> "dog";
 case 2 -> "wolf";
 case 3 -> "coyote";
};

There’s no case branch to cover 5 (or 4, -1, 0, etc.), so should the switch expression
return null, the empty string, undefined, or some other value? When adding switch expres-
sions to the Java language, the authors decided this behavior would be unsupported. Every
switch expression must handle all possible values of the switch variable. As a developer,
there are two ways to address this:

■■ Add a default branch.

■■ If the switch expression takes an enum value, add a case branch for every possible
enum value.

In practice, the first solution is the one most often used. The second solution applies only
to switch expressions that take an enum. You can try writing case statements for all possible
int values, but we promise it doesn’t work! Even smaller types like byte are not permitted by
the compiler, despite there being only 256 possible values.

For enums, the second solution works well when the number of enum values is relatively
small. For example, consider the following enum definition and method:

enum Season {WINTER, SPRING, SUMMER, FALL}

String getWeather(Season value) {
 return switch(value) {
 case WINTER -> "Cold";
 case SPRING -> "Rainy";
 case SUMMER -> "Hot";
 case FALL -> "Warm";
 };
}

Writing while Loops  121

Since all possible permutations of Season are covered, a default branch is not required
in this switch expression. You can include an optional default branch, though, even if
you cover all known values.

What happens if you use an enum with three values and later someone
adds a fourth value? Any switch expressions that use the enum without
a default branch will suddenly fail to compile. If this was done fre-
quently, you might have a lot of code to fix! For this reason, consider
including a default branch in every switch expression, even those that
involve enum values.

Writing while Loops
A common practice when writing software is doing the same task some number of times.
You could use the decision structures we have presented so far to accomplish this, but that’s
going to be a pretty long chain of if or else statements, especially if you have to execute the
same thing 100 times or more.

Enter loops! A loop is a repetitive control structure that can execute a statement of code
multiple times in succession. By using variables that can be assigned new values, each repeti-
tion of the statement may be different. The following loop executes exactly 10 times:

int counter = 0;
while (counter < 10) {
 double price = counter * 10;
 System.out.println(price);
 counter++;
}

If you don’t follow this code, don’t panic—we cover it shortly. In this section, we’re going
to discuss the while loop and its two forms. In the next section, we move on to for loops,
which have their roots in while loops.

The while Statement
The simplest repetitive control structure in Java is the while statement, described in
Figure 3.5. Like all repetition control structures, it has a termination condition, implemented
as a boolean expression, that will continue as long as the expression evaluates to true.

122  Chapter 3  ■  Making Decisions

As shown in Figure 3.5, a while loop is similar to an if statement in that it is composed
of a boolean expression and a statement, or a block of statements. During execution, the
boolean expression is evaluated before each iteration of the loop and exits if the evaluation
returns false.

Let’s see how a loop can be used to model a mouse eating a meal:

int roomInBelly = 5;
public void eatCheese(int bitesOfCheese) {
 while (bitesOfCheese > 0 && roomInBelly > 0) {
 bitesOfCheese--;
 roomInBelly--;
 }
 System.out.println(bitesOfCheese+" pieces of cheese left");
}

This method takes an amount of food—in this case, cheese—and continues until the
mouse has no room in its belly or there is no food left to eat. With each iteration of the
loop, the mouse “eats” one bite of food and loses one spot in its belly. By using a compound
boolean statement, you ensure that the while loop can end for either of the conditions.

One thing to remember is that a while loop may terminate after its first evaluation of
the boolean expression. For example, how many times is Not full! printed in the follow-
ing example?

int full = 5;
while(full < 5) {
 System.out.println("Not full!");
 full++;
}

The answer? Zero! On the first iteration of the loop, the condition is reached, and the
loop exits. This is why while loops are often used in places where you expect zero or more
executions of the loop. Simply put, the body of the loop may not execute at all or may
execute many times.

Curly braces required for block
of multiple statements, optional
for single statement

while (booleanExpression) {

 // Body

}

while keyword
Parentheses (required)

F IGURE 3 .5   The structure of a while statement

The do/while Statement
The second form a while loop can take is called a do/while loop, which, like a while loop,
is a repetition control structure with a termination condition and statement, or a block of
statements, as shown in Figure 3.6.

Unlike a while loop, though, a do/while loop guarantees that the statement or block
will be executed at least once. For example, what is the output of the following statements?

int lizard = 0;
do {
 lizard++;
} while(false);
System.out.println(lizard); // 1

Java will execute the statement block first and then check the loop condition. Even
though the loop exits right away, the statement block is still executed once, and the
program prints 1.

Infinite Loops
The single most important thing you should be aware of when you are using any repetition
control structures is to make sure they always terminate! Failure to terminate a loop can
lead to numerous problems in practice, including overflow exceptions, memory leaks, slow
performance, and even bad data. Let’s take a look at an example:

int pen = 2;
int pigs = 5;
while(pen < 10)
 pigs++;

Curly braces required for block
of multiple statements, optional
for single statement

do keyword

while keyword
Parentheses (required)

Semicolon (required)

do {

 // Body

} while (booleanExpression);

F IGURE 3 .6   The structure of a do/while statement

Writing while Loops  123

124  Chapter 3  ■  Making Decisions

You may notice one glaring problem with this statement: it will never end. The variable
pen is never modified, so the expression (pen < 10) will always evaluate to true. The
result is that the loop will never end, creating what is commonly referred to as an infinite
loop. An infinite loop is a loop whose termination condition is never reached during runtime.

Anytime you write a loop, you should examine it to determine whether the termination
condition is always eventually met under some condition. For example, a loop in which no
variables are changing between two executions suggests that the termination condition may
not be met. The loop variables should always be moving in a particular direction.

In other words, make sure the loop condition, or the variables the condition is dependent
on, are changing between executions. Then, ensure that the termination condition will be
eventually reached in all circumstances. As you learn in the last section of this chapter, a loop
may also exit under other conditions, such as a break statement.

Constructing for Loops
Even though while and do/while statements are quite powerful, some tasks are so common
in writing software that special types of loops were created—for example, iterating over a
statement exactly 10 times or iterating over a list of names. You could easily accomplish
these tasks with various while loops that you’ve seen so far, but they usually require a lot of
boilerplate code. Wouldn’t it be great if there was a looping structure that could do the same
thing in a single line of code?

With that, we present the most convenient repetition control structure, for loops. There
are two types of for loops, although both use the same for keyword. The first is referred to as
the basic for loop, and the second is often called the enhanced for loop. For clarity, we refer
to them as the for loop and the for-each loop, respectively, throughout the book.

The for Loop
A basic for loop has the same conditional boolean expression and statement, or block of
statements, as the while loops, as well as two new sections: an initialization block and an
update statement. Figure 3.7 shows how these components are laid out.

Although Figure 3.7 might seem a little confusing and almost arbitrary at first, the orga-
nization of the components and flow allow us to create extremely powerful statements in
a single line that otherwise would take multiple lines with a while loop. Each of the three
sections is separated by a semicolon. In addition, the initialization and update sections may
contain multiple statements, separated by commas.

Variables declared in the initialization block of a for loop have limited scope and
are accessible only within the for loop. Be wary of any exam questions in which a var-
iable is declared within the initialization block of a for loop and then read outside the
loop. For example, this code does not compile because the loop variable i is referenced
outside the loop:

Constructing for Loops  125

for(int i=0; i < 10; i++)
 System.out.println("Value is: "+i);
System.out.println(i); // DOES NOT COMPILE

Alternatively, variables declared before the for loop and assigned a value in the initiali-
zation block may be used outside the for loop because their scope precedes the creation of
the for loop.

int i;
for(i=0; i < 10; i++)
 System.out.println("Value is: "+i);
System.out.println(i);

Let’s take a look at an example that prints the first five numbers, starting with zero:

for(int i = 0; i < 5; i++) {
 System.out.print(i + " ");
}

The local variable i is initialized first to 0. The variable i is only in scope for the duration
of the loop and is not available outside the loop once the loop has completed. Like a while
loop, the boolean condition is evaluated on every iteration of the loop before the loop exe-
cutes. Since it returns true, the loop executes and outputs 0 followed by a space. Next, the
loop executes the update section, which in this case increases the value of i to 1. The loop
then evaluates the boolean expression a second time, and the process repeats multiple times,
printing the following:

0 1 2 3 4

Curly braces required for block
of multiple statements, optional
for single statement

for keyword
Parentheses (required)

Semicolons (required)

1 Initialization statement executes
2 If booleanExpression is true, continue; else exit loop
3 Body executes
4 Execute updateStatement
5 Return to Step 2

for (initialization; booleanExpression; updateStatement) {

 // Body

}

F IGURE 3 .7   The structure of a basic for loop

126  Chapter 3  ■  Making Decisions

On the fifth iteration of the loop, the value of i reaches 4 and is incremented by 1 to
reach 5. On the sixth iteration of the loop, the boolean expression is evaluated, and since
(5 < 5) returns false, the loop terminates without executing the statement loop body.

Why i in for Loops?

You may notice it is common practice to name a for loop variable i. Long before Java
existed, programmers started using i as short for increment variable, and the practice
exists today, even though many of those programming languages no longer do! For dou-
ble or triple loops, where i is already used, the next letters in the alphabet, j and k, are
often used.

Printing Elements in Reverse
Let’s say you wanted to print the same first five numbers from zero as we did in the previous
section, but this time in reverse order. The goal then is to print 4 3 2 1 0.

How would you do that? An initial implementation might look like the following:

for (var counter = 5; counter > 0; counter--) {
 System.out.print(counter + " ");
}

While this snippet does output five distinct values, and it resembles our first for loop
example, it does not output the same five values. Instead, this is the output:

5 4 3 2 1

Wait, that’s not what we wanted! We wanted 4 3 2 1 0. It starts with 5, because that is
the first value assigned to it. Let’s fix that by starting with 4 instead:

for (var counter = 4; counter > 0; counter--) {
 System.out.print(counter + " ");
}

What does this print now? It prints the following:

4 3 2 1

So close! The problem is that it ends with 1, not 0, because we told it to exit as soon as
the value was not strictly greater than 0. If we want to print the same 0 through 4 as our
first example, we need to update the termination condition, like this:

for (var counter = 4; counter >= 0; counter--) {
 System.out.print(counter + " ");
}

Finally! We have code that now prints 4 3 2 1 0 and matches the reverse of our
for loop example in the previous section. We could have instead used counter > -1
as the loop termination condition in this example, although counter >= 0 tends to be
more readable.

For the exam, you are going to have to know how to read forward and
backward for loops. When you see a for loop on the exam, pay close
attention to the loop variable and operations if the decrement
operator, --, is used. While incrementing from 0 in a for loop is often
straightforward, decrementing tends to be less intuitive. In fact, if you
do see a for loop with a decrement operator on the exam, you should
assume they are trying to test your knowledge of loop operations.

Working with for Loops
Although most for loops you are likely to encounter in your professional development
experience will be well defined and similar to the previous examples, there are a number of
variations and edge cases you could see on the exam. You should familiarize yourself with
the following five examples; variations of these are likely to be seen on the exam.

Let’s tackle some examples for illustrative purposes:

1.	 Creating an Infinite Loop

for(; ;)
 System.out.println("Hello World");

Although this for loop may look like it does not compile, it will in fact compile and run
without issue. It is actually an infinite loop that will print the same statement repeatedly.
This example reinforces the fact that the components of the for loop are each optional.
Note that the semicolons separating the three sections are required, as for() without
any semicolons will not compile.

2.	 Adding Multiple Terms to the for Statement

int x = 0;
for(long y = 0, z = 4; x < 5 && y < 10; x++, y++) {
 System.out.print(y + " "); }
System.out.print(x + " ");

This code demonstrates three variations of the for loop you may not have seen.
First, you can declare a variable, such as x in this example, before the loop begins and
use it after it completes. Second, your initialization block, boolean expression, and
update statements can include extra variables that may or may not reference each

Constructing for Loops  127

128  Chapter 3  ■  Making Decisions

other. For example, z is defined in the initialization block and is never used. Finally,
the update statement can modify multiple variables. This code will print the following
when executed:

0 1 2 3 4 5

3.	 Redeclaring a Variable in the Initialization Block

int x = 0;
for(int x = 4; x < 5; x++) // DOES NOT COMPILE
 System.out.print(x + " ");

This example looks similar to the previous one, but it does not compile because of the
initialization block. The difference is that x is repeated in the initialization block after
already being declared before the loop, resulting in the compiler stopping because of
a duplicate variable declaration. We can fix this loop by removing the declaration of x
from the for loop as follows:

int x = 0;
for(x = 0; x < 5; x++)
 System.out.print(x + " ");

Note that this variation will now compile because the initialization block simply assigns
a value to x and does not declare it.

4.	 Using Incompatible Data Types in the Initialization Block

int x = 0;
for(long y = 0, int z = 4; x < 5; x++) // DOES NOT COMPILE
 System.out.print(y + " ");

Like the third example, this code will not compile, although this time for a different
reason. The variables in the initialization block must all be of the same type. In the
multiple-terms example, y and z were both long, so the code compiled without issue;
but in this example, they have different types, so the code will not compile.

5.	 Using Loop Variables Outside the Loop

for(long y = 0, x = 4; x < 5 && y < 10; x++, y++)
 System.out.print(y + " ");
System.out.print(x); // DOES NOT COMPILE

We covered this already at the start of this section, but it is so important for passing the
exam that we discuss it again here. If you notice, x is defined in the initialization block
of the loop and then used after the loop terminates. Since x was only scoped for the
loop, using it outside the loop will cause a compiler error.

Modifying Loop Variables

As a general rule, it is considered a poor coding practice to modify loop variables due to the
unpredictability of the result, such as in the following examples:

 for(int i=0; i<10; i++)
 i = 0;

 for(int j=1; j<10; j++)
 j++;

It also tends to make code difficult for other people to follow.

The for-each Loop
The for-each loop is a specialized structure designed to iterate over arrays and various
Collections Framework classes, as presented in Figure 3.8.

The for-each loop declaration is composed of an initialization section and an object to be
iterated over. The right side of the for-each loop must be one of the following:

■■ A built-in Java array

■■ An object whose type implements java.lang.Iterable

We cover what implements means in Chapter 7, but for now you just need to know
that the right side must be an array or collection of items, such as a List or a Set. For the
exam, you should know that this does not include all of the Collections Framework classes

Constructing for Loops  129

for keyword
Parentheses (required)

datatype of collection member

Iterable collection of objects

Colon (required)

Curly braces required for block
of multiple statements, optional
for single statement

for (datatype instance: collection) {

 // Body

}

F IGURE 3 .8   The structure of an enhanced for-each loop

130  Chapter 3  ■  Making Decisions

or interfaces, but only those that implement or extend that Collection interface. For
example, Map is not supported in a for-each loop, although Map does include methods that
return Collection instances.

The left side of the for-each loop must include a declaration for an instance of a variable
whose type is compatible with the type of the array or collection on the right side of the
statement. On each iteration of the loop, the named variable on the left side of the statement
is assigned a new value from the array or collection on the right side of the statement.

Compare these two methods that both print the values of an array, one using a traditional
for loop and the other using a for-each loop:

public void printNames(String[] names) {
 for(int counter=0; counter<names.length; counter++)
 System.out.println(names[counter]);
}

public void printNames(String[] names) {
 for(var name : names)
 System.out.println(name);
}

The for-each loop is a lot shorter, isn’t it? We no longer have a counter loop variable
that we need to create, increment, and monitor. Like using a for loop in place of a while
loop, for-each loops are meant to reduce boilerplate code, making code easier to read/write,
and freeing you to focus on the parts of your code that really matter.

We can also use a for-each loop on a List, since it implements Iterable.

public void printNames(List<String> names) {
 for(var name : names)
 System.out.println(name);
}

We cover generics in detail in Chapter 9, “Collections and Generics.” For this chapter, you
just need to know that on each iteration, a for-each loop assigns a variable with the same
type as the generic argument. In this case, name is of type String.

So far, so good. What about the following examples?

String birds = "Jay";
for(String bird : birds) // DOES NOT COMPILE
 System.out.print(bird + " ");

String[] sloths = new String[3];
for(int sloth : sloths) // DOES NOT COMPILE
 System.out.print(sloth + " ");

The first for-each loop does not compile because String cannot be used on the right side
of the statement. While a String may represent a list of characters, it has to actually be an
array or implement Iterable. The second example does not compile because the loop type
on the left side of the statement is int and doesn’t match the expected type of String.

Controlling Flow with Branching  131

Controlling Flow with Branching
The final types of control flow structures we cover in this chapter are branching statements.
Up to now, we have been dealing with single loops that ended only when their boolean
expression evaluated to false. We now show you other ways loops could end, or branch,
and you see that the path taken during runtime may not be as straightforward as in the
previous examples.

Nested Loops
Before we move into branching statements, we need to introduce the concept of nested
loops. A nested loop is a loop that contains another loop, including while, do/while,
for, and for-each loops. For example, consider the following code that iterates over a two-
dimensional array, which is an array that contains other arrays as its members. We cover
multidimensional arrays in detail in Chapter 4, “Core APIs,” but for now, assume the follow-
ing is how you would declare a two-dimensional array:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

for(int[] mySimpleArray : myComplexArray) {
 for(int i=0; i<mySimpleArray.length; i++) {
 System.out.print(mySimpleArray[i]+"\t");
 }
 System.out.println();
}

Notice that we intentionally mix a for loop and a for-each loop in this example. The
outer loop will execute a total of three times. Each time the outer loop executes, the inner
loop is executed four times. When we execute this code, we see the following output:

5 2 1 3
3 9 8 9
5 7 12 7

Nested loops can include while and do/while, as shown in this example. See whether
you can determine what this code will output:

int hungryHippopotamus = 8;
while(hungryHippopotamus>0) {
 do {
 hungryHippopotamus -= 2;
 } while (hungryHippopotamus>5);
 hungryHippopotamus--;
 System.out.print(hungryHippopotamus+", ");
}

132  Chapter 3  ■  Making Decisions

The first time this loop executes, the inner loop repeats until the value of
hungryHippopotamus is 4. The value will then be decremented to 3, and that will be the
output at the end of the first iteration of the outer loop.

On the second iteration of the outer loop, the inner do/while will be executed once, even
though hungryHippopotamus is already not greater than 5. As you may recall, do/while state-
ments always execute the body at least once. This will reduce the value to 1, which will be
further lowered by the decrement operator in the outer loop to 0. Once the value reaches 0,
the outer loop will terminate. The result is that the code will output the following:
3, 0,

The examples in the rest of this section include many nested loops. You will also
encounter nested loops on the exam, so the more practice you have with them, the more pre-
pared you will be.

Adding Optional Labels
One thing we intentionally skipped when we presented if statements, switch statements,
and loops is that they can all have optional labels. A label is an optional pointer to the head
of a statement that allows the application flow to jump to it or break from it. It is a single
identifier that is followed by a colon (:). For example, we can add optional labels to one of
the previous examples:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

OUTER_LOOP: for(int[] mySimpleArray : myComplexArray) {
 INNER_LOOP: for(int i=0; i<mySimpleArray.length; i++) {
 System.out.print(mySimpleArray[i]+"\t");
 }
 System.out.println();
}

Labels follow the same rules for formatting as identifiers. For readability, they are com-
monly expressed using uppercase letters in snake_case with underscores between words.
When dealing with only one loop, labels do not add any value, but as you learn in the next
section, they are extremely useful in nested structures.

While this topic is not on the exam, it is possible to add optional labels to
control and block statements. For example, the following is permitted by
the compiler, albeit extremely uncommon:

 int frog = 15;
 BAD_IDEA: if(frog>10)
 EVEN_WORSE_IDEA: {
 frog++;
 }

Controlling Flow with Branching  133

The break Statement
As you saw when working with switch statements, a break statement transfers the flow
of control out to the enclosing statement. The same holds true for a break statement that
appears inside of a while, do/while, or for loop, as it will end the loop early, as shown in
Figure 3.9.

Notice in Figure 3.9 that the break statement can take an optional label parameter.
Without a label parameter, the break statement will terminate the nearest inner loop it is
currently in the process of executing. The optional label parameter allows us to break out of
a higher-level outer loop. In the following example, we search for the first (x,y) array index
position of a number within an unsorted two-dimensional array:

public class FindInMatrix {
 public static void main(String[] args) {
 int[][] list = {{1,13},{5,2},{2,2}};
 int searchValue = 2;
 int positionX = -1;
 int positionY = -1;
 PARENT_LOOP: for(int i=0; i<list.length; i++) {
 for(int j=0; j<list[i].length; j++) {
 if(list[i][j]==searchValue) {
 positionX = i;

Optional reference to head of loop

Colon (required if optionalLabel is present)

Semicolon (required)

break keyword

optionalLabel: while(booleanExpression) {

 // Body

 // Somewhere in the loop
 break optionalLabel;

}

F IGURE 3 .9   The structure of a break statement

134  Chapter 3  ■  Making Decisions

 positionY = j;
 break PARENT_LOOP;
 }
 }
 }
 if(positionX==-1 || positionY==-1) {
 System.out.println("Value "+searchValue+" not found");
 } else {
 System.out.println("Value "+searchValue+" found at: " +
 "("+positionX+","+positionY+")");
 }
 }
}

When executed, this code will output the following:
Value 2 found at: (1,1)

In particular, take a look at the statement break PARENT_LOOP. This statement will
break out of the entire loop structure as soon as the first matching value is found. Now, ima-
gine what would happen if we replaced the body of the inner loop with the following:

 if(list[i][j]==searchValue) {
 positionX = i;
 positionY = j;
 break;
 }

How would this change our flow, and would the output change? Instead of exiting when
the first matching value is found, the program would now only exit the inner loop when the
condition was met. In other words, the structure would find the first matching value of the
last inner loop to contain the value, resulting in the following output:

Value 2 found at: (2,0)

Finally, what if we removed the break altogether?

 if(list[i][j]==searchValue) {
 positionX = i;
 positionY = j;
 }

In this case, the code would search for the last value in the entire structure that had the
matching value. The output would look like this:

Value 2 found at: (2,1)

Controlling Flow with Branching  135

You can see from this example that using a label on a break statement in a nested
loop, or not using the break statement at all, can cause the loop structure to behave quite
differently.

The continue Statement
Let’s now extend our discussion of advanced loop control with the continue statement,
a statement that causes flow to finish the execution of the current loop iteration, as shown in
Figure 3.10.

You may notice that the syntax of the continue statement mirrors that of the break
statement. In fact, the statements are identical in how they are used, but with different results.
While the break statement transfers control to the enclosing statement, the continue state-
ment transfers control to the boolean expression that determines if the loop should continue.
In other words, it ends the current iteration of the loop. Also, like the break statement, the
continue statement is applied to the nearest inner loop under execution, using optional label
statements to override this behavior.

Let’s take a look at an example. Imagine we have a zookeeper who is supposed to clean
the first leopard in each of four stables but skip stable b entirely.

1: public class CleaningSchedule {
2: public static void main(String[] args) {
3: CLEANING: for(char stables = 'a'; stables<='d'; stables++) {
4: for(int leopard = 1; leopard<4; leopard++) {
5: if(stables=='b' || leopard==2) {

Optional reference to head of loop

Colon (required if optionalLabel is present)

Semicolon (required)

continue keyword

optionalLabel: while(booleanExpression) {

 // Body

 // Somewhere in the loop
 continue optionalLabel;

}

F IGURE 3 .10   The structure of a continue statement

136  Chapter 3  ■  Making Decisions

6: continue CLEANING;
7: }
8: System.out.println("Cleaning: "+stables+","+leopard);
9: } } } }

With the structure as defined, the loop will return control to the parent loop any time the
first value is b or the second value is 2. On the first, third, and fourth executions of the outer
loop, the inner loop prints a statement exactly once and then exits on the next inner loop
when leopard is 2. On the second execution of the outer loop, the inner loop immediately
exits without printing anything since b is encountered right away. The following is printed:

Cleaning: a,1
Cleaning: c,1
Cleaning: d,1

Now, imagine we remove the CLEANING label in the continue statement so that control
is returned to the inner loop instead of the outer. Line 6 becomes the following:

6: continue;

This corresponds to the zookeeper cleaning all leopards except those labeled 2 or in stable
b. The output is then the following:

Cleaning: a,1
Cleaning: a,3
Cleaning: c,1
Cleaning: c,3
Cleaning: d,1
Cleaning: d,3

Finally, if we remove the continue statement and the associated if statement altogether
by removing lines 5–7, we arrive at a structure that outputs all the values, such as this:

Cleaning: a,1
Cleaning: a,2
Cleaning: a,3
Cleaning: b,1
Cleaning: b,2
Cleaning: b,3
Cleaning: c,1
Cleaning: c,2
Cleaning: c,3
Cleaning: d,1
Cleaning: d,2
Cleaning: d,3

Controlling Flow with Branching  137

The return Statement
Given that this book shouldn’t be your first foray into programming, we hope you’ve come
across methods that contain return statements. Regardless, we cover how to design and
create methods that use them in detail in Chapter 5, “Methods.”

For now, though, you should be familiar with the idea that creating methods and using
return statements can be used as an alternative to using labels and break statements. For
example, take a look at this rewrite of our earlier FindInMatrix class:

public class FindInMatrixUsingReturn {
 private static int[] searchForValue(int[][] list, int v) {
 for (int i = 0; i < list.length; i++) {
 for (int j = 0; j < list[i].length; j++) {
 if (list[i][j] == v) {
 return new int[] {i,j};
 }
 }
 }
 return null;
 }

 public static void main(String[] args) {
 int[][] list = { { 1, 13 }, { 5, 2 }, { 2, 2 } };
 int searchValue = 2;
 int[] results = searchForValue(list,searchValue);

 if (results == null) {
 System.out.println("Value " + searchValue + " not found");
 } else {
 System.out.println("Value " + searchValue + " found at: " +
 "(" + results[0] + "," + results[1] + ")");
 }
 }
}

This class is functionally the same as the first FindInMatrix class we saw earlier using
break. If you need finer-grained control of the loop with multiple break and continue
statements, the first class is probably better. That said, we find code without labels
and break statements a lot easier to read and debug. Also, making the search logic an
independent function makes the code more reusable and the calling main() method a lot
easier to read.

138  Chapter 3  ■  Making Decisions

For the exam, you will need to know both forms. Just remember that return statements
can be used to exit loops quickly and can lead to more readable code in practice, especially
when used with nested loops.

Unreachable Code
One facet of break, continue, and return that you should be aware of is that any code
placed immediately after them in the same block is considered unreachable and will not
compile. For example, the following code snippet does not compile:

int checkDate = 0;
while(checkDate<10) {
 checkDate++;
 if(checkDate>100) {
 break;
 checkDate++; // DOES NOT COMPILE
 }
}

Even though it is not logically possible for the if statement to evaluate to true in this
code sample, the compiler notices that you have statements immediately following the
break and will fail to compile with “unreachable code” as the reason. The same is true for
continue and return statements, as shown in the following two examples:

int minute = 1;
WATCH: while(minute>2) {
 if(minute++>2) {
 continue WATCH;
 System.out.print(minute); // DOES NOT COMPILE
 }
}

int hour = 2;
switch(hour) {
 case 1: return; hour++; // DOES NOT COMPILE
 case 2:
}

One thing to remember is that it does not matter if the loop or decision structure actu-
ally visits the line of code. For example, the loop could execute zero or infinite times at run-
time. Regardless of execution, the compiler will report an error if it finds any code it deems
unreachable, in this case any statements immediately following a break, continue, or
return statement.

Summary  139

Reviewing Branching
We conclude this section with Table 3.1, which will help remind you when labels, break,
and continue statements are permitted in Java. Although for illustrative purposes our
examples use these statements in nested loops, they can be used inside single loops as well.

Last but not least, all testing centers should offer some form of scrap paper or dry-erase
board to use during the exam. We strongly recommend you make use of these testing aids,
should you encounter complex questions involving nested loops and branching statements.

Some of the most time-consuming questions you may see on the exam
could involve nested loops with lots of branching. Unless you spot an
obvious compiler error, we recommend skipping these questions and
coming back to them at the end. Remember, all questions on the exam
are weighted evenly!

Summary
This chapter presented how to make intelligent decisions in Java. We covered basic decision-
making constructs such as if, else, and switch statements and showed how to use them
to change the path of the process at runtime. We also presented newer features in the Java
language, including pattern matching and switch expressions, both designed to reduce boil-
erplate code.

We then moved our discussion to repetition control structures, starting with while and
do/while loops. We showed how to use them to create processes that loop multiple times
and also showed how it is important to make sure they eventually terminate. Remember
that most of these structures require the evaluation of a particular boolean expression
to complete.

TABLE 3 .1   Control statement usage

Support labels Support break Support continue Support yield

while Yes Yes Yes No

do/while Yes Yes Yes No

for Yes Yes Yes No

switch Yes Yes No Yes

140  Chapter 3  ■  Making Decisions

Next, we covered the extremely convenient repetition control structures: the for and
for-each loops. While their syntax is more complex than the traditional while or do/while
loops, they are extremely useful in everyday coding and allow you to create complex
expressions in a single line of code. With a for-each loop, you don’t need to explicitly
write a boolean expression, since the compiler builds one for you. For clarity, we referred
to an enhanced for loop as a for-each loop, but syntactically both are written using the
for keyword.

We concluded this chapter by discussing advanced control options and how flow can be
enhanced through nested loops coupled with break, continue, and return statements. Be wary
of questions on the exam that use nested loops, especially ones with labels, and verify that
they are being used correctly.

This chapter is especially important because at least one component of this chapter will
likely appear in every exam question with sample code. Many of the questions on the exam
focus on proper syntactic use of the structures, as they will be a large source of questions
that end in “Does not compile.” You should be able to answer all of the review questions
correctly or fully understand those that you answered incorrectly before moving on to
later chapters.

Exam Essentials
Understand if and else decision control statements.   The if and else statements come up
frequently throughout the exam in questions unrelated to decision control, so make sure you
fully understand these basic building blocks of Java.

Apply pattern matching and flow scoping.   Pattern matching can be used to reduce boil-
erplate code involving an if statement, instanceof operator, and cast operation using a
pattern variable. It can also include a pattern or filter after the pattern variable declaration.
Pattern matching uses flow scoping in which the pattern variable is in scope as long as the
compiler can definitively determine its type.

Understand switch statements and their proper usage.   You should be able to spot a poorly
formed switch statement on the exam. The switch value and data type should be com-
patible with the case statements, and the values for the case statements must evaluate to
compile-time constants. Finally, at runtime, a switch statement branches to the first match-
ing case, or default if there is no match, or exits entirely if there is no match and no
default branch. The process then continues into any proceeding case or default state-
ments until a break or return statement is reached.

Use switch expressions correctly.   Discern the differences between switch expressions
and switch statements. Understand how to write switch expressions correctly, including
proper use of semicolons, writing case expressions and blocks that yield a consistent
value, and making sure all possible values of the switch variable are handled by the switch
expression.

Exam Essentials  141

Write while loops.   Know the syntactical structure of all while and do/while loops. In
particular, know when to use one versus the other.

Be able to use for loops.   You should be familiar with for and for-each loops and know
how to write and evaluate them. Each loop has its own special properties and structures.
You should know how to use for-each loops to iterate over lists and arrays.

Understand how break, continue, and return can change flow control.   Know how to
change the flow control within a statement by applying a break, continue, or return
statement. Also know which control statements can accept break statements and which can
accept continue statements. Finally, you should understand how these statements work
inside embedded loops or switch statements.

142  Chapter 3  ■  Making Decisions

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which of the following data types can be used in a switch expression? (Choose all
that apply.)

A.	 enum
B.	 int
C.	 Byte
D.	 long
E.	 String
F.	 char
G.	 var
H.	 double

2.	 What is the output of the following code snippet? (Choose all that apply.)

 3: int temperature = 4;
 4: long humidity = -temperature + temperature * 3;
 5: if (temperature>=4)
 6: if (humidity < 6) System.out.println("Too Low");
 7: else System.out.println("Just Right");
 8: else System.out.println("Too High");

A.	 Too Low
B.	 Just Right
C.	 Too High
D.	 A NullPointerException is thrown at runtime.

E.	 The code will not compile because of line 7.

F.	 The code will not compile because of line 8.

3.	 Which of the following data types are permitted on the right side of a for-each expression?
(Choose all that apply.)

A.	 Double[][]
B.	 Object
C.	 Map
D.	 List
E.	 String
F.	 char[]
G.	 Exception
H.	 Set

Review Questions  143

4.	 What is the output of calling printReptile(6)?

 void printReptile(int category) {
 var type = switch(category) {
 case 1,2 -> "Snake";
 case 3,4 -> "Lizard";
 case 5,6 -> "Turtle";
 case 7,8 -> "Alligator";
 };
 System.out.print(type);
 }

A.	 Snake
B.	 Lizard
C.	 Turtle
D.	 Alligator
E.	 TurtleAlligator
F.	 None of the above

5.	 What is the output of the following code snippet?

 List<Integer> myFavoriteNumbers = new ArrayList<>();
 myFavoriteNumbers.add(10);
 myFavoriteNumbers.add(14);
 for (var a : myFavoriteNumbers) {
 System.out.print(a + ", ");
 break;
 }

 for (int b : myFavoriteNumbers) {
 continue;
 System.out.print(b + ", ");
 }

 for (Object c : myFavoriteNumbers)
 System.out.print(c + ", ");

A.	 It compiles and runs without issue but does not produce any output.

B.	 10, 14,
C.	 10, 10, 14,
D.	 10, 10, 14, 10, 14,
E.	 Exactly one line of code does not compile.

F.	 Exactly two lines of code do not compile.

G.	 Three or more lines of code do not compile.

H.	 The code contains an infinite loop and does not terminate.

144  Chapter 3  ■  Making Decisions

6.	 Which statements about decision structures are true? (Choose all that apply.)

A.	 A for-each loop can be executed on any Collections Framework object.

B.	 The body of a while loop is guaranteed to be executed at least once.

C.	 The conditional expression of a for loop is evaluated before the first execution of the
loop body.

D.	 A switch expression that takes a String and assigns the result to a variable requires a
default branch.

E.	 The body of a do/while loop is guaranteed to be executed at least once.

F.	 An if statement can have multiple corresponding else statements.

7.	 Assuming weather is a well-formed nonempty array, which code snippet, when inserted
independently into the blank in the following code, prints all of the elements of weather?
(Choose all that apply.)

 private void print(int[] weather) {
 for() {
 System.out.println(weather[i]);
 }
 }

A.	 int i=weather.length; i>0; i--
B.	 int i=0; i<=weather.length-1; ++i
C.	 var w : weather
D.	 int i=weather.length-1; i>=0; i--
E.	 int i=0, int j=3; i<weather.length; ++i
F.	 int i=0; ++i<10 && i<weather.length;
G.	 None of the above

8.	 What is the output of calling printType(11)?

 31: void printType(Object o) {
 32: if(o instanceof Integer bat) {
 33: System.out.print("int");
 34: } else if(o instanceof Integer bat && bat < 10) {
 35: System.out.print("small int");
 36: } else if(o instanceof Long bat || bat <= 20) {
 37: System.out.print("long");
 38: } default {
 39: System.out.print("unknown");
 40: }
 41: }

Review Questions  145

A.	 int
B.	 small int
C.	 long
D.	 unknown
E.	 Nothing is printed.

F.	 The code contains one line that does not compile.

G.	 The code contains two lines that do not compile.

H.	 None of the above

9.	 Which statements, when inserted independently into the following blank, will cause the code
to print 2 at runtime? (Choose all that apply.)

 int count = 0;
 BUNNY: for(int row = 1; row <=3; row++)
 RABBIT: for(int col = 0; col <3 ; col++) {
 if((col + row) % 2 == 0)
 ;
 count++;
 }
 System.out.println(count);

A.	 break BUNNY
B.	 break RABBIT
C.	 continue BUNNY
D.	 continue RABBIT
E.	 break
F.	 continue
G.	 None of the above, as the code contains a compiler error.

10.	 Given the following method, how many lines contain compilation errors? (Choose all
that apply.)

 10: private DayOfWeek getWeekDay(int day, final int thursday) {
 11: int otherDay = day;
 12: int Sunday = 0;
 13: switch(otherDay) {
 14: default:
 15: case 1: continue;
 16: case thursday: return DayOfWeek.THURSDAY;
 17: case 2,10: break;

146  Chapter 3  ■  Making Decisions

 18: case Sunday: return DayOfWeek.SUNDAY;
 19: case DayOfWeek.MONDAY: return DayOfWeek.MONDAY;
 20: }
 21: return DayOfWeek.FRIDAY;
 22: }

A.	 None, the code compiles without issue.

B.	 1

C.	 2

D.	 3

E.	 4

F.	 5

G.	 6

H.	 The code compiles but may produce an error at runtime.

11.	 What is the output of calling printLocation(Animal.MAMMAL)?

 10: class Zoo {
 11: enum Animal {BIRD, FISH, MAMMAL}
 12: void printLocation(Animal a) {
 13: long type = switch(a) {
 14: case BIRD -> 1;
 15: case FISH -> 2;
 16: case MAMMAL -> 3;
 17: default -> 4;
 18: };
 19: System.out.print(type);
 20: } }

A.	 3
B.	 4
C.	 34
D.	 The code does not compile because of line 13.

E.	 The code does not compile because of line 17.

F.	 None of the above

12.	 What is the result of the following code snippet?

 3: int sing = 8, squawk = 2, notes = 0;
 4: while(sing > squawk) {
 5: sing--;
 6: squawk += 2;

Review Questions  147

 7: notes += sing + squawk;
 8: }
 9: System.out.println(notes);

A.	 11
B.	 13
C.	 23
D.	 33
E.	 50
F.	 The code will not compile because of line 7.

13.	 What is the output of the following code snippet?

 2: boolean keepGoing = true;
 3: int result = 15, meters = 10;
 4: do {
 5: meters--;
 6: if(meters==8) keepGoing = false;
 7: result -= 2;
 8: } while keepGoing;
 9: System.out.println(result);

A.	 7
B.	 9
C.	 10
D.	 11
E.	 15
F.	 The code will not compile because of line 6.

G.	 The code does not compile for a different reason.

14.	 Which statements about the following code snippet are correct? (Choose all that apply.)

 for(var penguin : new int[2])
 System.out.println(penguin);
 var ostrich = new Character[3];
 for(var emu : ostrich)
 System.out.println(emu);
 List<Integer> parrots = new ArrayList<Integer>();
 for(var macaw : parrots)
 System.out.println(macaw);

148  Chapter 3  ■  Making Decisions

A.	 The data type of penguin is Integer.

B.	 The data type of penguin is int.

C.	 The data type of emu is undefined.

D.	 The data type of emu is Character.

E.	 The data type of macaw is List.

F.	 The data type of macaw is Integer.

G.	 None of the above, as the code does not compile.

15.	 What is the result of the following code snippet?

 final char a = 'A', e = 'E';
 char grade = 'B';
 switch (grade) {
 default:
 case a:
 case 'B': 'C': System.out.print("great ");
 case 'D': System.out.print("good "); break;
 case e:
 case 'F': System.out.print("not good ");
 }

A.	 great
B.	 great good
C.	 good
D.	 not good
E.	 The code does not compile because the data type of one or more case statements does

not match the data type of the switch variable.

F.	 None of the above

16.	 Given the following array, which code snippets print the elements in reverse order from how
they are declared? (Choose all that apply.)

 char[] wolf = {'W', 'e', 'b', 'b', 'y'};
A.	

 int q = wolf.length;
 for(; ;) {
 System.out.print(wolf[--q]);
 if(q==0) break;
 }

B.	

 for(int m=wolf.length-1; m>=0; --m)
 System.out.print(wolf[m]);

Review Questions  149

C.	

 for(int z=0; z<wolf.length; z++)
 System.out.print(wolf[wolf.length-z]);

D.	

 int x = wolf.length-1;
 for(int j=0; x>=0 && j==0; x--)
 System.out.print(wolf[x]);

E.	

 final int r = wolf.length;
 for(int w = r-1; r>-1; w = r-1)
 System.out.print(wolf[w]);

F.	

 for(int i=wolf.length; i>0; --i)
 System.out.print(wolf[i]);

G.	 None of the above

17.	 What distinct numbers are printed when the following method is executed? (Choose all
that apply.)

 private void countAttendees() {
 int participants = 4, animals = 2, performers = -1;
 while((participants = participants+1) < 10) {}
 do {} while (animals++ <= 1);
 for(; performers<2; performers+=2) {}

 System.out.println(participants);
 System.out.println(animals);
 System.out.println(performers);
 }

A.	 6
B.	 3
C.	 4
D.	 5
E.	 10
F.	 9
G.	 The code does not compile.

H.	 None of the above

150  Chapter 3  ■  Making Decisions

18.	 Which statements about pattern matching and flow scoping are correct? (Choose all
that apply.)

A.	 Pattern matching with an if statement is implemented using the instance operator.

B.	 Pattern matching with an if statement is implemented using the instanceon operator.

C.	 Pattern matching with an if statement is implemented using the instanceof operator.

D.	 The pattern variable cannot be accessed after the if statement in which it is declared.

E.	 Flow scoping means a pattern variable is only accessible if the compiler can discern its
type.

F.	 Pattern matching can be used to declare a variable with an else statement.

19.	 What is the output of the following code snippet?

 2: double iguana = 0;
 3: do {
 4: int snake = 1;
 5: System.out.print(snake++ + " ");
 6: iguana--;
 7: } while (snake <= 5);
 8: System.out.println(iguana);

A.	 1 2 3 4 -4.0
B.	 1 2 3 4 -5.0
C.	 1 2 3 4 5 -4.0
D.	 0 1 2 3 4 5 -5.0
E.	 The code does not compile.

F.	 The code compiles but produces an infinite loop at runtime.

G.	 None of the above

20.	 Which statements, when inserted into the following blanks, allow the code to compile and
run without entering an infinite loop? (Choose all that apply.)

 4: int height = 1;
 5: L1: while(height++ <10) {
 6: long humidity = 12;
 7: L2: do {
 8: if(humidity-- % 12 == 0) ;
 9: int temperature = 30;
 10: L3: for(; ;) {
 11: temperature++;
 12: if(temperature>50) ;
 13: }
 14: } while (humidity > 4);
 15: }

Review Questions  151

A.	 break L2 on line 8; continue L2 on line 12

B.	 continue on line 8; continue on line 12

C.	 break L3 on line 8; break L1 on line 12

D.	 continue L2 on line 8; continue L3 on line 12

E.	 continue L2 on line 8; continue L2 on line 12

F.	 None of the above, as the code contains a compiler error

21.	 A minimum of how many lines need to be corrected before the following method
will compile?

 21: void findZookeeper(Long id) {
 22: System.out.print(switch(id) {
 23: case 10 -> {"Jane"}
 24: case 20 -> {yield "Lisa";};
 25: case 30 -> "Kelly";
 26: case 30 -> "Sarah";
 27: default -> "Unassigned";
 28: });
 29: }

A.	 Zero

B.	 One

C.	 Two

D.	 Three

E.	 Four

F.	 Five

22.	 What is the output of the following code snippet? (Choose all that apply.)

 2: var tailFeathers = 3;
 3: final var one = 1;
 4: switch (tailFeathers) {
 5: case one: System.out.print(3 + " ");
 6: default: case 3: System.out.print(5 + " ");
 7: }
 8: while (tailFeathers > 1) {
 9: System.out.print(--tailFeathers + " "); }

A.	 3
B.	 5 1
C.	 5 2
D.	 3 5 1
E.	 5 2 1
F.	 The code will not compile because of lines 3–5.

G.	 The code will not compile because of line 6.

152  Chapter 3  ■  Making Decisions

23.	 What is the output of the following code snippet?

 15: int penguin = 50, turtle = 75;
 16: boolean older = penguin >= turtle;
 17: if (older = true) System.out.println("Success");
 18: else System.out.println("Failure");
 19: else if(penguin != 50) System.out.println("Other");

A.	 Success
B.	 Failure
C.	 Other
D.	 The code will not compile because of line 17.

E.	 The code compiles but throws an exception at runtime.

F.	 None of the above

24.	 Which of the following are possible data types for friends that would allow the code to
compile? (Choose all that apply.)

 for(var friend in friends) {
 System.out.println(friend);
 }

A.	 Set
B.	 Map
C.	 String
D.	 int[]
E.	 Collection
F.	 StringBuilder
G.	 None of the above

25.	 What is the output of the following code snippet?

 6: String instrument = "violin";
 7: final String CELLO = "cello";
 8: String viola = "viola";
 9: int p = -1;
 10: switch(instrument) {
 11: case "bass" : break;
 12: case CELLO : p++;
 13: default: p++;
 14: case "VIOLIN": p++;
 15: case "viola" : ++p; break;
 16: }
 17: System.out.print(p);

Review Questions  153

A.	 -1
B.	 0
C.	 1
D.	 2
E.	 3
F.	 The code does not compile.

26.	 What is the output of the following code snippet? (Choose all that apply.)

 9: int w = 0, r = 1;
 10: String name = "";
 11: while(w < 2) {
 12: name += "A";
 13: do {
 14: name += "B";
 15: if(name.length()>0) name += "C";
 16: else break;
 17: } while (r <=1);
 18: r++; w++; }
 19: System.out.println(name);

A.	 ABC
B.	 ABCABC
C.	 ABCABCABC
D.	 Line 15 contains a compilation error.

E.	 Line 18 contains a compilation error.

F.	 The code compiles but never terminates at runtime.

G.	 The code compiles but throws a NullPointerException at runtime.

27.	 What is printed by the following code snippet?

 23: byte amphibian = 1;
 24: String name = "Frog";
 25: String color = switch(amphibian) {
 26: case 1 -> { yield "Red"; }
 27: case 2 -> { if(name.equals("Frog")) yield "Green"; }
 28: case 3 -> { yield "Purple"; }
 29: default -> throw new RuntimeException();
 30: };
 31: System.out.print(color);

154  Chapter 3  ■  Making Decisions

A.	 Red
B.	 Green
C.	 Purple
D.	 RedPurple
E.	 An exception is thrown at runtime.

F.	 The code does not compile.

28.	 What is the output of calling getFish("goldie")?

 40: void getFish(Object fish) {
 41: if (!(fish instanceof String guppy))
 42: System.out.print("Eat!");
 43: else if (!(fish instanceof String guppy)) {
 44: throw new RuntimeException();
 45: }
 46: System.out.print("Swim!");
 47: }

A.	 Eat!
B.	 Swim!
C.	 Eat! followed by an exception.

D.	 Eat!Swim!
E.	 An exception is printed.

F.	 None of the above

29.	 What is the result of the following code?

 1: public class PrintIntegers {
 2: public static void main(String[] args) {
 3: int y = -2;
 4: do System.out.print(++y + " ");
 5: while(y <= 5);
 6: } }

A.	 -2 -1 0 1 2 3 4 5
B.	 -2 -1 0 1 2 3 4
C.	 -1 0 1 2 3 4 5 6
D.	 -1 0 1 2 3 4 5
E.	 The code will not compile because of line 5.

F.	 The code contains an infinite loop and does not terminate.

Core APIs

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Handling date, time, text, numeric and boolean values

■■ Use primitives and wrapper classes including Math API, paren-

theses, type promotion, and casting to evaluate arithmetic and

boolean expressions

■■ Manipulate text, including text blocks, using String and String-

Builder classes

■■ Manipulate date, time, duration, period, instant and time-zone

objects using Date-Time API

✓✓ Working with Arrays and Collections

■■ Create Java arrays, List, Set, Map, and Deque collections, and

add, remove, update, retrieve and sort their elements

Chapter

4

In the context of an application programming interface (API),
an interface refers to a group of classes or Java interface defini-
tions giving you access to functionality.

In this chapter, you learn about many core data structures in Java, along with the most
common APIs to access them. For example, String and StringBuilder, along with their
associated APIs, are used to create and manipulate text data. Then we cover arrays. Finally,
we explore math and date/time APIs.

Creating and Manipulating Strings
The String class is such a fundamental class that you’d be hard-pressed to write code
without it. After all, you can’t even write a main() method without using the String class.
A string is basically a sequence of characters; here’s an example:

String name = "Fluffy";

As you learned in Chapter 1, “Building Blocks,” this is an example of a reference type.
You also learned that reference types are created using the new keyword. Wait a minute.
Something is missing from the previous example: it doesn’t have new in it! In Java, these two
snippets both create a String:

String name = "Fluffy";
String name = new String("Fluffy");

Both give you a reference variable named name pointing to the String object "Fluffy".
They are subtly different, as you see later in this chapter. For now, just remember that the
String class is special and doesn’t need to be instantiated with new.

Further, text blocks are another way of creating a String. To review, this text block is the
same as the previous variables:

String name = """
 Fluffy""";

Since a String is a sequence of characters, you probably won’t be surprised to hear that
it implements the interface CharSequence. This interface is a general way of representing
several classes, including String and StringBuilder. You learn more about interfaces in
Chapter 7, “Beyond Classes.”

In this section, we look at concatenation, common methods, and method chaining.

Creating and Manipulating Strings  157

Concatenating
In Chapter 2, “Operators,” you learned how to add numbers. 1 + 2 is clearly 3. But what is
"1" + "2"? It’s "12" because Java combines the two String objects. Placing one String
before the other String and combining them is called string concatenation. The exam
creators like string concatenation because the + operator can be used in two ways within
the same line of code. There aren’t a lot of rules to know for this, but you have to know
them well:

1.	 If both operands are numeric, + means numeric addition.

2.	 If either operand is a String, + means concatenation.

3.	 The expression is evaluated left to right.

Now let’s look at some examples:

System.out.println(1 + 2); // 3
System.out.println("a" + "b"); // ab
System.out.println("a" + "b" + 3); // ab3
System.out.println(1 + 2 + "c"); // 3c
System.out.println("c" + 1 + 2); // c12
System.out.println("c" + null); // cnull

The first example uses the first rule. Both operands are numbers, so we use normal
addition. The second example is simple string concatenation, described in the second rule.
The quotes for the String are only used in code; they don’t get output.

The third example combines the second and third rules. Since we start on the left, Java
figures out what "a" + "b" evaluates to. You already know that one: it’s "ab". Then Java
looks at the remaining expression of "ab" + 3. The second rule tells us to concatenate since
one of the operands is a String.

In the fourth example, we start with the third rule, which tells us to consider 1 + 2. Both
operands are numeric, so the first rule tells us the answer is 3. Then we have 3 + "c", which
uses the second rule to give us "3c". Notice all three rules are used in one line?

The fifth example shows the importance of the third rule. First we have "c" + 1, which
uses the second rule to give us "c1". Then we have "c1" + 2, which uses the second rule
again to give us "c12".

Finally, the last example shows how null is represented as a string when concatenated or
printed, giving us "cnull".

The exam takes trickery a step further and will try to fool you with something like this:

int three = 3;
String four = "4";
System.out.println(1 + 2 + three + four);

When you see this, just take it slow, remember the three rules, and be sure to check the
variable types. In this example, we start with the third rule, which tells us to consider 1 + 2.

158  Chapter 4  ■  Core APIs

The first rule gives us 3. Next, we have 3 + three. Since three is of type int, we still use
the first rule, giving us 6. Then, we have 6 + four. Since four is of type String, we switch
to the second rule and get a final answer of "64". When you see questions like this, just take
your time and check the types. Being methodical pays off.

There is one more thing to know about concatenation, but it is easy. In this example, you
just have to remember what += does. Keep in mind, s += "2" means the same thing as s
= s + "2".

4: var s = "1"; // s currently holds "1"
5: s += "2"; // s currently holds "12"
6: s += 3; // s currently holds "123"
7: System.out.println(s); // 123

On line 5, we are “adding” two strings, which means we concatenate them. Line 6 tries to
trick you by adding a number, but it’s just like we wrote s = s + 3. We know that a string
“plus” anything else means to use concatenation.

To review the rules one more time: use numeric addition if two numbers are involved, use
concatenation otherwise, and evaluate from left to right. Have you memorized these three
rules yet? Be sure to do so before the exam!

Important String Methods
The String class has dozens of methods. Luckily, you need to know only a handful for the
exam. The exam creators pick most of the methods developers use in the real world.

For all these methods, you need to remember that a string is a sequence of characters
and Java counts from 0 when indexed. Figure 4.1 shows how each character in the string
"animals" is indexed.

You also need to know that a String is immutable, or unchangeable. This means calling
a method on a String will return a different String object rather than changing the value
of the reference. In this chapter, you use immutable objects. In Chapter 6, “Class Design,”
you learn how to create immutable objects of your own.

Let’s look at a number of methods from the String class. Many of them are straightfor-
ward, so we won’t discuss them at length. You need to know how to use these methods.

Determining the Length
The method length() returns the number of characters in the String. The method signa-
ture is as follows:

public int length()

a n i m a sl

0 1 2 3 4 65

F IGURE 4 .1   Indexing for a string

Creating and Manipulating Strings  159

The following code shows how to use length():

var name = "animals";
System.out.println(name.length()); // 7

Wait. It outputs 7? Didn’t we just tell you that Java counts from 0? The difference is
that zero counting happens only when you’re using indexes or positions within a list.
When determining the total size or length, Java uses normal counting again.

Getting a Single Character
The method charAt() lets you query the string to find out what character is at a specific index.
The method signature is as follows:

public char charAt(int index)

The following code shows how to use charAt():

var name = "animals";
System.out.println(name.charAt(0)); // a
System.out.println(name.charAt(6)); // s
System.out.println(name.charAt(7)); // exception

Since indexes start counting with 0, charAt(0) returns the “first” character in the
sequence. Similarly, charAt(6) returns the “seventh” character in the sequence.
However, charAt(7) is a problem. It asks for the “eighth” character in the sequence, but
there are only seven characters present. When something goes wrong that Java doesn’t know
how to deal with, it throws an exception, as shown here. You learn more about exceptions in
Chapter 11, “Exceptions and Localization.”

java.lang.StringIndexOutOfBoundsException: String index out of range: 7

Finding an Index
The method indexOf() looks at the characters in the string and finds the first index that
matches the desired value. The indexOf method can work with an individual character or a
whole String as input. It can also start from a requested position. Remember that a char
can be passed to an int parameter type. On the exam, you’ll only see a char passed to the
parameters named ch. The method signatures are as follows:

public int indexOf(int ch)

public int indexOf(int ch, int fromIndex)
public int indexOf(String str)
public int indexOf(String str, int fromIndex)

The following code shows you how to use indexOf():

var name = "animals";
System.out.println(name.indexOf('a')); // 0

160  Chapter 4  ■  Core APIs

System.out.println(name.indexOf("al")); // 4
System.out.println(name.indexOf('a', 4)); // 4
System.out.println(name.indexOf("al", 5)); // -1

Since indexes begin with 0, the first 'a' matches at that position. The second statement
looks for a more specific string, so it matches later. The third statement says Java shouldn’t
even look at the characters until it gets to index 4. The final statement doesn’t find anything
because it starts looking after the match occurred. Unlike charAt(), the indexOf()
method doesn’t throw an exception if it can’t find a match, instead returning –1. Because
indexes start with 0, the caller knows that –1 couldn’t be a valid index. This makes it a
common value for a method to signify to the caller that no match is found.

Getting a Substring
The method substring() also looks for characters in a string. It returns parts of the string.
The first parameter is the index to start with for the returned string. As usual, this is a
zero-based index. There is an optional second parameter, which is the end index you want
to stop at.

Notice we said “stop at” rather than “include.” This means the endIndex parameter
is allowed to be one past the end of the sequence if you want to stop at the end of the
sequence. That would be redundant, though, since you could omit the second parameter
entirely in that case. In your own code, you want to avoid this redundancy. Don’t be sur-
prised if the exam uses it, though. The method signatures are as follows:

public String substring(int beginIndex)
public String substring(int beginIndex, int endIndex)

It helps to think of indexes a bit differently for the substring methods. Pretend the indexes
are right before the character they would point to. Figure 4.2 helps visualize this. Notice
how the arrow with the 0 points to the character that would have index 0. The arrow
with the 1 points between characters with indexes 0 and 1. There are seven characters in
the String. Since Java uses zero-based indexes, this means the last character has an index
of 6. The arrow with the 7 points immediately after this last character. This will help you
remember that endIndex doesn’t give an out-of-bounds exception when it is one past the
end of the String.

The following code shows how to use substring():

var name = "animals";
System.out.println(name.substring(3)); // mals
System.out.println(name.substring(name.indexOf('m'))); // mals

a n i m a l s

0 1 2 3 4 5 6 7

F IGURE 4 .2   Indexes for a substring

Creating and Manipulating Strings  161

System.out.println(name.substring(3, 4)); // m
System.out.println(name.substring(3, 7)); // mals

The substring() method is the trickiest String method on the exam. The first example says
to take the characters starting with index 3 through the end, which gives us "mals". The second
example does the same thing, but it calls indexOf() to get the index rather than hard-coding it.
This is a common practice when coding because you may not know the index in advance.

The third example says to take the characters starting with index 3 until, but not
including, the character at index 4. This is a complicated way of saying we want a String
with one character: the one at index 3. This results in "m". The final example says to take the
characters starting with index 3 until we get to index 7. Since index 7 is the same as the end
of the string, it is equivalent to the first example.

We hope that wasn’t too confusing. The next examples are less obvious:

System.out.println(name.substring(3, 3)); // empty string
System.out.println(name.substring(3, 2)); // exception
System.out.println(name.substring(3, 8)); // exception

The first example in this set prints an empty string. The request is for the characters
starting with index 3 until we get to index 3. Since we start and end with the same index,
there are no characters in between. The second example in this set throws an exception
because the indexes can’t be backward. Java knows perfectly well that it will never get
to index 2 if it starts with index 3. The third example says to continue until the eighth
character. There is no eighth position, so Java throws an exception. Granted, there is no
seventh character either, but at least there is the “end of string” invisible position.

Let’s review this one more time since substring() is so tricky. The method returns the string
starting from the requested index. If an end index is requested, it stops right before that
index. Otherwise, it goes to the end of the string.

Adjusting Case
Whew. After that mental exercise, it is nice to have methods that act exactly as they sound!
These methods make it easy to convert your data. The method signatures are as follows:

public String toLowerCase()
public String toUpperCase()

The following code shows how to use these methods:

var name = "animals";
System.out.println(name.toUpperCase()); // ANIMALS
System.out.println("Abc123".toLowerCase()); // abc123

These methods do what they say. The toUpperCase() method converts any lowercase
characters to uppercase in the returned string. The toLowerCase() method converts any
uppercase characters to lowercase in the returned string. These methods leave alone any
characters other than letters. Also, remember that strings are immutable, so the original
string stays the same.

162  Chapter 4  ■  Core APIs

Checking for Equality
The equals() method checks whether two String objects contain exactly the same char-
acters in the same order. The equalsIgnoreCase() method checks whether two String
objects contain the same characters, with the exception that it ignores the characters’ case.
The method signatures are as follows:

public boolean equals(Object obj)
public boolean equalsIgnoreCase(String str)

You might have noticed that equals() takes an Object rather than a String. This is
because the method is the same for all objects. If you pass in something that isn’t a String,
it will just return false. By contrast, the equalsIgnoreCase() method only applies to
String objects, so it can take the more specific type as the parameter.

In Java, String values are case-sensitive. That means "abc" and "ABC" are considered differ-
ent values. With that in mind, the following code shows how to use these methods:

System.out.println("abc".equals("ABC")); // false
System.out.println("ABC".equals("ABC")); // true
System.out.println("abc".equalsIgnoreCase("ABC")); // true

This example should be fairly intuitive. In the first example, the values aren’t exactly the
same. In the second, they are exactly the same. In the third, they differ only by case, but it is
okay because we called the method that ignores differences in case.

Overriding toString(), equals(Object), and hashCode()

Knowing how to properly override toString(), equals(Object), and hashCode()
was part of Java certification exams in the past. As a professional Java developer, it is still
important for you to know at least the basic rules for overriding each of these methods:

■■ toString(): The toString() method is called when you try to print an object or
concatenate the object with a String. It is commonly overridden with a version that
prints a unique description of the instance using its instance fields.

■■ equals(Object): The equals(Object) method is used to compare objects,
with the default implementation just using the == operator. You should override the
equals(Object) method any time you want to conveniently compare elements for
equality, especially if this requires checking numerous fields.

■■ hashCode(): Any time you override equals(Object), you must override
hashCode() to be consistent. This means that for any two objects, if a.equals(b) is
true, then a.hashCode()==b.hashCode() must also be true. If they are not con-
sistent, this could lead to invalid data and side effects in hash-based collections such as
HashMap and HashSet.

All of these methods provide a default implementation in Object, but if you want to make
intelligent use of them, you should override them.

Creating and Manipulating Strings  163

Searching for Substrings
Often, you need to search a larger string to determine if a substring is contained within it.
The startsWith() and endsWith() methods look at whether the provided value matches part
of the String. The contains() method isn’t as particular; it looks for matches anywhere in the
String. The method signatures are as follows:

public boolean startsWith(String prefix)
public boolean endsWith(String suffix)
public boolean contains(CharSequence charSeq)

The following code shows how to use these methods:

System.out.println("abc".startsWith("a")); // true
System.out.println("abc".startsWith("A")); // false

System.out.println("abc".endsWith("c")); // true
System.out.println("abc".endsWith("a")); // false

System.out.println("abc".contains("b")); // true
System.out.println("abc".contains("B")); // false

Again, nothing surprising here. Java is doing a case-sensitive check on the values
provided. Note that the contains() method is a convenience method so you don’t have to
write str.indexOf(otherString) != -1.

Replacing Values
The replace() method does a simple search and replace on the string. There’s a version that
takes char parameters as well as a version that takes CharSequence parameters. The method
signatures are as follows:

public String replace(char oldChar, char newChar)
public String replace(CharSequence target, CharSequence replacement)

The following code shows how to use these methods:

System.out.println("abcabc".replace('a', 'A')); // AbcAbc
System.out.println("abcabc".replace("a", "A")); // AbcAbc

The first example uses the first method signature, passing in char parameters. The second
example uses the second method signature, passing in String parameters.

Removing Whitespace
These methods remove blank space from the beginning and/or end of a String. The strip()
and trim() methods remove whitespace from the beginning and end of a String. In terms of
the exam, whitespace consists of spaces along with the \t (tab) and \n (newline) characters.
Other characters, such as \r (carriage return), are also included in what gets trimmed. The
strip() method does everything that trim() does, but it supports Unicode.

164  Chapter 4  ■  Core APIs

You don’t need to know about Unicode for the exam. But if you want
to test the difference, one of the Unicode whitespace characters is as
follows:

 char ch = '\u2000';

Additionally, the stripLeading() method removes whitespace from the beginning of
the String and leaves it at the end. The stripTrailing() method does the opposite. It
removes whitespace from the end of the String and leaves it at the beginning. The method
signatures are as follows:

public String strip()
public String stripLeading()
public String stripTrailing()
public String trim()

The following code shows how to use these methods:

System.out.println("abc".strip()); // abc
System.out.println("\t a b c\n".strip()); // a b c

String text = " abc\t ";
System.out.println(text.trim().length()); // 3
System.out.println(text.strip().length()); // 3
System.out.println(text.stripLeading().length()); // 5
System.out.println(text.stripTrailing().length());// 4

First, remember that \t is a single character. The backslash escapes the t to represent a
tab. The first example prints the original string because there are no whitespace characters at
the beginning or end. The second example gets rid of the leading tab, subsequent spaces, and
the trailing newline. It leaves the spaces that are in the middle of the string.

The remaining examples just print the number of characters remaining. You can see that
trim() and strip() leave the same three characters "abc" because they remove both
the leading and trailing whitespace. The stripLeading() method only removes the one
whitespace character at the beginning of the String. It leaves the tab and space at the end.
The stripTrailing() method removes these two characters at the end but leaves the
character at the beginning of the String.

Working with Indentation
Now that Java supports text blocks, it is helpful to have methods that deal with indentation.
Both of these are a little tricky, so read carefully!

public String indent(int numberSpaces)
public String stripIndent()

Creating and Manipulating Strings  165

The indent() method adds the same number of blank spaces to the beginning of each
line if you pass a positive number. If you pass a negative number, it tries to remove that
number of whitespace characters from the beginning of the line. If you pass zero, the inden-
tation will not change.

If you call indent() with a negative number and try to remove more
whitespace characters than are present at the beginning of the line, Java
will remove all that it can find.

This seems straightforward enough. However, indent() also normalizes whitespace
characters. What does normalizing whitespace mean, you ask? First, a line break is added
to the end of the string if not already there. Second, any line breaks are converted to the
\n format. Regardless of whether your operating system uses \r\n (Windows) or\n (Mac/
Unix), Java will standardize on \n for you.

The stripIndent() method is useful when a String was built with concatenation rather than
using a text block. It gets rid of all incidental whitespace. This means that all non-blank lines
are shifted left so the same number of whitespace characters are removed from each line and
the first character that remains is not blank. Like indent(), \r\n is turned into \n. However, the
stripIndent() method does not add a trailing line break if it is missing.

Well, that was a lot of rules. Table 4.1 provides a reference to make them easier
to remember.

TABLE 4 .1   Rules for indent() and stripIndent()

Method Indent change

Normalizes
existing
line breaks

Adds line
break at end
if missing

indent(n) where n > 0 Adds n spaces to
beginning of each line

Yes Yes

indent(n) where n == 0 No change Yes Yes

indent(n) where n < 0 Removes up to n spaces
from each line where the
same number of charac-
ters is removed from each
non-blank line

Yes Yes

stripIndent() Removes all leading
incidental whitespace

Yes No

166  Chapter 4  ■  Core APIs

The following code shows how to use these methods. Don’t worry if the results aren’t
what you expect. We explain each one.

10: var block = """
11: a
12: b
13: c""";
14: var concat = " a\n"
15: + " b\n"
16: + " c";
17: System.out.println(block.length()); // 6
18: System.out.println(concat.length()); // 9
19: System.out.println(block.indent(1).length()); // 10
20: System.out.println(concat.indent(-1).length()); // 7
21: System.out.println(concat.indent(-4).length()); // 6
22: System.out.println(concat.stripIndent().length()); // 6

Lines 10–16 create similar strings using a text block and a regular String, respectively.
We say “similar” because concat has a whitespace character at the beginning of each line
while block does not.

Line 17 counts the six characters in block, which are the three letters, the blank space
before b, and the \n after a and b. Line 18 counts the nine characters in concat, which are
the three letters, one blank space before a, two blank spaces before b, one blank space before
c, and the \n after a and b. Count them up yourself. If you don’t understand which charac-
ters are counted, it will only get more confusing.

On line 19, we ask Java to add a single blank space to each of the three lines in block.
However, the output says we added 4 characters rather than 3 since the length went from 6
to 10. This mysterious additional character is thanks to the line termination normalization.
Since the text block doesn’t have a line break at the end, indent() adds one!

On line 20, we remove one whitespace character from each of the three lines of concat.
This gives a length of seven. We started with nine, got rid of three characters, and added a
trailing normalized new line.

On line 21, we ask Java to remove four whitespace characters from the same three lines.
Since there are not four whitespace characters, Java does its best. The single space is removed
before a and c. Both spaces are removed before b. The length of six should make sense here;
we removed one more character here than on line 20.

Finally, line 22 uses the stripIndent() method. All of the lines have at least one
whitespace character. Since they do not all have two whitespace characters, the method only
gets rid of one character per line. Since no new line is added by stripIndent(), the length
is six, which is three less than the original nine.

Creating and Manipulating Strings  167

Translating Escapes
When we escape characters, we use a single backslash. For example, \t is a tab. If we don’t
want this behavior, we add another backslash to escape the backslash, so \\t is the literal
string \t. The translateEscapes() method takes these literals and turns them into the
equivalent escaped character. The method signature is as follows:

public String translateEscapes()

The following code shows how to use these methods:

var str = "1\\t2";
System.out.println(str); // 1\t2
System.out.println(str.translateEscapes()); // 1 2

The first line prints the literal string \t because the backslash is escaped. The second
line prints an actual tab since we translated the escape. This method can be used for escape
sequences such as \t (tab), \n (new line), \s (space), \" (double quote), and \' (single quote.)

Checking for Empty or Blank Strings
Java provides convenience methods for whether a String has a length of zero or contains only
whitespace characters. The method signatures are as follows:

public boolean isEmpty()
public boolean isBlank()

The following code shows how to use these methods:

System.out.println(" ".isEmpty()); // false
System.out.println("".isEmpty()); // true
System.out.println(" ".isBlank()); // true
System.out.println("".isBlank()); // true

The first line prints false because the String is not empty; it has a blank space in it.
The second line prints true because this time, there are no characters in the String. The
final two lines print true because there are no characters other than whitespace present.

Formatting Values
There are methods to format String values using formatting flags. Two of the methods take
the format string as a parameter, and the other uses an instance for that value. One method
takes a Locale, which you learn about in Chapter 11.

The method parameters are used to construct a formatted String in a single method call,
rather than via a lot of format and concatenation operations. They return a reference to the
instance they are called on so that operations can be chained together. The method signa-
tures are as follows:

public static String format(String format, Object args...)
public static String format(Locale loc, String format, Object args...)
public String formatted(Object args...)

168  Chapter 4  ■  Core APIs

The following code shows how to use these methods:

var name = "Kate";
var orderId = 5;

// All print: Hello Kate, order 5 is ready
System.out.println("Hello "+name+", order "+orderId+" is ready");
System.out.println(String.format("Hello %s, order %d is ready",
 name, orderId));
System.out.println("Hello %s, order %d is ready"
 .formatted(name, orderId));

In the format() and formatted() operations, the parameters are inserted and for-
matted via symbols in the order that they are provided in the vararg. Table 4.2 lists the ones
you should know for the exam.

The following example uses all four symbols from Table 4.2:

var name = "James";
var score = 90.25;
var total = 100;
System.out.println("%s:%n Score: %f out of %d"
 .formatted(name, score, total));

This prints the following:

James:
 Score: 90.250000 out of 100

Mixing data types may cause exceptions at runtime. For example, the following throws
an exception because a floating-point number is used when an integer value is expected:

var str = "Food: %d tons".formatted(2.0); // IllegalFormatConversionException

TABLE 4 .2   Common formatting symbols

Symbol Description

%s Applies to any type, commonly String values

%d Applies to integer values like int and long

%f Applies to floating-point values like float and double

%n Inserts a line break using the system-dependent line separator

Creating and Manipulating Strings  169

Using format() with Flags

Besides supporting symbols, Java also supports optional flags between the % and the
symbol character. In the previous example, the floating-point number was printed as
90.250000. By default, %f displays exactly six digits past the decimal. If you want to
display only one digit after the decimal, you can use %.1f instead of %f. The format()
method relies on rounding rather than truncating when shortening numbers. For example,
90.250000 will be displayed as 90.3 (not 90.2) when passed to format() with %.1f.

The format() method also supports two additional features. You can specify the total
length of output by using a number before the decimal symbol. By default, the method will
fill the empty space with blank spaces. You can also fill the empty space with zeros by plac-
ing a single zero before the decimal symbol. The following examples use brackets, [], to
show the start/end of the formatted value:

 var pi = 3.14159265359;
 System.out.format("[%f]",pi); // [3.141593]
 System.out.format("[%12.8f]",pi); // [3.14159265]
 System.out.format("[%012f]",pi); // [00003.141593]
 System.out.format("[%12.2f]",pi); // [3.14]
 System.out.format("[%.3f]",pi); // [3.142]

The format() method supports a lot of other symbols and flags. You don’t need to know
any of them for the exam beyond what we’ve discussed already.

Method Chaining
Ready to put together everything you just learned about? It is common to call multiple
methods as shown here:

var start = "AniMaL ";
var trimmed = start.trim(); // "AniMaL"
var lowercase = trimmed.toLowerCase(); // "animal"
var result = lowercase.replace('a', 'A'); // "AnimAl"
System.out.println(result);

This is just a series of String methods. Each time one is called, the returned value is put
in a new variable. There are four String values along the way, and AnimAl is output.

However, on the exam, there is a tendency to cram as much code as possible into a small
space. You’ll see code using a technique called method chaining. Here’s an example:

String result = "AniMaL ".trim().toLowerCase().replace('a', 'A');
System.out.println(result);

170  Chapter 4  ■  Core APIs

This code is equivalent to the previous example. It also creates four String objects and
outputs AnimAl. To read code that uses method chaining, start at the left and evaluate the
first method. Then call the next method on the returned value of the first method. Keep
going until you get to the semicolon.

What do you think the result of this code is?

5: String a = "abc";
6: String b = a.toUpperCase();
7: b = b.replace("B", "2").replace('C', '3');
8: System.out.println("a=" + a);
9: System.out.println("b=" + b);

On line 5, we set a to point to "abc" and never pointed a to anything else. Since none of
the code on lines 6 and 7 changes a, the value remains "abc".

However, b is a little trickier. Line 6 has b pointing to "ABC", which is straightforward.
On line 7, we have method chaining. First, "ABC".replace("B", "2") is called. This
returns "A2C". Next, "A2C".replace('C', '3') is called. This returns "A23". Finally, b
changes to point to this returned String. When line 9 executes, b is "A23".

Using the StringBuilder Class
A small program can create a lot of String objects very quickly. For example, how many
objects do you think this piece of code creates?

10: String alpha = "";
11: for(char current = 'a'; current <= 'z'; current++)
12: alpha += current;
13: System.out.println(alpha);

The empty String on line 10 is instantiated, and then line 12 appends an "a". However,
because the String object is immutable, a new String object is assigned to alpha, and the
"" object becomes eligible for garbage collection. The next time through the loop, alpha is
assigned a new String object, "ab", and the "a" object becomes eligible for garbage col-
lection. The next iteration assigns alpha to "abc", and the "ab" object becomes eligible for
garbage collection, and so on.

This sequence of events continues, and after 26 iterations through the loop, a total of 27
objects are instantiated, most of which are immediately eligible for garbage collection.

This is very inefficient. Luckily, Java has a solution. The StringBuilder class creates a
String without storing all those interim String values. Unlike the String class,
StringBuilder is not immutable.

15: StringBuilder alpha = new StringBuilder();
16: for(char current = 'a'; current <= 'z'; current++)
17: alpha.append(current);
18: System.out.println(alpha);

Using the StringBuilder Class  171

On line 15, a new StringBuilder object is instantiated. The call to append() on line
17 adds a character to the StringBuilder object each time through the for loop, append-
ing the value of current to the end of alpha. This code reuses the same StringBuilder
without creating an interim String each time.

In old code, you might see references to StringBuffer. It works the same way, except it
supports threads, which you learn about in Chapter 13, “Concurrency.” StringBuffer is
not on the exam. It performs slower than StringBuilder, so just use StringBuilder.

In this section, we look at creating a StringBuilder and using its common methods.

Mutability and Chaining
We’re sure you noticed this from the previous example, but StringBuilder is not immutable.
In fact, we gave it 27 different values in the example (a blank plus adding each letter in
the alphabet). The exam will likely try to trick you with respect to String and StringBuilder
being mutable.

Chaining makes this even more interesting. When we chained String method calls, the
result was a new String with the answer. Chaining StringBuilder methods doesn’t work this
way. Instead, the StringBuilder changes its own state and returns a reference to itself. Let’s
look at an example to make this clearer:

4: StringBuilder sb = new StringBuilder("start");
5: sb.append("+middle"); // sb = "start+middle"
6: StringBuilder same = sb.append("+end"); // "start+middle+end"

Line 5 adds text to the end of sb. It also returns a reference to sb, which is ignored. Line
6 also adds text to the end of sb and returns a reference to sb. This time the reference is
stored in same. This means sb and same point to the same object and would print out the
same value.

The exam won’t always make the code easy to read by having only one method per line.
What do you think this example prints?

4: StringBuilder a = new StringBuilder("abc");
5: StringBuilder b = a.append("de");
6: b = b.append("f").append("g");
7: System.out.println("a=" + a);
8: System.out.println("b=" + b);

Did you say both print "abcdefg"? Good. There’s only one StringBuilder object
here. We know that because new StringBuilder() is called only once. On line 5, there
are two variables referring to that object, which has a value of "abcde". On line 6, those
two variables are still referring to that same object, which now has a value of "abcdefg".
Incidentally, the assignment back to b does absolutely nothing. b is already pointing to that
StringBuilder.

172  Chapter 4  ■  Core APIs

Creating a StringBuilder
There are three ways to construct a StringBuilder:

StringBuilder sb1 = new StringBuilder();
StringBuilder sb2 = new StringBuilder("animal");
StringBuilder sb3 = new StringBuilder(10);

The first says to create a StringBuilder containing an empty sequence of characters
and assign sb1 to point to it. The second says to create a StringBuilder containing a
specific value and assign sb2 to point to it. The first two examples tell Java to manage the
implementation details. The final example tells Java that we have some idea of how big the
eventual value will be and would like the StringBuilder to reserve a certain capacity, or
number of slots, for characters.

Important StringBuilder Methods
As with String, we aren’t going to cover every single method in the StringBuilder class. These
are the ones you might see on the exam.

Using Common Methods
These four methods work exactly the same as in the String class. Be sure you can identify the
output of this example:

var sb = new StringBuilder("animals");
String sub = sb.substring(sb.indexOf("a"), sb.indexOf("al"));
int len = sb.length();
char ch = sb.charAt(6);
System.out.println(sub + " " + len + " " + ch);

The correct answer is anim 7 s. The indexOf() method calls return 0 and 4, respec-
tively. The substring() method returns the String starting with index 0 and ending right
before index 4.

The length() method returns 7 because it is the number of characters in the String-
Builder rather than an index. Finally, charAt() returns the character at index 6. Here, we
do start with 0 because we are referring to indexes. If this doesn’t sound familiar, go back
and read the section on String again.

Notice that substring() returns a String rather than a StringBuilder. That is why sb is not
changed. The substring() method is really just a method that inquires about the state of the
StringBuilder.

Appending Values
The append() method is by far the most frequently used method in StringBuilder. In fact, it is
so frequently used that we just started using it without comment. Luckily, this method does

just what it sounds like: it adds the parameter to the StringBuilder and returns a reference to
the current StringBuilder. One of the method signatures is as follows:

public StringBuilder append(String str)

Notice that we said one of the method signatures. There are more than 10 method signa-
tures that look similar but take different data types as parameters, such as int, char, etc.
All those methods are provided so you can write code like this:

var sb = new StringBuilder().append(1).append('c');
sb.append("-").append(true);
System.out.println(sb); // 1c-true

Nice method chaining, isn’t it? The append() method is called directly after the con-
structor. By having all these method signatures, you can just call append() without having
to convert your parameter to a String first.

Inserting Data
The insert() method adds characters to the StringBuilder at the requested index and returns a
reference to the current StringBuilder. Just like append(), there are lots of method signatures
for different types. Here’s one:
public StringBuilder insert(int offset, String str)

Pay attention to the offset in these examples. It is the index where we want to insert the
requested parameter.

3: var sb = new StringBuilder("animals");
4: sb.insert(7, "-"); // sb = animals-
5: sb.insert(0, "-"); // sb = -animals-
6: sb.insert(4, "-"); // sb = -ani-mals-
7: System.out.println(sb);

Line 4 says to insert a dash at index 7, which happens to be the end of the sequence of
characters. Line 5 says to insert a dash at index 0, which happens to be the very beginning.
Finally, line 6 says to insert a dash right before index 4. The exam creators will try to trip
you up on this. As we add and remove characters, their indexes change. When you see a
question dealing with such operations, draw what is going on using available writing mate-
rials so you won’t be confused.

Deleting Contents
The delete() method is the opposite of the insert() method. It removes characters from the
sequence and returns a reference to the current StringBuilder. The deleteCharAt() method
is convenient when you want to delete only one character. The method signatures are
as follows:

public StringBuilder delete(int startIndex, int endIndex)
public StringBuilder deleteCharAt(int index)

Using the StringBuilder Class  173

174  Chapter 4  ■  Core APIs

The following code shows how to use these methods:

var sb = new StringBuilder("abcdef");
sb.delete(1, 3); // sb = adef
sb.deleteCharAt(5); // exception

First, we delete the characters starting with index 1 and ending right before index 3. This
gives us adef. Next, we ask Java to delete the character at position 5. However, the remaining
value is only four characters long, so it throws a StringIndexOutOfBoundsException.

The delete() method is more flexible than some others when it comes to array indexes.
If you specify a second parameter that is past the end of the StringBuilder, Java will just
assume you meant the end. That means this code is legal:

var sb = new StringBuilder("abcdef");
sb.delete(1, 100); // sb = a

Replacing Portions
The replace() method works differently for StringBuilder than it did for String. The
method signature is as follows:

public StringBuilder replace(int startIndex, int endIndex, String newString)

The following code shows how to use this method:

var builder = new StringBuilder("pigeon dirty");
builder.replace(3, 6, "sty");
System.out.println(builder); // pigsty dirty

First, Java deletes the characters starting with index 3 and ending right before index 6.
This gives us pig dirty. Then Java inserts the value "sty" in that position.

In this example, the number of characters removed and inserted are the same. However,
there is no reason they have to be. What do you think this does?

var builder = new StringBuilder("pigeon dirty");
builder.replace(3, 100, "");
System.out.println(builder);

It prints "pig". Remember, the method is first doing a logical delete. The replace()
method allows specifying a second parameter that is past the end of the StringBuilder.
That means only the first three characters remain.

Reversing
After all that, it’s time for a nice, easy method. The reverse() method does just what it
sounds like: it reverses the characters in the sequences and returns a reference to the current
StringBuilder. The method signature is as follows:

public StringBuilder reverse()

Understanding Equality  175

The following code shows how to use this method:

var sb = new StringBuilder("ABC");
sb.reverse();
System.out.println(sb);

As expected, this prints CBA. This method isn’t that interesting. Maybe the exam creators
like to include it to encourage you to write down the value rather than relying on memory
for indexes.

Working with toString()

The Object class contains a toString() method that many classes provide custom
implementations of. The StringBuilder class is one of these.

The following code shows how to use this method:

 var sb = new StringBuilder("ABC");
 String s = sb.toString();

Often StringBuilder is used internally for performance purposes, but the end result
needs to be a String. For example, maybe it needs to be passed to another method that is
expecting a String.

Understanding Equality
In Chapter 2, you learned how to use == to compare numbers and that object references
refer to the same object. In this section, we look at what it means for two objects to be
equivalent or the same. We also look at the impact of the String pool on equality.

Comparing equals() and ==
Consider the following code that uses == with objects:

var one = new StringBuilder();
var two = new StringBuilder();
var three = one.append("a");
System.out.println(one == two); // false
System.out.println(one == three); // true

Since this example isn’t dealing with primitives, we know to look for whether the ref-
erences are referring to the same object. The one and two variables are both completely

176  Chapter 4  ■  Core APIs

separate StringBuilder objects, giving us two objects. Therefore, the first print statement
gives us false. The three variable is more interesting. Remember how StringBuilder
methods like to return the current reference for chaining? This means one and three both
point to the same object, and the second print statement gives us true.

You saw earlier that equals() uses logical equality rather than object equality for
String objects:

var x = "Hello World";
var z = " Hello World".trim();
System.out.println(x.equals(z)); // true

This works because the authors of the String class implemented a standard method
called equals() to check the values inside the String rather than the string reference itself.
If a class doesn’t have an equals() method, Java determines whether the references point to
the same object, which is exactly what == does.

In case you are wondering, the authors of StringBuilder did not implement equals(). If
you call equals() on two StringBuilder instances, it will check reference equality. You can call
toString() on StringBuilder to get a String to check for equality instead.

Finally, the exam might try to trick you with a question like this. Can you guess why the
code doesn’t compile?

var name = "a";
var builder = new StringBuilder("a");
System.out.println(name == builder); // DOES NOT COMPILE

Remember that == is checking for object reference equality. The compiler is smart enough
to know that two references can’t possibly point to the same object when they are com-
pletely different types.

The String Pool
Since strings are everywhere in Java, they use up a lot of memory. In some production appli-
cations, they can use a large amount of memory in the entire program. Java realizes that
many strings repeat in the program and solves this issue by reusing common ones. The string
pool, also known as the intern pool, is a location in the Java Virtual Machine (JVM) that
collects all these strings.

The string pool contains literal values and constants that appear in your program.
For example, "name" is a literal and therefore goes into the string pool. The myObject.
toString() method returns a string but not a literal, so it does not go into the string pool.

Let’s now visit the more complex and confusing scenario, String equality, made so in part
because of the way the JVM reuses String literals.

var x = "Hello World";
var y = "Hello World";
System.out.println(x == y); // true

Understanding Equality  177

Remember that a String is immutable and literals are pooled. The JVM created only one
literal in memory. The x and y variables both point to the same location in memory; there-
fore, the statement outputs true. It gets even trickier. Consider this code:

var x = "Hello World";
var z = " Hello World".trim();
System.out.println(x == z); // false

In this example, we don’t have two of the same String literal. Although x and z hap-
pen to evaluate to the same string, one is computed at runtime. Since it isn’t the same at
compile-time, a new String object is created. Let’s try another one. What do you think is
output here?

var singleString = "hello world";
var concat = "hello ";
concat += "world";
System.out.println(singleString == concat); // false

This prints false. Calling += is just like calling a method and results in a new String.
You can even force the issue by creating a new String:

var x = "Hello World";
var y = new String("Hello World");
System.out.println(x == y); // false

The former says to use the string pool normally. The second says, “No, JVM, I really
don’t want you to use the string pool. Please create a new object for me even though it is less
efficient.”

You can also do the opposite and tell Java to use the string pool. The intern() method will
use an object in the string pool if one is present.

public String intern()

If the literal is not yet in the string pool, Java will add it at this time.

var name = "Hello World";
var name2 = new String("Hello World").intern();
System.out.println(name == name2); // true

First we tell Java to use the string pool normally for name. Then, for name2, we tell
Java to create a new object using the constructor but to intern it and use the string pool
anyway. Since both variables point to the same reference in the string pool, we can use the
== operator.

Let’s try another one. What do you think this prints out? Be careful. It is tricky.

15: var first = "rat" + 1;
16: var second = "r" + "a" + "t" + "1";
17: var third = "r" + "a" + "t" + new String("1");
18: System.out.println(first == second);

178  Chapter 4  ■  Core APIs

19: System.out.println(first == second.intern());
20: System.out.println(first == third);
21: System.out.println(first == third.intern());

On line 15, we have a compile-time constant that automatically gets placed in the string
pool as "rat1". On line 16, we have a more complicated expression that is also a compile-
time constant. Therefore, first and second share the same string pool reference. This
makes lines 18 and 19 print true.

On line 17, we have a String constructor. This means we no longer have a compile-time
constant, and third does not point to a reference in the string pool. Therefore, line 20 prints
false. On line 21, the intern() call looks in the string pool. Java notices that first points to the
same String and prints true.

When you write programs, you wouldn’t want to create a String of a String or use
the intern() method. For the exam, you need to know that both are allowed and how
they behave.

Remember to never use intern() or == to compare String objects in
your code. The only time you should have to deal with these is on the
exam.

Understanding Arrays
Up to now, we’ve been referring to the String and StringBuilder classes as a “sequence
of characters.” This is true. They are implemented using an array of characters. An array is
an area of memory on the heap with space for a designated number of elements. A String is
implemented as an array with some methods that you might want to use when dealing with
characters specifically. A StringBuilder is implemented as an array where the array object
is replaced with a new, bigger array object when it runs out of space to store all the charac-
ters. A big difference is that an array can be of any other Java type. If we didn’t want to use
a String for some reason, we could use an array of char primitives directly:

char[] letters;

This wouldn’t be very convenient because we’d lose all the special properties String
gives us, such as writing "Java". Keep in mind that letters is a reference variable and not
a primitive. The char type is a primitive. But char is what goes into the array and not the
type of the array itself. The array itself is of type char[]. You can mentally read the brackets
([]) as “array.”

In other words, an array is an ordered list. It can contain duplicates. In this section, we
look at creating an array of primitives and objects, sorting, searching, varargs, and multidi-
mensional arrays.

Understanding Arrays  179

Creating an Array of Primitives
The most common way to create an array is shown in Figure 4.3. It specifies the type of the
array (int) and the size (3). The brackets tell you this is an array.

When you use this form to instantiate an array, all elements are set to the default value
for that type. As you learned in Chapter 1, the default value of an int is 0. Since numbers
is a reference variable, it points to the array object, as shown in Figure 4.4. As you can see,
the default value for all the elements is 0. Also, the indexes start with 0 and count up, just as
they did for a String.

Another way to create an array is to specify all the elements it should start out with:

int[] moreNumbers = new int[] {42, 55, 99};

In this example, we also create an int array of size 3. This time, we specify the initial
values of those three elements instead of using the defaults. Figure 4.5 shows what this array
looks like.

Type of array
Array symbol (required)

Size of array

int[] numbers = new int[3];

F IGURE 4 .3   The basic structure of an array

0Element:

numbers

Index:

0 0

0 1 2

F IGURE 4 .4   An empty array

42Element:

moreNumbers

Index:

55 99

0 1 2

F IGURE 4 .5   An initialized array

180  Chapter 4  ■  Core APIs

Java recognizes that this expression is redundant. Since you are specifying the type of the
array on the left side of the equals sign, Java already knows the type. And since you are spec-
ifying the initial values, it already knows the size. As a shortcut, Java lets you write this:

int[] moreNumbers = {42, 55, 99};

This approach is called an anonymous array. It is anonymous because you don’t specify
the type and size.

Finally, you can type the [] before or after the name, and adding a space is optional. This
means that all five of these statements do the exact same thing:

int[] numAnimals;
int [] numAnimals2;
int []numAnimals3;
int numAnimals4[];
int numAnimals5 [];

Most people use the first one. You could see any of these on the exam, though, so get used
to seeing the brackets in odd places.

Multiple “Arrays” in Declarations

What types of reference variables do you think the following code creates?

 int[] ids, types;

The correct answer is two variables of type int[]. This seems logical enough. After all,
int a, b; created two int variables. What about this example?

 int ids[], types;

All we did was move the brackets, but it changed the behavior. This time we get one variable
of type int[] and one variable of type int. Java sees this line of code and thinks something
like this: “They want two variables of type int. The first one is called ids[]. This one is an
int[] called ids. The second one is just called types. No brackets, so it is a regular integer.”

Needless to say, you shouldn’t write code that looks like this. But you do need to under-
stand it for the exam.

Creating an Array with Reference Variables
You can choose any Java type to be the type of the array. This includes classes you create
yourself. Let’s take a look at a built-in type with String:

String[] bugs = { "cricket", "beetle", "ladybug" };
String[] alias = bugs;

Understanding Arrays  181

System.out.println(bugs.equals(alias)); // true
System.out.println(bugs.toString()); // [Ljava.lang.String;@160bc7c0

We can call equals() because an array is an object. It returns true because of refer-
ence equality. The equals() method on arrays does not look at the elements of the array.
Remember, this would work even on an int[] too. The type int is a primitive; int[] is
an object.

The second print statement is even more interesting. What on earth is [Ljava.lang.
String;@160bc7c0? You don’t have to know this for the exam, but [L means it is an array,
java.lang.String is the reference type, and 160bc7c0 is the hash code. You’ll get differ-
ent numbers and letters each time you run it since this is a reference.

Java provides a method that prints an array nicely: Arrays.
toString(bugs) would print [cricket, beetle, ladybug].

Make sure you understand Figure 4.6. The array does not allocate space for the String
objects. Instead, it allocates space for a reference to where the objects are really stored.

As a quick review, what do you think this array points to?

public class Names {
 String names[];
}

You got us. It was a review of Chapter 1 and not our discussion on arrays. The answer is
null. The code never instantiated the array, so it is just a reference variable to null. Let’s
try that again: what do you think this array points to?

public class Names {
 String names[] = new String[2];
}

It is an array because it has brackets. It is an array of type String since that is the type
mentioned in the declaration. It has two elements because the length is 2. Each of those two
slots currently is null but has the potential to point to a String object.

0

bugs

"beetle"

"cricket" "ladybug"

1 2

F IGURE 4 .6   An array pointing to strings

182  Chapter 4  ■  Core APIs

Remember casting from the previous chapter when you wanted to force a bigger type into
a smaller type? You can do that with arrays too:

3: String[] strings = { "stringValue" };
4: Object[] objects = strings;
5: String[] againStrings = (String[]) objects;
6: againStrings[0] = new StringBuilder(); // DOES NOT COMPILE
7: objects[0] = new StringBuilder(); // Careful!

Line 3 creates an array of type String. Line 4 doesn’t require a cast because Object is
a broader type than String. On line 5, a cast is needed because we are moving to a more
specific type. Line 6 doesn’t compile because a String[] only allows String objects, and
StringBuilder is not a String.

Line 7 is where this gets interesting. From the point of view of the compiler, this is just
fine. A StringBuilder object can clearly go in an Object[]. The problem is that we don’t
actually have an Object[]. We have a String[] referred to from an Object[] variable.
At runtime, the code throws an ArrayStoreException. You don’t need to memorize the
name of this exception, but you do need to know that the code will throw an exception.

Using an Array
Now that you know how to create an array, let’s try accessing one:

4: String[] mammals = {"monkey", "chimp", "donkey"};
5: System.out.println(mammals.length); // 3
6: System.out.println(mammals[0]); // monkey
7: System.out.println(mammals[1]); // chimp
8: System.out.println(mammals[2]); // donkey

Line 4 declares and initializes the array. Line 5 tells us how many elements the array can
hold. The rest of the code prints the array. Notice that elements are indexed starting with 0.
This should be familiar from String and StringBuilder, which also start counting with
0. Those classes also counted length as the number of elements. Note that there are no
parentheses after length since it is not a method. Watch out for compiler errors like the fol-
lowing on the exam!

4: String[] mammals = {"monkey", "chimp", "donkey"};
5: System.out.println(mammals.length()); // DOES NOT COMPILE

To make sure you understand how length works, what do you think this prints?

var birds = new String[6];
System.out.println(birds.length);

The answer is 6. Even though all six elements of the array are null, there are still six of
them. The length attribute does not consider what is in the array; it only considers how
many slots have been allocated.

Understanding Arrays  183

It is very common to use a loop when reading from or writing to an array. This loop sets
each element of numbers to five higher than the current index:

5: var numbers = new int[10];
6: for (int i = 0; i < numbers.length; i++)
7: numbers[i] = i + 5;

Line 5 simply instantiates an array with 10 slots. Line 6 is a for loop that uses an extremely
common pattern. It starts at index 0, which is where an array begins as well. It keeps going,
one at a time, until it hits the end of the array. Line 7 sets the current element of numbers.

The exam will test whether you are being observant by trying to access elements that are not
in the array. Can you tell why each of these throws an ArrayIndexOutOfBoundsException
for our array of size 10?

numbers[10] = 3;

numbers[numbers.length] = 5;

for (int i = 0; i <= numbers.length; i++)
 numbers[i] = i + 5;

The first one is trying to see whether you know that indexes start with 0. Since we have 10
elements in our array, this means only numbers[0] through numbers[9] are valid. The second
example assumes you are clever enough to know that 10 is invalid and disguises it by using the
length field. However, the length is always one more than the maximum valid index. Finally, the
for loop incorrectly uses <= instead of <, which is also a way of referring to that tenth element.

Sorting
Java makes it easy to sort an array by providing a sort method—or rather, a bunch of sort
methods. Just like StringBuilder allowed you to pass almost anything to append(), you
can pass almost any array to Arrays.sort().

Arrays requires an import. To use it, you must have either of the following two state-
ments in your class:

import java.util.*; // import whole package including Arrays
import java.util.Arrays; // import just Arrays

There is one exception, although it doesn’t come up often on the exam. You can write
java.util.Arrays every time it is used in the class instead of specifying it as an import.

Remember that if you are shown a code snippet, you can assume the necessary imports
are there. This simple example sorts three numbers:

int[] numbers = { 6, 9, 1 };
Arrays.sort(numbers);
for (int i = 0; i < numbers.length; i++)
 System.out.print(numbers[i] + " ");

184  Chapter 4  ■  Core APIs

The result is 1 6 9, as you should expect it to be. Notice that we looped through the output
to print the values in the array. Just printing the array variable directly would give the annoying
hash of [I@2bd9c3e7. Alternatively, we could have printed Arrays.toString(numbers)
instead of using the loop. That would have output [1, 6, 9].

Try this again with String types:

String[] strings = { "10", "9", "100" };
Arrays.sort(strings);
for (String s : strings)
 System.out.print(s + " ");

This time the result might not be what you expect. This code outputs 10 100 9. The
problem is that String sorts in alphabetic order, and 1 sorts before 9. (Numbers sort before
letters, and uppercase sorts before lowercase.) In Chapter 9, “Collections and Generics,” you
learn how to create custom sort orders using something called a comparator.

Did you notice we sneaked the enhanced for loop into this example? Since we aren’t using
the index, we don’t need the traditional for loop. That won’t stop the exam creators from
using it, though, so we’ll be sure to use both to keep you sharp!

Searching
Java also provides a convenient way to search, but only if the array is already sorted.
Table 4.3 covers the rules for binary search.

Let’s try these rules with an example:

3: int[] numbers = {2,4,6,8};
4: System.out.println(Arrays.binarySearch(numbers, 2)); // 0
5: System.out.println(Arrays.binarySearch(numbers, 4)); // 1
6: System.out.println(Arrays.binarySearch(numbers, 1)); // -1
7: System.out.println(Arrays.binarySearch(numbers, 3)); // -2
8: System.out.println(Arrays.binarySearch(numbers, 9)); // -5

TABLE 4 .3   Binary search rules

Scenario Result

Target element found in sorted array Index of match

Target element not found in sorted array Negative value showing one smaller than the
negative of the index, where a match needs to be
inserted to preserve sorted order

Unsorted array A surprise; this result is undefined

Understanding Arrays  185

Take note of the fact that line 3 is a sorted array. If it wasn’t, we couldn’t apply either of
the other rules. Line 4 searches for the index of 2. The answer is index 0. Line 5 searches for
the index of 4, which is 1.

Line 6 searches for the index of 1. Although 1 isn’t in the list, the search can determine
that it should be inserted at element 0 to preserve the sorted order. Since 0 already means
something for array indexes, Java needs to subtract 1 to give us the answer of –1. Line 7
is similar. Although 3 isn’t in the list, it would need to be inserted at element 1 to preserve
the sorted order. We negate and subtract 1 for consistency, getting –1 –1, also known as –2.
Finally, line 8 wants to tell us that 9 should be inserted at index 4. We again negate and sub-
tract 1, getting –4 –1, also known as –5.

What do you think happens in this example?

5: int[] numbers = new int[] {3,2,1};
6: System.out.println(Arrays.binarySearch(numbers, 2));
7: System.out.println(Arrays.binarySearch(numbers, 3));

Note that on line 5, the array isn’t sorted. This means the output will not be defined.
When testing this example, line 6 correctly gave 1 as the output. However, line 7 gave the
wrong answer. The exam creators will not expect you to know what incorrect values come
out. As soon as you see the array isn’t sorted, look for an answer choice about unpredict-
able output.

On the exam, you need to know what a binary search returns in various scenarios. Oddly,
you don’t need to know why “binary” is in the name. In case you are curious, a binary
search splits the array into two equal pieces (remember, 2 is binary) and determines which
half the target is in. It repeats this process until only one element is left.

Comparing
Java also provides methods to compare two arrays to determine which is “smaller.” First we
cover the compare() method, and then we go on to mismatch(). These methods are overloaded
to take a variety of parameters.

Using compare()
There are a bunch of rules you need to know before calling compare(). Luckily, these are the
same rules you need to know in Chapter 9 when writing a Comparator.

First you need to learn what the return value means. You do not need to know the exact
return values, but you do need to know the following:

■■ A negative number means the first array is smaller than the second.

■■ A zero means the arrays are equal.

■■ A positive number means the first array is larger than the second.

Here’s an example:
System.out.println(Arrays.compare(new int[] {1}, new int[] {2}));

186  Chapter 4  ■  Core APIs

This code prints a negative number. It should be pretty intuitive that 1 is smaller than 2,
making the first array smaller.

Now that you know how to compare a single value, let’s look at how to compare arrays
of different lengths:

■■ If both arrays are the same length and have the same values in each spot in the same
order, return zero.

■■ If all the elements are the same but the second array has extra elements at the end,
return a negative number.

■■ If all the elements are the same, but the first array has extra elements at the end, return a
positive number.

■■ If the first element that differs is smaller in the first array, return a negative number.

■■ If the first element that differs is larger in the first array, return a positive number.

Finally, what does smaller mean? Here are some more rules that apply here and to
compareTo(), which you see in Chapter 8, “Lambdas and Functional Interfaces”:

■■ null is smaller than any other value.

■■ For numbers, normal numeric order applies.

■■ For strings, one is smaller if it is a prefix of another.

■■ For strings/characters, numbers are smaller than letters.

■■ For strings/characters, uppercase is smaller than lowercase.

Table 4.4 shows examples of these rules in action.

TABLE 4 .4   Arrays.compare() examples

First array Second array Result Reason

new int[] {1, 2} new int[] {1} Positive number The first element is
the same, but the
first array is longer.

new int[] {1, 2} new int[] {1, 2} Zero Exact match

new String[] {"a"} new String[] {"aa"} Negative number The first element is
a substring of the
second.

new String[] {"a"} new String[] {"A"} Positive number Uppercase is
smaller than
lowercase.

new String[] {"a"} new String[] {null} Positive number null is smaller
than a letter.

Understanding Arrays  187

Finally, this code does not compile because the types are different. When comparing two
arrays, they must be the same array type.

System.out.println(Arrays.compare(
 new int[] {1}, new String[] {"a"})); // DOES NOT COMPILE

Using mismatch()
Now that you are familiar with compare(), it is time to learn about mismatch(). If the
arrays are equal, mismatch() returns -1. Otherwise, it returns the first index where they
differ. Can you figure out what these print?

System.out.println(Arrays.mismatch(new int[] {1}, new int[] {1}));
System.out.println(Arrays.mismatch(new String[] {"a"},
 new String[] {"A"}));
System.out.println(Arrays.mismatch(new int[] {1, 2}, new int[] {1}));

In the first example, the arrays are the same, so the result is -1. In the second example,
the entries at element 0 are not equal, so the result is 0. In the third example, the entries at
element 0 are equal, so we keep looking. The element at index 1 is not equal. Or, more spe-
cifically, one array has an element at index 1, and the other does not. Therefore, the result is 1.

To make sure you understand the compare() and mismatch() methods, study
Table 4.5. If you don’t understand why all of the values are there, please go back and study
this section again.

Using Methods with Varargs
When you’re creating an array yourself, it looks like what we’ve seen thus far. When one
is passed to your method, there is another way it can look. Here are three examples with a
main() method:

public static void main(String[] args)
public static void main(String args[])
public static void main(String... args) // varargs

TABLE 4 .5   Equality vs. comparison vs. mismatch

Method When arrays contain the same data When arrays are different

equals() true false

compare() 0 Positive or negative number

mismatch() -1 Zero or positive index

188  Chapter 4  ■  Core APIs

The third example uses a syntax called varargs (variable arguments), which you saw in
Chapter 1. You learn how to call a method using varargs in Chapter 5, “Methods.” For
now, all you need to know is that you can use a variable defined using varargs as if it were a
normal array. For example, args.length and args[0] are legal.

Working with Multidimensional Arrays
Arrays are objects, and of course, array components can be objects. It doesn’t take much
time, rubbing those two facts together, to wonder whether arrays can hold other arrays, and
of course, they can.

Creating a Multidimensional Array
Multiple array separators are all it takes to declare arrays with multiple dimensions. You can
locate them with the type or variable name in the declaration, just as before:

int[][] vars1; // 2D array
int vars2 [][]; // 2D array
int[] vars3[]; // 2D array
int[] vars4 [], space [][]; // a 2D AND a 3D array

The first two examples are nothing surprising and declare a two-dimensional (2D) array.
The third example also declares a 2D array. There’s no good reason to use this style other
than to confuse readers with your code. The final example declares two arrays on the same
line. Adding up the brackets, we see that the vars4 is a 2D array and space is a 3D array.
Again, there’s no reason to use this style other than to confuse readers of your code. The
exam creators like to try to confuse you, though. Luckily, you are on to them and won’t let
this happen to you!

You can specify the size of your multidimensional array in the declaration if you like:
String [][] rectangle = new String[3][2];

The result of this statement is an array rectangle with three elements, each of which refers
to an array of two elements. You can think of the addressable range as [0][0] through
[2][1], but don’t think of it as a structure of addresses like [0,0] or [2,1].

Now suppose we set one of these values:
rectangle[0][1] = "set";

You can visualize the result as shown in Figure 4.7. This array is sparsely populated
because it has a lot of null values. You can see that rectangle still points to an array of
three elements and that we have three arrays of two elements. You can also follow the trail
from reference to the one value pointing to a String. You start at index 0 in the top array.
Then you go to index 1 in the next array.

Understanding Arrays  189

While that array happens to be rectangular in shape, an array doesn’t need to be. Con-
sider this one:

int[][] differentSizes = {{1, 4}, {3}, {9,8,7}};

We still start with an array of three elements. However, this time the elements in the next
level are all different sizes. One is of length 2, the next length 1, and the last length 3. See
Figure 4.8. This time the array is of primitives, so they are shown as if they are in the array
themselves.

Another way to create an asymmetric array is to initialize just an array’s first dimension
and define the size of each array component in a separate statement:

int [][] args = new int[4][];
args[0] = new int[5];
args[1] = new int[3];

This technique reveals what you really get with Java: arrays of arrays that, properly
managed, offer a multidimensional effect.

3

0

differentSizes

4

1 2

0 1

0

0 1 2

1 9 78

F IGURE 4 .8   An asymmetric multidimensional array

0

rectangle

"set"

1 2

0 1 0 1

0 1

F IGURE 4 .7   A sparsely populated multidimensional array

190  Chapter 4  ■  Core APIs

Using a Multidimensional Array
The most common operation on a multidimensional array is to loop through it. This
example prints out a 2D array:

var twoD = new int[3][2];
for(int i = 0; i < twoD.length; i++) {
 for(int j = 0; j < twoD[i].length; j++)
 System.out.print(twoD[i][j] + " "); // print element
 System.out.println(); // time for a new row
}

We have two loops here. The first uses index i and goes through the first subarray for twoD.
The second uses a different loop variable, j. It is important that these be different variable names
so the loops don’t get mixed up. The inner loop looks at how many elements are in the second-
level array. The inner loop prints the element and leaves a space for readability. When the inner
loop completes, the outer loop goes to a new line and repeats the process for the next element.

This entire exercise would be easier to read with the enhanced for loop.

for(int[] inner : twoD) {
 for(int num : inner)
 System.out.print(num + " ");
 System.out.println();
}

We’ll grant you that it isn’t fewer lines, but each line is less complex, and there aren’t any
loop variables or terminating conditions to mix up.

Calculating with Math APIs
It should come as no surprise that computers are good at computing numbers. Java comes
with a powerful Math class with many methods to make your life easier. We just cover a
few common ones here that are most likely to appear on the exam. When doing your own
projects, look at the Math Javadoc to see what other methods can help you.

Pay special attention to return types in math questions. They are an excellent opportunity
for trickery!

Finding the Minimum and Maximum
The min() and max() methods compare two values and return one of them.

The method signatures for min() are as follows:

public static double min(double a, double b)
public static float min(float a, float b)

Calculating with Math APIs  191

public static int min(int a, int b)
public static long min(long a, long b)

There are four overloaded methods, so you always have an API available with the same
type. Each method returns whichever of a or b is smaller. The max() method works the
same way, except it returns the larger value.

The following shows how to use these methods:

int first = Math.max(3, 7); // 7
int second = Math.min(7, -9); // -9

The first line returns 7 because it is larger. The second line returns -9 because it is smaller.
Remember from school that negative values are smaller than positive ones.

Rounding Numbers
The round() method gets rid of the decimal portion of the value, choosing the next higher
number if appropriate. If the fractional part is .5 or higher, we round up.

The method signatures for round() are as follows:

public static long round(double num)
public static int round(float num)

There are two overloaded methods to ensure that there is enough room to store a
rounded double if needed. The following shows how to use this method:

long low = Math.round(123.45); // 123
long high = Math.round(123.50); // 124
int fromFloat = Math.round(123.45f); // 123

The first line returns 123 because .45 is smaller than a half. The second line returns 124
because the fractional part is just barely a half. The final line shows that an explicit float
triggers the method signature that returns an int.

Determining the Ceiling and Floor
The ceil() method takes a double value. If it is a whole number, it returns the same
value. If it has any fractional value, it rounds up to the next whole number. By contrast, the
floor() method discards any values after the decimal.

The method signatures are as follows:

public static double ceil(double num)
public static double floor(double num)

The following shows how to use these methods:

double c = Math.ceil(3.14); // 4.0
double f = Math.floor(3.14); // 3.0

192  Chapter 4  ■  Core APIs

The first line returns 4.0 because four is the integer, just larger. The second line returns
3.0 because it is the integer, just smaller.

Calculating Exponents
The pow() method handles exponents. As you may recall from your elementary school math
class, 32 means three squared. This is 3 * 3 or 9. Fractional exponents are allowed as well.
Sixteen to the .5 power means the square root of 16, which is 4. (Don’t worry, you won’t
have to do square roots on the exam.)

The method signature is as follows:

public static double pow(double number, double exponent)

The following shows how to use this method:

double squared = Math.pow(5, 2); // 25.0

Notice that the result is 25.0 rather than 25 since it is a double. Again, don’t worry; the
exam won’t ask you to do any complicated math.

Generating Random Numbers
The random() method returns a value greater than or equal to 0 and less than 1. The method
signature is as follows:

public static double random()

The following shows how to use this method:

double num = Math.random();

Since it is a random number, we can’t know the result in advance. However, we can rule
out certain numbers. For example, it can’t be negative because that’s less than 0. It can’t be
1.0 because that’s not less than 1.

While not on the exam, it is common to use the Random class for gener-
ating pseudo-random numbers. It allows generating numbers of different
types.

Working with Dates and Times
Java provides a number of APIs for working with dates and times. There’s also an old java.
util.Date class, but it is not on the exam. You need an import statement to work with the
modern date and time classes. To use it, add this import to your program:

 import java.time.*; // import time classes

Working with Dates and Times  193

Day vs. Date

In American English, the word date is used to represent two different concepts. Sometimes,
it is the month/day/year combination when something happened, such as January 1, 2000.
Sometimes, it is the day of the month, such as “Today’s date is the 6th.”

That’s right; the words day and date are often used as synonyms. Be alert to this on
the exam, especially if you live someplace where people are more precise about this
distinction.

In the following sections, we look at creating and manipulating dates and times, including
time zones and daylight saving time.

Creating Dates and Times
In the real world, we usually talk about dates and time zones as if the other person is located
near us. For example, if you say to me, “I’ll call you at 11:00 on Tuesday morning,” we
assume that 11:00 means the same thing to both of us. But if I live in New York and you live
in California, we need to be more specific. California is three hours earlier than New York
because the states are in different time zones. You would instead say, “I’ll call you at 11:00
EST (Eastern Standard Time) on Tuesday morning.”

When working with dates and times, the first thing to do is to decide how much
information you need. The exam gives you four choices:

LocalDate  Contains just a date—no time and no time zone. A good example of Local-
Date is your birthday this year. It is your birthday for a full day, regardless of what time it is.

LocalTime  Contains just a time—no date and no time zone. A good example of
LocalTime is midnight. It is midnight at the same time every day.

LocalDateTime  Contains both a date and time but no time zone. A good example of
LocalDateTime is “the stroke of midnight on New Year’s Eve.” Midnight on January 2
isn’t nearly as special, making the date relatively unimportant, and clearly an hour after
midnight isn’t as special either.

ZonedDateTime  Contains a date, time, and time zone. A good example of
ZonedDateTime is “a conference call at 9:00 a.m. EST.” If you live in California,
you’ll have to get up really early since the call is at 6:00 a.m. local time!

You obtain date and time instances using a static method:

System.out.println(LocalDate.now());
System.out.println(LocalTime.now());
System.out.println(LocalDateTime.now());
System.out.println(ZonedDateTime.now());

194  Chapter 4  ■  Core APIs

Each of the four classes has a static method called now(), which gives the current date
and time. Your output is going to depend on the date/time when you run it and where you
live. The authors live in the United States, making the output look like the following when
run on October 25 at 9:13 a.m.:

2021–10–25
09:13:07.768
2021–10–25T09:13:07.768
2021–10–25T09:13:07.769–05:00[America/New_York]

The key is the type of information in the output. The first line contains only a date and
no time. The second contains only a time and no date. The time displays hours, minutes, sec-
onds, and fractional seconds. The third contains both a date and a time. The output uses T
to separate the date and time when converting LocalDateTime to a String. Finally, the
fourth adds the time zone offset and time zone. New York is four time zones away from
Greenwich Mean Time (GMT).

Greenwich Mean Time is a time zone in Europe that is used as time zone zero when dis-
cussing offsets. You might have also heard of Coordinated Universal Time, which is a time
zone standard. It is abbreviated as UTC, as a compromise between the English and French
names. (That’s not a typo. UTC isn’t actually the proper acronym in either language!) UTC
uses the same time zone zero as GMT.

First, let’s try to figure out how far apart these moments are in time. Notice how India
has a half-hour offset, not a full hour. To approach a problem like this, you subtract the time
zone from the time. This gives you the GMT equivalent of the time:

2022–06–20T06:50+05:30[Asia/Kolkata] // GMT 2022–06–20 01:20
2022–06–20T07:50-05:00[US/Eastern] // GMT 2022–06–20 12:50

Remember that you need to add when subtracting a negative number. After converting to
GMT, you can see that the U.S. Eastern time is 11 and a half hours behind the Kolkata time.

The time zone offset can be listed in different ways: +02:00, GMT+2, and
UTC+2 all mean the same thing. You might see any of them on the exam.

If you have trouble remembering this, try to memorize one example where the time
zones are a few zones apart, and remember the direction. In the United States, most
people know that the East Coast is three hours ahead of the West Coast. And most people
know that Asia is ahead of Europe. Just don’t cross time zone zero in the example that
you choose to remember. The calculation works the same way, but it isn’t as great a
memory aid.

Working with Dates and Times  195

Wait, I Don’t Live in the United States

The exam recognizes that exam takers live all over the world, and it will not ask you about
the details of U.S. date and time formats. That said, our examples do use U.S. date and time
formats, as will the questions on the exam. Just remember that the month comes before
the date. Also, Java tends to use a 24-hour clock even though the United States uses a 12-
hour clock with a.m./p.m.

Now that you know how to create the current date and time, let’s look at other specific
dates and times. To begin, let’s create just a date with no time. Both of these examples create
the same date:

var date1 = LocalDate.of(2022, Month.JANUARY, 20);
var date2 = LocalDate.of(2022, 1, 20);

Both pass in the year, month, and date. Although it is good to use the Month constants (to
make the code easier to read), you can pass the int number of the month directly. Just use
the number of the month the same way you would if you were writing the date in real life.

The method signatures are as follows:

public static LocalDate of(int year, int month, int dayOfMonth)
public static LocalDate of(int year, Month month, int dayOfMonth)

Up to now, we’ve been continually telling you that Java counts starting
with 0. Well, months are an exception. For months in the new date and
time methods, Java counts starting from 1, just as we humans do.

When creating a time, you can choose how detailed you want to be. You can specify just
the hour and minute, or you can include the number of seconds. You can even include nano-
seconds if you want to be very precise. (A nanosecond is a billionth of a second, although
you probably won’t need to be that specific.)

var time1 = LocalTime.of(6, 15); // hour and minute
var time2 = LocalTime.of(6, 15, 30); // + seconds
var time3 = LocalTime.of(6, 15, 30, 200); // + nanoseconds

These three times are all different but within a minute of each other. The method signa-
tures are as follows:

public static LocalTime of(int hour, int minute)
public static LocalTime of(int hour, int minute, int second)
public static LocalTime of(int hour, int minute, int second, int nanos)

196  Chapter 4  ■  Core APIs

You can combine dates and times into one object:

var dateTime1 = LocalDateTime.of(2022, Month.JANUARY, 20, 6, 15, 30);
var dateTime2 = LocalDateTime.of(date1, time1);

The first line of code shows how you can specify all of the information about the
LocalDateTime right in the same line. The second line of code shows how you can cre-
ate LocalDate and LocalTime objects separately first and then combine them to create a
LocalDateTime object.

There are a lot of method signatures since there are more combinations. The following
method signatures use integer values:

public static LocalDateTime of(int year, int month,
 int dayOfMonth, int hour, int minute)
public static LocalDateTime of(int year, int month,
 int dayOfMonth, int hour, int minute, int second)
public static LocalDateTime of(int year, int month,
 int dayOfMonth, int hour, int minute, int second, int nanos)

Others take a Month reference:

public static LocalDateTime of(int year, Month month,
 int dayOfMonth, int hour, int minute)
public static LocalDateTime of(int year, Month month,
 int dayOfMonth, int hour, int minute, int second)
public static LocalDateTime of(int year, Month month,
 int dayOfMonth, int hour, int minute, int second, int nanos)

Finally, one takes an existing LocalDate and LocalTime:

public static LocalDateTime of(LocalDate date, LocalTime time)

In order to create a ZonedDateTime, we first need to get the desired time zone. We will
use US/Eastern in our examples:

var zone = ZoneId.of("US/Eastern");
var zoned1 = ZonedDateTime.of(2022, 1, 20,
 6, 15, 30, 200, zone);
var zoned2 = ZonedDateTime.of(date1, time1, zone);
var zoned3 = ZonedDateTime.of(dateTime1, zone);

We start by getting the time zone object. Then we use one of three approaches to create
the ZonedDateTime. The first passes all of the fields individually. We don’t recommend this
approach—there are too many numbers, and it is hard to read. A better approach is to pass
a LocalDate object and a LocalTime object, or a LocalDateTime object.

Working with Dates and Times  197

Although there are other ways of creating a ZonedDateTime, you only need to know three
for the exam:

public static ZonedDateTime of(int year, int month,
 int dayOfMonth, int hour, int minute, int second,
 int nanos, ZoneId zone)
public static ZonedDateTime of(LocalDate date, LocalTime time,
 ZoneId zone)
public static ZonedDateTime of(LocalDateTime dateTime, ZoneId zone)

Notice that there isn’t an option to pass in the Month enum. Also, we did not use a con-
structor in any of the examples. The date and time classes have private constructors along
with static methods that return instances. This is known as the factory pattern. The exam
creators may throw something like this at you:

var d = new LocalDate(); // DOES NOT COMPILE

Don’t fall for this. You are not allowed to construct a date or time object directly.
Another trick is what happens when you pass invalid numbers to of(), for example:

var d = LocalDate.of(2022, Month.JANUARY, 32) // DateTimeException

You don’t need to know the exact exception that’s thrown, but it’s a clear one:

java.time.DateTimeException: Invalid value for DayOfMonth
 (valid values 1-28/31): 32

Manipulating Dates and Times
Adding to a date is easy. The date and time classes are immutable. Remember to assign the
results of these methods to a reference variable so they are not lost.

12: var date = LocalDate.of(2022, Month.JANUARY, 20);
13: System.out.println(date); // 2022–01–20
14: date = date.plusDays(2);
15: System.out.println(date); // 2022–01–22
16: date = date.plusWeeks(1);
17: System.out.println(date); // 2022–01–29
18: date = date.plusMonths(1);
19: System.out.println(date); // 2022–02–28
20: date = date.plusYears(5);
21: System.out.println(date); // 2027–02–28

This code is nice because it does just what it looks like. We start out with January 20,
2022. On line 14, we add two days to it and reassign it to our reference variable. On line 16,
we add a week. This method allows us to write clearer code than plusDays(7). Now date
is January 29, 2022. On line 18, we add a month. This would bring us to February 29, 2022.

198  Chapter 4  ■  Core APIs

However, 2022 is not a leap year. (2020 and 2024 are leap years.) Java is smart enough to
realize that February 29, 2022 does not exist, and it gives us February 28, 2022, instead.
Finally, line 20 adds five years.

February 29 exists only in a leap year. Leap years are years that are a mul-
tiple of 4 or 400, but not other multiples of 100. For example, 2000 and
2016 are leap years, but 2100 is not.

There are also nice, easy methods to go backward in time. This time, let’s work with
LocalDateTime:

22: var date = LocalDate.of(2024, Month.JANUARY, 20);
23: var time = LocalTime.of(5, 15);
24: var dateTime = LocalDateTime.of(date, time);
25: System.out.println(dateTime); // 2024–01–20T05:15
26: dateTime = dateTime.minusDays(1);
27: System.out.println(dateTime); // 2024–01–19T05:15
28: dateTime = dateTime.minusHours(10);
29: System.out.println(dateTime); // 2024–01–18T19:15
30: dateTime = dateTime.minusSeconds(30);
31: System.out.println(dateTime); // 2024–01–18T19:14:30

Line 25 prints the original date of January 20, 2024, at 5:15 a.m. Line 26 subtracts a full
day, bringing us to January 19, 2024, at 5:15 a.m. Line 28 subtracts 10 hours, showing that
the date will change if the hours cause it to adjust, and it brings us to January 18, 2024, at
19:15 (7:15 p.m.). Finally, line 30 subtracts 30 seconds. You can see that all of a sudden, the
display value starts showing seconds. Java is smart enough to hide the seconds and nanosec-
onds when we aren’t using them.

It is common for date and time methods to be chained. For example, without the print
statements, the previous example could be rewritten as follows:

var date = LocalDate.of(2024, Month.JANUARY, 20);
var time = LocalTime.of(5, 15);
var dateTime = LocalDateTime.of(date, time)
 .minusDays(1).minusHours(10).minusSeconds(30);

When you have a lot of manipulations to make, this chaining comes in handy. There are
two ways that the exam creators can try to trick you. What do you think this prints?

var date = LocalDate.of(2024, Month.JANUARY, 20);
date.plusDays(10);
System.out.println(date);

It prints January 20, 2024. Adding 10 days was useless because the program ignored the
result. Whenever you see immutable types, pay attention to make sure that the return value

Working with Dates and Times  199

of a method call isn’t ignored. The exam also may test to see if you remember what each of
the date and time objects includes. Do you see what is wrong here?

var date = LocalDate.of(2024, Month.JANUARY, 20);
date = date.plusMinutes(1); // DOES NOT COMPILE

LocalDate does not contain time. This means that you cannot add minutes to it. This
can be tricky in a chained sequence of addition/subtraction operations, so make sure that
you know which methods in Table 4.6 can be called on which types.

Working with Periods
Now you know enough to do something fun with dates! Our zoo performs animal enrich-
ment activities to give the animals something enjoyable to do. The head zookeeper has

TABLE 4 .6   Methods in LocalDate, LocalTime, LocalDateTime, and ZonedDateTime

Can call on
LocalDate?

Can call on
LocalTime?

Can call on
LocalDateTime or
ZonedDateTime?

plusYears()
minusYears()

Yes No Yes

plusMonths()
minusMonths()

Yes No Yes

plusWeeks()
minusWeeks()

Yes No Yes

plusDays()
minusDays()

Yes No Yes

plusHours()
minusHours()

No Yes Yes

plusMinutes()
minusMinutes()

No Yes Yes

plusSeconds()
minusSeconds()

No Yes Yes

plusNanos()
minusNanos()

No Yes Yes

200  Chapter 4  ■  Core APIs

decided to switch the toys every month. This system will continue for three months to see
how it works out.

public static void main(String[] args) {
 var start = LocalDate.of(2022, Month.JANUARY, 1);
 var end = LocalDate.of(2022, Month.MARCH, 30);
 performAnimalEnrichment(start, end);
}
private static void performAnimalEnrichment(LocalDate start, LocalDate end) {
 var upTo = start;
 while (upTo.isBefore(end)) { // check if still before end
 System.out.println("give new toy: " + upTo);
 upTo = upTo.plusMonths(1); // add a month
} }

This code works fine. It adds a month to the date until it hits the end date. The problem
is that this method can’t be reused. Our zookeeper wants to try different schedules to see
which works best.

LocalDate and LocalDateTime have a method to convert themselves
into long values, equivalent to the number of milliseconds that have
passed since January 1, 1970, referred to as the epoch. What’s special
about this date? That’s what Unix started using for date standards, so
Java reused it.

Luckily, Java has a Period class that we can pass in. This code does the same thing as the
previous example:

public static void main(String[] args) {
 var start = LocalDate.of(2022, Month.JANUARY, 1);
 var end = LocalDate.of(2022, Month.MARCH, 30);
 var period = Period.ofMonths(1); // create a period
 performAnimalEnrichment(start, end, period);
}
private static void performAnimalEnrichment(LocalDate start, LocalDate end,
 Period period) { // uses the generic period

 var upTo = start;
 while (upTo.isBefore(end)) {
 System.out.println("give new toy: " + upTo);
 upTo = upTo.plus(period); // adds the period
} }

Working with Dates and Times  201

The method can add an arbitrary period of time that is passed in. This allows us to reuse
the same method for different periods of time as our zookeeper changes their mind.

There are five ways to create a Period class:

var annually = Period.ofYears(1); // every 1 year
var quarterly = Period.ofMonths(3); // every 3 months
var everyThreeWeeks = Period.ofWeeks(3); // every 3 weeks
var everyOtherDay = Period.ofDays(2); // every 2 days
var everyYearAndAWeek = Period.of(1, 0, 7); // every year and 7 days

There’s one catch. You cannot chain methods when creating a Period. The following
code looks like it is equivalent to the everyYearAndAWeek example, but it’s not. Only the
last method is used because the Period.of methods are static methods.
var wrong = Period.ofYears(1).ofWeeks(1); // every week

This tricky code is really like writing the following:

var wrong = Period.ofYears(1);
wrong = Period.ofWeeks(1);

This is clearly not what you intended! That’s why the of() method allows you to pass in
the number of years, months, and days. They are all included in the same period. You will
get a compiler warning about this. Compiler warnings tell you that something is wrong or
suspicious without failing compilation.

The of() method takes only years, months, and days. The ability to use another factory
method to pass weeks is merely a convenience. As you might imagine, the actual period is
stored in terms of years, months, and days. When you print out the value, Java displays any
non-zero parts using the format shown in Figure 4.9.

As you can see, the P always starts out the String to show it is a period measure. Then
come the number of years, number of months, and number of days. If any of these are zero,
they are omitted.

Can you figure out what this outputs?

System.out.println(Period.ofMonths(3));

System.out.println(Period.of(1,2,3));

Period
(mandatory)

P1Y2M3D

years

months
days

F IGURE 4 .9   Period format

202  Chapter 4  ■  Core APIs

The output is P3M. Remember that Java omits any measures that are zero. The last thing
to know about Period is what objects it can be used with. Let’s look at some code:

3: var date = LocalDate.of(2022, 1, 20);
4: var time = LocalTime.of(6, 15);
5: var dateTime = LocalDateTime.of(date, time);
6: var period = Period.ofMonths(1);
7: System.out.println(date.plus(period)); // 2022–02–20
8: System.out.println(dateTime.plus(period)); // 2022–02–20T06:15
9: System.out.println(time.plus(period)); // Exception

Lines 7 and 8 work as expected. They add a month to January 20, 2022, giving us Febru-
ary 20, 2022. The first has only the date, and the second has both the date and time.

Line 9 attempts to add a month to an object that has only a time. This won’t work. Java
throws an UnsupportedTemporalTypeException and complains that we attempted to
use an Unsupported unit: Months.

As you can see, you have to pay attention to the type of date and time objects every place
you see them.

Working with Durations
You’ve probably noticed by now that a Period is a day or more of time. There is also
Duration, which is intended for smaller units of time. For Duration, you can specify the
number of days, hours, minutes, seconds, or nanoseconds. And yes, you could pass 365 days
to make a year, but you really shouldn’t—that’s what Period is for.

Conveniently, Duration works roughly the same way as Period, except it is used with
objects that have time. Duration is output beginning with PT, which you can think of as a
period of time. A Duration is stored in hours, minutes, and seconds. The number of seconds
includes fractional seconds.

We can create a Duration using a number of different granularities:

var daily = Duration.ofDays(1); // PT24H
var hourly = Duration.ofHours(1); // PT1H
var everyMinute = Duration.ofMinutes(1); // PT1M
var everyTenSeconds = Duration.ofSeconds(10); // PT10S
var everyMilli = Duration.ofMillis(1); // PT0.001S
var everyNano = Duration.ofNanos(1); // PT0.000000001S

Duration doesn’t have a factory method that takes multiple units like Period does. If
you want something to happen every hour and a half, you specify 90 minutes.

Duration includes another more generic factory method. It takes a number and a
TemporalUnit. The idea is, say, something like “5 seconds.” However, TemporalUnit is an
interface. At the moment, there is only one implementation named ChronoUnit.

Working with Dates and Times  203

The previous example could be rewritten like this:

var daily = Duration.of(1, ChronoUnit.DAYS);
var hourly = Duration.of(1, ChronoUnit.HOURS);
var everyMinute = Duration.of(1, ChronoUnit.MINUTES);
var everyTenSeconds = Duration.of(10, ChronoUnit.SECONDS);
var everyMilli = Duration.of(1, ChronoUnit.MILLIS);
var everyNano = Duration.of(1, ChronoUnit.NANOS);

ChronoUnit also includes some convenient units such as ChronoUnit.HALF_DAYS to
represent 12 hours.

ChronoUnit for Differences

ChronoUnit is a great way to determine how far apart two Temporal values are.
Temporal includes LocalDate, LocalTime, and so on. ChronoUnit is in the java.
time.temporal package.

 var one = LocalTime.of(5, 15);
 var two = LocalTime.of(6, 30);
 var date = LocalDate.of(2016, 1, 20);
 System.out.println(ChronoUnit.HOURS.between(one, two)); // 1
 System.out.println(ChronoUnit.MINUTES.between(one, two)); // 75
 System.out.println(ChronoUnit.MINUTES.between(one, date)); // DateTimeException

The first print statement shows that between truncates rather than rounds. The second
shows how easy it is to count in different units. Just change the ChronoUnit type. The last
reminds us that Java will throw an exception if we mix up what can be done on date vs.
time objects.

Alternatively, you can truncate any object with a time element. For example:

 LocalTime time = LocalTime.of(3,12,45);
 System.out.println(time); // 03:12:45
 LocalTime truncated = time.truncatedTo(ChronoUnit.MINUTES);
 System.out.println(truncated); // 03:12

This example zeroes out any fields smaller than minutes. In our case, it gets rid of
the seconds.

Using a Duration works the same way as using a Period. For example:

7: var date = LocalDate.of(2022, 1, 20);
8: var time = LocalTime.of(6, 15);

204  Chapter 4  ■  Core APIs

9: var dateTime = LocalDateTime.of(date, time);
10: var duration = Duration.ofHours(6);
11: System.out.println(dateTime.plus(duration)); // 2022–01–20T12:15
12: System.out.println(time.plus(duration)); // 12:15
13: System.out.println(
14: date.plus(duration)); // UnsupportedTemporalTypeException

Line 11 shows that we can add hours to a LocalDateTime, since it contains a time. Line
12 also works, since all we have is a time. Line 13 fails because we cannot add hours to an
object that does not contain a time.

Let’s try that again, but add 23 hours this time.

7: var date = LocalDate.of(2022, 1, 20);
8: var time = LocalTime.of(6, 15);
9: var dateTime = LocalDateTime.of(date, time);
10: var duration = Duration.ofHours(23);
11: System.out.println(dateTime.plus(duration)); // 2022–01–21T05:15
12: System.out.println(time.plus(duration)); // 05:15
13: System.out.println(
14: date.plus(duration)); // UnsupportedTemporalTypeException

This time we see that Java moves forward past the end of the day. Line 11 goes to
the next day since we pass midnight. Line 12 doesn’t have a day, so the time just wraps
around—just like on a real clock.

Period vs. Duration
Remember that Period and Duration are not equivalent. This example shows a Period and
Duration of the same length:

var date = LocalDate.of(2022, 5, 25);
var period = Period.ofDays(1);
var days = Duration.ofDays(1);

System.out.println(date.plus(period)); // 2022–05–26
System.out.println(date.plus(days)); // Unsupported unit: Seconds

Since we are working with a LocalDate, we are required to use Period. Duration
has time units in it, even if we don’t see them, and they are meant only for objects with
time. Make sure that you can fill in Table 4.7 to identify which objects can use Period
and Duration.

Working with Dates and Times  205

Working with Instants
The Instant class represents a specific moment in time in the GMT time zone. Suppose that
you want to run a timer:

var now = Instant.now();
// do something time consuming
var later = Instant.now();

var duration = Duration.between(now, later);
System.out.println(duration.toMillis()); // Returns number milliseconds

In our case, the “something time consuming” was just over a second, and the program
printed out 1025.

If you have a ZonedDateTime, you can turn it into an Instant:

var date = LocalDate.of(2022, 5, 25);
var time = LocalTime.of(11, 55, 00);
var zone = ZoneId.of("US/Eastern");
var zonedDateTime = ZonedDateTime.of(date, time, zone);
var instant = zonedDateTime.toInstant(); // 2022–05–25T15:55:00Z
System.out.println(zonedDateTime); // 2022–05–25T11:55–04:00[US/Eastern]
System.out.println(instant); // 202–05–25T15:55:00Z

The last two lines represent the same moment in time. The ZonedDateTime includes
a time zone. The Instant gets rid of the time zone and turns it into an Instant of
time in GMT.

You cannot convert a LocalDateTime to an Instant. Remember that an Instant is a
point in time. A LocalDateTime does not contain a time zone, and it is therefore not uni-
versally recognized around the world as the same moment in time.

TABLE 4 .7   Where to use Duration and Period

Can use with Period? Can use with Duration?

LocalDate Yes No

LocalDateTime Yes Yes

LocalTime No Yes

ZonedDateTime Yes Yes

206  Chapter 4  ■  Core APIs

Accounting for Daylight Saving Time
Some countries observe daylight saving time. This is where the clocks are adjusted by an
hour twice a year to make better use of the sunlight. Not all countries participate, and those
that do use different weekends for the change. You only have to work with U.S. daylight
saving time on the exam, and that’s what we describe here.

The question will let you know if a date/time mentioned falls on a weekend when the
clocks are scheduled to be changed. If it is not mentioned in a question, you can assume that
it is a normal weekend. The act of moving the clock forward or back occurs at 2:00 a.m.,
which falls very early Sunday morning.

Figure 4.10 shows what happens with the clocks. When we change our clocks in March,
time springs forward from 1:59 a.m. to 3:00 a.m. When we change our clocks in November,
time falls back, and we experience the hour from 1:00 a.m. to 1:59 a.m. twice. Children
learn this as “Spring forward in the spring, and fall back in the fall.”

For example, on March 13, 2022, we move our clocks forward an hour and jump from
2:00 a.m. to 3:00 a.m. This means that there is no 2:30 a.m. that day. If we wanted to know
the time an hour later than 1:30, it would be 3:30.

var date = LocalDate.of(2022, Month.MARCH, 13);
var time = LocalTime.of(1, 30);
var zone = ZoneId.of("US/Eastern");
var dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2022–03-13T01:30-05:00[US/Eastern]
System.out.println(dateTime.getHour()); // 1
System.out.println(dateTime.getOffset()); // -05:00

Normal day 1:00 a.m.–1:59 a.m. 2:00 a.m.–3:00 a.m. 3:00 a.m.–4:00 a.m.

3:00 a.m.–4:00 a.m.

2:00 a.m.–4:00 a.m.

1:00 a.m.–1:59 a.m.

1:00 a.m.–1:59 a.m.
(first time)

1:00 a.m.–1:59 a.m.
(again)

March
changeover

November
changeover

F IGURE 4 .10   How daylight saving time works

Working with Dates and Times  207

dateTime = dateTime.plusHours(1);
System.out.println(dateTime); // 2022–03-13T03:30-04:00[US/Eastern]
System.out.println(dateTime.getHour()); // 3
System.out.println(dateTime.getOffset()); // -04:00

Notice that two things change in this example. The time jumps from 1:30 to 3:30. The
UTC offset also changes. Remember when we calculated GMT time by subtracting the time
zone from the time? You can see that we went from 6:30 GMT (1:30 minus –5:00) to 7:30
GMT (3:30 minus –4:00). This shows that the time really did change by one hour from
GMT’s point of view. We printed the hour and offset fields separately for emphasis.

Similarly, in November, an hour after the initial 1:30 a.m. is also 1:30 a.m. because at
2:00 a.m. we repeat the hour. This time, try to calculate the GMT time yourself for all three
times to confirm that we really do move only one hour at a time.

var date = LocalDate.of(2022, Month.NOVEMBER, 6);
var time = LocalTime.of(1, 30);
var zone = ZoneId.of("US/Eastern");
var dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2022-11-06T01:30-04:00[US/Eastern]

dateTime = dateTime.plusHours(1);
System.out.println(dateTime); // 2022-11-06T01:30-05:00[US/Eastern]

dateTime = dateTime.plusHours(1);
System.out.println(dateTime); // 2022-11-06T02:30-05:00[US/Eastern]

Did you get it? We went from 5:30 GMT to 6:30 GMT, to 7:30 GMT.
Finally, trying to create a time that doesn’t exist just rolls forward:

var date = LocalDate.of(2022, Month.MARCH, 13);
var time = LocalTime.of(2, 30);
var zone = ZoneId.of("US/Eastern");
var dateTime = ZonedDateTime.of(date, time, zone);
System.out.println(dateTime); // 2022–03–13T03:30–04:00[US/Eastern]

Java is smart enough to know that there is no 2:30 a.m. that night and switches over to
the appropriate GMT offset.

Yes, it is annoying that Oracle expects you to know this even if you aren’t in the United
States—or for that matter, in a part of the United States that doesn’t follow daylight saving
time. The exam creators are in the United States, and they decided that everyone needs to
know how U.S. time zones work.

208  Chapter 4  ■  Core APIs

Summary
In this chapter, you learned that a String is an immutable sequence of characters. Calling the
constructor explicitly is optional. The concatenation operator (+) creates a new String with
the content of the first String followed by the content of the second String. If either operand
involved in the + expression is a String, concatenation is used; otherwise, addition is used.
String literals are stored in the string pool. The String class has many methods.

By contrast, a StringBuilder is a mutable sequence of characters. Most of the methods
return a reference to the current object to allow method chaining. The StringBuilder class has
many methods.

Calling == on String objects will check whether they point to the same object in the pool.
Calling == on StringBuilder references will check whether they are pointing to the same
StringBuilder object. Calling equals() on String objects will check whether the
sequence of characters is the same. Calling equals() on StringBuilder objects will check
whether they are pointing to the same object rather than looking at the values inside.

An array is a fixed-size area of memory on the heap that has space for primitives or
pointers to objects. You specify the size when creating it. For example, int[] a = new
int[6];. Indexes begin with 0, and elements are referred to using a [0]. The Arrays.
sort() method sorts an array. Arrays.binarySearch() searches a sorted array and
returns the index of a match. If no match is found, it negates the position where the element
would need to be inserted and subtracts 1. Arrays.compare() and Arrays.mismatch()
check whether two arrays are equivalent. Methods that are passed varargs (...) can be used
as if a normal array was passed in. In a multidimensional array, the second-level arrays and
beyond can be different sizes.

The Math class provides a number of static methods for performing mathematical opera-
tions. For example, you can get minimums or maximums. You can round or even generate
random numbers. Some methods work on any numeric primitive, and others only work
on double.

A LocalDate contains just a date, a LocalTime contains just a time, and a
LocalDateTime contains both a date and a time. All three have private constructors and
are created using LocalDate.now() or LocalDate.of() (or the equivalents for that
class). Dates and times can be manipulated using plusXXX or minusXXX methods. The
Period class represents a number of days, months, or years to add to or subtract from a
LocalDate or LocalDateTime. The date and time classes are all immutable, which means
the return value must be used.

Exam Essentials  209

Exam Essentials
Be able to determine the output of code using String.  Know the rules for concatenating
with String and how to use common String methods. Know that a String is immutable.
Pay special attention to the fact that indexes are zero-based and that the substring()
method gets the string up until right before the index of the second parameter.

Be able to determine the output of code using StringBuilder.  Know that a StringBuilder
is mutable and how to use common StringBuilder methods. Know that substring()
does not change the value of a StringBuilder, whereas append(), delete(), and
insert() do change it. Also note that most StringBuilder methods return a reference to
the current instance of StringBuilder.

Understand the difference between == and equals().  == checks object equality. equals()
depends on the implementation of the object it is being called on. For the String class,
equals() checks the characters inside of it.

Be able to determine the output of code using arrays.  Know how to declare and instantiate
one-dimensional and multidimensional arrays. Be able to access each element and know
when an index is out of bounds. Recognize correct and incorrect output when searching
and sorting.

Identify the return types of Math methods.  Depending on the primitive passed in, the Math
methods may return different primitive results.

Recognize invalid uses of dates and times.  LocalDate does not contain time fields, and
LocalTime does not contain date fields. Watch for operations being performed on the
wrong time. Also watch for adding or subtracting time and ignoring the result. Be comfort-
able with date math, including time zones and daylight saving time.

210  Chapter 4  ■  Core APIs

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 What is output by the following code? (Choose all that apply.)

1: public class Fish {
2: public static void main(String[] args) {
3: int numFish = 4;
4: String fishType = "tuna";
5: String anotherFish = numFish + 1;
6: System.out.println(anotherFish + " " + fishType);
7: System.out.println(numFish + " " + 1);
8: } }

A.	 4 1
B.	 5
C.	 5 tuna
D.	 5tuna
E.	 51tuna
F.	 The code does not compile.

2.	 Which of these array declarations are not legal? (Choose all that apply.)

A.	 int[][] scores = new int[5][];
B.	 Object[][][] cubbies = new Object[3][0][5];
C.	 String beans[] = new beans[6];
D.	 java.util.Date[] dates[] = new java.util.Date[2][];
E.	 int[][] types = new int[];
F.	 int[][] java = new int[][];

3.	 Note that March 13, 2022 is the weekend when we spring forward, and November 6, 2022
is when we fall back for daylight saving time. Which of the following can fill in the blank
without the code throwing an exception? (Choose all that apply.)

var zone = ZoneId.of("US/Eastern");
var date = ;
var time = LocalTime.of(2, 15);
var z = ZonedDateTime.of(date, time, zone);

A.	 LocalDate.of(2022, 3, 13)
B.	 LocalDate.of(2022, 3, 40)
C.	 LocalDate.of(2022, 11, 6)

Review Questions  211

D.	 LocalDate.of(2022, 11, 7)
E.	 LocalDate.of(2023, 2, 29)
F.	 LocalDate.of(2022, MonthEnum.MARCH, 13);

4.	 Which of the following are output by this code? (Choose all that apply.)

3: var s = "Hello";
4: var t = new String(s);
5: if ("Hello".equals(s)) System.out.println("one");
6: if (t == s) System.out.println("two");
7: if (t.intern() == s) System.out.println("three");
8: if ("Hello" == s) System.out.println("four");
9: if ("Hello".intern() == t) System.out.println("five");

A.	 one
B.	 two
C.	 three
D.	 four
E.	 five
F.	 The code does not compile.

G.	 None of the above

5.	 What is the result of the following code?

7: var sb = new StringBuilder();
8: sb.append("aaa").insert(1, "bb").insert(4, "ccc");
9: System.out.println(sb);

A.	 abbaaccc
B.	 abbaccca
C.	 bbaaaccc
D.	 bbaaccca
E.	 An empty line

F.	 The code does not compile.

6.	 How many of these lines contain a compiler error? (Choose all that apply.)

23: double one = Math.pow(1, 2);
24: int two = Math.round(1.0);
25: float three = Math.random();
26: var doubles = new double[] {one, two, three};

A.	 0

B.	 1

212  Chapter 4  ■  Core APIs

C.	 2

D.	 3

E.	 4

7.	 Which of these statements is true of the two values? (Choose all that apply.)

2022–08–28T05:00 GMT-04:00
2022–08–28T09:00 GMT-06:00

A.	 The first date/time is earlier.

B.	 The second date/time is earlier.

C.	 Both date/times are the same.

D.	 The date/times are two hours apart.

E.	 The date/times are six hours apart.

F.	 The date/times are 10 hours apart.

8.	 Which of the following return 5 when run independently? (Choose all that apply.)

var string = "12345";
var builder = new StringBuilder("12345");

A.	 builder.charAt(4)
B.	 builder.replace(2, 4, "6").charAt(3)
C.	 builder.replace(2, 5, "6").charAt(2)
D.	 string.charAt(5)
E.	 string.length
F.	 string.replace("123", "1").charAt(2)
G.	 None of the above

9.	 Which of the following are true about arrays? (Choose all that apply.)

A.	 The first element is index 0.

B.	 The first element is index 1.

C.	 Arrays are fixed size.

D.	 Arrays are immutable.

E.	 Calling equals() on two different arrays containing the same primitive values always
returns true.

F.	 Calling equals() on two different arrays containing the same primitive values always
returns false.

G.	 Calling equals() on two different arrays containing the same primitive values can return
true or false.

Review Questions  213

10.	 How many of these lines contain a compiler error? (Choose all that apply.)

23: int one = Math.min(5, 3);
24: long two = Math.round(5.5);
25: double three = Math.floor(6.6);
26: var doubles = new double[] {one, two, three};

A.	 0

B.	 1

C.	 2

D.	 3

E.	 4

11.	 What is the output of the following code?

var date = LocalDate.of(2022, 4, 3);
date.plusDays(2);
date.plusHours(3);
System.out.println(date.getYear() + " " + date.getMonth()
 + " " + date.getDayOfMonth());

A.	 2022 MARCH 4
B.	 2022 MARCH 6
C.	 2022 APRIL 3
D.	 2022 APRIL 5
E.	 The code does not compile.

F.	 A runtime exception is thrown.

12.	 What is output by the following code? (Choose all that apply.)

var numbers = "012345678".indent(1);
numbers = numbers.stripLeading();
System.out.println(numbers.substring(1, 3));
System.out.println(numbers.substring(7, 7));
System.out.print(numbers.substring(7));

A.	 12
B.	 123
C.	 7
D.	 78
E.	 A blank line

F.	 The code does not compile.

G.	 An exception is thrown.

214  Chapter 4  ■  Core APIs

13.	 What is the result of the following code?

public class Lion {
 public void roar(String roar1, StringBuilder roar2) {
 roar1.concat("!!!");
 roar2.append("!!!");
 }
 public static void main(String[] args) {
 var roar1 = "roar";
 var roar2 = new StringBuilder("roar");
 new Lion().roar(roar1, roar2);
 System.out.println(roar1 + " " + roar2);
} }

A.	 roar roar
B.	 roar roar!!!
C.	 roar!!! roar
D.	 roar!!! roar!!!
E.	 An exception is thrown.

F.	 The code does not compile.

14.	 Given the following, which can correctly fill in the blank? (Choose all that apply.)

var date = LocalDate.now();
var time = LocalTime.now();
var dateTime = LocalDateTime.now();
var zoneId = ZoneId.systemDefault();
var zonedDateTime = ZonedDateTime.of(dateTime, zoneId);
Instant instant = ;

A.	 Instant.now()
B.	 new Instant()
C.	 date.toInstant()
D.	 dateTime.toInstant()
E.	 time.toInstant()
F.	 zonedDateTime.toInstant()

15.	 What is the output of the following? (Choose all that apply.)

var arr = new String[] { "PIG", "pig", "123"};
Arrays.sort(arr);
System.out.println(Arrays.toString(arr));
System.out.println(Arrays.binarySearch(arr, "Pippa"));

Review Questions  215

A.	 [pig, PIG, 123]
B.	 [PIG, pig, 123]
C.	 [123, PIG, pig]
D.	 [123, pig, PIG]
E.	 -3
F.	 -2
G.	 The results of binarySearch() are undefined in this example.

16.	 What is included in the output of the following code? (Choose all that apply.)

var base = "ewe\nsheep\\t";
int length = base.length();
int indent = base.indent(2).length();
int translate = base.translateEscapes().length();

var formatted = "%s %s %s".formatted(length, indent, translate);
System.out.format(formatted);

A.	 10
B.	 11
C.	 12
D.	 13
E.	 14
F.	 15
G.	 16

17.	 Which of these statements are true? (Choose all that apply.)
var letters = new StringBuilder("abcdefg");

A.	 letters.substring(1, 2) returns a single-character String.

B.	 letters.substring(2, 2) returns a single-character String.

C.	 letters.substring(6, 5) returns a single-character String.

D.	 letters.substring(6, 6) returns a single-character String.

E.	 letters.substring(1, 2) throws an exception.

F.	 letters.substring(2, 2) throws an exception.

G.	 letters.substring(6, 5) throws an exception.

H.	 letters.substring(6, 6) throws an exception.

18.	 What is the result of the following code? (Choose all that apply.)

13: String s1 = """
14: purr""";

216  Chapter 4  ■  Core APIs

15: String s2 = "";
16:
17: s1.toUpperCase();
18: s1.trim();
19: s1.substring(1, 3);
20: s1 += "two";
21:
22: s2 += 2;
23: s2 += 'c';
24: s2 += false;
25:
26: if (s2 == "2cfalse") System.out.println("==");
27: if (s2.equals("2cfalse")) System.out.println("equals");
28: System.out.println(s1.length());

A.	 2
B.	 4
C.	 7
D.	 10
E.	 ==
F.	 equals
G.	 An exception is thrown.

H.	 The code does not compile.

19.	 Which of the following fill in the blank to print a positive integer? (Choose all that apply.)

String[] s1 = { "Camel", "Peacock", "Llama"};
String[] s2 = { "Camel", "Llama", "Peacock"};
String[] s3 = { "Camel"};
String[] s4 = { "Camel", null};
System.out.println(Arrays.);

A.	 compare(s1, s2)
B.	 mismatch(s1, s2)
C.	 compare(s3, s4)
D.	 mismatch (s3, s4)
E.	 compare(s4, s4)
F.	 mismatch (s4, s4)

Review Questions  217

20.	 Note that March 13, 2022 is the weekend that clocks spring ahead for daylight saving time.
What is the output of the following? (Choose all that apply.)

var date = LocalDate.of(2022, Month.MARCH, 13);
var time = LocalTime.of(1, 30);
var zone = ZoneId.of("US/Eastern");
var dateTime1 = ZonedDateTime.of(date, time, zone);
var dateTime2 = dateTime1.plus(1, ChronoUnit.HOURS);

long diff = ChronoUnit.HOURS.between(dateTime1, dateTime2);
int hour = dateTime2.getHour();
boolean offset = dateTime1.getOffset()
 == dateTime2.getOffset();
System.out.println("diff = " + diff);
System.out.println("hour = " + hour);
System.out.println("offset = " + offset);

A.	 diff = 1
B.	 diff = 2
C.	 hour = 2
D.	 hour = 3
E.	 offset = true
F.	 The code does not compile.

G.	 A runtime exception is thrown.

21.	 Which of the following can fill in the blank to print avaJ? (Choose all that apply.)

3: var puzzle = new StringBuilder("Java");
4: puzzle. ;
5: System.out.println(puzzle);

A.	 reverse()
B.	 append("vaJ$").substring(0, 4)
C.	 append("vaJ$").delete(0, 3).deleteCharAt(puzzle.length() - 1)
D.	 append("vaJ$").delete(0, 3).deleteCharAt(puzzle.length())
E.	 None of the above

22.	 What is the output of the following code?

var date = LocalDate.of(2022, Month.APRIL, 30);
date.plusDays(2);
date.plusYears(3);
System.out.println(date.getYear() + " " + date.getMonth()
 + " " + date.getDayOfMonth());

218  Chapter 4  ■  Core APIs

A.	 2022 APRIL 30
B.	 2022 MAY 2
C.	 2025 APRIL 2
D.	 2025 APRIL 30
E.	 2025 MAY 2
F.	 The code does not compile.

G.	 A runtime exception is thrown.

Methods

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Utilizing Java Object-Oriented Approach

■■ Create classes and records, and define and use instance and

static fields and methods, constructors, and instance and

static initializers

■■ Implement overloading, including var-arg methods

Chapter

5

In previous chapters, you learned how to write snippets of code
without much thought about the methods that contained the
code. In this chapter, you explore methods in depth including

modifiers, arguments, varargs, overloading, and autoboxing. Many of these fundamentals,
such as access and static modifiers, are applicable to classes and other types throughout
the rest of the book. If you’re having difficulty, you might want to read this chapter twice!

Designing Methods
Every interesting Java program we’ve seen has had a main() method. You can write
other methods too. For example, you can write a basic method to take a nap, as shown in
Figure 5.1.

This is called a method declaration, which specifies all the information needed to call the
method. There are a lot of parts, and we cover each one in more detail. Two of the parts—
the method name and parameter list—are called the method signature. The method signature
provides instructions for how callers can reference this method. The method signature does
not include the return type and access modifiers, which control where the method can be
referenced.

Table 5.1 is a brief reference to the elements of a method declaration. Don’t worry if it
seems like a lot of information—by the time you finish this chapter, it will all fit together.

Method body

List of parameters

Method name

Parentheses (required)

Exception (optional)

Access modifier

Optional specifier
Return type

public final void nap(int minutes) throws InterruptedException {

 // take a nap

}

F IGURE 5 .1   Method declaration

Designing Methods  221

To call this method, just use the method signature and provide an int value in
parentheses:

nap(10);

Let’s start by taking a look at each of these parts of a basic method.

Access Modifiers
An access modifier determines what classes a method can be accessed from. Think of it like
a security guard. Some classes are good friends, some are distant relatives, and some are
complete strangers. Access modifiers help to enforce when these components are allowed to
talk to each other. Java offers four choices of access modifier:

private  The private modifier means the method can be called only from within the
same class.

Package Access  With package access, the method can be called only from a class in
the same package. This one is tricky because there is no keyword. You simply omit the
access modifier. Package access is sometimes referred to as package-private or default
access (even within this book!).

TABLE 5 .1   Parts of a method declaration in Figure 5.1

Element Value in nap() example Required?

Access modifier public No

Optional specifier final No

Return type void Yes

Method name nap Yes

Parameter list (int minutes) Yes, but can be empty
parentheses

Method signature nap(int minutes) Yes

Exception list throws InterruptedException No

Method body {
// take a nap
}

Yes, except for abstract
methods

222  Chapter 5  ■  Methods

protected  The protected modifier means the method can be called only from a class
in the same package or a subclass.

public  The public modifier means the method can be called from anywhere.

For simplicity, we’re primarily concerned with access modifiers applied
to methods and fields in this chapter. Rules for access modifiers are
also applicable to classes and other types you learn about in Chapter 7,
“Beyond Classes," such as interfaces, enums, and records.

We explore the impact of the various access modifiers later in this chapter. For now, just
master identifying valid syntax of methods. The exam creators like to trick you by putting
method elements in the wrong order or using incorrect values.

We’ll see practice examples as we go through each of the method elements in this chapter.
Make sure you understand why each of these is a valid or invalid method declaration. Pay
attention to the access modifiers as you figure out what is wrong with the ones that don’t
compile when inserted into a class:

public class ParkTrip {
 public void skip1() {}
 default void skip2() {} // DOES NOT COMPILE
 void public skip3() {} // DOES NOT COMPILE
 void skip4() {}
}

The skip1() method is a valid declaration with public access. The skip4() method
is a valid declaration with package access. The skip2() method doesn’t compile because
default is not a valid access modifier. There is a default keyword, which is used in
switch statements and interfaces, but default is never used as an access modifier.
The skip3() method doesn’t compile because the access modifier is specified after the
return type.

Optional Specifiers
There are a number of optional specifiers for methods, shown in Table 5.2. Unlike with
access modifiers, you can have multiple specifiers in the same method (although not all com-
binations are legal). When this happens, you can specify them in any order. And since these
specifiers are optional, you are allowed to not have any of them at all. This means you can
have zero or more specifiers in a method declaration.

As you can see in Table 5.2, four of the method modifiers are covered in later chapters,
and the last two aren’t even in scope for the exam (and are seldom used in real life). In this
chapter, we focus on introducing you to these modifiers. Using them often requires a lot
more rules.

Designing Methods  223

While access modifiers and optional specifiers can appear in any order, they must all
appear before the return type. In practice, it is common to list the access modifier first. As
you’ll also learn in upcoming chapters, some specifiers are not compatible with one another.
For example, you can’t declare a method (or class) both final and abstract.

Remember, access modifiers and optional specifiers can be listed in any
order, but once the return type is specified, the rest of the parts of the
method are written in a specific order: name, parameter list, exception
list, body.

Again, just focus on syntax for now. Do you see why these compile or don’t compile?

public class Exercise {
 public void bike1() {}
 public final void bike2() {}
 public static final void bike3() {}
 public final static void bike4() {}
 public modifier void bike5() {} // DOES NOT COMPILE
 public void final bike6() {} // DOES NOT COMPILE
 final public void bike7() {}
}

TABLE 5 .2   Optional specifiers for methods

Modifier Description Chapter covered

static Indicates the method is a member of the shared class
object

Chapter 5

abstract Used in an abstract class or interface when the method
body is excluded

Chapter 6

final Specifies that the method may not be overridden in a sub-
class

Chapter 6

default Used in an interface to provide a default implementation
of a method for classes that implement the interface

Chapter 7

synchronized Used with multithreaded code Chapter 13

native Used when interacting with code written in another
language, such as C++

Out of scope

strictfp Used for making floating-point calculations portable Out of scope

224  Chapter 5  ■  Methods

The bike1() method is a valid declaration with no optional specifier. This is okay—it is
optional, after all. The bike2() method is a valid declaration, with final as the optional
specifier. The bike3() and bike4() methods are valid declarations with both final
and static as optional specifiers. The order of these two keywords doesn’t matter.
The bike5() method doesn’t compile because modifier is not a valid optional specifier.
The bike6() method doesn’t compile because the optional specifier is after the return type.

The bike7() method does compile. Java allows the optional specifiers to appear before the
access modifier. This is a weird case and not one you need to know for the exam. We are
mentioning it so you don’t get confused when practicing.

Return Type
The next item in a method declaration is the return type. It must appear after any access
modifiers or optional specifiers and before the method name. The return type might be an
actual Java type such as String or int. If there is no return type, the void keyword is used.
This special return type comes from the English language: void means without contents.

Remember that a method must have a return type. If no value is returned,
the void keyword must be used. You cannot omit the return type.

When checking return types, you also have to look inside the method body. Methods with
a return type other than void are required to have a return statement inside the method
body. This return statement must include the primitive or object to be returned. Methods
that have a return type of void are permitted to have a return statement with no value
returned or omit the return statement entirely. Think of a return statement in a void
method as the method saying, “I’m done!” and quitting early, such as the following:

public void swim(int distance) {
 if(distance <= 0) {
 // Exit early, nothing to do!
 return;
 }
 System.out.print("Fish is swimming " + distance + " meters");
}

Ready for some examples? Can you explain why these methods compile or don’t?

public class Hike {
 public void hike1() {}
 public void hike2() { return; }
 public String hike3() { return ""; }
 public String hike4() {} // DOES NOT COMPILE
 public hike5() {} // DOES NOT COMPILE
 public String int hike6() { } // DOES NOT COMPILE

Designing Methods  225

 String hike7(int a) { // DOES NOT COMPILE
 if (1 < 2) return "orange";
 }
}

Since the return type of the hike1() method is void, the return statement is optional.
The hike2() method shows the optional return statement that correctly doesn’t return
anything. The hike3() method is a valid declaration with a String return type and a
return statement that returns a String. The hike4() method doesn’t compile because the
return statement is missing. The hike5() method doesn’t compile because the return type
is missing. The hike6() method doesn’t compile because it attempts to use two return types.
You get only one return type.

The hike7() method is a little tricky. There is a return statement, but it doesn’t always get
run. Even though 1 is always less than 2, the compiler won’t fully evaluate the if statement
and requires a return statement if this condition is false. What about this modified version?

 String hike8(int a) {
 if (1 < 2) return "orange";
 return "apple"; // COMPILER WARNING
 }

The code compiles, although the compiler will produce a warning about unreachable code
(or dead code). This means the compiler was smart enough to realize you wrote code that
cannot possibly be reached.

When returning a value, it needs to be assignable to the return type. Can you spot what’s
wrong with two of these examples?

public class Measurement {
 int getHeight1() {
 int temp = 9;
 return temp;
 }
 int getHeight2() {
 int temp = 9L; // DOES NOT COMPILE
 return temp;
 }
 int getHeight3() {
 long temp = 9L;
 return temp; // DOES NOT COMPILE
 }
}

The getHeight2() method doesn’t compile because you can’t assign a long to an int.
The method getHeight3() method doesn’t compile because you can’t return a long value
as an int. If this wasn’t clear to you, you should go back to Chapter 2, “Operators,” and
reread the sections about numeric types and casting.

226  Chapter 5  ■  Methods

Method Name
Method names follow the same rules we practiced with variable names in Chapter 1,
“Building Blocks.” To review, an identifier may only contain letters, numbers, currency sym-
bols, or _. Also, the first character is not allowed to be a number, and reserved words are not
allowed. Finally, the single underscore character is not allowed.

By convention, methods begin with a lowercase letter, but they are not required to. Since
this is a review of Chapter 1, we can jump right into practicing with some examples:

public class BeachTrip {
 public void jog1() {}
 public void 2jog() {} // DOES NOT COMPILE
 public jog3 void() {} // DOES NOT COMPILE
 public void Jog_$() {}
 public _() {} // DOES NOT COMPILE
 public void() {} // DOES NOT COMPILE
}

The jog1() method is a valid declaration with a traditional name. The 2jog() method
doesn’t compile because identifiers are not allowed to begin with numbers. The jog3()
method doesn’t compile because the method name is before the return type. The Jog_$()
method is a valid declaration. While it certainly isn’t good practice to start a method name
with a capital letter and end with punctuation, it is legal. The _ method is not allowed since
it consists of a single underscore. The final line of code doesn’t compile because the method
name is missing.

Parameter List
Although the parameter list is required, it doesn’t have to contain any parameters. This
means you can just have an empty pair of parentheses after the method name, as follows:

public class Sleep {
 void nap() {}
}

If you do have multiple parameters, you separate them with a comma. There are a couple
more rules for the parameter list that you’ll see when we cover varargs shortly. For now, let’s
practice looking at method declaration with “regular” parameters:

public class PhysicalEducation {
 public void run1() {}
 public void run2 {} // DOES NOT COMPILE
 public void run3(int a) {}
 public void run4(int a; int b) {} // DOES NOT COMPILE
 public void run5(int a, int b) {}
}

Designing Methods  227

The run1() method is a valid declaration without any parameters. The run2() method
doesn’t compile because it is missing the parentheses around the parameter list. The run3()
method is a valid declaration with one parameter. The run4() method doesn’t compile
because the parameters are separated by a semicolon rather than a comma. Semicolons are
for separating statements, not for parameter lists. The run5() method is a valid declaration
with two parameters.

Method Signature
A method signature, composed of the method name and parameter list, is what Java uses
to uniquely determine exactly which method you are attempting to call. Once it determines
which method you are trying to call, it then determines if the call is allowed. For example,
attempting to access a private method outside the class or assigning the return value of a
void method to an int variable results in compiler errors. Neither of these compiler errors is
related to the method signature, though.

It’s important to note that the names of the parameters in the method signature are not
used as part of a method signature. The parameter list is about the types of parameters and
their order. For example, the following two methods have the exact same signature:

public class Trip {
 public void visitZoo(String name, int waitTime) {}
 public void visitZoo(String attraction, int rainFall) {} // DOES NOT COMPILE
}

Despite having different parameter names, these two methods have the same signature
and cannot be declared within the same class. Changing the order of parameter types does
allow the method to compile, though:

public class Trip {
 public void visitZoo(String name, int waitTime) {}
 public void visitZoo(int rainFall, String attraction) {}
}

We cover these rules in more detail when we get to method overloading later in
this chapter.

Exception List
In Java, code can indicate that something went wrong by throwing an exception. We cover
this in Chapter 11, “Exceptions and Localization.” For now, you just need to know
that it is optional and where in the method declaration it goes if present. For example,
InterruptedException is a type of Exception. You can list as many types of exceptions
as you want in this clause, separated by commas. Here’s an example:

public class ZooMonorail {
 public void zeroExceptions() {}

228  Chapter 5  ■  Methods

 public void oneException() throws IllegalArgumentException {}

 public void twoExceptions() throws
 IllegalArgumentException, InterruptedException {}
}

While the list of exceptions is optional, it may be required by the compiler, depending on
what appears inside the method body. You learn more about this, as well as how methods
calling them may be required to handle these exception declarations, in Chapter 11.

Method Body
The final part of a method declaration is the method body. A method body is simply a code
block. It has braces that contain zero or more Java statements. We’ve spent several chapters
looking at Java statements by now, so you should find it easy to figure out why these com-
pile or don’t:

public class Bird {
 public void fly1() {}
 public void fly2() // DOES NOT COMPILE
 public void fly3(int a) { int name = 5; }
}

The fly1() method is a valid declaration with an empty method body. The fly2()
method doesn’t compile because it is missing the braces around the empty method body.
Methods are required to have a body unless they are declared abstract. We cover
abstract methods in Chapter 6, “Class Design.” The fly3() method is a valid declaration
with one statement in the method body.

Congratulations! You’ve made it through the basics of identifying correct and incorrect
method declarations. Now you can delve into more detail.

Declaring Local and Instance Variables
Now that we have methods, we need to talk a little bit about the variables that they can
create or use. As you might recall from Chapter 1, local variables are those defined with a
method or block, while instance variables are those that are defined as a member of a class.
Let’s take a look at an example:

public class Lion {
 int hunger = 4;

 public int feedZooAnimals() {
 int snack = 10; // Local variable

Declaring Local and Instance Variables  229

 if(snack > 4) {
 long dinnerTime = snack++;
 hunger--;
 }
 return snack;
 }
}

In the Lion class, snack and dinnertime are local variables only accessible within their
respective code blocks, while hunger is an instance variable and created in every object of
the Lion class.

The object or value returned by a method may be available outside the method, but the
variable reference snack is gone. Keep this in mind while reading this chapter: all local var-
iable references are destroyed after the block is executed, but the objects they point to may
still be accessible.

Local Variable Modifiers
There’s only one modifier that can be applied to a local variable: final. Easy to remember,
right? When writing methods, developers may want to set a variable that does not change
during the course of the method. In this code sample, trying to change the value or object
these variables reference results in a compiler error:

public void zooAnimalCheckup(boolean isWeekend) {
 final int rest;
 if(isWeekend) rest = 5; else rest = 20;
 System.out.print(rest);

 final var giraffe = new Animal();
 final int[] friends = new int[5];

 rest = 10; // DOES NOT COMPILE
 giraffe = new Animal(); // DOES NOT COMPILE
 friends = null; // DOES NOT COMPILE
}

As shown with the rest variable, we don’t need to assign a value when a final variable
is declared. The rule is only that it must be assigned a value before it can be used. We can
even use var and final together. Contrast this with the following example:

public void zooAnimalCheckup(boolean isWeekend) {
 final int rest;
 if(isWeekend) rest = 5;
 System.out.print(rest); // DOES NOT COMPILE
}

230  Chapter 5  ■  Methods

The rest variable might not have been assigned a value, such as if isWeekend is false.
Since the compiler does not allow the use of local variables that may not have been assigned
a value, the code does not compile.

Does using the final modifier mean we can’t modify the data? Nope. The final attribute
only refers to the variable reference; the contents can be freely modified (assuming the object
isn’t immutable).

public void zooAnimalCheckup() {
 final int rest = 5;
 final Animal giraffe = new Animal();
 final int[] friends = new int[5];

 giraffe.setName("George");
 friends[2] = 2;
}

The rest variable is a primitive, so it’s just a value that can’t be modified. On the other
hand, the contents of the giraffe and friends variables can be freely modified, provided
the variables aren’t reassigned.

While it might not seem obvious, marking a local variable final is
often a good practice. For example, you may have a complex method
in which a variable is referenced dozens of times. It would be really bad
if someone came in and reassigned the variable in the middle of the
method. Using the final attribute is like sending a message to other
developers to leave the variable alone!

Effectively Final Variables
An effectively final local variable is one that is not modified after it is assigned. This means
that the value of a variable doesn’t change after it is set, regardless of whether it is explicitly
marked as final. If you aren’t sure whether a local variable is effectively final, just add the
final keyword. If the code still compiles, the variable is effectively final.

Given this definition, which of the following variables are effectively final?

11: public String zooFriends() {
12: String name = "Harry the Hippo";
13: var size = 10;
14: boolean wet;
15: if(size > 100) size++;
16: name.substring(0);
17: wet = true;
18: return name;
19: }

Declaring Local and Instance Variables  231

Remember, a quick test of effectively final is to just add final to the variable declara-
tion and see if it still compiles. In this example, name and wet are effectively final and can
be updated with the final modifier, but not size. The name variable is assigned a value
on line 12 and not reassigned. Line 16 creates a value that is never used. Remember from
Chapter 4, “Core APIs,” that strings are immutable. The size variable is not effectively final
because it could be incremented on line 15. The wet variable is assigned a value only once
and not modified afterward.

Effective Final Parameters

Recall from Chapter 1 that method and constructor parameters are local variables that have
been pre-initialized. In the context of local variables, the same rules around final and
effectively final apply. This is especially important in Chapter 7 and Chapter 8, “Lambdas
and Functional Interfaces,” since local classes and lambda expressions declared within a
method can only reference local variables that are final or effectively final.

Instance Variable Modifiers
Like methods, instance variables can use access modifiers, such as private, package, protected,
and public. Remember, package access is indicated by the lack of any modifiers. We cover
each of the different access modifiers shortly in this chapter. Instance variables can also use
optional specifiers, described in Table 5.3.

Looks like we only need to discuss final in this chapter! If an instance variable is
marked final, then it must be assigned a value when it is declared or when the object is

TABLE 5 .3   Optional specifiers for instance variables

Modifier Description Chapter Covered

final Specifies that the instance variable must be initialized with
each instance of the class exactly once

Chapter 5

volatile Instructs the JVM that the value in this variable may be
modified by other threads

Chapter 13

transient Used to indicate that an instance variable should not be
serialized with the class

Chapter 14

232  Chapter 5  ■  Methods

instantiated. Like a local final variable, it cannot be assigned a value more than once,
though. The following PolarBear class demonstrates these properties:

public class PolarBear {
 final int age = 10;
 final int fishEaten;
 final String name;

 { fishEaten = 10; }

 public PolarBear() {
 name = "Robert";
 }
}

The age variable is given a value when it is declared, while the fishEaten variable
is assigned a value in an instance initializer. The name variable is given a value in the no-
argument constructor. Failing to initialize an instance variable (or assigning a value more
than once) will lead to a compiler error. We talk about final variable initialization in more
detail when we cover constructors in the next chapter.

In Chapter 1, we show that instance variables receive default values
based on their type when not set. For example, int receives a default
value of 0, while an object reference receives a default value of null. The
compiler does not apply a default value to final variables, though. A
final instance or final static variable must receive a value when it is
declared or as part of initialization.

Working with Varargs
As mentioned in Chapter 4, a method may use a varargs parameter (variable argument) as if
it is an array. Creating a method with a varargs parameter is a bit more complicated. In fact,
calling such a method may not use an array at all.

Creating Methods with Varargs
There are a number of important rules for creating a method with a varargs parameter.

Rules for Creating a Method with a Varargs Parameter

1.	 A method can have at most one varargs parameter.

2.	 If a method contains a varargs parameter, it must be the last parameter in the list.

Working with Varargs  233

Given these rules, can you identify why each of these does or doesn’t compile? (Yes, there
is a lot of practice in this chapter. You have to be really good at identifying valid and invalid
methods for the exam.)

public class VisitAttractions {
 public void walk1(int... steps) {}
 public void walk2(int start, int... steps) {}
 public void walk3(int... steps, int start) {} // DOES NOT COMPILE
 public void walk4(int... start, int... steps) {} // DOES NOT COMPILE
}

The walk1() method is a valid declaration with one varargs parameter. The walk2()
method is a valid declaration with one int parameter and one varargs parameter. The
walk3() and walk4() methods do not compile because they have a varargs parameter in a
position that is not the last one.

Calling Methods with Varargs
When calling a method with a varargs parameter, you have a choice. You can pass in an
array, or you can list the elements of the array and let Java create it for you. Given our
previous walk1() method, which takes a varargs parameter, we can call it one of two ways:

// Pass an array
int[] data = new int[] {1, 2, 3};
walk1(data);

// Pass a list of values
walk1(1,2,3);

Regardless of which one you use to call the method, the method will receive an array con-
taining the elements. We can reinforce this with the following example:

public void walk1(int... steps) {
 int[] step2 = steps; // Not necessary, but shows steps is of type int[]
 System.out.print(step2.length);
}

You can even omit the varargs values in the method call, and Java will create an array of
length zero for you.
walk1();

234  Chapter 5  ■  Methods

Accessing Elements of a Vararg
Accessing a varargs parameter is just like accessing an array. It uses array indexing. Here’s
an example:

16: public static void run(int... steps) {
17: System.out.print(steps[1]);
18: }
19: public static void main(String[] args) {
20: run(11, 77); // 77
21: }

Line 20 calls a varargs method with two parameters. When the method is called, it sees an
array of size 2. Since indexes are zero-based, 77 is printed.

Using Varargs with Other Method Parameters
Finally! You get to do something other than identify whether method declarations are valid.
Instead, you get to look at method calls. Can you figure out why each method call outputs
what it does? For now, feel free to ignore the static modifier in the walkDog() method declara-
tion; we cover that later in the chapter.

1: public class DogWalker {
2: public static void walkDog(int start, int... steps) {
3: System.out.println(steps.length);
4: }
5: public static void main(String[] args) {
6: walkDog(1); // 0
7: walkDog(1, 2); // 1
8: walkDog(1, 2, 3); // 2
9: walkDog(1, new int[] {4, 5}); // 2
10: } }

Line 6 passes 1 as start but nothing else. This means Java creates an array of length 0
for steps. Line 7 passes 1 as start and one more value. Java converts this one value to
an array of length 1. Line 8 passes 1 as start and two more values. Java converts these
two values to an array of length 2. Line 9 passes 1 as start and an array of length 2
directly as steps.

You’ve seen that Java will create an empty array if no parameters are passed for a vararg.
However, it is still possible to pass null explicitly. The following snippet does compile:

walkDog(1, null); // Triggers NullPointerException in walkDog()

Since null isn’t an int, Java treats it as an array reference that happens to be null. It
just passes on the null array object to walkDog(). Then the walkDog() method throws an
exception because it tries to determine the length of null.

Applying Access Modifiers  235

Applying Access Modifiers
You already saw that there are four access modifiers: private, package, protected, and public
access. We are going to discuss them in order from most restrictive to least restrictive:

■■ private: Only accessible within the same class.

■■ Package access: private plus other members of the same package. Sometimes referred to
as package-private or default access.

■■ protected: Package access plus access within subclasses.

■■ public: protected plus classes in the other packages.

We will explore the impact of these four levels of access on members of a class.

Private Access
Let’s start with private access, which is the simplest. Only code in the same class can call
private methods or access private fields.

First, take a look at Figure 5.2. It shows the classes you’ll use to explore private and
package access. The big boxes are the names of the packages. The smaller boxes inside them
are the classes in each package. You can refer back to this figure if you want to quickly see
how the classes relate.

This is perfectly legal code because everything is one class:

1: package pond.duck;
2: public class FatherDuck {

FatherDuck

pond.duck

pond.swan

BadDuckling

BadCygnet

GoodDuckling

MotherDuck

F IGURE 5 .2   Classes used to show private and package access

236  Chapter 5  ■  Methods

3: private String noise = "quack";
4: private void quack() {
5: System.out.print(noise); // private access is ok
6: }
7: }

So far, so good. FatherDuck declares a private method quack() and uses private
instance variable noise on line 5.

Now we add another class:

1: package pond.duck;
2: public class BadDuckling {
3: public void makeNoise() {
4: var duck = new FatherDuck();
5: duck.quack(); // DOES NOT COMPILE
6: System.out.print(duck.noise); // DOES NOT COMPILE
7: }
8: }

BadDuckling is trying to access an instance variable and a method it has no business
touching. On line 5, it tries to access a private method in another class. On line 6, it
tries to access a private instance variable in another class. Both generate compiler errors.
Bad duckling!

Our bad duckling is only a few days old and doesn’t know better yet. Luckily, you know
that accessing private members of other classes is not allowed, and you need to use a differ-
ent type of access.

In the previous example, FatherDuck and BadDuckling are in separate
files, but what if they were declared in the same file? Even then, the code
would still not compile as Java prevents access outside the class.

Package Access
Luckily, MotherDuck is more accommodating about what her ducklings can do. She allows
classes in the same package to access her members. When there is no access modifier, Java
assumes package access.

package pond.duck;
public class MotherDuck {
 String noise = "quack";
 void quack() {
 System.out.print(noise); // package access is ok
 }
}

Applying Access Modifiers  237

MotherDuck can refer to noise and call quack(). After all, members in the same class
are certainly in the same package. The big difference is that MotherDuck lets other classes
in the same package access members, whereas FatherDuck doesn’t (due to being private).
GoodDuckling has a much better experience than BadDuckling:

package pond.duck;
public class GoodDuckling {
 public void makeNoise() {
 var duck = new MotherDuck();
 duck.quack(); // package access is ok
 System.out.print(duck.noise); // package access is ok
 }
}

GoodDuckling succeeds in learning to quack() and make noise by copying its mother.
Notice that all the classes covered so far are in the same package, pond.duck. This allows
package access to work.

In this same pond, a swan just gave birth to a baby swan. A baby swan is called a cygnet.
The cygnet sees the ducklings learning to quack and decides to learn from MotherDuck as well.

package pond.swan;
import pond.duck.MotherDuck; // import another package
public class BadCygnet {
 public void makeNoise() {
 var duck = new MotherDuck();
 duck.quack(); // DOES NOT COMPILE
 System.out.print(duck.noise); // DOES NOT COMPILE
 }
}

Oh, no! MotherDuck only allows lessons to other ducks by restricting access to the
pond.duck package. Poor little BadCygnet is in the pond.swan package, and the code
doesn’t compile. Remember that when there is no access modifier on a member, only classes
in the same package can access the member.

Protected Access
Protected access allows everything that package access does, and more. The protected
access modifier adds the ability to access members of a parent class. We cover creating sub-
classes in depth in Chapter 6. For now, we cover the simplest possible use of a subclass. In
the following example, the “child” ClownFish class is a subclass of the “parent” Fish class,
using the extends keyword to connect them:

public class Fish {}

public class ClownFish extends Fish {}

238  Chapter 5  ■  Methods

By extending a class, the subclass gains access to all protected and public members
of the parent class, as if they were declared in the subclass. If the two classes are in the same
package, then the subclass also gains access to all package members.

Figure 5.3 shows the many classes we create in this section. There are a number of classes
and packages, so don’t worry about keeping them all in your head. Just check back with this
figure as you go.

First, create a Bird class and give protected access to its members:

package pond.shore;
public class Bird {
 protected String text = "floating";
 protected void floatInWater() {
 System.out.print(text); // protected access is ok
 }
}

Next, we create a subclass:

package pond.goose; // Different package than Bird
import pond.shore.Bird;
public class Gosling extends Bird { // Gosling is a subclass of Bird

pond.duck

GooseWatcher

pond.inland

pond.shore

BirdWatcherFromAfar

BirdWatcher

Bird

pond.goose

Gosling
(extends Bird)

Goose
(extends Bird)

pond.swan

Swan
(extends Bird)

F IGURE 5 .3   Classes used to show protected access

Applying Access Modifiers  239

 public void swim() {
 floatInWater(); // protected access is ok
 System.out.print(text); // protected access is ok
 }
 public static void main(String[] args) {
 new Gosling().swim();
 }
}

This is a simple subclass. It extends the Bird class. Extending means creating a subclass
that has access to any protected or public members of the parent class. Running this
program prints floating twice: once from calling floatInWater(), and once from the
print statement in swim(). Since Gosling is a subclass of Bird, it can access these members
even though it is in a different package.

Remember that protected also gives us access to everything that package access does. This
means a class in the same package as Bird can access its protected members.

package pond.shore; // Same package as Bird
public class BirdWatcher {
 public void watchBird() {
 Bird bird = new Bird();
 bird.floatInWater(); // protected access is ok
 System.out.print(bird.text); // protected access is ok
 }
}

Since Bird and BirdWatcher are in the same package, BirdWatcher can access
package members of the bird variable. The definition of protected allows access to
subclasses and classes in the same package. This example uses the same package part of that
definition.

Now let’s try the same thing from a different package:

package pond.inland; // Different package than Bird
import pond.shore.Bird;
public class BirdWatcherFromAfar { // Not a subclass of Bird
 public void watchBird() {
 Bird bird = new Bird();
 bird.floatInWater(); // DOES NOT COMPILE
 System.out.print(bird.text); // DOES NOT COMPILE
 }
}

BirdWatcherFromAfar is not in the same package as Bird, and it doesn’t inherit from
Bird. This means it is not allowed to access protected members of Bird.

Got that? Subclasses and classes in the same package are the only ones allowed to access
protected members.

240  Chapter 5  ■  Methods

There is one gotcha for protected access. Consider this class:

1: package pond.swan; // Different package than Bird
2: import pond.shore.Bird;
3: public class Swan extends Bird { // Swan is a subclass of Bird
4: public void swim() {
5: floatInWater(); // protected access is ok
6: System.out.print(text); // protected access is ok
7: }
8: public void helpOtherSwanSwim() {
9: Swan other = new Swan();
10: other.floatInWater(); // subclass access to superclass
11: System.out.print(other.text); // subclass access to superclass
12: }
13: public void helpOtherBirdSwim() {
14: Bird other = new Bird();
15: other.floatInWater(); // DOES NOT COMPILE
16: System.out.print(other.text); // DOES NOT COMPILE
17: }
18: }

Take a deep breath. This is interesting. Swan is not in the same package as Bird but does
extend it—which implies it has access to the protected members of Bird since it is a sub-
class. And it does. Lines 5 and 6 refer to protected members via inheriting them.

Lines 10 and 11 also successfully use protected members of Bird. This is allowed because
these lines refer to a Swan object. Swan inherits from Bird, so this is okay. It is sort of a two-
phase check. The Swan class is allowed to use protected members of Bird, and we are referring
to a Swan object. Granted, it is a Swan object created on line 9 rather than an inherited one,
but it is still a Swan object.

Lines 15 and 16 do not compile. Wait a minute. They are almost exactly the same as lines
10 and 11! There’s one key difference. This time a Bird reference is used rather than inher-
itance. It is created on line 14. Bird is in a different package, and this code isn’t inheriting
from Bird, so it doesn’t get to use protected members. Say what, now? We just got through
saying repeatedly that Swan inherits from Bird. And it does. However, the variable reference
isn’t a Swan. The code just happens to be in the Swan class.

It’s okay to be confused. This is arguably one of the most confusing points on the exam.
Looking at it a different way, the protected rules apply under two scenarios:

■■ A member is used without referring to a variable. This is the case on lines 5 and 6. In
this case, we are taking advantage of inheritance, and protected access is allowed.

■■ A member is used through a variable. This is the case on lines 10, 11, 15, and 16. In this
case, the rules for the reference type of the variable are what matter. If it is a subclass,
protected access is allowed. This works for references to the same class or a subclass.

Applying Access Modifiers  241

We’re going to try this again to make sure you understand what is going on. Can you
figure out why these examples don’t compile?

package pond.goose;
import pond.shore.Bird;
public class Goose extends Bird {
 public void helpGooseSwim() {
 Goose other = new Goose();
 other.floatInWater();
 System.out.print(other.text);
 }
 public void helpOtherGooseSwim() {
 Bird other = new Goose();
 other.floatInWater(); // DOES NOT COMPILE
 System.out.print(other.text); // DOES NOT COMPILE
 }
}

The first method is fine. In fact, it is equivalent to the Swan example. Goose extends
Bird. Since we are in the Goose subclass and referring to a Goose reference, it can access
protected members. The second method is a problem. Although the object happens to be a
Goose, it is stored in a Bird reference. We are not allowed to refer to members of the Bird
class since we are not in the same package and the reference type of other is not a sub-
class of Goose.

What about this one?

package pond.duck;
import pond.goose.Goose;
public class GooseWatcher {
 public void watch() {
 Goose goose = new Goose();
 goose.floatInWater(); // DOES NOT COMPILE
 }
}

This code doesn’t compile because we are not in the goose object. The floatInWater()
method is declared in Bird. GooseWatcher is not in the same package as Bird, nor does
it extend Bird. Goose extends Bird. That only lets Goose refer to floatInWater(), not
callers of Goose.

If this is still puzzling, try it. Type in the code and try to make it compile. Then reread this
section. Don’t worry—it wasn’t obvious to us the first time either!

242  Chapter 5  ■  Methods

Public Access
Protected access was a tough concept. Luckily, the last type of access modifier is easy:
public means anyone can access the member from anywhere.

The Java module system redefines “anywhere,” and it becomes pos-
sible to restrict access to public code outside a module. We cover this in
more detail in Chapter 12, “Modules.” When given code samples, you can
assume they are in the same module unless explicitly stated otherwise.

Let’s create a class that has public members:

package pond.duck;
public class DuckTeacher {
 public String name = "helpful";
 public void swim() {
 System.out.print(name); // public access is ok
 }
}

DuckTeacher allows access to any class that wants it. Now we can try it:

package pond.goose;
import pond.duck.DuckTeacher;
public class LostDuckling {
 public void swim() {
 var teacher = new DuckTeacher();
 teacher.swim(); // allowed
 System.out.print("Thanks" + teacher.name); // allowed
 }
}

LostDuckling is able to refer to swim() and name on DuckTeacher because they are
public. The story has a happy ending. LostDuckling has learned to swim and can find its
parents—all because DuckTeacher made members public.

Reviewing Access Modifiers
Make sure you know why everything in Table 5.4 is true. Use the first column for the
first blank and the first row for the second blank. Also, remember that a member is a
method or field.

Accessing static Data  243

Accessing static Data
When the static keyword is applied to a variable, method, or class, it belongs to the class
rather than a specific instance of the class. In this section, you see that the static keyword
can also be applied to import statements.

Designing static Methods and Variables
Except for the main() method, we’ve been looking at instance methods. Methods and var-
iables declared static don’t require an instance of the class. They are shared among all
users of the class. For instance, take a look at the following Penguin class:

public class Penguin {
 String name;
 static String nameOfTallestPenguin;
}

In this class, every Penguin instance has its own name like Willy or Lilly, but only
one Penguin among all the instances is the tallest. You can think of a static variable as
being a member of the single class object that exists independently of any instances of that
class. Consider the following example:

public static void main(String[] unused) {
 var p1 = new Penguin();
 p1.name = "Lilly";
 p1.nameOfTallestPenguin = "Lilly";
 var p2 = new Penguin();
 p2.name = "Willy";
 p2.nameOfTallestPenguin = "Willy";

TABLE 5 .4   A method in ______ can access a ______ member.

private package protected public

the same class Yes Yes Yes Yes

another class in the same package No Yes Yes Yes

a subclass in a different package No No Yes Yes

an unrelated class in a different package No No No Yes

244  Chapter 5  ■  Methods

 System.out.println(p1.name); // Lilly
 System.out.println(p1.nameOfTallestPenguin); // Willy
 System.out.println(p2.name); // Willy
 System.out.println(p2.nameOfTallestPenguin); // Willy
}

We see that each penguin instance is updated with its own unique name. The
nameOfTallestPenguin field is static and therefore shared, though, so anytime it is
updated, it impacts all instances of the class.

You have seen one static method since Chapter 1. The main() method is a static
method. That means you can call it using the class name:

public class Koala {
 public static int count = 0; // static variable
 public static void main(String[] args) { // static method
 System.out.print(count);
 }
}

Here the JVM basically calls Koala.main() to get the program started. You can do this
too. We can have a KoalaTester that does nothing but call the main() method:

public class KoalaTester {
 public static void main(String[] args) {
 Koala.main(new String[0]); // call static method
 }
}

Quite a complicated way to print 0, isn’t it? When we run KoalaTester, it makes a call
to the main() method of Koala, which prints the value of count. The purpose of all these
examples is to show that main() can be called just like any other static method.

In addition to main() methods, static methods have two main purposes:

■■ For utility or helper methods that don’t require any object state. Since there is no need
to access instance variables, having static methods eliminates the need for the caller to
instantiate an object just to call the method.

■■ For state that is shared by all instances of a class, like a counter. All instances must share
the same state. Methods that merely use that state should be static as well.

In the following sections, we look at some examples covering other static concepts.

Accessing a static Variable or Method
Usually, accessing a static member is easy.

public class Snake {
 public static long hiss = 2;
}

You just put the class name before the method or variable, and you are done. Here’s
an example:

System.out.println(Snake.hiss);

Nice and easy. There is one rule that is trickier. You can use an instance of the object
to call a static method. The compiler checks for the type of the reference and uses that
instead of the object—which is sneaky of Java. This code is perfectly legal:

5: Snake s = new Snake();
6: System.out.println(s.hiss); // s is a Snake
7: s = null;
8: System.out.println(s.hiss); // s is still a Snake

Believe it or not, this code outputs 2 twice. Line 6 sees that s is a Snake and hiss
is a static variable, so it reads that static variable. Line 8 does the same thing. Java
doesn’t care that s happens to be null. Since we are looking for a static variable, it
doesn’t matter.

Remember to look at the reference type for a variable when you see a
static method or variable. The exam creators will try to trick you into
thinking a NullPointerException is thrown because the variable hap-
pens to be null. Don’t be fooled!

One more time, because this is really important: what does the following output?

Snake.hiss = 4;
Snake snake1 = new Snake();
Snake snake2 = new Snake();
snake1.hiss = 6;
snake2.hiss = 5;
System.out.println(Snake.hiss);

We hope you answered 5. There is only one hiss variable since it is static. It is set to 4
and then 6 and finally winds up as 5. All the Snake variables are just distractions.

Class vs. Instance Membership
There’s another way the exam creators will try to trick you regarding static and instance
members. A static member cannot call an instance member without referencing an instance
of the class. This shouldn’t be a surprise since static doesn’t require any instances of the class
to even exist.

The following is a common mistake for rookie programmers to make:

public class MantaRay {
 private String name = "Sammy";
 public static void first() { }

Accessing static Data  245

246  Chapter 5  ■  Methods

 public static void second() { }
 public void third() { System.out.print(name); }
 public static void main(String args[]) {
 first();
 second();
 third(); // DOES NOT COMPILE
 }
}

The compiler will give you an error about making a static reference to an instance
method. If we fix this by adding static to third(), we create a new problem. Can you
figure out what it is?
 public static void third() { System.out.print(name); } // DOES NOT COMPILE

All this does is move the problem. Now, third() is referring to an instance variable
name. There are two ways we could fix this. The first is to add static to the name vari-
able as well.

public class MantaRay {
 private static String name = "Sammy";
 ...
 public static void third() { System.out.print(name); }
 ...
}

The second solution would have been to call third() as an instance method and not use
static for the method or the variable.

public class MantaRay {
 private String name = "Sammy";
 ...
 public void third() { System.out.print(name); }
 public static void main(String args[]) {
 ...
 var ray = new MantaRay();
 ray.third();
 }
}

The exam creators like this topic—a lot. A static method or instance method can call a
static method because static methods don’t require an object to use. Only an instance
method can call another instance method on the same class without using a reference vari-
able, because instance methods do require an object. Similar logic applies for instance and
static variables.

Suppose we have a Giraffe class:

public class Giraffe {
 public void eat(Giraffe g) {}
 public void drink() {};
 public static void allGiraffeGoHome(Giraffe g) {}
 public static void allGiraffeComeOut() {}
}

Make sure you understand Table 5.5 before continuing.

Let’s try one more example so you have more practice at recognizing this scenario. Do
you understand why the following lines fail to compile?

1: public class Gorilla {
2: public static int count;
3: public static void addGorilla() { count++; }
4: public void babyGorilla() { count++; }
5: public void announceBabies() {
6: addGorilla();
7: babyGorilla();
8: }
9: public static void announceBabiesToEveryone() {
10: addGorilla();
11: babyGorilla(); // DOES NOT COMPILE
12: }
13: public int total;
14: public static double average
15: = total / count; // DOES NOT COMPILE
16: }

TABLE 5 .5   Static vs. instance calls

Method Calling Legal?

allGiraffeGoHome() allGiraffeComeOut() Yes

allGiraffeGoHome() drink() No

allGiraffeGoHome() g.eat() Yes

eat() allGiraffeComeOut() Yes

eat() drink() Yes

eat() g.eat() Yes

Accessing static Data  247

248  Chapter 5  ■  Methods

Lines 3 and 4 are fine because both static and instance methods can refer to a static
variable. Lines 5–8 are fine because an instance method can call a static method. Line 11
doesn’t compile because a static method cannot call an instance method. Similarly, line 15
doesn’t compile because a static variable is trying to use an instance variable.

A common use for static variables is counting the number of instances:

public class Counter {
 private static int count;
 public Counter() { count++; }
 public static void main(String[] args) {
 Counter c1 = new Counter();
 Counter c2 = new Counter();
 Counter c3 = new Counter();
 System.out.println(count); // 3
 }
}

Each time the constructor is called, it increments count by one. This example relies on
the fact that static (and instance) variables are automatically initialized to the default
value for that type, which is 0 for int. See Chapter 1 to review the default values.

Also notice that we didn’t write Counter.count. We could have. It isn’t necessary
because we are already in that class, so the compiler can infer it.

Make sure you understand this section really well. It comes up
throughout this book. You even see a similar topic when we discuss inter-
faces in Chapter 7. For example, a static interface method cannot call a
default interface method without a reference, much the same way that
within a class, a static method cannot call an instance method without
a reference.

static Variable Modifiers
Referring back to Table 5.3, static variables can be declared with the same modifiers as in-
stance variables, such as final, transient, and volatile. While some static variables are meant to
change as the program runs, like our count example, others are meant to never change. This
type of static variable is known as a constant. It uses the final modifier to ensure the variable
never changes.

Constants use the modifier static final and a different naming convention than
other variables. They use all uppercase letters with underscores between “words.” Here’s
an example:

public class ZooPen {
 private static final int NUM_BUCKETS = 45;
 public static void main(String[] args) {
 NUM_BUCKETS = 5; // DOES NOT COMPILE
 }
}

The compiler will make sure that you do not accidentally try to update a final variable.
This can get interesting. Do you think the following compiles?

import java.util.*;
public class ZooInventoryManager {
 private static final String[] treats = new String[10];
 public static void main(String[] args) {
 treats[0] = "popcorn";
 }
}

It actually does compile since treats is a reference variable. We are allowed to modify
the referenced object or array’s contents. All the compiler can do is check that we don’t try
to reassign treats to point to a different object.

The rules for static final variables are similar to instance final variables, except
they do not use static constructors (there is no such thing!) and use static initializers
instead of instance initializers.

public class Panda {
 final static String name = "Ronda";
 static final int bamboo;
 static final double height; // DOES NOT COMPILE
 static { bamboo = 5;}
}

The name variable is assigned a value when it is declared, while the bamboo variable is
assigned a value in a static initializer. The height variable is not assigned a value any-
where in the class definition, so that line does not compile. Remember, final variables must
be initialized with a value. Next, we cover static initializers.

Accessing static Data  249

250  Chapter 5  ■  Methods

static Initializers
In Chapter 1, we covered instance initializers that looked like unnamed methods—just code
inside braces. static initializers look similar. They add the static keyword to specify that they
should be run when the class is first loaded. Here’s an example:

private static final int NUM_SECONDS_PER_MINUTE;
private static final int NUM_MINUTES_PER_HOUR;
private static final int NUM_SECONDS_PER_HOUR;
static {
 NUM_SECONDS_PER_MINUTE = 60;
 NUM_MINUTES_PER_HOUR = 60;
}
static {
 NUM_SECONDS_PER_HOUR
 = NUM_SECONDS_PER_MINUTE * NUM_MINUTES_PER_HOUR;
}

All static initializers run when the class is first used, in the order they are defined.
The statements in them run and assign any static variables as needed. There is something
interesting about this example. We just got through saying that final variables aren’t
allowed to be reassigned. The key here is that the static initializer is the first assignment.
And since it occurs up front, it is okay.

Let’s try another example to make sure you understand the distinction:

14: private static int one;
15: private static final int two;
16: private static final int three = 3;
17: private static final int four; // DOES NOT COMPILE
18: static {
19: one = 1;
20: two = 2;
21: three = 3; // DOES NOT COMPILE
22: two = 4; // DOES NOT COMPILE
23: }

Line 14 declares a static variable that is not final. It can be assigned as many times
as we like. Line 15 declares a final variable without initializing it. This means we can ini-
tialize it exactly once in a static block. Line 22 doesn’t compile because this is the second
attempt. Line 16 declares a final variable and initializes it at the same time. We are not
allowed to assign it again, so line 21 doesn’t compile. Line 17 declares a final variable that
never gets initialized. The compiler gives a compiler error because it knows that the static
blocks are the only place the variable could possibly be initialized. Since the programmer
forgot, this is clearly an error.

Try to Avoid static and Instance Initializers

Using static and instance initializers can make your code much harder to read. Every-
thing that could be done in an instance initializer could be done in a constructor instead.
Many people find the constructor approach easier to read.

There is a common case to use a static initializer: when you need to initialize a static
field and the code to do so requires more than one line. This often occurs when you want to
initialize a collection like an ArrayList or a HashMap. When you do need to use a static
initializer, put all the static initialization in the same block. That way, the order is obvious.

static Imports
In Chapter 1, you saw that you can import a specific class or all the classes in a package.
If you haven’t seen ArrayList or List before, don’t worry, because we cover them in detail in
Chapter 9, “Collections and Generics.”

import java.util.ArrayList;
import java.util.*;

We could use this technique to import two classes:

import java.util.List;
import java.util.Arrays;
public class Imports {
 public static void main(String[] args) {
 List<String> list = Arrays.asList("one", "two");
 }
}

Imports are convenient because you don’t need to specify where each class comes from
each time you use it. There is another type of import called a static import. Regular imports
are for importing classes, while static imports are for importing static members of
classes like variables and methods.

Just like regular imports, you can use a wildcard or import a specific member. The idea
is that you shouldn’t have to specify where each static method or variable comes from each
time you use it. An example of when static imports shine is when you are referring to a lot of
constants in another class.

We ran rewrite our previous example to use a static import. Doing so yields the following:

import java.util.List;
import static java.util.Arrays.asList; // static import
public class ZooParking {
 public static void main(String[] args) {
 List<String> list = asList("one", "two"); // No Arrays. prefix
 }
}

Accessing static Data  251

252  Chapter 5  ■  Methods

In this example, we are specifically importing the asList method. This means that any
time we refer to asList in the class, it will call Arrays.asList().

An interesting case is what would happen if we created an asList method in our
ZooParking class. Java would give it preference over the imported one, and the method we
coded would be used.

The exam will try to trick you by misusing static imports. This example shows almost
everything you can do wrong. Can you figure out what is wrong with each one?

1: import static java.util.Arrays; // DOES NOT COMPILE
2: import static java.util.Arrays.asList;
3: static import java.util.Arrays.*; // DOES NOT COMPILE
4: public class BadZooParking {
5: public static void main(String[] args) {
6: Arrays.asList("one"); // DOES NOT COMPILE
7: }
8: }

Line 1 tries to use a static import to import a class. Remember that static
imports are only for importing static members like a method or variable. Regular
imports are for importing a class. Line 3 tries to see whether you are paying attention
to the order of keywords. The syntax is import static and not vice versa. Line 6
is sneaky. The asList method is imported on line 2. However, the Arrays class is
not imported anywhere. This makes it okay to write asList("one") but not
Arrays.asList("one").

There’s only one more scenario with static imports. In Chapter 1, you learned that
importing two classes with the same name gives a compiler error. This is true of static
imports as well. The compiler will complain if you try to explicitly do a static import
of two methods with the same name or two static variables with the same name.
Here’s an example:

import static zoo.A.TYPE;
import static zoo.B.TYPE; // DOES NOT COMPILE

Luckily, when this happens, we can just refer to the static members via their class name
in the code instead of trying to use a static import.

In a large program, static imports can be overused. When importing
from too many places, it can be hard to remember where each static
member comes from. Use them sparingly!

Passing Data among Methods  253

Passing Data among Methods
Java is a “pass-by-value” language. This means that a copy of the variable is made and the
method receives that copy. Assignments made in the method do not affect the caller. Let’s
look at an example:

2: public static void main(String[] args) {
3: int num = 4;
4: newNumber(num);
5: System.out.print(num); // 4
6: }
7: public static void newNumber(int num) {
8: num = 8;
9: }

On line 3, num is assigned the value of 4. On line 4, we call a method. On line 8, the num
parameter in the method is set to 8. Although this parameter has the same name as the var-
iable on line 3, this is a coincidence. The name could be anything. The exam will often use
the same name to try to confuse you. The variable on line 3 never changes because no assign-
ments are made to it.

Passing Objects
Now that you’ve seen primitives, let’s try an example with a reference type. What do you
think is output by the following code?

public class Dog {
 public static void main(String[] args) {
 String name = "Webby";
 speak(name);
 System.out.print(name);
 }
 public static void speak(String name) {
 name = "Georgette";
 }
}

The correct answer is Webby. Just as in the primitive example, the variable assignment is
only to the method parameter and doesn’t affect the caller.

254  Chapter 5  ■  Methods

Notice how we keep talking about variable assignments. This is because we can call
methods on the parameters. As an example, here is code that calls a method on the
StringBuilder passed into the method:

public class Dog {
 public static void main(String[] args) {
 var name = new StringBuilder("Webby");
 speak(name);
 System.out.print(name); // WebbyGeorgette
 }
 public static void speak(StringBuilder s) {
 s.append("Georgette");
 }
}

In this case, speak() calls a method on the parameter. It doesn’t reassign s to a different
object. In Figure 5.4, you can see how pass-by-value is still used. The variable s is a copy of the
variable name. Both point to the same StringBuilder, which means that changes made to the
StringBuilder are available to both references.

Pass-by-Value vs. Pass-by-Reference

Different languages handle parameters in different ways. Pass-by-value is used by many
languages, including Java. In this example, the swap() method does not change the
original values. It only changes a and b within the method.

 public static void main(String[] args) {
 int original1 = 1;
 int original2 = 2;
 swap(original1, original2);
 System.out.println(original1); // 1
 System.out.println(original2); // 2
 }
 public static void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
 }

StringBuilder
object

name

s

F IGURE 5 .4   Copying a reference with pass-by-value

Passing Data among Methods  255

The other approach is pass-by-reference. It is used by default in a few languages, such as
Perl. We aren’t going to show you Perl code here because you are studying for the Java
exam, and we don’t want to confuse you. In a pass-by-reference language, the variables
would be swapped and the output would be reversed.

To review, Java uses pass-by-value to get data into a method. Assigning a new primitive
or reference to a parameter doesn’t change the caller. Calling methods on a reference to an
object can affect the caller.

Returning Objects
Getting data back from a method is easier. A copy is made of the primitive or reference and
returned from the method. Most of the time, this returned value is used. For example, it
might be stored in a variable. If the returned value is not used, the result is ignored. Watch
for this on the exam. Ignored returned values are tricky.

Let’s try an example. Pay attention to the return types.

1: public class ZooTickets {
2: public static void main(String[] args) {
3: int tickets = 2; // tickets = 2
4: String guests = "abc"; // guests = abc
5: addTickets(tickets); // tickets = 2
6: guests = addGuests(guests); // guests = abcd
7: System.out.println(tickets + guests); // 2abcd
8: }
9: public static int addTickets(int tickets) {
10: tickets++;
11: return tickets;
12: }
13: public static String addGuests(String guests) {
14: guests += "d";
15: return guests;
16: }
17: }

This is a tricky one because there is a lot to keep track of. When you see such questions
on the exam, write down the values of each variable. Lines 3 and 4 are straightforward
assignments. Line 5 calls a method. Line 10 increments the method parameter to 3 but
leaves the tickets variable in the main() method as 2. While line 11 returns the value,
the caller ignores it. The method call on line 6 doesn’t ignore the result, so guests becomes
"abcd". Remember that this is happening because of the returned value and not the method
parameter.

256  Chapter 5  ■  Methods

Autoboxing and Unboxing Variables
Java supports some helpful features around passing primitive and wrapper data types, such
as int and Integer. Remember from Chapter 1 that we can explicitly convert between primi-
tives and wrapper classes using built-in methods.

5: int quack = 5;
6: Integer quackquack = Integer.valueOf(quack); // Convert int to Integer
7: int quackquackquack = quackquack.intValue(); // Convert Integer to int

Useful, but a bit verbose. Luckily, Java has handlers built into the Java language that
automatically convert between primitives and wrapper classes and back again. Autoboxing
is the process of converting a primitive into its equivalent wrapper class, while unboxing is
the process of converting a wrapper class into its equivalent primitive.

5: int quack = 5;
6: Integer quackquack = quack; // Autoboxing
7: int quackquackquack = quackquack; // Unboxing

The new code is equivalent to the previous code, as the compiler is “doing the work” of
converting the types automatically for you. Autoboxing applies to all primitives and their
associated wrapper types, such as the following:

Short tail = 8; // Autoboxing
Character p = Character.valueOf('p');
char paw = p; // Unboxing
Boolean nose = true; // Autoboxing
Integer e = Integer.valueOf(9);
long ears = e; // Unboxing, then implicit casting

Each of these examples compiles without issue. In the last line, e is unboxed to an int
value. Since an int value can be stored in a long variable via implicit casting, the compiler
allows the assignment.

Limits of Autoboxing and Numeric Promotion

While Java will implicitly cast a smaller primitive to a larger type, as well as autobox, it will
not do both at the same time. Do you see why the following does not compile?

 Long badGorilla = 8; // DOES NOT COMPILE

Java will automatically cast or autobox the int value to long or Integer, respectively.
Neither of these types can be assigned to a Long reference variable, though, so the code
does not compile. Compare this behavior to the previous example with ears, where the
unboxed primitive value could be implicitly cast to a larger primitive type.

Passing Data among Methods  257

What do you think happens if you try to unbox a null?

10: Character elephant = null;
11: char badElephant = elephant; // NullPointerException

On line 10, we store null in a Character reference. This is legal because a null ref-
erence can be assigned to any reference variable. On line 11, we try to unbox that null to a
char primitive. This is a problem. Java tries to get the char value of null. Since calling any
method on null gives a NullPointerException, that is just what we get. Be careful when
you see null in relation to autoboxing and unboxing.

Where autoboxing and unboxing really shine is when we apply them to method calls.

public class Chimpanzee {
 public void climb(long t) {}
 public void swing(Integer u) {}
 public void jump(int v) {}
 public static void main(String[] args) {
 var c = new Chimpanzee();
 c.climb(123);
 c.swing(123);
 c.jump(123L); // DOES NOT COMPILE
 }
}

In this example, the call to climb() compiles because the int value can be implicitly cast to a
long. The call to swing() also is permitted, because the int value is autoboxed to an Integer.
On the other hand, the call to jump() results in a compiler error because a long must be explic-
itly cast to an int. In other words, Java will not automatically convert to a narrower type.

As before, the same limitation around autoboxing and numeric promotion applies to
method calls. For example, the following does not compile:

public class Gorilla {
 public void rest(Long x) {
 System.out.print("long");
 }
 public static void main(String[] args) {
 var g = new Gorilla();
 g.rest(8); // DOES NOT COMPILE
 }
}

Java will cast or autobox the value automatically, but not both at the same time.

258  Chapter 5  ■  Methods

Overloading Methods
Now that you are familiar with the rules for declaring and using methods, it is time to look
at creating methods with the same name in the same class. Method overloading occurs when
methods in the same class have the same name but different method signatures, which means
they use different parameter lists. (Overloading differs from overriding, which you learn
about in Chapter 6.)

We’ve been showing how to call overloaded methods for a while. System.out.
println() and StringBuilder’s append() methods provide many overloaded versions,
so you can pass just about anything to them without having to think about it. In both of
these examples, the only change was the type of the parameter. Overloading also allows dif-
ferent numbers of parameters.

Everything other than the method name can vary for overloading methods. This means
there can be different access modifiers, optional specifiers (like static), return types, and
exception lists.

The following shows five overloaded versions of the fly() method:

public class Falcon {
 public void fly(int numMiles) {}
 public void fly(short numFeet) {}
 public boolean fly() { return false; }
 void fly(int numMiles, short numFeet) {}
 public void fly(short numFeet, int numMiles) throws Exception {}
}

As you can see, we can overload by changing anything in the parameter list. We can have
a different type, more types, or the same types in a different order. Also notice that the return
type, access modifier, and exception list are irrelevant to overloading. Only the method name
and parameter list matter.

Now let’s look at an example that is not valid overloading:

public class Eagle {
 public void fly(int numMiles) {}
 public int fly(int numMiles) { return 1; } // DOES NOT COMPILE
}

This method doesn’t compile because it differs from the original only by return type. The
method signatures are the same, so they are duplicate methods as far as Java is concerned.

What about these; why do they not compile?

public class Hawk {
 public void fly(int numMiles) {}
 public static void fly(int numMiles) {} // DOES NOT COMPILE
 public void fly(int numKilometers) {} // DOES NOT COMPILE
}

Overloading Methods  259

Again, the method signatures of these three methods are the same. You cannot declare
methods in the same class where the only difference is that one is an instance method and
one is a static method. You also cannot have two methods that have parameter lists with
the same variable types and in the same order. As we mentioned earlier, the names of the
parameters in the list do not matter when determining the method signature.

Calling overloaded methods is easy. You just write code, and Java calls the right one.
For example, look at these two methods:

public class Dove {
 public void fly(int numMiles) {
 System.out.println("int");
 }
 public void fly(short numFeet) {
 System.out.println("short");
 }
}

The call fly((short) 1) prints short. It looks for matching types and calls the appro-
priate method. Of course, it can be more complicated than this.

Now that you know the basics of overloading, let’s look at some more complex scenarios
that you may encounter on the exam.

Reference Types
Given the rule about Java picking the most specific version of a method that it can, what do
you think this code outputs?

public class Pelican {
 public void fly(String s) {
 System.out.print("string");
 }

 public void fly(Object o) {
 System.out.print("object");
 }
 public static void main(String[] args) {
 var p = new Pelican();
 p.fly("test");
 System.out.print("-");
 p.fly(56);
 }
}

260  Chapter 5  ■  Methods

The answer is string-object. The first call passes a String and finds a direct match.
There’s no reason to use the Object version when there is a nice String parameter list just
waiting to be called. The second call looks for an int parameter list. When it doesn’t find
one, it autoboxes to Integer. Since it still doesn’t find a match, it goes to the Object one.

Let’s try another. What does this print?

import java.time.*;
import java.util.*;
public class Parrot {
 public static void print(List<Integer> i) {
 System.out.print("I");
 }
 public static void print(CharSequence c) {
 System.out.print("C");
 }
 public static void print(Object o) {
 System.out.print("O");
 }
 public static void main(String[] args){
 print("abc");
 print(Arrays.asList(3));
 print(LocalDate.of(2019, Month.JULY, 4));
 }
}

The answer is CIO. The code is due for a promotion! The first call to print() passes
a String. As you learned in Chapter 4, String and StringBuilder implement the
CharSequence interface. You also learned that Arrays.asList() can be used to create a
List<Integer> object, which explains the second output. The final call to print() passes
a LocalDate. This is a class you might not know, but that’s okay. It clearly isn’t a sequence
of characters or a list. That means the Object method signature is used.

Primitives
Primitives work in a way that’s similar to reference variables. Java tries to find the most
specific matching overloaded method. What do you think happens here?

public class Ostrich {
 public void fly(int i) {
 System.out.print("int");
 }
 public void fly(long l) {
 System.out.print("long");
 }

Overloading Methods  261

 public static void main(String[] args) {
 var p = new Ostrich();
 p.fly(123);
 System.out.print("-");
 p.fly(123L);
 }
}

The answer is int-long. The first call passes an int and sees an exact match. The sec-
ond call passes a long and also sees an exact match. If we comment out the overloaded
method with the int parameter list, the output becomes long-long. Java has no problem
calling a larger primitive. However, it will not do so unless a better match is not found.

Autoboxing
As we saw earlier, autoboxing applies to method calls, but what happens if you have both a
primitive and an integer version?

public class Kiwi {
 public void fly(int numMiles) {}
 public void fly(Integer numMiles) {}
}

These method overloads are valid. Java tries to use the most specific parameter list it can
find. This is true for autoboxing as well as other matching types we talk about in this section.

This means calling fly(3) will call the first method. When the primitive int version isn’t
present, Java will autobox. However, when the primitive int version is provided, there is no
reason for Java to do the extra work of autoboxing.

Arrays
Unlike the previous example, this code does not autobox:

public static void walk(int[] ints) {}
public static void walk(Integer[] integers) {}

Arrays have been around since the beginning of Java. They specify their actual types.
What about generic types, such as List<Integer>? We cover this topic in Chapter 9.

Varargs
Which method do you think is called if we pass an int[]?

public class Toucan {
 public void fly(int[] lengths) {}
 public void fly(int... lengths) {} // DOES NOT COMPILE
}

262  Chapter 5  ■  Methods

Trick question! Remember that Java treats varargs as if they were an array. This means
the method signature is the same for both methods. Since we are not allowed to overload
methods with the same parameter list, this code doesn’t compile. Even though the code
doesn’t look the same, it compiles to the same parameter list.

Now that we’ve just gotten through explaining that the two methods are similar, it is time
to mention how they are different. It shouldn’t be a surprise that you can call either method
by passing an array:

fly(new int[] { 1, 2, 3 }); // Allowed to call either fly() method

However, you can only call the varargs version with stand-alone parameters:

fly(1, 2, 3); // Allowed to call only the fly() method using varargs

Obviously, this means they don’t compile exactly the same. The parameter list is the same,
though, and that is what you need to know with respect to overloading for the exam.

Putting It All Together
So far, all the rules for when an overloaded method is called should be logical. Java calls
the most specific method it can. When some of the types interact, the Java rules focus on
backward compatibility. A long time ago, autoboxing and varargs didn’t exist. Since old code
still needs to work, this means autoboxing and varargs come last when Java looks at over-
loaded methods. Ready for the official order? Table 5.6 lays it out for you.

Let’s give this a practice run using the rules in Table 5.6. What do you think this outputs?

public class Glider {
 public static String glide(String s) {
 return "1";
 }
 public static String glide(String... s) {
 return "2";
 }

TABLE 5 .6   The order that Java uses to choose the right overloaded method

Rule Example of what will be chosen for glide(1,2)

Exact match by type String glide(int i, int j)

Larger primitive type String glide(long i, long j)

Autoboxed type String glide(Integer i, Integer j)

Varargs String glide(int... nums)

Summary  263

 public static String glide(Object o) {
 return "3";
 }
 public static String glide(String s, String t) {
 return "4";
 }
 public static void main(String[] args) {
 System.out.print(glide("a"));
 System.out.print(glide("a", "b"));
 System.out.print(glide("a", "b", "c"));
 }
}

It prints out 142. The first call matches the signature taking a single String because that
is the most specific match. The second call matches the signature taking two String param-
eters since that is an exact match. It isn’t until the third call that the varargs version is used
since there are no better matches.

Summary
In this chapter, we presented a lot of rules for declaring methods and variables. Methods
start with access modifiers and optional specifiers in any order (although commonly with
access modifiers first). The access modifiers we discussed in this chapter are private, package
(omitted), protected, and public. The optional specifier for methods we covered in this
chapter is static. We cover additional method modifiers in future chapters.

Next comes the method return type, which is void if there is no return value. The method
name and parameter list are provided next, which compose the unique method signature.
The method name uses standard Java identifier rules, while the parameter list is composed
of zero or more types with names. An optional list of exceptions may also be added fol-
lowing the parameter list. Finally, a block defines the method body (which is omitted for
abstract methods).

Access modifiers are used for a lot more than just methods, so make sure you understand
them well. Using the private keyword means the code is only available from within the
same class. Package access means the code is available only from within the same package.
Using the protected keyword means the code is available from the same package or sub-
classes. Using the public keyword means the code is available from anywhere.

Both static methods and static variables are shared by all instances of the class.
When referenced from outside the class, they are called using the class name—for example,
Pigeon.fly(). Instance members are allowed to call static members, but static mem-
bers are not allowed to call instance members. In addition, static imports are used to
import static members.

264  Chapter 5  ■  Methods

We also presented the final modifier and showed how it can be applied to local, instance,
and static variables. Remember, a local variable is effectively final if it is not modified after it is
assigned. One quick test for this is to add the final modifier and see if the code still compiles.

Java uses pass-by-value, which means that calls to methods create a copy of the parame-
ters. Assigning new values to those parameters in the method doesn’t affect the caller’s var-
iables. Calling methods on objects that are method parameters changes the state of those
objects and is reflected in the caller. Java supports autoboxing and unboxing of primitives
and wrappers automatically within a method and through method calls.

Overloaded methods are methods with the same name but a different parameter list. Java
calls the most specific method it can find. Exact matches are preferred, followed by wider
primitives. After that comes autoboxing and finally varargs.

Make sure you understand everything in this chapter. It sets the foundation of what you
learn in the next chapters.

Exam Essentials
Be able to identify correct and incorrect method declarations.  Be able to view a method sig-
nature and know if it is correct, contains invalid or conflicting elements, or contains elements
in the wrong order.

Identify when a method or field is accessible.  Recognize when a method or field is acces-
sible when the access modifier is: private, package (omitted), protected, or public.

Understand how to declare and use final variables.  Local, instance, and static variables
may be declared final. Be able to understand how to declare them and how they can (or
cannot) be used.

Be able to spot effectively final variables.  Effectively final variables are local variables that
are not modified after being assigned. Given a local variable, be able to determine if it is
effectively final.

Recognize valid and invalid uses of static imports.  Static imports import static mem-
bers. They are written as import static, not static import. Make sure they are importing
static methods or variables rather than class names.

Apply autoboxing and unboxing.  The process of automatically converting from a primitive
value to a wrapper class is called autoboxing, while the reciprocal process is called unbox-
ing. Watch for a NullPointerException when performing unboxing.

State the output of code involving methods.  Identify when to call static rather than in-
stance methods based on whether the class name or object comes before the method. Rec-
ognize that instance methods can call static methods and that static methods need an
instance of the object in order to call an instance method.

Recognize the correct overloaded method.  Exact matches are used first, followed by wider
primitives, followed by autoboxing, followed by varargs. Assigning new values to method
parameters does not change the caller, but calling methods on them does.

Review Questions  265

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which statements about the final modifier are correct? (Choose all that apply.)

A.	 Instance and static variables can be marked final.

B.	 A variable is effectively final only if it is marked final.

C.	 An object that is marked final cannot be modified.

D.	 Local variables cannot be declared with type var and the final modifier.

E.	 A primitive that is marked final cannot be modified.

2.	 Which of the following can fill in the blank in this code to make it compile? (Choose all
that apply.)

public class Ant {
 void method() {}
}

A.	 default
B.	 final
C.	 private
D.	 Public
E.	 String
F.	 zzz:

3.	 Which of the following methods compile? (Choose all that apply.)

A.	 final static void rain() {}
B.	 public final int void snow() {}
C.	 private void int hail() {}
D.	 static final void sleet() {}
E.	 void final ice() {}
F.	 void public slush() {}

4.	 Which of the following can fill in the blank and allow the code to compile? (Choose all that apply.)
final song = 6;

A.	 int
B.	 Integer
C.	 long
D.	 Long
E.	 double
F.	 Double

266  Chapter 5  ■  Methods

5.	 Which of the following methods compile? (Choose all that apply.)

A.	 public void january() { return; }
B.	 public int february() { return null;}
C.	 public void march() {}
D.	 public int april() { return 9;}
E.	 public int may() { return 9.0;}
F.	 public int june() { return;}

6.	 Which of the following methods compile? (Choose all that apply.)

A.	 public void violin(int... nums) {}
B.	 public void viola(String values, int... nums) {}
C.	 public void cello(int... nums, String values) {}
D.	 public void bass(String... values, int... nums) {}
E.	 public void flute(String[] values, ...int nums) {}
F.	 public void oboe(String[] values, int[] nums) {}

7.	 Given the following method, which of the method calls return 2? (Choose all that apply.)

public int juggle(boolean b, boolean... b2) {
 return b2.length;
}

A.	 juggle();
B.	 juggle(true);
C.	 juggle(true, true);
D.	 juggle(true, true, true);
E.	 juggle(true, {true, true});
F.	 juggle(true, new boolean[2]);

8.	 Which of the following statements is correct?

A.	 Package access is more lenient than protected access.

B.	 A public class that has private fields and package methods is not visible to classes
outside the package.

C.	 You can use access modifiers so only some of the classes in a package see a particular
package class.

D.	 You can use access modifiers to allow access to all methods and not any instance vari-
ables.

E.	 You can use access modifiers to restrict access to all classes that begin with the word
Test.

Review Questions  267

9.	 Given the following class definitions, which lines in the main() method generate a compiler
error? (Choose all that apply.)

// Classroom.java
package my.school;
public class Classroom {
 private int roomNumber;
 protected static String teacherName;
 static int globalKey = 54321;
 public static int floor = 3;
 Classroom(int r, String t) {
 roomNumber = r;
 teacherName = t; } }

// School.java
1: package my.city;
2: import my.school.*;
3: public class School {
4: public static void main(String[] args) {
5: System.out.println(Classroom.globalKey);
6: Classroom room = new Classroom(101, "Mrs. Anderson");
7: System.out.println(room.roomNumber);
8: System.out.println(Classroom.floor);
9: System.out.println(Classroom.teacherName); } }

A.	 None: the code compiles fine.

B.	 Line 5

C.	 Line 6

D.	 Line 7

E.	 Line 8

F.	 Line 9

10.	 What is the output of executing the Chimp program?

// Rope.java
1: package rope;
2: public class Rope {
3: public static int LENGTH = 5;
4: static {
5: LENGTH = 10;
6: }
7: public static void swing() {

268  Chapter 5  ■  Methods

8: System.out.print("swing ");
9: } }

// Chimp.java
1: import rope.*;
2: import static rope.Rope.*;
3: public class Chimp {
4: public static void main(String[] args) {
5: Rope.swing();
6: new Rope().swing();
7: System.out.println(LENGTH);
8: } }

A.	 swing swing 5
B.	 swing swing 10
C.	 Compiler error on line 2 of Chimp
D.	 Compiler error on line 5 of Chimp
E.	 Compiler error on line 6 of Chimp
F.	 Compiler error on line 7 of Chimp

11.	 Which statements are true of the following code? (Choose all that apply.)

1: public class Rope {
2: public static void swing() {
3: System.out.print("swing");
4: }
5: public void climb() {
6: System.out.println("climb");
7: }
8: public static void play() {
9: swing();
10: climb();
11: }
12: public static void main(String[] args) {
13: Rope rope = new Rope();
14: rope.play();
15: Rope rope2 = null;
16: System.out.print("-");
17: rope2.play();
18: } }

Review Questions  269

A.	 The code compiles as is.

B.	 There is exactly one compiler error in the code.

C.	 There are exactly two compiler errors in the code.

D.	 If the line(s) with compiler errors are removed, the output is swing-climb.

E.	 If the line(s) with compiler errors are removed, the output is swing-swing.

F.	 If the line(s) with compile errors are removed, the code throws a NullPointerException.

12.	 How many variables in the following method are effectively final?

10: public void feed() {
11: int monkey = 0;
12: if(monkey > 0) {
13: var giraffe = monkey++;
14: String name;
15: name = "geoffrey";
16: }
17: String name = "milly";
18: var food = 10;
19: while(monkey <= 10) {
20: food = 0;
21: }
22: name = null;
23: }

A.	 1

B.	 2

C.	 3

D.	 4

E.	 5

F.	 None of the above. The code does not compile.

13.	 What is the output of the following code?

// RopeSwing.java
import rope.*;
import static rope.Rope.*;
public class RopeSwing {
 private static Rope rope1 = new Rope();
 private static Rope rope2 = new Rope();
 {
 System.out.println(rope1.length);
 }

270  Chapter 5  ■  Methods

 public static void main(String[] args) {
 rope1.length = 2;
 rope2.length = 8;
 System.out.println(rope1.length);
 }
}

// Rope.java
package rope;
public class Rope {
 public static int length = 0;
}

A.	 02
B.	 08
C.	 2
D.	 8
E.	 The code does not compile.

F.	 An exception is thrown.

14.	 How many lines in the following code have compiler errors?

1: public class RopeSwing {
2: private static final String leftRope;
3: private static final String rightRope;
4: private static final String bench;
5: private static final String name = "name";
6: static {
7: leftRope = "left";
8: rightRope = "right";
9: }
10: static {
11: name = "name";
12: rightRope = "right";
13: }
14: public static void main(String[] args) {
15: bench = "bench";
16: }
17: }

A.	 0

B.	 1

Review Questions  271

C.	 2

D.	 3

E.	 4

F.	 5

15.	 Which of the following can replace line 2 to make this code compile? (Choose all that apply.)

1: import java.util.*;
2: // INSERT CODE HERE
3: public class Imports {
4: public void method(ArrayList<String> list) {
5: sort(list);
6: }
7: }

A.	 import static java.util.Collections;
B.	 import static java.util.Collections.*;
C.	 import static java.util.Collections.sort(ArrayList<String>);
D.	 static import java.util.Collections;
E.	 static import java.util.Collections.*;
F.	 static import java.util.Collections.sort(ArrayList<String>);

16.	 What is the result of the following statements?

1: public class Test {
2: public void print(byte x) {
3: System.out.print("byte-");
4: }
5: public void print(int x) {
6: System.out.print("int-");
7: }
8: public void print(float x) {
9: System.out.print("float-");
10: }
11: public void print(Object x) {
12: System.out.print("Object-");
13: }
14: public static void main(String[] args) {
15: Test t = new Test();
16: short s = 123;
17: t.print(s);
18: t.print(true);

272  Chapter 5  ■  Methods

19: t.print(6.789);
20: }
21: }

A.	 byte-float-Object-
B.	 int-float-Object-
C.	 byte-Object-float-
D.	 int-Object-float-
E.	 int-Object-Object-
F.	 byte-Object-Object-

17.	 What is the result of the following program?

1: public class Squares {
2: public static long square(int x) {
3: var y = x * (long) x;
4: x = -1;
5: return y;
6: }
7: public static void main(String[] args) {
8: var value = 9;
9: var result = square(value);
10: System.out.println(value);
11: } }

A.	 -1
B.	 9
C.	 81
D.	 Compiler error on line 9

E.	 Compiler error on a different line

18.	 Which of the following are output by the following code? (Choose all that apply.)

public class StringBuilders {
 public static StringBuilder work(StringBuilder a,
 StringBuilder b) {
 a = new StringBuilder("a");
 b.append("b");
 return a;
 }
 public static void main(String[] args) {
 var s1 = new StringBuilder("s1");
 var s2 = new StringBuilder("s2");

Review Questions  273

 var s3 = work(s1, s2);
 System.out.println("s1 = " + s1);
 System.out.println("s2 = " + s2);
 System.out.println("s3 = " + s3);
 }
}

A.	 s1 = a
B.	 s1 = s1
C.	 s2 = s2
D.	 s2 = s2b
E.	 s3 = a
F.	 The code does not compile.

19.	 Which of the following will compile when independently inserted in the following code?
(Choose all that apply.)

1: public class Order3 {
2: final String value1 = "red";
3: static String value2 = "blue";
4: String value3 = "yellow";
5: {
6: // CODE SNIPPET 1
7: }
8: static {
9: // CODE SNIPPET 2
10: } }

A.	 Insert at line 6: value1 = "green";
B.	 Insert at line 6: value2 = "purple";
C.	 Insert at line 6: value3 = "orange";
D.	 Insert at line 9: value1 = "magenta";
E.	 Insert at line 9: value2 = "cyan";
F.	 Insert at line 9: value3 = "turquoise";

20.	 Which of the following are true about the following code? (Choose all that apply.)

public class Run {
 static void execute() {
 System.out.print("1-");
 }
 static void execute(int num) {
 System.out.print("2-");
 }

274  Chapter 5  ■  Methods

 static void execute(Integer num) {
 System.out.print("3-");
 }
 static void execute(Object num) {
 System.out.print("4-");
 }
 static void execute(int... nums) {
 System.out.print("5-");
 }
 public static void main(String[] args) {
 Run.execute(100);
 Run.execute(100L);
 }
}

A.	 The code prints out 2-4-.
B.	 The code prints out 3-4-.
C.	 The code prints out 4-2-.
D.	 The code prints out 4-4-.
E.	 The code prints 3-4- if you remove the method static void execute(int num).

F.	 The code prints 4-4- if you remove the method static void execute(int num).

21.	 Which method signatures are valid overloads of the following method signature? (Choose all
that apply.)

public void moo(int m, int... n)
A.	 public void moo(int a, int... b)
B.	 public int moo(char ch)
C.	 public void moooo(int... z)
D.	 private void moo(int... x)
E.	 public void moooo(int y)
F.	 public void moo(int... c, int d)
G.	 public void moo(int... i, int j...)

Class Design

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Utilizing Java Object-Oriented Approach

■■ Create classes and records, and define and use instance and

static fields and methods, constructors, and instance and

static initializers

■■ Understand variable scopes, use local variable type inference,

apply encapsulation, and make objects immutable

■■ Implement polymorphism and differentiate object type versus

reference type. Perform type casting, identify object types

using instanceof operator and pattern matching

Chapter

6

In Chapter 1, “Building Blocks,” we introduced the basic def-
inition of a class in Java. In Chapter 5, “Methods,” we delved
into methods and modifiers and showed how you can use them

to build more structured classes. In this chapter, we take things a step further and show how
class structure and inheritance is one of the most powerful features in the Java language.

At its core, proper Java class design is about code reusability, increased functionality,
and standardization. For example, by creating a new class that extends an existing class,
you may gain access to a slew of inherited primitives, objects, and methods, which increases
code reuse.

This chapter is the culmination of some of the most important topics in Java including
inheritance, class design, constructors, order of initialization, overriding methods, abstract
classes, and immutable objects. Read this chapter carefully and make sure you understand all
of the topics well. This chapter forms the basis of Chapter 7, “Beyond Classes,” in which we
expand our discussion of types to include other top-level and nested types.

Understanding Inheritance
When creating a new class in Java, you can define the class as inheriting from an existing
class. Inheritance is the process by which a subclass automatically includes certain members
of the class, including primitives, objects, or methods, defined in the parent class.

For illustrative purposes, we refer to any class that inherits from another class as a sub-
class or child class, as it is considered a descendant of that class. Alternatively, we refer to
the class that the child inherits from as the superclass or parent class, as it is considered an
ancestor of the class.

When working with other types, like interfaces, we tend to use the gen-
eral terms subtype and supertype. You see this more in the next chapter.

Declaring a Subclass
Let’s begin with the declaration of a class and its subclass. Figure 6.1 shows an example of a
superclass, Mammal, and subclass Rhinoceros.

Understanding Inheritance  277

We indicate a class is a subclass by declaring it with the extends keyword. We don’t need
to declare anything in the superclass other than making sure it is not marked final. More
on that shortly.

One key aspect of inheritance is that it is transitive. Given three classes [X, Y, Z], if X
extends Y, and Y extends Z, then X is considered a subclass or descendant of Z. Likewise,
Z is a superclass or ancestor of X. We sometimes use the term direct subclass or descendant
to indicate the class directly extends the parent class. For example, X is a direct descendant
only of class Y, not Z.

In the last chapter, you learned that there are four access levels: public, protected,
package, and private. When one class inherits from a parent class, all public and
protected members are automatically available as part of the child class. If the two classes
are in the same package, then package members are available to the child class. Last but not
least, private members are restricted to the class they are defined in and are never available
via inheritance. This doesn’t mean the parent class can’t have private members that can
hold data or modify an object; it just means the subclass doesn’t have direct access to them.

Let’s take a look at a simple example:

public class BigCat {
 protected double size;
}

public class Jaguar extends BigCat {
 public Jaguar() {
 size = 10.2;
 }
 public void printDetails() {
 System.out.print(size);
 }
}

public or
package access

class
keyword

Class
name Extends parent class

public class Mammal { }

public final class Rhinoceros extends Mammal { }

Superclass

Subclass

final
keyword
(optional)

F IGURE 6 .1   Subclass and superclass declarations

278  Chapter 6  ■  Class Design

public class Spider {
 public void printDetails() {
 System.out.println(size); // DOES NOT COMPILE
 }
}

Jaguar is a subclass or child of BigCat, making BigCat a superclass or parent of
Jaguar. In the Jaguar class, size is accessible because it is marked protected. Via inher-
itance, the Jaguar subclass can read or write size as if it were its own member. Contrast
this with the Spider class, which has no access to size since it is not inherited.

Class Modifiers
Like methods and variables, a class declaration can have various modifiers. Table 6.1 lists the
modifiers you should know for the exam.

We cover abstract classes later in this chapter. In the next chapter, we cover sealed
and non-sealed classes, as well as static nested classes.

For now, let’s talk about marking a class final. The final modifier prevents a class
from being extended any further. For example, the following does not compile:

public final class Rhinoceros extends Mammal { }

public class Clara extends Rhinoceros { } // DOES NOT COMPILE

On the exam, pay attention to any class marked final. If you see another class extending
it, you know immediately the code does not compile.

TABLE 6 .1   Class modifiers

Modifier Description Chapter covered

final The class may not be extended. Chapter 6

abstract The class is abstract, may contain abstract methods,
and requires a concrete subclass to instantiate.

Chapter 6

sealed The class may only be extended by a specific list of
classes.

Chapter 7

non-sealed A subclass of a sealed class permits potentially unnamed
subclasses.

Chapter 7

static Used for static nested classes defined within a class. Chapter 7

Understanding Inheritance  279

Single vs. Multiple Inheritance
Java supports single inheritance, by which a class may inherit from only one direct par-
ent class. Java also supports multiple levels of inheritance, by which one class may extend
another class, which in turn extends another class. You can have any number of levels of
inheritance, allowing each descendant to gain access to its ancestor’s members.

To truly understand single inheritance, it may be helpful to contrast it with multiple inher-
itance, by which a class may have multiple direct parents. By design, Java doesn’t support
multiple inheritance in the language because multiple inheritance can lead to complex, often
difficult-to-maintain data models. Java does allow one exception to the single inheritance
rule, which you see in Chapter 7—a class may implement multiple interfaces.

Figure 6.2 illustrates the various types of inheritance models. The items on the left are
considered single inheritance because each child has exactly one parent. You may notice that
single inheritance doesn’t preclude parents from having multiple children. The right side
shows items that have multiple inheritance. As you can see, a Dog object has multiple parent
designations.

Part of what makes multiple inheritance complicated is determining which parent to
inherit values from in case of a conflict. For example, if you have an object or method
defined in all of the parents, which one does the child inherit? There is no natural ordering
for parents in this example, which is why Java avoids these issues by disallowing multiple
inheritance altogether.

Inheriting Object
Throughout our discussion of Java in this book, we have thrown around the word object
numerous times—and with good reason. In Java, all classes inherit from a single class:
java.lang.Object, or Object for short. Furthermore, Object is the only class that
doesn’t have a parent class.

Animal Animal Pet Friendly

Mammal Bird

Bat Tiger Parrot Eagle Husky Poodle

Single Inheritance Multiple Inheritance

Dog

F IGURE 6 .2   Types of inheritance

280  Chapter 6  ■  Class Design

You might be wondering, “None of the classes I’ve written so far extend Object, so
how do all classes inherit from it?” The answer is that the compiler has been automatically
inserting code into any class you write that doesn’t extend a specific class. For example, the
following two are equivalent:

public class Zoo { }

public class Zoo extends java.lang.Object { }

The key is that when Java sees you define a class that doesn’t extend another class, the
compiler automatically adds the syntax extends java.lang.Object to the class defini-
tion. The result is that every class gains access to any accessible methods in the Object class.
For example, the toString() and equals() methods are available in Object; therefore,
they are accessible in all classes. Without being overridden in a subclass, though, they may
not be particularly useful. We cover overriding methods later in this chapter.

On the other hand, when you define a new class that extends an existing class, Java does
not automatically extend the Object class. Since all classes inherit from Object, extending an
existing class means the child already inherits from Object by definition. If you look at the
inheritance structure of any class, it will always end with Object on the top of the tree, as
shown in Figure 6.3.

Primitive types such as int and boolean do not inherit from Object, since they are not
classes. As you learned in Chapter 5, through autoboxing they can be assigned or passed as
an instance of an associated wrapper class, which does inherit Object.

Mammal

java.lang.Object

…

Ox

All objects inherit java.lang.Object

F IGURE 6 .3   Java object inheritance

Creating Classes  281

Creating Classes
Now that we’ve established how inheritance works in Java, we can use it to define and
create complex class relationships. In this section, we review the basics for creating and
working with classes.

Extending a Class
Let’s create two files in the same package, Animal.java and Lion.java.

// Animal.java
public class Animal {
 private int age;
 protected String name;
 public int getAge() {
 return age;
 }
 public void setAge(int newAge) {
 age = newAge;
 }
}

// Lion.java
public class Lion extends Animal {
 protected void setProperties(int age, String n) {
 setAge(age);
 name = n;
 }
 public void roar() {
 System.out.print(name + ", age " + getAge() + ", says: Roar!");
 }
 public static void main(String[] args) {
 var lion = new Lion();
 lion.setProperties(3, "kion");
 lion.roar();
 }
}

282  Chapter 6  ■  Class Design

There’s a lot going on here, we know! The age variable exists in the parent Animal
class and is not directly accessible in the Lion child class. It is indirectly accessible via
the setAge() method. The name variable is protected, so it is inherited in the Lion
class and directly accessible. We create the Lion instance in the main() method and use
setProperties() to set instance variables. Finally, we call the roar() method, which
prints the following:

kion, age 3, says: Roar!

Let’s take a look at the members of the Lion class. The instance variable age is marked
private and is not directly accessible from the subclass Lion. Therefore, the following
would not compile:

public class Lion extends Animal {
 public void roar() {
 System.out.print("Lions age: " + age); // DOES NOT COMPILE
 }
}

Remember when working with subclasses that private members are never inherited,
and package members are only inherited if the two classes are in the same package. If you
need a refresher on access modifiers, it may help to read Chapter 5 again.

Applying Class Access Modifiers
Like variables and methods, you can apply access modifiers to classes. As you might
remember from Chapter 1, a top-level class is one not defined inside another class. Also
remember that a .java file can have at most one top-level class.

While you can only have one top-level class, you can have as many classes (in any order)
with package access as you want. In fact, you don’t even need to declare a public class! The
following declares three classes, each with package access:

// Bear.java
class Bird {}
class Bear {}
class Fish {}

Trying to declare a top-level class with protected or private class will lead to a com-
piler error, though:

// ClownFish.java
protected class ClownFish{} // DOES NOT COMPILE

// BlueTang.java
private class BlueTang {} // DOES NOT COMPILE

Creating Classes  283

Does that mean a class can never be declared protected or private? Not exactly. In
Chapter 7, we present nested types and show that when you define a class inside another, it
can use any access modifier.

Accessing the this Reference
What happens when a method parameter has the same name as an existing instance vari-
able? Let’s take a look at an example. What do you think the following program prints?

public class Flamingo {
 private String color = null;
 public void setColor(String color) {
 color = color;
 }
 public static void main(String... unused) {
 var f = new Flamingo();
 f.setColor("PINK");
 System.out.print(f.color);
 }
}

If you said null, then you’d be correct. Java uses the most granular scope, so when it
sees color = color, it thinks you are assigning the method parameter value to itself (not
the instance variable). The assignment completes successfully within the method, but the
value of the instance variable color is never modified and is null when printed in the
main() method.

The fix when you have a local variable with the same name as an instance variable is
to use the this reference or keyword. The this reference refers to the current instance of the
class and can be used to access any member of the class, including inherited members. It can
be used in any instance method, constructor, or instance initializer block. It cannot be used
when there is no implicit instance of the class, such as in a static method or static initializer
block. We apply this to our previous method implementation as follows:

 public void setColor(String color) {
 this.color = color; // Sets the instance variable with method parameter
 }

The corrected code will now print PINK as expected. In many cases, the this reference is
optional. If Java encounters a variable or method it cannot find, it will check the class hier-
archy to see if it is available.

Now let’s look at some examples that aren’t common but that you might see on the exam.

1: public class Duck {
2: private String color;
3: private int height;

284  Chapter 6  ■  Class Design

4: private int length;
5:
6: public void setData(int length, int theHeight) {
7: length = this.length; // Backwards -- no good!
8: height = theHeight; // Fine, because a different name
9: this.color = "white"; // Fine, but this. reference not necessary
10: }
11:
12: public static void main(String[] args) {
13: Duck b = new Duck();
14: b.setData(1,2);
15: System.out.print(b.length + " " + b.height + " " + b.color);
16: } }

This code compiles and prints the following:

0 2 white

This might not be what you expected, though. Line 7 is incorrect, and you should watch
for it on the exam. The instance variable length starts out with a 0 value. That 0 is assigned
to the method parameter length. The instance variable stays at 0. Line 8 is more straight-
forward. The parameter theHeight and instance variable height have different names.
Since there is no naming collision, this is not required. Finally, line 9 shows that a vari-
able assignment is allowed to use the this reference even when there is no duplication of
variable names.

Calling the super Reference
In Java, a variable or method can be defined in both a parent class and a child class. This
means the object instance actually holds two copies of the same variable with the same
underlying name. When this happens, how do we reference the version in the parent class
instead of the current class? Let’s take a look at an example.

// Reptile.java
1: public class Reptile {
2: protected int speed = 10;
3: }

// Crocodile.java
1: public class Crocodile extends Reptile {
2: protected int speed = 20;
3: public int getSpeed() {
4: return speed;
5: }
6: public static void main(String[] data) {

Creating Classes  285

7: var croc = new Crocodile();
8: System.out.println(croc.getSpeed()); // 20
9: } }

One of the most important things to remember about this code is that an instance of
Crocodile stores two separate values for speed: one at the Reptile level and one at the
Crocodile level. On line 4, Java first checks to see if there is a local variable or method
parameter named speed. Since there is not, it then checks this.speed; and since it exists,
the program prints 20.

Declaring a variable with the same name as an inherited variable is
referred to as hiding a variable and is discussed later in this chapter.

But what if we want the program to print the value in the Reptile class? Within the
Crocodile class, we can access the parent value of speed, instead, by using the super
reference or keyword. The super reference is similar to the this reference, except that it
excludes any members found in the current class. In other words, the member must be acces-
sible via inheritance.

3: public int getSpeed() {
4: return super.speed; // Causes the program to now print 10
5: }

Let’s see if you’ve gotten the hang of this and super. What does the following
program output?

1: class Insect {
2: protected int numberOfLegs = 4;
3: String label = "buggy";
4: }
5:
6: public class Beetle extends Insect {
7: protected int numberOfLegs = 6;
8: short age = 3;
9: public void printData() {
10: System.out.println(this.label);
11: System.out.println(super.label);
12: System.out.println(this.age);
13: System.out.println(super.age);
14: System.out.println(numberOfLegs);
15: }
16: public static void main(String []n) {
17: new Beetle().printData();
18: }
19: }

286  Chapter 6  ■  Class Design

That was a trick question—this program code would not compile! Let’s review each line
of the printData() method. Since label is defined in the parent class, it is accessible via
both this and super references. For this reason, lines 10 and 11 compile and would both
print buggy if the class compiled. On the other hand, the variable age is defined only in the
current class, making it accessible via this but not super. For this reason, line 12 compiles
(and would print 3), but line 13 does not. Remember, while this includes current and inher-
ited members, super only includes inherited members.

Last but not least, what would line 14 print if line 13 was commented out? Even though
both numberOfLegs variables are accessible in Beetle, Java checks outward, starting with
the narrowest scope. For this reason, the value of numberOfLegs in the Beetle class is
used, and 6 is printed. In this example, this.numberOfLegs and super.numberOfLegs
refer to different variables with distinct values.

Since this includes inherited members, you often only use super when you have a naming
conflict via inheritance. For example, you have a method or variable defined in the current
class that matches a method or variable in a parent class. This commonly comes up in
method overriding and variable hiding, which are discussed later in this chapter.

Phew, that was a lot! Using this and super can take a little getting used to. Since we use
them often in upcoming sections, make sure you understand the last example really well
before moving forward.

Declaring Constructors
As you learned in Chapter 1, a constructor is a special method that matches the name of the
class and has no return type. It is called when a new instance of the class is created. For the
exam, you’ll need to know a lot of rules about constructors. In this section, we show how to
create a constructor. Then, we look at default constructors, overloading constructors, calling
parent constructors, final fields, and the order of initialization in a class.

Creating a Constructor
Let’s start with a simple constructor:

public class Bunny {
 public Bunny() {
 System.out.print("hop");
 }
}

The name of the constructor, Bunny, matches the name of the class, Bunny, and there is
no return type, not even void. That makes this a constructor. Can you tell why these two are
not valid constructors for the Bunny class?

public class Bunny {

Declaring Constructors  287

 public bunny() {} // DOES NOT COMPILE
 public void Bunny() {}
}

The first one doesn’t match the class name because Java is case-sensitive. Since it doesn’t
match, Java knows it can’t be a constructor and is supposed to be a regular method. How-
ever, it is missing the return type and doesn’t compile. The second method is a perfectly good
method but is not a constructor because it has a return type.

Like method parameters, constructor parameters can be any valid class, array, or prim-
itive type, including generics, but may not include var. For example, the following does
not compile:

public class Bonobo {
 public Bonobo(var food) { // DOES NOT COMPILE
 }
}

A class can have multiple constructors, as long as each constructor has a unique con-
structor signature. In this case, that means the constructor parameters must be distinct. Like
methods with the same name but different signatures, declaring multiple constructors with
different signatures is referred to as constructor overloading. The following Turtle class has
four distinct overloaded constructors:

public class Turtle {
 private String name;
 public Turtle() {
 name = "John Doe";
 }
 public Turtle(int age) {}
 public Turtle(long age) {}
 public Turtle(String newName, String... favoriteFoods) {
 name = newName;
 }
}

Constructors are used when creating a new object. This process is called instantiation
because it creates a new instance of the class. A constructor is called when we write new fol-
lowed by the name of the class we want to instantiate. Here’s an example:

new Turtle(15)

When Java sees the new keyword, it allocates memory for the new object. It then looks
for a constructor with a matching signature and calls it.

The Default Constructor
Every class in Java has a constructor, whether you code one or not. If you don’t include
any constructors in the class, Java will create one for you without any parameters.

288  Chapter 6  ■  Class Design

This Java-created constructor is called the default constructor and is added any time a class
is declared without any constructors. We often refer to it as the default no-argument con-
structor, for clarity. Here’s an example:

public class Rabbit {
 public static void main(String[] args) {
 new Rabbit(); // Calls the default constructor
 }
}

In the Rabbit class, Java sees that no constructor was coded and creates one. The
previous class is equivalent to the following, in which the default constructor is provided and
therefore not inserted by the compiler:

public class Rabbit {
 public Rabbit() {}
 public static void main(String[] args) {
 new Rabbit(); // Calls the user-defined constructor
 }
}

The default constructor has an empty parameter list and an empty body. It is fine for you
to type this in yourself. However, since it doesn’t do anything, Java is happy to generate it
for you and save you some typing.

We keep saying generated. This happens during the compile step. If you look at the file
with the .java extension, the constructor will still be missing. It only makes an appearance in
the compiled file with the .class extension.

For the exam, one of the most important rules you need to know is that the compiler only
inserts the default constructor when no constructors are defined. Which of these classes do
you think has a default constructor?

public class Rabbit1 {}

public class Rabbit2 {
 public Rabbit2() {}
}

public class Rabbit3 {
 public Rabbit3(boolean b) {}
}

public class Rabbit4 {
 private Rabbit4() {}
}

Declaring Constructors  289

Only Rabbit1 gets a default no-argument constructor. It doesn’t have a constructor
coded, so Java generates a default no-argument constructor. Rabbit2 and Rabbit3
both have public constructors already. Rabbit4 has a private constructor. Since
these three classes have a constructor defined, the default no-argument constructor is not
inserted for you.

Let’s take a quick look at how to call these constructors:

1: public class RabbitsMultiply {
2: public static void main(String[] args) {
3: var r1 = new Rabbit1();
4: var r2 = new Rabbit2();
5: var r3 = new Rabbit3(true);
6: var r4 = new Rabbit4(); // DOES NOT COMPILE
7: } }

Line 3 calls the generated default no-argument constructor. Lines 4 and 5 call the user-
provided constructors. Line 6 does not compile. Rabbit4 made the constructor private so
that other classes could not call it.

Having only private constructors in a class tells the compiler not to
provide a default no-argument constructor. It also prevents other classes
from instantiating the class. This is useful when a class has only static
methods or the developer wants to have full control of all calls to create
new instances of the class.

Calling Overloaded Constructors with this()
Have the basics about creating and referencing constructors? Good, because things are about
to get a bit more complicated. Since a class can contain multiple overloaded constructors,
these constructors can actually call one another. Let’s start with a simple class containing
two overloaded constructors:

public class Hamster {
 private String color;
 private int weight;
 public Hamster(int weight, String color) { // First constructor
 this.weight = weight;
 this.color = color;
 }
 public Hamster(int weight) { // Second constructor
 this.weight = weight;
 color = "brown";
 }
}

290  Chapter 6  ■  Class Design

One of the constructors takes a single int parameter. The other takes an int and a
String. These parameter lists are different, so the constructors are successfully overloaded.

There is a bit of duplication, as this.weight is assigned the same way in both construc-
tors. In programming, even a bit of duplication tends to turn into a lot of duplication as we
keep adding “just one more thing.” For example, imagine that we have five variables being
set like this.weight, rather than just one. What we really want is for the first constructor
to call the second constructor with two parameters. So, how can you have a constructor call
another constructor? You might be tempted to rewrite the first constructor as the following:

 public Hamster(int weight) { // Second constructor
 Hamster(weight, "brown"); // DOES NOT COMPILE
 }

This will not work. Constructors can be called only by writing new before the name of
the constructor. They are not like normal methods that you can just call. What happens if we
stick new before the constructor name?

 public Hamster(int weight) { // Second constructor
 new Hamster(weight, "brown"); // Compiles, but creates an extra object
 }

This attempt does compile. It doesn’t do what we want, though. When this constructor is
called, it creates a new object with the default weight and color. It then constructs a differ-
ent object with the desired weight and color. In this manner, we end up with two objects,
one of which is discarded after it is created. That’s not what we want. We want weight and
color set on the object we are trying to instantiate in the first place.

Java provides a solution: this()—yes, the same keyword we used to refer to instance
members, but with parentheses. When this() is used with parentheses, Java calls another
constructor on the same instance of the class.

 public Hamster(int weight) { // Second constructor
 this(weight, "brown");
 }

Success! Now Java calls the constructor that takes two parameters, with weight and
color set as expected.

this vs. this()

Despite using the same keyword, this and this() are very different. The first, this,
refers to an instance of the class, while the second, this(), refers to a constructor call
within the class. The exam may try to trick you by using both together, so make sure you
know which one to use and why.

Declaring Constructors  291

Calling this() has one special rule you need to know. If you choose to call it, the this() call
must be the first statement in the constructor. The side effect of this is that there can be only
one call to this() in any constructor.

3: public Hamster(int weight) {
4: System.out.println("chew");
5: // Set weight and default color
6: this(weight, "brown"); // DOES NOT COMPILE
7: }

Even though a print statement on line 4 doesn’t change any variables, it is still a Java
statement and is not allowed to be inserted before the call to this(). The comment on line
5 is just fine. Comments aren’t considered statements and are allowed anywhere.

There’s one last rule for overloaded constructors that you should be aware of. Consider
the following definition of the Gopher class:

public class Gopher {
 public Gopher(int dugHoles) {
 this(5); // DOES NOT COMPILE
 }
}

The compiler is capable of detecting that this constructor is calling itself infinitely. This is
often referred to as a cycle and is similar to the infinite loops that we discussed in Chapter 3,
“Making Decisions.” Since the code can never terminate, the compiler stops and reports this
as an error. Likewise, this also does not compile:

public class Gopher {
 public Gopher() {
 this(5); // DOES NOT COMPILE
 }
 public Gopher(int dugHoles) {
 this(); // DOES NOT COMPILE
 }
}

In this example, the constructors call each other, and the process continues infinitely. Since
the compiler can detect this, it reports an error.

Here we summarize the rules you should know about constructors that we covered in this
section. Study them well!

■■ A class can contain many overloaded constructors, provided the signature for each
is distinct.

■■ The compiler inserts a default no-argument constructor if no constructors are declared.

■■ If a constructor calls this(), then it must be the first line of the constructor.

■■ Java does not allow cyclic constructor calls.

292  Chapter 6  ■  Class Design

Calling Parent Constructors with super()
Congratulations: you’re well on your way to becoming an expert in using constructors!
There’s one more set of rules we need to cover, though, for calling constructors in the parent
class. After all, how do instance members of the parent class get initialized?

The first statement of every constructor is a call to a parent constructor using super() or
another constructor in the class using this(). Read the previous sentence twice to make sure
you remember it. It’s really important!

For simplicity in this section, we often refer to super() and this() to
refer to any parent or overloaded constructor call, even those that take
arguments.

Let’s take a look at the Animal class and its subclass Zebra and see how their construc-
tors can be properly written to call one another:

public class Animal {
 private int age;
 public Animal(int age) {
 super(); // Refers to constructor in java.lang.Object
 this.age = age;
 }
}

public class Zebra extends Animal {
 public Zebra(int age) {
 super(age); // Refers to constructor in Animal
 }
 public Zebra() {
 this(4); // Refers to constructor in Zebra with int argument
 }
}

In the Animal class, the first statement of the constructor is a call to the parent con-
structor defined in java.lang.Object, which takes no arguments. In the second class,
Zebra, the first statement of the first constructor is a call to Animal’s constructor, which
takes a single argument. The Zebra class also includes a second no-argument constructor
that doesn’t call super() but instead calls the other constructor within the Zebra class
using this(4).

Declaring Constructors  293

super vs. super()

Like this and this(), super and super() are unrelated in Java. The first, super, is
used to reference members of the parent class, while the second, super(), calls a par-
ent constructor. Anytime you see the keyword super on the exam, make sure it is being
used properly.

Like calling this(), calling super() can only be used as the first statement of the constructor.
For example, the following two class definitions will not compile:

public class Zoo {
 public Zoo() {
 System.out.println("Zoo created");
 super(); // DOES NOT COMPILE
 }
}

public class Zoo {
 public Zoo() {
 super();
 System.out.println("Zoo created");
 super(); // DOES NOT COMPILE
 }
}

The first class will not compile because the call to the parent constructor must be the first
statement of the constructor. In the second code snippet, super() is the first statement of
the constructor, but it is also used as the third statement. Since super() can only be called
once as the first statement of the constructor, the code will not compile.

If the parent class has more than one constructor, the child class may use any valid parent
constructor in its definition, as shown in the following example:

public class Animal {
 private int age;
 private String name;
 public Animal(int age, String name) {
 super();
 this.age = age;

294  Chapter 6  ■  Class Design

 this.name = name;
 }
 public Animal(int age) {
 super();
 this.age = age;
 this.name = null;
 }
}

public class Gorilla extends Animal {
 public Gorilla(int age) {
 super(age,"Gorilla"); // Calls the first Animal constructor
 }
 public Gorilla() {
 super(5); // Calls the second Animal constructor
 }
}

In this example, the first child constructor takes one argument, age, and calls the parent
constructor, which takes two arguments, age and name. The second child constructor takes
no arguments, and it calls the parent constructor, which takes one argument, age. In this
example, notice that the child constructors are not required to call matching parent con-
structors. Any valid parent constructor is acceptable as long as the appropriate input param-
eters to the parent constructor are provided.

Understanding Compiler Enhancements
Wait a second: we said the first line of every constructor is a call to either this() or super(), but
we’ve been creating classes and constructors throughout this book, and we’ve rarely done
either. How did these classes compile?

The answer is that the Java compiler automatically inserts a call to the no-argument con-
structor super() if you do not explicitly call this() or super() as the first line of a constructor.
For example, the following three class and constructor definitions are equivalent, because the
compiler will automatically convert them all to the last example:

public class Donkey {}

public class Donkey {
 public Donkey() {}
}

Declaring Constructors  295

public class Donkey {
 public Donkey() {
 super();
 }
}

Make sure you understand the differences between these three Donkey class definitions
and why Java will automatically convert them all to the last definition. While reading the
next section, keep in mind the process the Java compiler performs.

Default Constructor Tips and Tricks
We’ve presented a lot of rules so far, and you might have noticed something. Let’s say we
have a class that doesn’t include a no-argument constructor. What happens if we define a
subclass with no constructors, or a subclass with a constructor that doesn’t include a super()
reference?

public class Mammal {
 public Mammal(int age) {}
}

public class Seal extends Mammal {} // DOES NOT COMPILE

public class Elephant extends Mammal {
 public Elephant() {} // DOES NOT COMPILE
}

The answer is that neither subclass compiles. Since Mammal defines a constructor, the
compiler does not insert a no-argument constructor. The compiler will insert a default no-
argument constructor into Seal, though, but it will be a simple implementation that just
calls a nonexistent parent default constructor.

public class Seal extends Mammal {
 public Seal() {
 super(); // DOES NOT COMPILE
 }
}

Likewise, Elephant will not compile for similar reasons. The compiler doesn’t see a call
to super() or this() as the first line of the constructor so it inserts a call to a nonexistent
no-argument super() automatically.

public class Elephant extends Mammal {
 public Elephant() {
 super(); // DOES NOT COMPILE
 }
}

296  Chapter 6  ■  Class Design

In these cases, the compiler will not help, and you must create at least one constructor in
your child class that explicitly calls a parent constructor via the super() command.

public class Seal extends Mammal {
 public Seal() {
 super(6); // Explicit call to parent constructor
 }
}

public class Elephant extends Mammal {
 public Elephant() {
 super(4); // Explicit call to parent constructor
 }
}

Subclasses may include no-argument constructors even if their parent classes do not. For
example, the following compiles because Elephant includes a no-argument constructor:
public class AfricanElephant extends Elephant {}

It’s a lot to take in, we know. For the exam, you should be able to spot right away why
classes such as our first Seal and Elephant implementations did not compile.

super() Always Refers to the Most Direct Parent

A class may have multiple ancestors via inheritance. In our previous example,
AfricanElephant is a subclass of Elephant, which in turn is a subclass of Mammal. For
constructors, though, super() always refers to the most direct parent. In this example,
calling super() inside the AfricanElephant class always refers to the Elephant class
and never to the Mammal class.

We conclude this section by adding three constructor rules to your skill set:

■■ The first line of every constructor is a call to a parent constructor using super() or an
overloaded constructor using this().

■■ If the constructor does not contain a this() or super() reference, then the compiler
automatically inserts super() with no arguments as the first line of the constructor.

■■ If a constructor calls super(), then it must be the first line of the constructor.

Congratulations: you’ve learned everything we can teach you about declaring construc-
tors. Next, we move on to initialization and discuss how to use constructors.

Initializing Objects  297

Initializing Objects
In Chapter 1, we covered order of initialization, albeit in a very simplistic manner. Order of
initialization refers to how members of a class are assigned values. They can be given default
values, like 0 for an int, or require explicit values, such as for final variables. In this section,
we go into much more detail about how order of initialization works and how to spot errors
on the exam.

Initializing Classes
We begin our discussion of order of initialization with class initialization. First, we initialize
the class, which involves invoking all static members in the class hierarchy, starting with the
highest superclass and working downward. This is sometimes referred to as loading the class.
The Java Virtual Machine (JVM) controls when the class is initialized, although you can
assume the class is loaded before it is used. The class may be initialized when the program
first starts, when a static member of the class is referenced, or shortly before an instance of
the class is created.

One of the most important rules with class initialization is that it happens at most once
for each class. The class may also never be loaded if it is not used in the program. We sum-
marize the order of initialization for a class as follows:

Initialize Class X

1.	 If there is a superclass Y of X, then initialize class Y first.

2.	 Process all static variable declarations in the order in which they appear in the class.

3.	 Process all static initializers in the order in which they appear in the class.

Taking a look at an example, what does the following program print?

public class Animal {
 static { System.out.print("A"); }
}

public class Hippo extends Animal {
 public static void main(String[] grass) {
 System.out.print("C");
 new Hippo();
 new Hippo();
 new Hippo();
 }
 static { System.out.print("B"); }
}

298  Chapter 6  ■  Class Design

It prints ABC exactly once. Since the main() method is inside the Hippo class, the class
will be initialized first, starting with the superclass and printing AB. Afterward, the main()
method is executed, printing C. Even though the main() method creates three instances, the
class is loaded only once.

Why the Hippo Program Printed C After AB

In the previous example, the Hippo class was initialized before the main() method was
executed. This happened because our main() method was inside the class being executed,
so it had to be loaded on startup. What if you instead called Hippo inside another program?

public class HippoFriend {
 public static void main(String[] grass) {
 System.out.print("C");
 new Hippo();
 }
}

Assuming the class isn’t referenced anywhere else, this program will likely print CAB, with
the Hippo class not being loaded until it is needed inside the main() method. We say
likely because the rules for when classes are loaded are determined by the JVM at runtime.
For the exam, you just need to know that a class must be initialized before it is referenced
or used. Also, the class containing the program entry point, aka the main() method, is
loaded before the main() method is executed.

Initializing final Fields
Before we delve into order of initialization for instance members, we need to talk about final
fields (instance variables) for a minute. When we presented instance and class variables in
Chapter 1, we told you they are assigned a default value based on their type if no value is
specified. For example, a double is initialized with 0.0, while an object reference is initialized
to null. A default value is only applied to a non-final field, though.

As you saw in Chapter 5, final static variables must be explicitly assigned a value
exactly once. Fields marked final follow similar rules. They can be assigned values in the
line in which they are declared or in an instance initializer.

public class MouseHouse {
 private final int volume;
 private final String name = "The Mouse House"; // Declaration assignment
 {

Initializing Objects  299

 volume = 10; // Instance initializer assignment
 }
}

Unlike static class members, though, final instance fields can also be set in a con-
structor. The constructor is part of the initialization process, so it is allowed to assign final
instance variables. For the exam, you need to know one important rule: by the time the con-
structor completes, all final instance variables must be assigned a value exactly once.

Let’s try this out in an example:

public class MouseHouse {
 private final int volume;
 private final String name;
 public MouseHouse() {
 this.name = "Empty House"; // Constructor assignment
 }
 {
 volume = 10; // Instance initializer assignment
 }
}

Unlike local final variables, which are not required to have a value unless they are actu-
ally used, final instance variables must be assigned a value. If they are not assigned a value
when they are declared or in an instance initializer, then they must be assigned a value in
the constructor declaration. Failure to do so will result in a compiler error on the line that
declares the constructor.

public class MouseHouse {
 private final int volume;
 private final String type;
 {
 this.volume = 10;
 }
 public MouseHouse(String type) {
 this.type = type;
 }
 public MouseHouse() { // DOES NOT COMPILE
 this.volume = 2; // DOES NOT COMPILE
 }
}

In this example, the first constructor that takes a String argument compiles. In terms
of assigning values, each constructor is reviewed individually, which is why the second con-
structor does not compile. First, the constructor fails to set a value for the type variable.

http://this.name

300  Chapter 6  ■  Class Design

The compiler detects that a value is never set for type and reports an error on the line where
the constructor is declared. Second, the constructor sets a value for the volume variable,
even though it was already assigned a value by the instance initializer.

On the exam, be wary of any instance variables marked final. Make
sure they are assigned a value in the line where they are declared, in an
instance initializer, or in a constructor. They should be assigned a value
only once, and failure to assign a value is considered a compiler error in
the constructor.

What about final instance variables when a constructor calls another constructor in the
same class? In that case, you have to follow the flow carefully, making sure every final in-
stance variable is assigned a value exactly once. We can replace our previous bad constructor
with the following one that does compile:

 public MouseHouse() {
 this(null);
 }

This constructor does not perform any assignments to any final instance variables, but
it calls the MouseHouse(String) constructor, which we observed compiles without issue.
We use null here to demonstrate that the variable does not need to be an object value. We
can assign a null value to final instance variables as long as they are explicitly set.

Initializing Instances
We’ve covered class initialization and final fields, so now it’s time to move on to order of
initialization for objects. We’ll warn you that this can be a bit cumbersome at first, but the
exam isn’t likely to ask questions more complicated than the examples in this section. We
promise to take it slowly, though.

First, start at the lowest-level constructor where the new keyword is used. Remember, the
first line of every constructor is a call to this() or super(), and if omitted, the compiler will
automatically insert a call to the parent no-argument constructor super(). Then, progress
upward and note the order of constructors. Finally, initialize each class starting with the
superclass, processing each instance initializer and constructor in the reverse order in which
it was called. We summarize the order of initialization for an instance as follows:

Initialize Instance of X

1.	 Initialize class X if it has not been previously initialized.

2.	 If there is a superclass Y of X, then initialize the instance of Y first.

3.	 Process all instance variable declarations in the order in which they appear in the class.

4.	 Process all instance initializers in the order in which they appear in the class.

5.	 Initialize the constructor, including any overloaded constructors referenced with this().

Initializing Objects  301

Let’s try an example with no inheritance. See if you can figure out what the following
application outputs:

1: public class ZooTickets {
2: private String name = "BestZoo";
3: { System.out.print(name + "-"); }
4: private static int COUNT = 0;
5: static { System.out.print(COUNT + "-"); }
6: static { COUNT += 10; System.out.print(COUNT + "-"); }
7:
8: public ZooTickets() {
9: System.out.print("z-");
10: }
11:
12: public static void main(String... patrons) {
13: new ZooTickets();
14: } }

The output is as follows:
0-10-BestZoo-z-

First, we have to initialize the class. Since there is no superclass declared, which means
the superclass is Object, we can start with the static components of ZooTickets. In
this case, lines 4, 5, and 6 are executed, printing 0- and 10-. Next, we initialize the instance
created on line 13. Again, since no superclass is declared, we start with the instance compo-
nents. Lines 2 and 3 are executed, which prints BestZoo-. Finally, we run the constructor
on lines 8–10, which outputs z-.

Next, let’s try a simple example with inheritance:

class Primate {
 public Primate() {
 System.out.print("Primate-");
 } }

class Ape extends Primate {
 public Ape(int fur) {
 System.out.print("Ape1-");
 }
 public Ape() {
 System.out.print("Ape2-");
 } }

302  Chapter 6  ■  Class Design

public class Chimpanzee extends Ape {
 public Chimpanzee() {
 super(2);
 System.out.print("Chimpanzee-");
 }
 public static void main(String[] args) {
 new Chimpanzee();
 } }

The compiler inserts the super() command as the first statement of both the Primate
and Ape constructors. The code will execute with the parent constructors called first and
yield the following output:

Primate-Ape1-Chimpanzee-

Notice that only one of the two Ape() constructors is called. You need to start with the
call to new Chimpanzee() to determine which constructors will be executed. Remember,
constructors are executed from the bottom up, but since the first line of every constructor is
a call to another constructor, the flow ends up with the parent constructor executed before
the child constructor.

The next example is a little harder. What do you think happens here?

1: public class Cuttlefish {
2: private String name = "swimmy";
3: { System.out.println(name); }
4: private static int COUNT = 0;
5: static { System.out.println(COUNT); }
6: { COUNT++; System.out.println(COUNT); }
7:
8: public Cuttlefish() {
9: System.out.println("Constructor");
10: }
11:
12: public static void main(String[] args) {
13: System.out.println("Ready");
14: new Cuttlefish();
15: } }

The output looks like this:

0
Ready
swimmy
1
Constructor

Initializing Objects  303

No superclass is declared, so we can skip any steps that relate to inheritance. We first
process the static variables and static initializers—lines 4 and 5, with line 5 printing
0. Now that the static initializers are out of the way, the main() method can run, which
prints Ready. Next we create an instance declared on line 14. Lines 2, 3, and 6 are pro-
cessed, with line 3 printing swimmy and line 6 printing 1. Finally, the constructor is run on
lines 8–10, which prints Constructor.

Ready for a more difficult example, the kind you might see on the exam? What does the
following output?

1: class GiraffeFamily {
2: static { System.out.print("A"); }
3: { System.out.print("B"); }
4:
5: public GiraffeFamily(String name) {
6: this(1);
7: System.out.print("C");
8: }
9:
10: public GiraffeFamily() {
11: System.out.print("D");
12: }
13:
14: public GiraffeFamily(int stripes) {
15: System.out.print("E");
16: }
17: }
18: public class Okapi extends GiraffeFamily {
19: static { System.out.print("F"); }
20:
21: public Okapi(int stripes) {
22: super("sugar");
23: System.out.print("G");
24: }
25: { System.out.print("H"); }
26:
27: public static void main(String[] grass) {
28: new Okapi(1);
29: System.out.println();
30: new Okapi(2);
31: }
32: }

304  Chapter 6  ■  Class Design

The program prints the following:

AFBECHG
BECHG

Let’s walk through it. Start with initializing the Okapi class. Since it has a superclass
GiraffeFamily, initialize it first, printing A on line 2. Next, initialize the Okapi class,
printing F on line 19.

After the classes are initialized, execute the main() method on line 27. The first line of the
main() method creates a new Okapi object, triggering the instance initialization process. Per
the first rule, the superclass instance of GiraffeFamily is initialized first. Per our third rule, the
instance initializer in the superclass GiraffeFamily is called, and B is printed on line 3. Per the
fourth rule, we initialize the constructors. In this case, this involves calling the constructor
on line 5, which in turn calls the overloaded constructor on line 14. The result is that EC is
printed, as the constructor bodies are unwound in the reverse order that they were called.

The process then continues with the initialization of the Okapi instance itself. Per the third
and fourth rules, H is printed on line 25, and G is printed on line 23, respectively. The pro-
cess is a lot simpler when you don’t have to call any overloaded constructors. Line 29 then
inserts a line break in the output. Finally, line 30 initializes a new Okapi object. The order
and initialization are the same as line 28, sans the class initialization, so BECHG is printed
again. Notice that D is never printed, as only two of the three constructors in the superclass
GiraffeFamily are called.

This example is tricky for a few reasons. There are multiple overloaded constructors, lots
of initializers, and a complex constructor pathway to keep track of. Luckily, questions like
this are uncommon on the exam. If you see one, just write down what is going on as you
read the code.

We conclude this section by listing important rules you should know for the exam:

■■ A class is initialized at most once by the JVM before it is referenced or used.

■■ All static final variables must be assigned a value exactly once, either when they
are declared or in a static initializer.

■■ All final fields must be assigned a value exactly once, either when they are declared, in an
instance initializer, or in a constructor.

■■ Non-final static and instance variables defined without a value are assigned a
default value based on their type.

■■ Order of initialization is as follows: variable declarations, then initializers, and finally
constructors.

Inheriting Members
Now that we’ve created a class, what can we do with it? One of Java’s biggest strengths is
leveraging its inheritance model to simplify code. For example, let’s say you have five classes,
each of which extends from the Animal class. Furthermore, each class defines an eat() method

Inheriting Members  305

with an identical implementation. In this scenario, it’s a lot better to define eat() once in the
Animal class than to have to maintain the same method in five separate classes.

Inheriting a class not only grants access to inherited methods in the parent class but also
sets the stage for collisions between methods defined in both the parent class and the sub-
class. In this section, we review the rules for method inheritance and how Java handles such
scenarios.

We refer to the ability of an object to take on many different forms as polymorphism. We
cover this more in the next chapter, but for now you just need to know that an object can be
used in a variety of ways, in part based on the reference variable used to call the object.

Overriding a Method
What if a method with the same signature is defined in both the parent and child classes? For
example, you may want to define a new version of the method and have it behave differently
for that subclass. The solution is to override the method in the child class. In Java, overriding
a method occurs when a subclass declares a new implementation for an inherited method
with the same signature and compatible return type.

Remember that a method signature is composed of the name of the
method and method parameters. It does not include the return type,
access modifiers, optional specifiers, or any declared exceptions.

When you override a method, you may still reference the parent version of the method
using the super keyword. In this manner, the keywords this and super allow you to select
between the current and parent versions of a method, respectively. We illustrate this with the
following example:

public class Marsupial {
 public double getAverageWeight() {
 return 50;
 }
}
public class Kangaroo extends Marsupial {
 public double getAverageWeight() {
 return super.getAverageWeight()+20;
 }
 public static void main(String[] args) {
 System.out.println(new Marsupial().getAverageWeight()); // 50.0
 System.out.println(new Kangaroo().getAverageWeight()); // 70.0
 }
}

306  Chapter 6  ■  Class Design

In this example, the Kangaroo class overrides the getAverageWeight() method but in
the process calls the parent version using the super reference.

Method Overriding Infinite Calls

You might be wondering whether the use of super in the previous example was required.
For example, what would the following code output if we removed the super keyword?

public double getAverageWeight() {
 return getAverageWeight()+20; // StackOverflowError
}

In this example, the compiler would not call the parent Marsupial method; it would call
the current Kangaroo method. The application will attempt to call itself infinitely and pro-
duce a StackOverflowError at runtime.

To override a method, you must follow a number of rules. The compiler performs the fol-
lowing checks when you override a method:

1.	 The method in the child class must have the same signature as the method in the
parent class.

2.	 The method in the child class must be at least as accessible as the method in the
parent class.

3.	 The method in the child class may not declare a checked exception that is new or
broader than the class of any exception declared in the parent class method.

4.	 If the method returns a value, it must be the same or a subtype of the method in the par-
ent class, known as covariant return types.

While these rules may seem confusing or arbitrary at first, they are needed for consistency.
Without these rules in place, it is possible to create contradictions within the Java language.

Rule #1: Method Signatures
The first rule of overriding a method is somewhat self-explanatory. If two methods have the
same name but different signatures, the methods are overloaded, not overridden. Overloaded
methods are considered independent and do not share the same polymorphic properties as
overridden methods.

Inheriting Members  307

We covered overloading a method in Chapter 5, and it is similar to over-
riding a method, as both involve defining a method using the same name.
Overloading differs from overriding in that overloaded methods use a
different parameter list. For the exam, it is important that you understand
this distinction and that overridden methods have the same signature and
a lot more rules than overloaded methods.

Rule #2: Access Modifiers
What’s the purpose of the second rule about access modifiers? Let’s try an illustra-
tive example:

public class Camel {
 public int getNumberOfHumps() {
 return 1;
 } }

public class BactrianCamel extends Camel {
 private int getNumberOfHumps() { // DOES NOT COMPILE
 return 2;
 } }

In this example, BactrianCamel attempts to override the getNumberOfHumps() method
defined in the parent class but fails because the access modifier private is more restrictive
than the one defined in the parent version of the method. Let’s say BactrianCamel was
allowed to compile, though. Would this class compile?

public class Rider {
 public static void main(String[] args) {
 Camel c = new BactrianCamel();
 System.out.print(c.getNumberOfHumps()); // ???
 } }

The answer is, we don’t know. The reference type for the object is Camel, where the
method is declared public, but the object is actually an instance of type BactrianCamel,
where the method is declared private. Java avoids these types of ambiguity problems by
limiting overriding a method to access modifiers that are as accessible or more accessible
than the version in the inherited method.

Rule #3: Checked Exceptions
The third rule says that overriding a method cannot declare new checked exceptions or
checked exceptions broader than the inherited method. This is done for polymorphic reasons

308  Chapter 6  ■  Class Design

similar to limiting access modifiers. In other words, you could end up with an object that is
more restrictive than the reference type it is assigned to, resulting in a checked exception that
is not handled or declared. One implication of this rule is that overridden methods are free
to declare any number of new unchecked exceptions.

If you don’t know what a checked or unchecked exception is, don’t worry.
We cover this in Chapter 11, “Exceptions and Localization.” For now, you
just need to know that the rule applies only to checked exceptions. It’s also
helpful to know that both IOException and FileNotFoundException
are checked exceptions and that FileNotFoundException is a subclass
of IOException.

Let’s try an example:

public class Reptile {
 protected void sleep() throws IOException {}

 protected void hide() {}

 protected void exitShell() throws FileNotFoundException {}
}

public class GalapagosTortoise extends Reptile {
 public void sleep() throws FileNotFoundException {}

 public void hide() throws FileNotFoundException {} // DOES NOT COMPILE

 public void exitShell() throws IOException {} // DOES NOT COMPILE
}

In this example, we have three overridden methods. These overridden methods use
the more accessible public modifier, which is allowed per our second rule for overrid-
den methods. The first overridden method sleep() in GalapagosTortoise compiles
without issue because the declared exception is narrower than the exception declared in the
parent class.

The overridden hide() method does not compile because it declares a new checked
exception not present in the parent declaration. The overridden exitShell() also does not com-
pile, since IOException is a broader checked exception than FileNotFoundException. We revisit
these exception classes, including memorizing which ones are subclasses of each other, in
Chapter 11.

Inheriting Members  309

Rule #4: Covariant Return Types
The fourth and final rule around overriding a method is probably the most complicated, as
it requires knowing the relationships between the return types. The overriding method must
use a return type that is covariant with the return type of the inherited method.

Let’s try an example for illustrative purposes:

public class Rhino {
 protected CharSequence getName() {
 return "rhino";
 }
 protected String getColor() {
 return "grey, black, or white";
 } }

public class JavanRhino extends Rhino {
 public String getName() {
 return "javan rhino";
 }
 public CharSequence getColor() { // DOES NOT COMPILE
 return "grey";
 } }

The subclass JavanRhino attempts to override two methods from Rhino: getName()
and getColor(). Both overridden methods have the same name and signature as the inher-
ited methods. The overridden methods also have a broader access modifier, public, than
the inherited methods. Remember, a broader access modifier is acceptable in an overrid-
den method.

From Chapter 4, “Core APIs,” we learned that String implements the CharSequence
interface, making String a subtype of CharSequence. Therefore, the return type of
getName() in JavanRhino is covariant with the return type of getName() in Rhino.

On the other hand, the overridden getColor() method does not compile because
CharSequence is not a subtype of String. To put it another way, all String values are
CharSequence values, but not all CharSequence values are String values. For instance, a
StringBuilder is a CharSequence but not a String. For the exam, you need to know if
the return type of the overriding method is the same as or a subtype of the return type of the
inherited method.

A simple test for covariance is the following: given an inherited return
type A and an overriding return type B, can you assign an instance of B
to a reference variable for A without a cast? If so, then they are covariant.
This rule applies to primitive types and object types alike. If one of the
return types is void, then they both must be void, as nothing is covar-
iant with void except itself.

310  Chapter 6  ■  Class Design

That’s everything you need to know about overriding methods for this chapter. In
Chapter 9, “Collections and Generics,” we revisit overriding methods involving generics.
There’s always more to learn!

Marking Methods with the @Override Annotation

An annotation is a metadata tag that provides additional information about your code.
You can use the @Override annotation to tell the compiler that you are attempting to
override a method.

public class Fish {
 public void swim() {};
}
public class Shark extends Fish {
 @Override
 public void swim() {};
}

When used correctly, the annotation doesn’t impact the code. On the other hand, when
used incorrectly, this annotation can prevent you from making a mistake. The following
does not compile because of the presence of the @Override annotation:

public class Fish {
 public void swim() {};
}

public class Shark extends Fish {
 @Override
 public void swim(int speed) {}; // DOES NOT COMPILE
}

The compiler sees that you are attempting a method override and looks for an inherited
version of swim() that takes an int value. Since the compiler doesn’t find one, it reports
an error. While knowing advanced topics (such as how to create annotations) is not required
for the exam, knowing how to use them properly is.

Inheriting Members  311

Redeclaring private Methods
What happens if you try to override a private method? In Java, you can’t override private
methods since they are not inherited. Just because a child class doesn’t have access to the
parent method doesn’t mean the child class can’t define its own version of the method. It
just means, strictly speaking, that the new method is not an overridden version of the parent
class’s method.

Java permits you to redeclare a new method in the child class with the same or modified
signature as the method in the parent class. This method in the child class is a separate and
independent method, unrelated to the parent version’s method, so none of the rules for over-
riding methods is invoked. For example, these two declarations compile:

public class Beetle {
 private String getSize() {
 return "Undefined";
 } }

public class RhinocerosBeetle extends Beetle {
 private int getSize() {
 return 5;
 } }

Notice that the return type differs in the child method from String to int. In this
example, the method getSize() in the parent class is redeclared, so the method in the child
class is a new method and not an override of the method in the parent class.

What if getSize() method was declared public in Beetle? In this case, the method in
RhinocerosBeetle would be an invalid override. The access modifier in RhinocerosBeetle
is more restrictive, and the return types are not covariant.

Hiding Static Methods
A static method cannot be overridden because class objects do not inherit from each other in
the same way as instance objects. On the other hand, they can be hidden. A hidden method
occurs when a child class defines a static method with the same name and signature as an
inherited static method defined in a parent class. Method hiding is similar to but not exactly
the same as method overriding. The previous four rules for overriding a method must be fol-
lowed when a method is hidden. In addition, a new fifth rule is added for hiding a method:

5.	 The method defined in the child class must be marked as static if it is marked as
static in a parent class.

Put simply, it is method hiding if the two methods are marked static and method over-
riding if they are not marked static. If one is marked static and the other is not, the
class will not compile.

312  Chapter 6  ■  Class Design

Let’s review some examples of the new rule:

public class Bear {
 public static void eat() {
 System.out.println("Bear is eating");
 } }

public class Panda extends Bear {
 public static void eat() {
 System.out.println("Panda is chewing");
 }
 public static void main(String[] args) {
 eat();
 } }

In this example, the code compiles and runs. The eat() method in the Panda class hides
the eat() method in the Bear class, printing "Panda is chewing" at runtime. Because
they are both marked as static, this is not considered an overridden method. That said,
there is still some inheritance going on. If you remove the eat() declaration in the Panda
class, then the program prints "Bear is eating" instead.

See if you can figure out why each of the method declarations in the SunBear class does
not compile:

public class Bear {
 public static void sneeze() {
 System.out.println("Bear is sneezing");
 }
 public void hibernate() {
 System.out.println("Bear is hibernating");
 }
 public static void laugh() {
 System.out.println("Bear is laughing");
 }
}

public class SunBear extends Bear {
 public void sneeze() { // DOES NOT COMPILE
 System.out.println("Sun Bear sneezes quietly");
 }
 public static void hibernate() { // DOES NOT COMPILE
 System.out.println("Sun Bear is going to sleep");
 }

Inheriting Members  313

 protected static void laugh() { // DOES NOT COMPILE
 System.out.println("Sun Bear is laughing");
 }
}

In this example, sneeze() is marked static in the parent class but not in the child
class. The compiler detects that you’re trying to override using an instance method. How-
ever, sneeze() is a static method that should be hidden, causing the compiler to generate
an error. The second method, hibernate(), does not compile for the opposite reason. The
method is marked static in the child class but not in the parent class.

Finally, the laugh() method does not compile. Even though both versions of the method
are marked static, the version in SunBear has a more restrictive access modifier than the one it
inherits, and it breaks the second rule for overriding methods. Remember, the four rules for
overriding methods must be followed when hiding static methods.

Hiding Variables
As you saw with method overriding, there are a lot of rules when two methods have the
same signature and are defined in both the parent and child classes. Luckily, the rules for
variables with the same name in the parent and child classes are much simpler. In fact, Java
doesn’t allow variables to be overridden. Variables can be hidden, though.

A hidden variable occurs when a child class defines a variable with the same name as an
inherited variable defined in the parent class. This creates two distinct copies of the variable
within an instance of the child class: one instance defined in the parent class and one defined
in the child class.

As when hiding a static method, you can’t override a variable; you can only hide it. Let’s
take a look at a hidden variable. What do you think the following application prints?

class Carnivore {
 protected boolean hasFur = false;
}

public class Meerkat extends Carnivore {
 protected boolean hasFur = true;

 public static void main(String[] args) {
 Meerkat m = new Meerkat();
 Carnivore c = m;
 System.out.println(m.hasFur); // true
 System.out.println(c.hasFur); // false
 }
}

314  Chapter 6  ■  Class Design

Confused about the output? Both of these classes define a hasFur variable, but with
different values. Even though only one object is created by the main() method, both vari-
ables exist independently of each other. The output changes depending on the reference var-
iable used.

If you didn’t understand the last example, don’t worry. We cover polymorphism in more
detail in the next chapter. For now, you just need to know that overriding a method replaces
the parent method on all reference variables (other than super), whereas hiding a method or
variable replaces the member only if a child reference type is used.

Writing final Methods
We conclude our discussion of method inheritance with a somewhat self-explanatory rule:
final methods cannot be overridden. By marking a method final, you forbid a child class from
replacing this method. This rule is in place both when you override a method and when you
hide a method. In other words, you cannot hide a static method in a child class if it is marked
final in the parent class.

Let’s take a look at an example:

public class Bird {
 public final boolean hasFeathers() {
 return true;
 }
 public final static void flyAway() {}
}

public class Penguin extends Bird {
 public final boolean hasFeathers() { // DOES NOT COMPILE
 return false;
 }
 public final static void flyAway() {} // DOES NOT COMPILE
}

In this example, the instance method hasFeathers() is marked as final in the par-
ent class Bird, so the child class Penguin cannot override the parent method, resulting in
a compiler error. The static method flyAway() is also marked final, so it cannot be
hidden in the subclass. In this example, whether or not the child method uses the final key-
word is irrelevant—the code will not compile either way.

This rule applies only to inherited methods. For example, if the two methods were
marked private in the parent Bird class, then the Penguin class, as defined, would compile. In
that case, the private methods would be redeclared, not overridden or hidden.

Creating Abstract Classes  315

Creating Abstract Classes
When designing a model, we sometimes want to create an entity that cannot be instantiated
directly. For example, imagine that we have a Canine class with subclasses Wolf, Fox, and
Coyote. We want other developers to be able to create instances of the subclasses, but per-
haps we don’t want them to be able to create a Canine instance. In other words, we want to
force all objects of Canine to have a particular type at runtime.

Introducing Abstract Classes
Enter abstract classes. An abstract class is a class declared with the abstract modifier that
cannot be instantiated directly and may contain abstract methods. Let’s take a look at an
example based on the Canine data model:

public abstract class Canine {}

public class Wolf extends Canine {}

public class Fox extends Canine {}

public class Coyote extends Canine {}

In this example, other developers can create instances of Wolf, Fox, or Coyote, but not
Canine. Sure, they can pass a variable reference as a Canine, but the underlying object must
be a subclass of Canine at runtime.

But wait, there’s more! An abstract class can contain abstract methods. An abstract
method is a method declared with the abstract modifier that does not define a body. Put
another way, an abstract method forces subclasses to override the method.

Why would we want this? Polymorphism, of course! By declaring a method abstract, we
can guarantee that some version will be available on an instance without having to specify
what that version is in the abstract parent class.

public abstract class Canine {
 public abstract String getSound();
 public void bark() { System.out.println(getSound()); }
}

public class Wolf extends Canine {
 public String getSound() {
 return "Wooooooof!";
 } }

316  Chapter 6  ■  Class Design

public class Fox extends Canine {
 public String getSound() {
 return "Squeak!";
 } }

public class Coyote extends Canine {
 public String getSound() {
 return "Roar!";
 } }

We can then create an instance of Fox and assign it to the parent type Canine. The over-
ridden method will be used at runtime.

public static void main(String[] p) {
 Canine w = new Fox();
 w.bark(); // Squeak!
}

Easy so far. But there are some rules you need to be aware of:

■■ Only instance methods can be marked abstract within a class, not variables, construc-
tors, or static methods.

■■ An abstract method can only be declared in an abstract class.

■■ A non-abstract class that extends an abstract class must implement all inherited
abstract methods.

■■ Overriding an abstract method follows the existing rules for overriding methods that
you learned about earlier in the chapter.

Let’s see if you can spot why each of these class declarations does not compile:

public class FennecFox extends Canine {
 public int getSound() {
 return 10;
 } }

public class ArcticFox extends Canine {}

public class Direwolf extends Canine {
 public abstract rest();
 public String getSound() {
 return "Roof!";
 } }

Creating Abstract Classes  317

public class Jackal extends Canine {
 public abstract String name;
 public String getSound() {
 return "Laugh";
 } }

First off, the FennecFox class does not compile because it is an invalid method override.
In particular, the return types are not covariant. The ArcticFox class does not compile
because it does not override the abstract getSound() method. The Direwolf class does
not compile because it is not abstract but declares an abstract method rest(). Finally, the
Jackal class does not compile because variables cannot be marked abstract.

An abstract class is most commonly used when you want another class to inherit properties
of a particular class, but you want the subclass to fill in some of the implementation details.

Earlier, we said that an abstract class is one that cannot be instantiated. This means that if
you attempt to instantiate it, the compiler will report an exception, as in this example:

abstract class Alligator {
 public static void main(String... food) {
 var a = new Alligator(); // DOES NOT COMPILE
 }
}

An abstract class can be initialized, but only as part of the instantiation of a non-
abstract subclass.

Declaring Abstract Methods
An abstract method is always declared without a body. It also includes a semicolon (;) after
the method declaration. As you saw in the previous example, an abstract class may include
non-abstract methods, in this case with the bark() method. In fact, an abstract class can
include all of the same members as a non-abstract class, including variables, static and in-
stance methods, constructors, etc.

It might surprise you to know that an abstract class is not required to include any
abstract methods. For example, the following code compiles even though it doesn’t define
any abstract methods:

public abstract class Llama {
 public void chew() {}
}

Even without abstract methods, the class cannot be directly instantiated. For the exam,
keep an eye out for abstract methods declared outside abstract classes, such as the following:

public class Egret { // DOES NOT COMPILE
 public abstract void peck();
}

318  Chapter 6  ■  Class Design

The exam creators like to include invalid class declarations, mixing non-abstract classes
with abstract methods.

Like the final modifier, the abstract modifier can be placed before or after the access
modifier in class and method declarations, as shown in this Tiger class:

abstract public class Tiger {
 abstract public int claw();
}

The abstract modifier cannot be placed after the class keyword in a class declaration
or after the return type in a method declaration. The following Bear and howl() declara-
tions do not compile for these reasons:

public class abstract Bear { // DOES NOT COMPILE
 public int abstract howl(); // DOES NOT COMPILE
}

It is not possible to define an abstract method that has a body or default
implementation. You can still define a default method with a body—you
just can’t mark it as abstract. As long as you do not mark the method as
final, the subclass has the option to override the inherited method.

Creating a Concrete Class
An abstract class becomes usable when it is extended by a concrete subclass. A concrete class
is a non-abstract class. The first concrete subclass that extends an abstract class is required to
implement all inherited abstract methods. This includes implementing any inherited abstract
methods from inherited interfaces, as you see in the next chapter.

When you see a concrete class extending an abstract class on the exam, check to make
sure that it implements all of the required abstract methods. Can you see why the following
Walrus class does not compile?

public abstract class Animal {
 public abstract String getName();
}

public class Walrus extends Animal {} // DOES NOT COMPILE

In this example, we see that Animal is marked as abstract and Walrus is not, making
Walrus a concrete subclass of Animal. Since Walrus is the first concrete subclass, it must
implement all inherited abstract methods—getName() in this example. Because it doesn’t,
the compiler reports an error with the declaration of Walrus.

We highlight the first concrete subclass for a reason. An abstract class can extend a non-
abstract class and vice versa. Anytime a concrete class is extending an abstract class, it must

Creating Abstract Classes  319

implement all of the methods that are inherited as abstract. Let’s illustrate this with a set of
inherited classes:

public abstract class Mammal {
 abstract void showHorn();
 abstract void eatLeaf();
}

public abstract class Rhino extends Mammal {
 void showHorn() {} // Inherited from Mammal
}

public class BlackRhino extends Rhino {
 void eatLeaf() {} // Inherited from Mammal
}

In this example, the BlackRhino class is the first concrete subclass, while the Mammal
and Rhino classes are abstract. The BlackRhino class inherits the eatLeaf() method as
abstract and is therefore required to provide an implementation, which it does.

What about the showHorn() method? Since the parent class, Rhino, provides an implemen-
tation of showHorn(), the method is inherited in the BlackRhino as a non-abstract method.
For this reason, the BlackRhino class is permitted but not required to override the showHorn()
method. The three classes in this example are correctly defined and compile.

What if we changed the Rhino declaration to remove the abstract modifier?

public class Rhino extends Mammal { // DOES NOT COMPILE
 void showHorn() {}
}

By changing Rhino to a concrete class, it becomes the first non-abstract class to extend
the abstract Mammal class. Therefore, it must provide an implementation of both the
showHorn() and eatLeaf() methods. Since it only provides one of these methods, the
modified Rhino declaration does not compile.

Let’s try one more example. The following concrete class Lion inherits two abstract
methods, getName() and roar():

public abstract class Animal {
 abstract String getName();
}

public abstract class BigCat extends Animal {
 protected abstract void roar();
}

320  Chapter 6  ■  Class Design

public class Lion extends BigCat {
 public String getName() {
 return "Lion";
 }
 public void roar() {
 System.out.println("The Lion lets out a loud ROAR!");
 }
}

In this sample code, BigCat extends Animal but is marked as abstract; therefore, it
is not required to provide an implementation for the getName() method. The class Lion
is not marked as abstract, and as the first concrete subclass, it must implement all of the
inherited abstract methods not defined in a parent class. All three of these classes compile
successfully.

Creating Constructors in Abstract Classes
Even though abstract classes cannot be instantiated, they are still initialized through con-
structors by their subclasses. For example, consider the following program:

abstract class Mammal {
 abstract CharSequence chew();
 public Mammal() {
 System.out.println(chew()); // Does this line compile?
 }
}

public class Platypus extends Mammal {
 String chew() { return "yummy!"; }
 public static void main(String[] args) {
 new Platypus();
 }
}

Using the constructor rules you learned about earlier in this chapter, the compiler inserts
a default no-argument constructor into the Platypus class, which first calls super() in the
Mammal class. The Mammal constructor is only called when the abstract class is being initial-
ized through a subclass; therefore, there is an implementation of chew() at the time the con-
structor is called. This code compiles and prints yummy! at runtime.

For the exam, remember that abstract classes are initialized with constructors in the same
way as non-abstract classes. For example, if an abstract class does not provide a constructor,
the compiler will automatically insert a default no-argument constructor.

Creating Abstract Classes  321

The primary difference between a constructor in an abstract class and a non-abstract class
is that a constructor in an abstract class can be called only when it is being initialized by a
non-abstract subclass. This makes sense, as abstract classes cannot be instantiated.

Spotting Invalid Declarations
We conclude our discussion of abstract classes with a review of potential issues you’re more
likely to encounter on the exam than in real life. The exam writers are fond of questions
with methods marked as abstract for which an implementation is also defined. For example,
can you see why each of the following methods does not compile?

public abstract class Turtle {
 public abstract long eat() // DOES NOT COMPILE
 public abstract void swim() {}; // DOES NOT COMPILE
 public abstract int getAge() { // DOES NOT COMPILE
 return 10;
 }
 public abstract void sleep; // DOES NOT COMPILE
 public void goInShell(); // DOES NOT COMPILE
}

The first method, eat(), does not compile because it is marked abstract but does not
end with a semicolon (;). The next two methods, swim() and getAge(), do not compile
because they are marked abstract, but they provide an implementation block enclosed
in braces ({}). For the exam, remember that an abstract method declaration must end in
a semicolon without any braces. The next method, sleep, does not compile because it is
missing parentheses, (), for method arguments. The last method, goInShell(), does not
compile because it is not marked abstract and therefore must provide a body enclosed
in braces.

Make sure you understand why each of the previous methods does not compile and that
you can spot errors like these on the exam. If you come across a question on the exam in
which a class or method is marked abstract, make sure the class is properly implemented
before attempting to solve the problem.

abstract and final Modifiers
What would happen if you marked a class or method both abstract and final? If you mark
something abstract, you intend for someone else to extend or implement it. But if you mark
something final, you are preventing anyone from extending or implementing it. These con-
cepts are in direct conflict with each other.

Due to this incompatibility, Java does not permit a class or method to be marked both
abstract and final. For example, the following code snippet will not compile:

public abstract final class Tortoise { // DOES NOT COMPILE
 public abstract final void walk(); // DOES NOT COMPILE
}

322  Chapter 6  ■  Class Design

In this example, neither the class nor the method declarations will compile because
they are marked both abstract and final. The exam doesn’t tend to use final modi-
fiers on classes or methods often, so if you see them, make sure they aren’t used with the
abstract modifier.

abstract and private Modifiers
A method cannot be marked as both abstract and private. This rule makes sense if you think
about it. How would you define a subclass that implements a required method if the method
is not inherited by the subclass? The answer is that you can’t, which is why the compiler will
complain if you try to do the following:

public abstract class Whale {
 private abstract void sing(); // DOES NOT COMPILE
}

public class HumpbackWhale extends Whale {
 private void sing() {
 System.out.println("Humpback whale is singing");
 } }

In this example, the abstract method sing() defined in the parent class Whale is not
visible to the subclass HumpbackWhale. Even though HumpbackWhale does provide an
implementation, it is not considered an override of the abstract method since the abstract
method is not inherited. The compiler recognizes this in the parent class and reports an error
as soon as private and abstract are applied to the same method.

While it is not possible to declare a method abstract and private, it is
possible (albeit redundant) to declare a method final and private.

If we changed the access modifier from private to protected in the parent class
Whale, would the code compile?

public abstract class Whale {
 protected abstract void sing();
}

public class HumpbackWhale extends Whale {
 private void sing() { // DOES NOT COMPILE
 System.out.println("Humpback whale is singing");
 }
}

In this modified example, the code will still not compile, but for a completely different
reason. If you remember the rules for overriding a method, the subclass cannot reduce the

Creating Immutable Objects  323

visibility of the parent method, sing(). Because the method is declared protected in
the parent class, it must be marked as protected or public in the child class. Even with
abstract methods, the rules for overriding methods must be followed.

abstract and static Modifiers
As we discussed earlier in the chapter, a static method can only be hidden, not overridden. It
is defined as belonging to the class, not an instance of the class. If a static method cannot be
overridden, then it follows that it also cannot be marked abstract since it can never be imple-
mented. For example, the following class does not compile:

abstract class Hippopotamus {
 abstract static void swim(); // DOES NOT COMPILE
}

For the exam, make sure you know which modifiers can and cannot be used with one
another, especially for abstract classes and interfaces.

Creating Immutable Objects
As you might remember from Chapter 4, an immutable object is one that cannot change
state after it is created. The immutable objects pattern is an object-oriented design pattern in
which an object cannot be modified after it is created.

Immutable objects are helpful when writing secure code because you don’t have to worry
about the values changing. They also simplify code when dealing with concurrency since
immutable objects can be easily shared between multiple threads.

Declaring an Immutable Class
Although there are a variety of techniques for writing an immutable class, you should be
familiar with a common strategy for making a class immutable:

1.	 Mark the class as final or make all of the constructors private.

2.	 Mark all the instance variables private and final.

3.	 Don’t define any setter methods.

4.	 Don’t allow referenced mutable objects to be modified.

5.	 Use a constructor to set all properties of the object, making a copy if needed.

The first rule prevents anyone from creating a mutable subclass. The second and third
rules ensure that callers don’t make changes to instance variables and are the hallmarks of
good encapsulation, a topic we discuss along with records in Chapter 7.

324  Chapter 6  ■  Class Design

The fourth rule for creating immutable objects is subtle. Basically, it means you shouldn’t
expose an accessor (or getter) method for mutable instance fields. Can you see why the fol-
lowing creates a mutable object?

import java.util.*;
public final class Animal { // Not an immutable object declaration
 private final ArrayList<String> favoriteFoods;

 public Animal() {
 this.favoriteFoods = new ArrayList<String>();
 this.favoriteFoods.add("Apples");
 }

 public List<String> getFavoriteFoods() {
 return favoriteFoods;
 } }

We carefully followed the first three rules, but unfortunately, a malicious caller could still
modify our data:

var zebra = new Animal();
System.out.println(zebra.getFavoriteFoods()); // [Apples]

zebra.getFavoriteFoods().clear();
zebra.getFavoriteFoods().add("Chocolate Chip Cookies");
System.out.println(zebra.getFavoriteFoods()); // [Chocolate Chip Cookies]

Oh no! Zebras should not eat Chocolate Chip Cookies! It’s not an immutable object
if we can change its contents! If we don’t have a getter for the favoriteFoods object, how
do callers access it? Simple: by using delegate or wrapper methods to read the data.

import java.util.*;
public final class Animal { // An immutable object declaration
 private final List<String> favoriteFoods;

 public Animal() {
 this.favoriteFoods = new ArrayList<String>();
 this.favoriteFoods.add("Apples");
 }

 public int getFavoriteFoodsCount() {
 return favoriteFoods.size();
 }

Creating Immutable Objects  325

 public String getFavoriteFoodsItem(int index) {
 return favoriteFoods.get(index);
 } }

In this improved version, the data is still available. However, it is a true immutable object
because the mutable variable cannot be modified by the caller.

Copy on Read Accessor Methods

Besides delegating access to any private mutable objects, another approach is to make a
copy of the mutable object any time it is requested.

 public ArrayList<String> getFavoriteFoods() {
 return new ArrayList<String>(this.favoriteFoods);
 }

Of course, changes in the copy won’t be reflected in the original, but at least the original is
protected from external changes. This can be an expensive operation if called frequently by
the caller.

Performing a Defensive Copy
So, what’s this about the fifth and final rule for creating immutable objects? In designing our
class, let’s say we want a rule that the data for favoriteFoods is provided by the caller and that
it always contains at least one element. This rule is often called an invariant; it is true any
time we have an instance of the object.

import java.util.*;
public final class Animal { // Not an immutable object declaration
 private final ArrayList<String> favoriteFoods;

 public Animal(ArrayList<String> favoriteFoods) {
 if (favoriteFoods == null || favoriteFoods.size() == 0)
 throw new RuntimeException("favoriteFoods is required");
 this.favoriteFoods = favoriteFoods;
 }

 public int getFavoriteFoodsCount() {
 return favoriteFoods.size();
 }

326  Chapter 6  ■  Class Design

 public String getFavoriteFoodsItem(int index) {
 return favoriteFoods.get(index);
 } }

To ensure that favoriteFoods is provided, we validate it in the constructor and throw
an exception if it is not provided. So is this immutable? Not quite! A malicious caller might
be tricky and keep their own secret reference to our favoriteFoods object, which they can
modify directly.

var favorites = new ArrayList<String>();
favorites.add("Apples");

var zebra = new Animal(favorites); // Caller still has access to favorites
System.out.println(zebra.getFavoriteFoodsItem(0)); // [Apples]

favorites.clear();
favorites.add("Chocolate Chip Cookies");
System.out.println(zebra.getFavoriteFoodsItem(0)); // [Chocolate Chip Cookies]

Whoops! It seems like Animal is not immutable anymore, since its contents can
change after it is created. The solution is to make a copy of the list object containing the
same elements.

 public Animal(List<String> favoriteFoods) {
 if (favoriteFoods == null || favoriteFoods.size() == 0)
 throw new RuntimeException("favoriteFoods is required");
 this.favoriteFoods = new ArrayList<String>(favoriteFoods);
 }

The copy operation is called a defensive copy because the copy is being made in case
other code does something unexpected. It’s the same idea as defensive driving: prevent a
problem before it exists. With this approach, our Animal class is once again immutable.

Summary
This chapter took the basic class structures we’ve presented throughout the book and
expanded them by introducing the notion of inheritance. Java classes follow a single-
inheritance pattern in which every class has exactly one direct parent class, with all classes
eventually inheriting from java.lang.Object.

Inheriting a class gives you access to all of the public and protected members of
the class. It also gives you access to package members of the class if the classes are in the
same package. All instance methods, constructors, and instance initializers have access to
two special reference variables: this and super. Both this and super provide access to

Exam Essentials  327

all inherited members, with only this providing access to all members in the current class
declaration.

Constructors are special methods that use the class name and do not have a return type.
They are used to instantiate new objects. Declaring constructors requires following a number
of important rules. If no constructor is provided, the compiler will automatically insert a
default no-argument constructor in the class. The first line of every constructor is a call to
an overloaded constructor, this(), or a parent constructor, super(); otherwise, the compiler
will insert a call to super() as the first line of the constructor. In some cases, such as if the
parent class does not define a no-argument constructor, this can lead to compilation errors.
Pay close attention on the exam to any class that defines a constructor with arguments and
doesn’t define a no-argument constructor.

Classes are initialized in a predetermined order: superclass initialization; static variables
and static initializers in the order that they appear; instance variables and instance initial-
izers in the order they appear; and finally, the constructor. All final instance variables must be
assigned a value exactly once.

We reviewed overloaded, overridden, hidden, and redeclared methods and showed how
they differ. A method is overloaded if it has the same name but a different signature as
another accessible method. A method is overridden if it has the same signature as an inher-
ited method, with access modifiers, exceptions, and a return type that are compatible. A
static method is hidden if it has the same signature as an inherited static method. Finally, a
method is redeclared if it has the same name and possibly the same signature as an uninher-
ited method.

We then moved on to abstract classes, which are just like regular classes except that they
cannot be instantiated and may contain abstract methods. An abstract class can extend a
non-abstract class and vice versa. Abstract classes can be used to define a framework that
other developers write subclasses against. An abstract method is one that does not include a
body when it is declared. An abstract method can only be placed inside an abstract class or
interface. Next, an abstract method can be overridden with another abstract declaration or
a concrete implementation, provided the rules for overriding methods are followed. The first
concrete class must implement all of the inherited abstract methods, whether they are inher-
ited from an abstract class or an interface.

Finally, this chapter showed you how to create immutable objects in Java. Although there
are a number of different techniques to do so, we included the most common one you should
know for the exam. Immutable objects are extremely useful in practice, especially in multi-
threaded applications, since they do not change.

Exam Essentials
Be able to write code that extends other classes.   A Java class that extends another class
inherits all of its public and protected methods and variables. If the class is in the same
package, it also inherits all package members of the class. Classes that are marked final
cannot be extended. Finally, all classes in Java extend java.lang.Object either directly or
from a superclass.

328  Chapter 6  ■  Class Design

Be able to distinguish and use this, this(), super, and super().   To access a current or
inherited member of a class, the this reference can be used. To access an inherited
member, the super reference can be used. The super reference is often used to reduce
ambiguity, such as when a class reuses the name of an inherited method or variable. The
calls to this() and super() are used to access constructors in the same class and par-
ent class, respectively.

Evaluate code involving constructors.   The first line of every constructor is a call to
another constructor within the class using this() or a call to a constructor of the par-
ent class using the super() call. The compiler will insert a call to super() if no con-
structor call is declared. If the parent class doesn’t contain a no-argument constructor,
an explicit call to the parent constructor must be provided. Be able to recognize when
the default constructor is provided. Remember that the order of initialization is to ini-
tialize all classes in the class hierarchy, starting with the superclass. Then the instances
are initialized, again starting with the superclass. All final variables must be assigned a
value exactly once by the time the constructor is finished.

Understand the rules for method overriding.   Java allows methods to be overridden, or
replaced, by a subclass if certain rules are followed: a method must have the same signa-
ture, be at least as accessible as the parent method, must not declare any new or broader
exceptions, and must use covariant return types. Methods marked final may not be
overridden or hidden.

Recognize the difference between method overriding and method overloading.   Both
method overloading and overriding involve creating a new method with the same
name as an existing method. When the method signature is the same, it is referred to
as method overriding and must follow a specific set of override rules to compile. When
the method signature is different, with the method taking different inputs, it is referred
to as method overloading, and none of the override rules are required. Method over-
riding is important to polymorphism because it replaces all calls to the method, even
those made in a superclass.

Understand the rules for hiding methods and variables.   When a static method is
overridden in a subclass, it is referred to as method hiding. Likewise, variable hiding is
when an inherited variable name is reused in a subclass. In both situations, the original
method or variable still exists and is accessible depending on where it is accessed and
the reference type used. For method hiding, the use of static in the method declaration
must be the same between the parent and child class. Finally, variable and method hid-
ing should generally be avoided since it leads to confusing and difficult-to-follow code.

Be able to write code that creates and extends abstract classes.   In Java, classes and
methods can be declared as abstract. An abstract class cannot be instantiated. An in-
stance of an abstract class can be obtained only through a concrete subclass. Abstract
classes can include any number of abstract and non-abstract methods, including zero.

Exam Essentials  329

Abstract methods follow all the method override rules and may be defined only within
abstract classes. The first concrete subclass of an abstract class must implement all the
inherited methods. Abstract classes and methods may not be marked as final.

Create immutable objects.   An immutable object is one that cannot be modified after it
is declared. An immutable class is commonly implemented with a private constructor,
no setter methods, and no ability to modify mutable objects contained within the class.

330  Chapter 6  ■  Class Design

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which code can be inserted to have the code print 2?

public class BirdSeed {
 private int numberBags;
 boolean call;

 public BirdSeed() {
 // LINE 1
 call = false;
 // LINE 2
 }

 public BirdSeed(int numberBags) {
 this.numberBags = numberBags;
 }

 public static void main(String[] args) {
 var seed = new BirdSeed();
 System.out.print(seed.numberBags);
 } }

A.	 Replace line 1 with BirdSeed(2);.

B.	 Replace line 2 with BirdSeed(2);.

C.	 Replace line 1 with new BirdSeed(2);.

D.	 Replace line 2 with new BirdSeed(2);.

E.	 Replace line 1 with this(2);.

F.	 Replace line 2 with this(2);.

G.	 The code prints 2 without any changes.

2.	 Which modifier pairs can be used together in a method declaration? (Choose all that apply.)

A.	 static and final
B.	 private and static
C.	 static and abstract
D.	 private and abstract
E.	 abstract and final
F.	 private and final

Review Questions  331

3.	 Which of the following statements about methods are true? (Choose all that apply.)

A.	 Overloaded methods must have the same signature.

B.	 Overridden methods must have the same signature.

C.	 Hidden methods must have the same signature.

D.	 Overloaded methods must have the same return type.

E.	 Overridden methods must have the same return type.

F.	 Hidden methods must have the same return type.

4.	 What is the output of the following program?

1: class Mammal {
2: private void sneeze() {}
3: public Mammal(int age) {
4: System.out.print("Mammal");
5: } }
6: public class Platypus extends Mammal {
7: int sneeze() { return 1; }
8: public Platypus() {
9: System.out.print("Platypus");
10: }
11: public static void main(String[] args) {
12: new Mammal(5);
13: } }

A.	 Platypus
B.	 Mammal
C.	 PlatypusMammal
D.	 MammalPlatypus
E.	 The code will compile if line 7 is changed.

F.	 The code will compile if line 9 is changed.

5.	 Which of the following complete the constructor so that this code prints out 50? (Choose all
that apply.)

class Speedster {
 int numSpots;
}
public class Cheetah extends Speedster {
 int numSpots;

 public Cheetah(int numSpots) {
 // INSERT CODE HERE
 }

332  Chapter 6  ■  Class Design

 public static void main(String[] args) {
 Speedster s = new Cheetah(50);
 System.out.print(s.numSpots);
 }
}

A.	 numSpots = numSpots;
B.	 numSpots = this.numSpots;
C.	 this.numSpots = numSpots;
D.	 numSpots = super.numSpots;
E.	 super.numSpots = numSpots;
F.	 The code does not compile regardless of the code inserted into the constructor.

G.	 None of the above

6.	 Which of the following declare immutable classes? (Choose all that apply.)

public final class Moose {
 private final int antlers;
}

public class Caribou {
 private int antlers = 10;
}

public class Reindeer {
 private final int antlers = 5;
}

public final class Elk {}

public final class Deer {
 private final Object o = new Object();
}

A.	 Moose
B.	 Caribou
C.	 Reindeer
D.	 Elk
E.	 Deer
F.	 None of the above

Review Questions  333

7.	 What is the output of the following code?

1: class Arthropod {
2: protected void printName(long input) {
3: System.out.print("Arthropod");
4: }
5: void printName(int input) {
6: System.out.print("Spooky");
7: } }
8: public class Spider extends Arthropod {
9: protected void printName(int input) {
10: System.out.print("Spider");
11: }
12: public static void main(String[] args) {
13: Arthropod a = new Spider();
14: a.printName((short)4);
15: a.printName(4);
16: a.printName(5L);
17: } }

A.	 SpiderSpiderArthropod
B.	 SpiderSpiderSpider
C.	 SpiderSpookyArthropod
D.	 SpookySpiderArthropod
E.	 The code will not compile because of line 5.

F.	 The code will not compile because of line 9.

G.	 None of the above

8.	 What is the result of the following code?

1: abstract class Bird {
2: private final void fly() { System.out.println("Bird"); }
3: protected Bird() { System.out.print("Wow-"); }
4: }
5: public class Pelican extends Bird {
6: public Pelican() { System.out.print("Oh-"); }
7: protected void fly() { System.out.println("Pelican"); }
8: public static void main(String[] args) {
9: var chirp = new Pelican();
10: chirp.fly();
11: } }

334  Chapter 6  ■  Class Design

A.	 Oh-Bird
B.	 Oh-Pelican
C.	 Wow-Oh-Bird
D.	 Wow-Oh-Pelican
E.	 The code contains a compilation error.

F.	 None of the above

9.	 Which of the following statements about overridden methods are true? (Choose all
that apply.)

A.	 An overridden method must contain method parameters that are the same or covariant
with the method parameters in the inherited method.

B.	 An overridden method may declare a new exception, provided it is not checked.

C.	 An overridden method must be more accessible than the method in the parent class.

D.	 An overridden method may declare a broader checked exception than the method in the
parent class.

E.	 If an inherited method returns void, then the overridden version of the method must
return void.

F.	 None of the above

10.	 Which of the following pairs, when inserted into the blanks, allow the code to compile?
(Choose all that apply.)

1: public class Howler {
2: public Howler(long shadow) {
3: ;
4: }
5: private Howler(int moon) {
6: super();
7: }
8: }
9: class Wolf extends Howler {
10: protected Wolf(String stars) {
11: super(2L);
12: }
13: public Wolf() {
14: ;
15: }
16: }

A.	 this(3) at line 3, this("") at line 14

B.	 this() at line 3, super(1) at line 14

C.	 this((short)1) at line 3, this(null) at line 14

D.	 super() at line 3, super() at line 14

Review Questions  335

E.	 this(2L) at line 3, super((short)2) at line 14

F.	 this(5) at line 3, super(null) at line 14

G.	 Remove lines 3 and 14.

11.	 What is the result of the following?

1: public class PolarBear {
2: StringBuilder value = new StringBuilder("t");
3: { value.append("a"); }
4: { value.append("c"); }
5: private PolarBear() {
6: value.append("b");
7: }
8: public PolarBear(String s) {
9: this();
10: value.append(s);
11: }
12: public PolarBear(CharSequence p) {
13: value.append(p);
14: }
15: public static void main(String[] args) {
16: Object bear = new PolarBear();
17: bear = new PolarBear("f");
18: System.out.println(((PolarBear)bear).value);
19: } }

A.	 tacb
B.	 tacf
C.	 tacbf
D.	 tcafb
E.	 taftacb
F.	 The code does not compile.

G.	 An exception is thrown.

12.	 How many lines of the following program contain a compilation error?

1: public class Rodent {
2: public Rodent(Integer x) {}
3: protected static Integer chew() throws Exception {
4: System.out.println("Rodent is chewing");
5: return 1;
6: }

336  Chapter 6  ■  Class Design

7: }
8: class Beaver extends Rodent {
9: public Number chew() throws RuntimeException {
10: System.out.println("Beaver is chewing on wood");
11: return 2;
12: } }

A.	 None

B.	 1

C.	 2

D.	 3

E.	 4

F.	 5

13.	 Which of these classes compile and will include a default constructor created by the
compiler? (Choose all that apply.)

A.	
public class Bird {}
B.	

public class Bird {
 public bird() {}
}
C.	

public class Bird {
 public bird(String name) {}
}
D.	

public class Bird {
 public Bird() {}
}
E.	

public class Bird {
 Bird(String name) {}
}
F.	

public class Bird {
 private Bird(int age) {}
}

Review Questions  337

G.	

public class Bird {
 public Bird bird() { return null; }
}

14.	 Which of the following statements about inheritance are correct? (Choose all that apply.)

A.	 A class can directly extend any number of classes.

B.	 A class can implement any number of interfaces.

C.	 All variables inherit java.lang.Object.

D.	 If class A is extended by B, then B is a superclass of A.

E.	 If class C implements interface D, then C is a subtype of D.

F.	 Multiple inheritance is the property of a class to have multiple direct superclasses.

15.	 Which statements about the following program are correct? (Choose all that apply.)

1: abstract class Nocturnal {
2: boolean isBlind();
3: }
4: public class Owl extends Nocturnal {
5: public boolean isBlind() { return false; }
6: public static void main(String[] args) {
7: var nocturnal = (Nocturnal)new Owl();
8: System.out.println(nocturnal.isBlind());
9: } }

A.	 It compiles and prints true.

B.	 It compiles and prints false.

C.	 The code will not compile because of line 2.

D.	 The code will not compile because of line 5.

E.	 The code will not compile because of line 7.

F.	 The code will not compile because of line 8.

G.	 None of the above

16.	 What is the result of the following?

1: class Arachnid {
2: static StringBuilder sb = new StringBuilder();
3: { sb.append("c"); }
4: static
5: { sb.append("u"); }
6: { sb.append("r"); }
7: }

338  Chapter 6  ■  Class Design

8: public class Scorpion extends Arachnid {
9: static
10: { sb.append("q"); }
11: { sb.append("m"); }
12: public static void main(String[] args) {
13: System.out.print(Scorpion.sb + " ");
14: System.out.print(Scorpion.sb + " ");
15: new Arachnid();
16: new Scorpion();
17: System.out.print(Scorpion.sb);
18: } }

A.	 qu qu qumrcrc
B.	 u u ucrcrm
C.	 uq uq uqmcrcr
D.	 uq uq uqcrcrm
E.	 qu qu qumcrcr
F.	 qu qu qucrcrm
G.	 The code does not compile.

17.	 Which of the following are true? (Choose all that apply.)

A.	 this() can be called from anywhere in a constructor.

B.	 this() can be called from anywhere in an instance method.

C.	 this.variableName can be called from any instance method in the class.

D.	 this.variableName can be called from any static method in the class.

E.	 You can call the default constructor written by the compiler using this().

F.	 You can access a private constructor with the main() method in the same class.

18.	 Which statements about the following classes are correct? (Choose all that apply.)

1: public class Mammal {
2: private void eat() {}
3: protected static void drink() {}
4: public Integer dance(String p) { return null; }
5: }
6: class Primate extends Mammal {
7: public void eat(String p) {}
8: }
9: class Monkey extends Primate {

Review Questions  339

10: public static void drink() throws RuntimeException {}
11: public Number dance(CharSequence p) { return null; }
12: public int eat(String p) {}
13: }

A.	 The eat() method in Mammal is correctly overridden on line 7.

B.	 The eat() method in Mammal is correctly overloaded on line 7.

C.	 The drink() method in Mammal is correctly overridden on line 10.

D.	 The drink() method in Mammal is correctly hidden on line 10.

E.	 The dance() method in Mammal is correctly overridden on line 11.

F.	 The dance() method in Mammal is correctly overloaded on line 11.

G.	 The eat() method in Primate is correctly hidden on line 12.

H.	 The eat() method in Primate is correctly overloaded on line 12.

19.	 What is the output of the following code?

1: class Reptile {
2: {System.out.print("A");}
3: public Reptile(int hatch) {}
4: void layEggs() {
5: System.out.print("Reptile");
6: } }
7: public class Lizard extends Reptile {
8: static {System.out.print("B");}
9: public Lizard(int hatch) {}
10: public final void layEggs() {
11: System.out.print("Lizard");
12: }
13: public static void main(String[] args) {
14: var reptile = new Lizard(1);
15: reptile.layEggs();
16: } }

A.	 AALizard
B.	 BALizard
C.	 BLizardA
D.	 ALizard
E.	 The code will not compile because of line 3.

F.	 None of the above

340  Chapter 6  ■  Class Design

20.	 Which statement about the following program is correct?

1: class Bird {
2: int feathers = 0;
3: Bird(int x) { this.feathers = x; }
4: Bird fly() {
5: return new Bird(1);
6: } }
7: class Parrot extends Bird {
8: protected Parrot(int y) { super(y); }
9: protected Parrot fly() {
10: return new Parrot(2);
11: } }
12: public class Macaw extends Parrot {
13: public Macaw(int z) { super(z); }
14: public Macaw fly() {
15: return new Macaw(3);
16: }
17: public static void main(String... sing) {
18: Bird p = new Macaw(4);
19: System.out.print(((Parrot)p.fly()).feathers);
20: } }

A.	 One line contains a compiler error.

B.	 Two lines contain compiler errors.

C.	 Three lines contain compiler errors.

D.	 The code compiles but throws a ClassCastException at runtime.

E.	 The program compiles and prints 3.

F.	 The program compiles and prints 0.

21.	 Which of the following are properties of immutable classes? (Choose all that apply.)

A.	 The class can contain setter methods, provided they are marked final.

B.	 The class must not be able to be extended outside the class declaration.

C.	 The class may not contain any instance variables.

D.	 The class must be marked static.

E.	 The class may not contain any static variables.

F.	 The class may only contain private constructors.

G.	 The data for mutable instance variables may be read, provided they cannot be modified
by the caller.

Review Questions  341

22.	 What does the following program print?

1: class Person {
2: static String name;
3: void setName(String q) { name = q; } }
4: public class Child extends Person {
5: static String name;
6: void setName(String w) { name = w; }
7: public static void main(String[] p) {
8: final Child m = new Child();
9: final Person t = m;
10: m.name = "Elysia";
11: t.name = "Sophia";
12: m.setName("Webby");
13: t.setName("Olivia");
14: System.out.println(m.name + " " + t.name);
15: } }

A.	 Elysia Sophia
B.	 Webby Olivia
C.	 Olivia Olivia
D.	 Olivia Sophia
E.	 The code does not compile.

F.	 None of the above

23.	 What is the output of the following program?

1: class Canine {
2: public Canine(boolean t) { logger.append("a"); }
3: public Canine() { logger.append("q"); }
4:
5: private StringBuilder logger = new StringBuilder();
6: protected void print(String v) { logger.append(v); }
7: protected String view() { return logger.toString(); }
8: }
9:
10: class Fox extends Canine {
11: public Fox(long x) { print("p"); }
12: public Fox(String name) {
13: this(2);
14: print("z");
15: }

342  Chapter 6  ■  Class Design

16: }
17:
18: public class Fennec extends Fox {
19: public Fennec(int e) {
20: super("tails");
21: print("j");
22: }
23: public Fennec(short f) {
24: super("eevee");
25: print("m");
26: }
27:
28: public static void main(String... unused) {
29: System.out.println(new Fennec(1).view());
30: } }

A.	 qpz
B.	 qpzj
C.	 jzpa
D.	 apj
E.	 apjm
F.	 The code does not compile.

G.	 None of the above

24.	 What is printed by the following program?

1: class Antelope {
2: public Antelope(int p) {
3: System.out.print("4");
4: }
5: { System.out.print("2"); }
6: static { System.out.print("1"); }
7: }
8: public class Gazelle extends Antelope {
9: public Gazelle(int p) {
10: super(6);
11: System.out.print("3");
12: }

Review Questions  343

13: public static void main(String hopping[]) {
14: new Gazelle(0);
15: }
16: static { System.out.print("8"); }
17: { System.out.print("9"); }
18: }

A.	 182640
B.	 182943
C.	 182493
D.	 421389
E.	 The code does not compile.

F.	 The output cannot be determined until runtime.

25.	 Which of the following are true about a concrete class? (Choose all that apply.)

A.	 A concrete class can be declared as abstract.

B.	 A concrete class must implement all inherited abstract methods.

C.	 A concrete class can be marked as final.

D.	 A concrete class must be immutable.

E.	 A concrete method that implements an abstract method must match the method declara-
tion of the abstract method exactly.

26.	 What is the output of the following code?

4: public abstract class Whale {
5: public abstract void dive();
6: public static void main(String[] args) {
7: Whale whale = new Orca();
8: whale.dive(3);
9: }
10: }
11: class Orca extends Whale {
12: static public int MAX = 3;
13: public void dive() {
14: System.out.println("Orca diving");
15: }
16: public void dive(int... depth) {
17: System.out.println("Orca diving deeper "+MAX);
18: } }

344  Chapter 6  ■  Class Design

A.	 Orca diving
B.	 Orca diving deeper 3
C.	 The code will not compile because of line 4.

D.	 The code will not compile because of line 8.

E.	 The code will not compile because of line 11.

F.	 The code will not compile because of line 12.

G.	 The code will not compile because of line 17.

H.	 None of the above

Beyond Classes

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Utilizing Java Object-Oriented Approach

■■ Declare and instantiate Java objects including nested class

objects, and explain the object life-cycle including creation,

reassigning references, and garbage collection

■■ Create classes and records, and define and use instance and

static fields and methods, constructors, and instance and

static initializers

■■ Understand variable scopes, use local variable type inference,

apply encapsulation, and make objects immutable

■■ Implement polymorphism and differentiate object type versus

reference type. Perform type casting, identify object types

using instanceof operator and pattern matching

■■ Create and use interfaces, identify functional interfaces, and

utilize private, static, and default interface methods

■■ Create and use enumerations with fields, methods and

constructors

Chapter

7

In Chapter 6, “Class Design,” we showed you how to create,
initialize, and extend both abstract and concrete classes. In this
chapter, we move beyond classes to other types available in

Java, including interfaces, enums, sealed classes, and records. Many of the same basic rules
you learned about in Chapter 5, “Methods,” still apply, such as access modifiers and static
members, although there are additional rules for each type. We also cover encapsulation and
how to properly protect instance members. Finally, we conclude this chapter by discussing
nested types and polymorphic inheritance.

For this chapter, remember that a Java file may have at most one public top-level type,
and it must match the name of the file. This applies to classes, enums, records, and so on.
Also, remember that a top-level type can only be declared with public or package access.

Another top-level type available in Java is annotations. Knowing how to
create a custom annotation can be a useful skill in practice, although it is
not required for the exam. You should still know how to use certain anno-
tations for the exam, such as @Override.

Implementing Interfaces
In Chapter 6, you learned about abstract classes, specifically how to create and extend
one. Since classes can only extend one class, they had limited use for inheritance. On the
other hand, a class may implement any number of interfaces. An interface is an abstract
data type that declares a list of abstract methods that any class implementing the interface
must provide.

Over time, the precise definition of an interface has changed, as new method types are
now supported. In this chapter, we start with a rudimentary definition of an interface and
expand it to cover all of the supported members.

Declaring and Using an Interface
In Java, an interface is defined with the interface keyword, analogous to the class keyword
used when defining a class. Refer to Figure 7.1 for a proper interface declaration.

Implementing Interfaces  347

In Figure 7.1, our interface declaration includes an abstract method and a constant vari-
able. Interface variables are referred to as constants because they are assumed to be public,
static, and final. They are initialized with a constant value when they are declared. Since
they are public and static, they can be used outside the interface declaration without
requiring an instance of the interface. Figure 7.1 also includes an abstract method that, like
an interface variable, is assumed to be public.

For brevity, we often say “an instance of an interface” in this chapter to
mean an instance of a class that implements the interface.

What does it mean for a variable or method to be assumed to be something? One aspect
of an interface declaration that differs from an abstract class is that it contains implicit mod-
ifiers. An implicit modifier is a modifier that the compiler automatically inserts into the code.
For example, an interface is always considered to be abstract, even if it is not marked so.
We cover rules and examples for implicit modifiers in more detail shortly.

Let’s start with a simple example. Imagine that we have an interface WalksOnTwoLegs,
defined as follows:

public abstract interface WalksOnTwoLegs {}

It compiles because interfaces are not required to define any methods. The abstract
modifier in this example is optional for interfaces, with the compiler inserting it if it is not
provided. Now, consider the following two examples, which do not compile:

public class Biped {
 public static void main(String[] args) {
 var e = new WalksOnTwoLegs(); // DOES NOT COMPILE
 }
}

public final interface WalksOnEightLegs {} // DOES NOT COMPILE

public or
package access

Implicit modifier

Implicit modifiers

Implicit modifiers

interface
keyword

Interface
name

public abstract interface CanBurrow {

 public abstract Float getSpeed(int age);

 public static final int MINIMUM_DEPTH = 2;

}

Abstract interface method

Constant variable

F IGURE 7.1   Defining an interface

348  Chapter 7  ■  Beyond Classes

The first example doesn’t compile, as WalksOnTwoLegs is an interface and cannot be
instantiated. The second example, WalksOnEightLegs, doesn’t compile because interfaces
cannot be marked as final for the same reason that abstract classes cannot be marked as
final. In other words, marking an interface final implies no class could ever implement it.

How do you use an interface? Let’s say we have an interface Climb, defined as follows:

public interface Climb {
 Number getSpeed(int age);
}

Next, we have a concrete class FieldMouse that invokes the Climb interface by using
the implements keyword in its class declaration, as shown in Figure 7.2.

The FieldMouse class declares that it implements the Climb interface and includes an
overridden version of getSpeed() inherited from the Climb interface. The method signa-
ture of getSpeed() matches exactly, and the return type is covariant, since a Float can be
implicitly cast to a Number. The access modifier of the interface method is implicitly public
in Climb, although the concrete class FieldMouse must explicitly declare it.

As shown in Figure 7.2, a class can implement multiple interfaces, each separated by
a comma (,). If any of the interfaces define abstract methods, then the concrete class is
required to override them. In this case, FieldMouse implements the CanBurrow interface
that we saw in Figure 7.1. In this manner, the class overrides two abstract methods at the
same time with one method declaration. You learn more about duplicate and compatible
interface methods in this chapter.

Extending an Interface
Like a class, an interface can extend another interface using the extends keyword.

public interface Nocturnal {}

public interface HasBigEyes extends Nocturnal {}

Class name
implements keyword

(required) Interface name(s)
separated by commas (,)

Signature matches
interface method

public class FieldMouse implements Climb, CanBurrow {

 public Float getSpeed(int age) {

 return 11f;

 }

}

public keyword
(required)

Covariant return type

F IGURE 7.2   Implementing an interface

Implementing Interfaces  349

Unlike a class, which can extend only one class, an interface can extend multiple
interfaces.

public interface Nocturnal {
 public int hunt();
}

public interface CanFly {
 public void flap();
}

public interface HasBigEyes extends Nocturnal, CanFly {}

public class Owl implements HasBigEyes {
 public int hunt() { return 5; }
 public void flap() { System.out.println("Flap!"); }
}

In this example, the Owl class implements the HasBigEyes interface and must implement
the hunt() and flap() methods. Extending two interfaces is permitted because interfaces
are not initialized as part of a class hierarchy. Unlike abstract classes, they do not contain
constructors and are not part of instance initialization. Interfaces simply define a set of rules
and methods that a class implementing them must follow.

Inheriting an Interface
Like an abstract class, when a concrete class inherits an interface, all of the inherited abstract
methods must be implemented. We illustrate this principle in Figure 7.3. How many abstract
methods does the concrete Swan class inherit?

interface Fly
void fly()

interface Swim
void swim()

abstract class Animal
abstract int getType()

abstract class Bird
abstract boolean canSwoop()

implements

implements

extends

extends

class Swan
???

F IGURE 7.3   Interface Inheritance

350  Chapter 7  ■  Beyond Classes

Give up? The concrete Swan class inherits four abstract methods that it must imple-
ment: getType(), canSwoop(), fly(), and swim(). Let’s take a look at another example
involving an abstract class that implements an interface:

public interface HasTail {
 public int getTailLength();
}

public interface HasWhiskers {
 public int getNumberOfWhiskers();
}

public abstract class HarborSeal implements HasTail, HasWhiskers {}

public class CommonSeal extends HarborSeal {} // DOES NOT COMPILE

The HarborSeal class compiles because it is abstract and not required to implement
any of the abstract methods it inherits. The concrete CommonSeal class, though, must
override all inherited abstract methods.

Mixing Class and Interface Keywords
The exam creators are fond of questions that mix class and interface terminology. Although
a class can implement an interface, a class cannot extend an interface. Likewise, while an
interface can extend another interface, an interface cannot implement another interface. The
following examples illustrate these principles:

public interface CanRun {}
public class Cheetah extends CanRun {} // DOES NOT COMPILE

public class Hyena {}
public interface HasFur extends Hyena {} // DOES NOT COMPILE

The first example shows a class trying to extend an interface and doesn’t compile. The
second example shows an interface trying to extend a class, which also doesn’t compile. Be
wary of examples on the exam that mix class and interface declarations.

Inheriting Duplicate Abstract Methods
Java supports inheriting two abstract methods that have compatible method declarations.

public interface Herbivore { public void eatPlants(); }

public interface Omnivore { public void eatPlants(); }

public class Bear implements Herbivore, Omnivore {

Implementing Interfaces  351

 public void eatPlants() {
 System.out.println("Eating plants");
 } }

By compatible, we mean a method can be written that properly overrides both inherited
methods: for example, by using covariant return types that you learned about in Chapter 6.

The following is an example of an incompatible declaration:

public interface Herbivore { public void eatPlants(); }

public interface Omnivore { public int eatPlants(); }

public class Tiger implements Herbivore, Omnivore { // DOES NOT COMPILE
 ...
}

It’s impossible to write a version of Tiger that satisfies both inherited abstract
methods. The code does not compile, regardless of what is declared inside the Tiger class.

Inserting Implicit Modifiers
As mentioned earlier, an implicit modifier is one that the compiler will automatically insert.
It’s reminiscent of the compiler inserting a default no-argument constructor if you do not
define a constructor, which you learned about in Chapter 6. You can choose to insert these
implicit modifiers yourself or let the compiler insert them for you.

The following list includes the implicit modifiers for interfaces that you need to know
for the exam:

■■ Interfaces are implicitly abstract.

■■ Interface variables are implicitly public, static, and final.

■■ Interface methods without a body are implicitly abstract.

■■ Interface methods without the private modifier are implicitly public.

The last rule applies to abstract, default, and static interface methods, which we cover in
the next section.

Let’s take a look at an example. The following two interface definitions are equivalent, as
the compiler will convert them both to the second declaration:

public interface Soar {
 int MAX_HEIGHT = 10;
 final static boolean UNDERWATER = true;
 void fly(int speed);
 abstract void takeoff();
 public abstract double dive();
}

352  Chapter 7  ■  Beyond Classes

public abstract interface Soar {
 public static final int MAX_HEIGHT = 10;
 public final static boolean UNDERWATER = true;
 public abstract void fly(int speed);
 public abstract void takeoff();
 public abstract double dive();
}

In this example, we’ve marked in bold the implicit modifiers that the compiler automat-
ically inserts. First, the abstract keyword is added to the interface declaration. Next, the
public, static, and final keywords are added to the interface variables if they do not
exist. Finally, each abstract method is prepended with the abstract and public keywords
if it does not contain them already.

Conflicting Modifiers
What happens if a developer marks a method or variable with a modifier that conflicts with
an implicit modifier? For example, if an abstract method is implicitly public, can it be
explicitly marked protected or private?

public interface Dance {
 private int count = 4; // DOES NOT COMPILE
 protected void step(); // DOES NOT COMPILE
}

Neither of these interface member declarations compiles, as the compiler will apply the
public modifier to both, resulting in a conflict.

Differences between Interfaces and Abstract Classes
Even though abstract classes and interfaces are both considered abstract types, only inter-
faces make use of implicit modifiers. How do the play() methods differ in the following two
definitions?

abstract class Husky { // abstract required in class declaration
 abstract void play(); // abstract required in method declaration
}

interface Poodle { // abstract optional in interface declaration
 void play(); // abstract optional in method declaration
}

Both of these method definitions are considered abstract. That said, the Husky class will
not compile if the play() method is not marked abstract, whereas the method in the
Poodle interface will compile with or without the abstract modifier.

Implementing Interfaces  353

What about the access level of the play() method? Can you spot anything wrong with
the following class definitions that use our abstract types?

public class Webby extends Husky {
 void play() {} // OK - play() is declared with package access in Husky
}

public class Georgette implements Poodle {
 void play() {} // DOES NOT COMPILE - play() is public in Poodle
}

The Webby class compiles, but the Georgette class does not. Even though the two
method implementations are identical, the method in the Georgette class reduces the access
modifier on the method from public to package access.

Declaring Concrete Interface Methods
While interfaces started with abstract methods and constants, they’ve grown to include a
lot more. Table 7.1 lists the six interface member types that you need to know for the exam.
We’ve already covered abstract methods and constants, so we focus on the remaining four
concrete methods in this section.

TABLE 7.1   Interface member types

Membership type Required modifiers Implicit modifiers
Has value or
body?

Constant
variable

Class — public
static
final

Yes

abstract method Instance — public
abstract

No

default method Instance default public Yes

static method Class static public Yes

private method Instance private — Yes

private static
method

Class private
static

— Yes

354  Chapter 7  ■  Beyond Classes

In Table 7.1, the membership type determines how it is able to be accessed. A method
with a membership type of class is shared among all instances of the interface, whereas a
method with a membership type of instance is associated with a particular instance of the
interface.

What About protected or Package Interface Members?

Alongside public methods, interfaces now support private methods. They do not
support protected access, though, as a class cannot extend an interface. They also do not
support package access, although more likely for syntax reasons and backward compati-
bility. Since interface methods without an access modifier have been considered implicitly
public, changing this behavior to package access would break many existing programs!

Writing a default Interface Method
The first type of concrete method you should be familiar with for the exam is a default
method. A default method is a method defined in an interface with the default keyword
and includes a method body. It may be optionally overridden by a class implementing the
interface.

One use of default methods is for backward compatibility. You can add a new default
method to an interface without the need to modify all of the existing classes that implement
the interface. The older classes will just use the default implementation of the method defined
in the interface. This is where the name default method comes from!

The following is an example of a default method defined in an interface:

public interface IsColdBlooded {
 boolean hasScales();
 default double getTemperature() {
 return 10.0;
 } }

This example defines two interface methods, one abstract and one default. The fol-
lowing Snake class, which implements IsColdBlooded, must implement hasScales(). It
may rely on the default implementation of getTemperature() or override the method with
its own version:

public class Snake implements IsColdBlooded {
 public boolean hasScales() { // Required override
 return true;
 }

Implementing Interfaces  355

 public double getTemperature() { // Optional override
 return 12;
 }
}

Note that the default interface method modifier is not the same as the
default label used in a switch statement or expression. Likewise, even
though package access is sometimes referred to as default access, that
feature is implemented by omitting an access modifier. Sorry if this is
confusing! We agree Java has overused the word default over the years!

For the exam, you should be familiar with various rules for declaring default methods.

Default Interface Method Definition Rules

1.	 A default method may be declared only within an interface.

2.	 A default method must be marked with the default keyword and include a method body.

3.	 A default method is implicitly public.

4.	 A default method cannot be marked abstract, final, or static.

5.	 A default method may be overridden by a class that implements the interface.

6.	 If a class inherits two or more default methods with the same method signature, then the
class must override the method.

The first rule should give you some comfort in that you’ll only see default methods in
interfaces. If you see them in a class or enum on the exam, something is wrong. The second
rule just denotes syntax, as default methods must use the default keyword. For example,
the following code snippets will not compile because they mix up concrete and abstract
interface methods:

public interface Carnivore {
 public default void eatMeat(); // DOES NOT COMPILE
 public int getRequiredFoodAmount() { // DOES NOT COMPILE
 return 13;
 } }

The next three rules for default methods follow from the relationship with abstract
interface methods. Like abstract interface methods, default methods are implicitly public.
Unlike abstract methods, though, default interface methods cannot be marked abstract
since they provide a body. They also cannot be marked as final, because they are designed
so that they can be overridden in classes implementing the interface, just like abstract
methods. Finally, they cannot be marked static since they are associated with the instance
of the class implementing the interface.

356  Chapter 7  ■  Beyond Classes

Inheriting Duplicate default Methods

The last rule for creating a default interface method requires some explanation. For example,
what value would the following code output?

public interface Walk {
 public default int getSpeed() { return 5; }
}

public interface Run {
 public default int getSpeed() { return 10; }
}

public class Cat implements Walk, Run {} // DOES NOT COMPILE

In this example, Cat inherits the two default methods for getSpeed(), so which does
it use? Since Walk and Run are considered siblings in terms of how they are used in the Cat
class, it is not clear whether the code should output 5 or 10. In this case, the compiler throws
up its hands and says, “Too hard, I give up!” and fails.

All is not lost, though. If the class implementing the interfaces overrides the duplicate
default method, the code will compile without issue. By overriding the conflicting method,
the ambiguity about which version of the method to call has been removed. For example, the
following modified implementation of Cat will compile:

public class Cat implements Walk, Run {
 public int getSpeed() { return 1; }
}

Calling a Hidden default Method

In the last section, we showed how our Cat class could override a pair of conflicting
default methods, but what if the Cat class wanted to access the version of getSpeed() in
Walk or Run? Is it still accessible?

Yes, but it requires some special syntax.

public class Cat implements Walk, Run {
 public int getSpeed() {
 return 1;
 }

 public int getWalkSpeed() {
 return Walk.super.getSpeed();
 } }

Implementing Interfaces  357

This is an area where a default method exhibits properties of both a static and in-
stance method. We use the interface name to indicate which method we want to call, but we
use the super keyword to show that we are following instance inheritance, not class inher-
itance. Note that calling Walk.getSpeed() or Walk.this.getSpeed() would not have
worked. A bit confusing, we know, but you need to be familiar with this syntax for the exam.

Declaring static Interface Methods
Interfaces are also declared with static methods. These methods are defined explicitly with
the static keyword and, for the most part, behave just like static methods defined in classes.

Static Interface Method Definition Rules

1.	 A static method must be marked with the static keyword and include a
method body.

2.	 A static method without an access modifier is implicitly public.

3.	 A static method cannot be marked abstract or final.

4.	 A static method is not inherited and cannot be accessed in a class implementing the
interface without a reference to the interface name.

These rules should follow from what you know so far of classes, interfaces, and static
methods. For example, you can’t declare static methods without a body in classes, either. Like
default and abstract interface methods, static interface methods are implicitly public if they
are declared without an access modifier. As you see shortly, you can use the private access
modifier with static methods.

Let’s take a look at a static interface method:

public interface Hop {
 static int getJumpHeight() {
 return 8;
 } }

Since the method is defined without an access modifier, the compiler will automati-
cally insert the public access modifier. The method getJumpHeight() works just like a
static method as defined in a class. In other words, it can be accessed without an instance
of a class.

public class Skip {
 public int skip() {
 return Hop.getJumpHeight();
 } }

The last rule about inheritance might be a little confusing, so let’s look at an example. The
following is an example of a class Bunny that implements Hop and does not compile:

public class Bunny implements Hop {
 public void printDetails() {
 System.out.println(getJumpHeight()); // DOES NOT COMPILE
 } }

358  Chapter 7  ■  Beyond Classes

Without an explicit reference to the name of the interface, the code will not compile, even
though Bunny implements Hop. This can be easily fixed by using the interface name:

public class Bunny implements Hop {
 public void printDetails() {
 System.out.println(Hop.getJumpHeight());
 } }

Notice we don’t have the same problem we did when we inherited two default interface
methods with the same signature. Java “solved” the multiple inheritance problem of static
interface methods by not allowing them to be inherited!

Reusing Code with private Interface Methods
The last two types of concrete methods that can be added to interfaces are private and
private static interface methods. Because both types of methods are private, they
can only be used in the interface declaration in which they are declared. For this reason,
they were added primarily to reduce code duplication. For example, consider the following
code sample:

public interface Schedule {
 default void wakeUp() { checkTime(7); }
 private void haveBreakfast() { checkTime(9); }
 static void workOut() { checkTime(18); }
 private static void checkTime(int hour) {
 if (hour> 17) {
 System.out.println("You're late!");
 } else {
 System.out.println("You have "+(17-hour)+" hours left "
 + "to make the appointment");
 } } }

You could write this interface without using a private method by copying the con-
tents of the checkTime() method into the places it is used. It’s a lot shorter and easier to
read if you don’t. Since the authors of Java were nice enough to add this feature for our
convenience, we might as well use it!

We could have also declared checkTime() as public in the previous
example, but this would expose the method to use outside the interface.
One important tenet of encapsulation is to not expose the internal work-
ings of a class or interface when not required. We cover encapsulation
later in this chapter.

Implementing Interfaces  359

The difference between a non-static private method and a static one is analo-
gous to the difference between an instance and static method declared within a class. In
particular, it’s all about what methods each can be called from.

Private Interface Method Definition Rules

1.	 A private interface method must be marked with the private modifier and include a
method body.

2.	 A private static interface method may be called by any method within the interface
definition.

3.	 A private interface method may only be called by default and other private non-
static methods within the interface definition.

Another way to think of it is that a private interface method is only accessible to non-
static methods defined within the interface. A private static interface method, on
the other hand, can be accessed by any method in the interface. For both types of private
methods, a class inheriting the interface cannot directly invoke them.

Calling Abstract Methods
We’ve talked a lot about the newer types of interface methods, but what about abstract
methods? It turns out default and private non-static methods can access abstract methods
declared in the interface. This is the primary reason we associate these methods with instance
membership. When they are invoked, there is an instance of the interface.

public interface ZooRenovation {
 public String projectName();
 abstract String status();
 default void printStatus() {
 System.out.print("The " + projectName() + " project " + status());
 } }

In this example, both projectName() and status() have the same modi-
fiers (abstract and public are implicit) and can be called by the default method
printStatus().

Reviewing Interface Members
We conclude our discussion of interface members with Table 7.2, which shows the access
rules for members within and outside an interface.

360  Chapter 7  ■  Beyond Classes

While Table 7.2 might seem like a lot to remember, here are some quick tips for the exam:

■■ Treat abstract, default, and non-static private methods as belonging to an in-
stance of the interface.

■■ Treat static methods and variables as belonging to the interface class object.

■■ All private interface method types are only accessible within the interface declaration.

Using these rules, which of the following methods do not compile?

public interface ZooTrainTour {
 abstract int getTrainName();
 private static void ride() {}
 default void playHorn() { getTrainName(); ride(); }
 public static void slowDown() { playHorn(); }
 static void speedUp() { ride(); }
}

The ride() method is private and static, so it can be accessed by any default or
static method within the interface declaration. The getTrainName() is abstract, so
it can be accessed by a default method associated with the instance. The slowDown()

TABLE 7.2   Interface member access

Accessible from
default and private
methods within the
interface?

Accessible from
static methods
within the
interface?

Accessible from
methods in classes
inheriting the
interface?

Accessible
without an
instance of the
interface?

Constant
variable

Yes Yes Yes Yes

abstract
method

Yes No Yes No

default
method

Yes No Yes No

static
method

Yes Yes Yes (interface name
required)

Yes (interface
name required)

private
method

Yes No No No

private
static
method

Yes Yes No No

Working with Enums  361

method is static, though, and cannot call a default or private method, such as
playHorn(), without an explicit reference object. Therefore, the slowDown() method does
not compile.

Give yourself a pat on the back! You just learned a lot about interfaces, probably more
than you thought possible. Now take a deep breath. Ready? The next type we are going to
cover is enums.

Working with Enums
In programming, it is common to have a type that can only have a finite set of values, such
as days of the week, seasons of the year, primary colors, and so on. An enumeration, or enum
for short, is like a fixed set of constants.

Using an enum is much better than using a bunch of constants because it provides type-
safe checking. With numeric or String constants, you can pass an invalid value and not find
out until runtime. With enums, it is impossible to create an invalid enum value without
introducing a compiler error.

Enumerations show up whenever you have a set of items whose types are known at com-
pile time. Common examples include the compass directions, the months of the year, the
planets in the solar system, and the cards in a deck (well, maybe not the planets in a solar
system, given that Pluto had its planetary status revoked).

Creating Simple Enums
To create an enum, declare a type with the enum keyword, a name, and a list of values, as
shown in Figure 7.4.

public or
package access

Enum values (comma separated)

enum
keyword

Enum
name

public enum Season {

 WINTER, SPRING, SUMMER, FALL;

} Semicolon optional
for simple enums

F IGURE 7.4   Defining a simple enum

362  Chapter 7  ■  Beyond Classes

We refer to an enum that only contains a list of values as a simple enum. When working
with simple enums, the semicolon at the end of the list is optional. Keep the Season enum
handy, as we use it throughout this section.

Enum values are considered constants and are commonly written using
snake case. For example, an enum declaring a list of ice cream flavors
might include values like VANILLA, ROCKY_ROAD,
MINT_CHOCOLATE_CHIP, and so on.

Using an enum is super easy.

var s = Season.SUMMER;
System.out.println(Season.SUMMER); // SUMMER
System.out.println(s == Season.SUMMER); // true

As you can see, enums print the name of the enum when toString() is called. They can
be compared using == because they are like static final constants. In other words, you
can use equals() or == to compare enums, since each enum value is initialized only once in
the Java Virtual Machine (JVM).

One thing that you can’t do is extend an enum.

public enum ExtendedSeason extends Season {} // DOES NOT COMPILE

The values in an enum are fixed. You cannot add more by extending the enum.

Calling the values(), name(), and ordinal() Methods
An enum provides a values() method to get an array of all of the values. You can use this like
any normal array, including in a for-each loop:

for(var season: Season.values()) {
 System.out.println(season.name() + " " + season.ordinal());
}

The output shows that each enum value has a corresponding int value, and the values
are listed in the order in which they are declared:

WINTER 0
SPRING 1
SUMMER 2
FALL 3

The int value will remain the same during your program, but the program is easier to
read if you stick to the human-readable enum value.

You can’t compare an int and an enum value directly anyway since an enum is a type, like
a Java class, and not a primitive int.

if (Season.SUMMER == 2) {} // DOES NOT COMPILE

http://season.name

Working with Enums  363

Calling the valueOf () Method
Another useful feature is retrieving an enum value from a String using the valueOf()
method. This is helpful when working with older code or parsing user input. The String
passed in must match the enum value exactly, though.

Season s = Season.valueOf("SUMMER"); // SUMMER

Season t = Season.valueOf("summer"); // IllegalArgumentException

The first statement works and assigns the proper enum value to s. Note that this line is
not creating an enum value, at least not directly. Each enum value is created once when the
enum is first loaded. Once the enum has been loaded, it retrieves the single enum value with
the matching name.

The second statement encounters a problem. There is no enum value with the lowercase
name summer. Java throws up its hands in defeat and throws an IllegalArgumentException.

Exception in thread "main" java.lang.IllegalArgumentException:
 No enum constant enums.Season.summer

Using Enums in switch Statements
Enums can be used in switch statements and expressions. Pay attention to the case values
in this code:

Season summer = Season.SUMMER;
switch(summer) {
 case WINTER:
 System.out.print("Get out the sled!");
 break;
 case SUMMER:
 System.out.print("Time for the pool!");
 break;
 default:
 System.out.print("Is it summer yet?");
}

The code prints "Time for the pool!" since it matches SUMMER. In each case state-
ment, we just typed the value of the enum rather than writing Season.WINTER. After all, the
compiler already knows that the only possible matches can be enum values. Java treats the
enum type as implicit. In fact, if you were to type case Season.WINTER, it would not com-
pile. Don’t believe us? Take a look at this equivalent example using a switch expression:

Season summer = Season.SUMMER;
var message = switch(summer) {
 case Season.WINTER -> "Get out the sled!"; // DOES NOT COMPILE

364  Chapter 7  ■  Beyond Classes

 case 0 -> "Time for the pool!"; // DOES NOT COMPILE
 default -> "Is it summer yet?";
};
System.out.print(message);

The first case statement does not compile because Season is used in the case value. If
we changed Season.FALL to just FALL, then the line would compile. What about the sec-
ond case statement? Just as earlier we said that you can’t compare enums with int values,
you cannot use them in a switch statement with int values. On the exam, pay special
attention when working with enums that they are used only as enums.

Adding Constructors, Fields, and Methods
While a simple enum is composed of just a list of values, we can define a complex enum with
additional elements. Let’s say our zoo wants to keep track of traffic patterns to determine
which seasons get the most visitors.

1: public enum Season {
2: WINTER("Low"), SPRING("Medium"), SUMMER("High"), FALL("Medium");
3: private final String expectedVisitors;
4: private Season(String expectedVisitors) {
5: this.expectedVisitors = expectedVisitors;
6: }
7: public void printExpectedVisitors() {
8: System.out.println(expectedVisitors);
9: } }

There are a few things to notice here. On line 2, the list of enum values ends with a semi-
colon (;). While this is optional when our enum is composed solely of a list of values, it is
required if there is anything in the enum besides the values.

Lines 3–9 are regular Java code. We have an instance variable, a constructor, and a
method. We mark the instance variable private and final on line 3 so that our enum properties
cannot be modified.

Although it is possible to create an enum with instance variables that
can be modified, it is a very poor practice to do so since they are shared
within the JVM. When designing an enum, the values should be immu-
table.

All enum constructors are implicitly private, with the modifier being optional. This is
reasonable since you can’t extend an enum and the constructors can be called only within
the enum itself. In fact, an enum constructor will not compile if it contains a public or
protected modifier.

Working with Enums  365

What about the parentheses on line 2? Those are constructor calls, but without the new
keyword normally used for objects. The first time we ask for any of the enum values, Java
constructs all of the enum values. After that, Java just returns the already constructed enum
values. Given that explanation, you can see why this calls the constructor only once:

public enum OnlyOne {
 ONCE(true);
 private OnlyOne(boolean b) {
 System.out.print("constructing,");
 }
}

public class PrintTheOne {
 public static void main(String[] args) {
 System.out.print("begin,");
 OnlyOne firstCall = OnlyOne.ONCE; // Prints constructing,
 OnlyOne secondCall = OnlyOne.ONCE; // Doesn't print anything
 System.out.print("end");
 }
}

This class prints the following:

begin,constructing,end

If the OnlyOne enum was used earlier in the program, and therefore initialized sooner,
then the line that declares the firstCall variable would not print anything.

How do we call an enum method? That’s easy, too: we just use the enum value followed
by the method call.

Season.SUMMER.printExpectedVisitors();

Sometimes you want to define different methods for each enum. For example, our zoo has
different seasonal hours. It is cold and gets dark early in the winter. We can keep track of the
hours through instance variables, or we can let each enum value manage hours itself.

public enum Season {
 WINTER {
 public String getHours() { return "10am-3pm"; }
 },
 SPRING {
 public String getHours() { return "9am-5pm"; }
 },
 SUMMER {
 public String getHours() { return "9am-7pm"; }
 },

366  Chapter 7  ■  Beyond Classes

 FALL {
 public String getHours() { return "9am-5pm"; }
 };
 public abstract String getHours();
}

What’s going on here? It looks like we created an abstract class and a bunch of tiny
subclasses. In a way, we did. The enum itself has an abstract method. This means that each
and every enum value is required to implement this method. If we forget to implement the
method for one of the values, we get a compiler error:

The enum constant WINTER must implement the abstract method getHours()

But what if we don’t want each and every enum value to have a method? No problem. We
can create an implementation for all values and override it only for the special cases.

public enum Season {
 WINTER {
 public String getHours() { return "10am-3pm"; }
 },
 SUMMER {
 public String getHours() { return "9am-7pm"; }
 },
 SPRING, FALL;
 public String getHours() { return "9am-5pm"; }
}

This looks better. We only code the special cases and let the others use the enum-provided
implementation.

An enum can even implement an interface, as this just requires overriding the
abstract methods:

public interface Weather { int getAverageTemperature(); }

public enum Season implements Weather {
 WINTER, SPRING, SUMMER, FALL;
 public int getAverageTemperature() { return 30; }
}

Just because an enum can have lots of methods doesn’t mean that it should. Try to keep
your enums simple. If your enum is more than a page or two, it is probably too long. When
enums get too long or too complex, they are hard to read.

You might have noticed that in each of these enum examples, the list of
values came first. This was not an accident. Whether the enum is simple
or complex, the list of values always comes first.

Sealing Classes  367

Sealing Classes
An enum with many constructors, fields, and methods may start to resemble a full-featured
class. What if we could create a class but limit the direct subclasses to a fixed set of classes?
Enter sealed classes! A sealed class is a class that restricts which other classes may directly
extend it. These are brand new to Java 17, so expect to see at least one question about them
on the exam.

Did you happen to notice that we said directly extend in the definition of
a sealed class? As you see shortly, there is a way for a class not named
in the sealed class declaration to extend it indirectly. Unless we say oth-
erwise, though, assume that we’re referring to subclasses that directly
extend the sealed class.

Declaring a Sealed Class
Let’s start with a simple example. A sealed class declares a list of classes that can extend it,
while the subclasses declare that they extend the sealed class. Figure 7.5 declares a sealed
class with two direct subclasses.

Notice anything new? Java 17 includes three new keywords that you should be familiar
with for the exam. We often use final with sealed subclasses, but we get into each of these
after we cover the basics.

Sealed Class Keywords
■■ sealed: Indicates that a class or interface may only be extended/implemented by named

classes or interfaces

sealed keyword

class keyword permits keyword

List of permitted classes

public sealed class Bear permits Kodiak, Panda {}

public final class Kodiak extends Bear {}

public non-sealed class Panda extends Bear {}

Extends
sealed
class

final, sealed,
or non-sealed
subclass modifier

F IGURE 7.5   Defining a sealed class

368  Chapter 7  ■  Beyond Classes

■■ permits: Used with the sealed keyword to list the classes and interfaces allowed

■■ non-sealed: Applied to a class or interface that extends a sealed class, indicating that it
can be extended by unspecified classes

Pretty easy so far, right? The exam is just as likely to test you on what sealed classes
cannot be used for. For example, can you see why each of these sets of declarations does
not compile?

public class sealed Frog permits GlassFrog {} // DOES NOT COMPILE
public final class GlassFrog extends Frog {}

public abstract sealed class Wolf permits Timber {}
public final class Timber extends Wolf {}
public final class MyWolf extends Wolf {} // DOES NOT COMPILE

The first example does not compile because the class and sealed modifiers are in the
wrong order. The modifier has to be before the class type. The second example does not
compile because MyWolf isn’t listed in the declaration of Wolf.

Sealed classes are commonly declared with the abstract modifier,
although this is certainly not required.

Declaring a sealed class with the sealed modifier is the easy part. Most of the time, if
you see a question on the exam about sealed classes, they are testing your knowledge of
whether the subclass extends the sealed class properly. There are a number of important
rules you need to know for the exam, so read the next sections carefully.

Compiling Sealed Classes
Let’s say we create a Penguin class and compile it in a new package without any other source
code. With that in mind, does the following compile?

// Penguin.java
package zoo;
public sealed class Penguin permits Emperor {}

No, it does not! Why? The answer is that a sealed class needs to be declared (and com-
piled) in the same package as its direct subclasses. But what about the subclasses themselves?
They must each extend the sealed class. For example, the following does not compile.

// Penguin.java
package zoo;
public sealed class Penguin permits Emperor {} // DOES NOT COMPILE

Sealing Classes  369

// Emperor.java
package zoo;
public final class Emperor {}

Even though the Emperor class is declared, it does not extend the Penguin class.

But wait, there’s more! In Chapter 12, “Modules,” you learn about named
modules, which allow sealed classes and their direct subclasses in differ-
ent packages, provided they are in the same named module.

Specifying the Subclass Modifier
While some types, like interfaces, have a certain number of implicit modifiers, sealed classes
do not. Every class that directly extends a sealed class must specify exactly one of the follow-
ing three modifiers: final, sealed, or non-sealed. Remember this rule for the exam!

A final Subclass
The first modifier we’re going to look at that can be applied to a direct subclass of a sealed
class is the final modifier.

public sealed class Antelope permits Gazelle {}

public final class Gazelle extends Antelope {}

public class George extends Gazelle {} // DOES NOT COMPILE

Just as with a regular class, the final modifier prevents the subclass Gazelle from being
extended further.

A sealed Subclass
Next, let’s look at an example using the sealed modifier:

public sealed class Mammal permits Equine {}

public sealed class Equine extends Mammal permits Zebra {}

public final class Zebra extends Equine {}

The sealed modifier applied to the subclass Equine means the same kind of rules that
we applied to the parent class Mammal must be present. Namely, Equine defines its own list
of permitted subclasses. Notice in this example that Zebra is an indirect subclass of Mammal
but is not named in the Mammal class.

370  Chapter 7  ■  Beyond Classes

Despite allowing indirect subclasses not named in Mammal, the list of classes that can
inherit Mammal is still fixed. If you have a reference to a Mammal object, it must be a Mammal,
Equine, or Zebra.

A non-sealed Subclass
The non-sealed modifier is used to open a sealed parent class to potentially unknown sub-
classes. Let’s modify our earlier example to allow MyWolf to compile without modifying the
declaration of Wolf:

public sealed class Wolf permits Timber {}

public non-sealed class Timber extends Wolf {}

public class MyWolf extends Timber {}

In this example, we are able to create an indirect subclass of Wolf, called MyWolf, not
named in the declaration of Wolf. Also notice that MyWolf is not final, so it may be
extended by any subclass, such as MyFurryWolf.

public class MyFurryWolf extends MyWolf {}

At first glance, this might seem a bit counterintuitive. After all, we were able to create sub-
classes of Wolf that were not declared in Wolf. So is Wolf still sealed? Yes, but that’s thanks
to polymorphism. Any instance of MyWolf or MyFurryWolf is also an instance of Timber,
which is named in the Wolf declaration. We discuss polymorphism more toward the end of
this chapter.

If you’re still worried about opening a sealed class too much with a non-
sealed subclass, remember that the person writing the sealed class can
see the declaration of all direct subclasses at compile time. They can
decide whether to allow the non-sealed subclass to be supported.

Omitting the permits Clause
Up until now, all of the examples you’ve seen have required a permits clause when
declaring a sealed class, but this is not always the case. Imagine that you have a Snake.java
file with two top-level classes defined inside it:

// Snake.java
public sealed class Snake permits Cobra {}
final class Cobra extends Snake {}

Sealing Classes  371

In this case, the permits clause is optional and can be omitted. The extends keyword is
still required in the subclass, though:

// Snake.java
public sealed class Snake {}
final class Cobra extends Snake {}

If these classes were in separate files, this code would not compile! This rule also applies
to sealed classes with nested subclasses.

// Snake.java
public sealed class Snake {
 final class Cobra extends Snake {}
}

Referencing Nested Subclasses

While it makes the code easier to read if you omit the permits clause for nested sub-
classes, you are welcome to name them. However, the syntax might be different than
you expect.

 public sealed class Snake permits Cobra { // DOES NOT COMPILE
 final class Cobra extends Snake {}
 }

This code does not compile because Cobra requires a reference to the Snake namespace.
The following fixes this issue:

 public sealed class Snake permits Snake.Cobra {
 final class Cobra extends Snake {}
 }

When all of your subclasses are nested, we strongly recommend omitting the
permits class.

We cover nested classes shortly. For now, you just need to know that a nested class is a
class defined inside another class and that the omit rule also applies to nested classes.

Table 7.3 is a handy reference to these cases.

372  Chapter 7  ■  Beyond Classes

Sealing Interfaces
Besides classes, interfaces can also be sealed. The idea is analogous to classes, and many of
the same rules apply. For example, the sealed interface must appear in the same package or
named module as the classes or interfaces that directly extend or implement it.

One distinct feature of a sealed interface is that the permits list can apply to a class that
implements the interface or an interface that extends the interface.

// Sealed interface
public sealed interface Swims permits Duck, Swan, Floats {}

// Classes permitted to implement sealed interface
public final class Duck implements Swims {}
public final class Swan implements Swims {}

// Interface permitted to extend sealed interface
public non-sealed interface Floats extends Swims {}

What about the modifier applied to interfaces that extend the sealed interface? Well,
remember that interfaces are implicitly abstract and cannot be marked final. For
this reason, interfaces that extend a sealed interface can only be marked sealed or
non-sealed. They cannot be marked final.

Reviewing Sealed Class Rules
Any time you see a sealed class on the exam, pay close attention to the subclass declaration
and modifiers.

Sealed Class Rules
■■ Sealed classes are declared with the sealed and permits modifiers.

■■ Sealed classes must be declared in the same package or named module as their direct
subclasses.

TABLE 7.3   Usage of the permits clause in sealed classes

Location of direct subclasses permits clause

In a different file from the sealed class Required

In the same file as the sealed class Permitted, but not required

Nested inside of the sealed class Permitted, but not required

Encapsulating Data with Records  373

■■ Direct subclasses of sealed classes must be marked final, sealed, or non-sealed.

■■ The permits clause is optional if the sealed class and its direct subclasses are declared
within the same file or the subclasses are nested within the sealed class.

■■ Interfaces can be sealed to limit the classes that implement them or the interfaces that
extend them.

Why Have Sealed Classes?

In Chapter 3, “Making Decisions,” you learned about switch expressions and pattern
matching. Imagine if we could treat a sealed class like an enum in a switch expression by
applying pattern matching. Given a sealed class Fish with two direct subclasses, it might
look something like this:

 public void printName(Fish fish) {
 System.out.println(switch(fish) {
 case Trout t -> t.getTroutName();
 case Bass b -> b.getBassName();
 });
 }

If Fish wasn’t sealed, the switch expression would require a default branch, or the
code would not compile. Since it’s sealed, the compiler knows all the options! The good
news is that this feature is on the way, but the bad news is that it’s still in Preview in Java 17
and not officially released. We just wanted to give you an idea of where some of these new
features were heading.

Encapsulating Data with Records
We saved the best new Java type for last! If you’ve heard anything about the new features in
Java, you have probably heard about records. Records are exciting because they remove a
ton of boilerplate code. Before we get into records, it helps to have some context of why they
were added to the language, so we start with encapsulation.

374  Chapter 7  ■  Beyond Classes

Understanding Encapsulation
A POJO, which stands for Plain Old Java Object, is a class used to model and pass data
around, often with few or no complex methods (hence the “plain” part of the defini-
tion). You might have also heard of a JavaBean, which is POJO that has some additional
rules applied.

Let’s create a simple POJO with two fields:

public class Crane {
 int numberEggs;
 String name;
 public Crane(int numberEggs, String name) {
 this.numberEggs = numberEggs;
 this.name = name;
 }
}

Uh oh, the fields are package access. Why do we care? That means someone outside the
class in the same package could change these values and create invalid data such as this:

public class Poacher {
 public void badActor() {
 var mother = new Crane(5, "Cathy");
 mother.numberEggs = -100;
 }
}

This is clearly no good. We do not want the mother Crane to have a negative number
of eggs! Encapsulation to the rescue. Encapsulation is a way to protect class members by
restricting access to them. In Java, it is commonly implemented by declaring all instance vari-
ables private. Callers are required to use methods to retrieve or modify instance variables.

Encapsulation is about protecting a class from unexpected use. It also allows us to modify
the methods and behavior of the class later without someone already having direct access
to an instance variable within the class. For example, we can change the data type of an in-
stance variable but maintain the same method signatures. In this manner, we maintain full
control over the internal workings of a class.

Let’s take a look at the newly encapsulated (and immutable) Crane class:

1: public final class Crane {
2: private final int numberEggs;
3: private final String name;
4: public Crane(int numberEggs, String name) {
5: if (numberEggs >= 0) this.numberEggs = numberEggs; // guard condition

Encapsulating Data with Records  375

6: else throw new IllegalArgumentException();
7: this.name = name;
8: }
9: public int getNumberEggs() { // getter
10: return numberEggs;
11: }
12: public String getName() { // getter
13: return name;
14: }
15: }

Note that the instance variables are now private on lines 2 and 3. This means only code
within the class can read or write their values. Since we wrote the class, we know better than
to set a negative number of eggs. We added a method on lines 9–11 to read the value, which
is called an accessor method or a getter.

You might have noticed that we marked the class and its instance variables final, and we
don’t have any mutator methods, or setters, to modify the value of the instance variables.
That’s because we want our class to be immutable in addition to being well encapsulated.
As you saw in Chapter 6, the immutable objects pattern is an object-oriented design pattern
in which an object cannot be modified after it is created. Instead of modifying an immutable
object, you create a new object that contains any properties from the original object you
want copied over.

To review, remember that data (an instance variable) is private and getters/setters
are public for encapsulation. You don’t even have to provide getters and setters. As long
as the instance variables are private, you are good. For example, the following class
is well encapsulated, although it is not terribly useful since it doesn’t declare any non-
private methods:

public class Vet {
 private String name = "Dr Rogers";
 private int yearsExperience = 25;
}

You must omit the setters for a class to be immutable. Review Chapter 6 for the addi-
tional rules on creating immutable objects.

Applying Records
Our Crane class was 15 lines long. We can write that much more succinctly, as shown in
Figure 7.6. Putting aside the guard clause on numberEggs in the constructor for a moment,
this record is equivalent and immutable!

376  Chapter 7  ■  Beyond Classes

Wow! It’s only one line long! A record is a special type of data-oriented class in which the
compiler inserts boilerplate code for you.

In fact, the compiler inserts much more than the 14 lines we wrote earlier. As a bonus, the
compiler inserts useful implementations of the Object methods equals(), hashCode(),
and toString(). We’ve covered a lot in one line of code!

Now imagine that we had 10 data fields instead of 2. That’s a lot of methods we are saved
from writing. And we haven’t even talked about constructors! Worse yet, any time someone
changes a field, dozens of lines of related code may need to be updated. For example, name
may be used in the constructor, toString(), equals() method, and so on. If we have an
application with hundreds of POJOs, a record can save us valuable time.

Creating an instance of a Crane and printing some fields is easy:

var mommy = new Crane(4, "Cammy");
System.out.println(mommy.numberEggs()); // 4
System.out.println(mommy.name());    // Cammy

A few things should stand out here. First, we never defined any constructors or methods
in our Crane declaration. How does the compiler know what to do? Behind the scenes, it
creates a constructor for you with the parameters in the same order in which they appear in
the record declaration. Omitting or changing the type order will lead to compiler errors:

var mommy1 = new Crane("Cammy", 4); // DOES NOT COMPILE
var mommy2 = new Crane("Cammy"); // DOES NOT COMPILE

For each field, it also creates an accessor as the field name, plus a set of parentheses.
Unlike traditional POJOs or JavaBeans, the methods don’t have the prefix get or is. Just a
few more characters that records save you from having to type! Finally, records override a
number of methods in Object for you.

Members Automatically Added to Records
■■ Constructor: A constructor with the parameters in the same order as the record

declaration

■■ Accessor method: One accessor for each field

record keyword

Record name
List of fields surrounded by parentheses

public record Crane(int numberEggs, String name) { }

May declare optional constructors, methods, and constants

F IGURE 7.6   Defining a record

Encapsulating Data with Records  377

■■ equals(): A method to compare two elements that returns true if each field is equal in
terms of equals()

■■ hashCode(): A consistent hashCode() method using all of the fields

■■ toString(): A toString() implementation that prints each field of the record in a
convenient, easy-to-read format

The following shows examples of the new methods. Remember that the println()
method will call the toString() method automatically on any object passed to it.

var father = new Crane(0, "Craig");
System.out.println(father); // Crane[numberEggs=0, name=Craig]

var copy = new Crane(0, "Craig");
System.out.println(copy); // Crane[numberEggs=0, name=Craig]
System.out.println(father.equals(copy)); // true
System.out.println(father.hashCode() + ", " + copy.hashCode()); // 1007, 1007

That’s the basics of records. We say “basics” because there’s a lot more you can do with
them, as you see in the next sections.

Given our one-line declaration of Crane, imagine how much code and
work would be required to write an equivalent class. It could easily take
40+ lines! It might be a fun exercise to try to write all the methods that
records supply.

Fun fact: it is legal to have a record without any fields. It is simply declared with the
record keyword and parentheses:

public record Crane() {}

Not the kind of thing you’d use in your own code, but it could come up on the exam.

Understanding Record Immutability
As you saw, records don’t have setters. Every field is inherently final and cannot be modified
after it has been written in the constructor. In order to “modify” a record, you have to make
a new object and copy all of the data you want to preserve.

var cousin = new Crane(3, "Jenny");
var friend = new Crane(cousin.numberEggs(), "Janeice");

Just as interfaces are implicitly abstract, records are also implicitly final. The final
modifier is optional but assumed.

public final record Crane(int numberEggs, String name) {}

Like enums, that means you can’t extend or inherit a record.

public record BlueCrane() extends Crane {} // DOES NOT COMPILE

378  Chapter 7  ■  Beyond Classes

Also like enums, a record can implement a regular or sealed interface, provided it imple-
ments all of the abstract methods.

public interface Bird {}
public record Crane(int numberEggs, String name) implements Bird {}

Although well beyond the scope of this book, there are some good rea-
sons to make data-oriented classes immutable. Doing so can lead to less
error-prone code, as a new object is established any time the data is mod-
ified. It also makes them inherently thread-safe and usable in concurrent
frameworks.

Declaring Constructors
What if you need to declare a record with some guards as we did earlier? In this section, we
cover two ways we can accomplish this with records.

The Long Constructor
First, we can just declare the constructor the compiler normally inserts automatically, which
we refer to as the long constructor.

public record Crane(int numberEggs, String name) {
 public Crane(int numberEggs, String name) {
 if (numberEggs < 0) throw new IllegalArgumentException();
 this.numberEggs = numberEggs;
 this.name = name;
 }
}

The compiler will not insert a constructor if you define one with the same list of param-
eters in the same order. Since each field is final, the constructor must set every field. For
example, this record does not compile:

public record Crane(int numberEggs, String name) {
 public Crane(int numberEggs, String name) {} // DOES NOT COMPILE
}

While being able to declare a constructor is a nice feature of records, it’s also problematic.
If we have 20 fields, we’ll need to declare assignments for every one, introducing the boiler-
plate we sought to remove. Oh, bother!

Encapsulating Data with Records  379

Compact Constructors
Luckily, the authors of Java added the ability to define a compact constructor for records. A
compact constructor is a special type of constructor used for records to process validation
and transformations succinctly. It takes no parameters and implicitly sets all fields. Figure 7.7
shows an example of a compact constructor.

Great! Now we can check the values we want, and we don’t have to list all the con-
structor parameters and trivial assignments. Java will execute the full constructor after the
compact constructor. You should also remember that a compact constructor is declared
without parentheses, as the exam might try to trick you on this. As shown in Figure 7.7, we
can even transform constructor parameters as we discuss more in the next section.

You might think that you need custom methods for every field in the
record, like the negative check we did with setNumberEggs(). In
practice, many POJOs are created for general-purpose use with little
validation.

Transforming Parameters
Compact constructors give you the opportunity to apply transformations to any of the input
values. See if you can figure out what the following compact constructor does:

public record Crane(int numberEggs, String name) {
 public Crane {
 if (name == null || name.length() < 1)
 throw new IllegalArgumentException();
 name = name.substring(0,1).toUpperCase()
 + name.substring(1).toLowerCase();
 }
}

Custom validation

public record Crane(int numberEggs, String name) {

 public Crane {

 if (numberEggs < 0) throw new IllegalArgumentException();

 name = name.toUpperCase();

 }

}

Compact
constructor

No parentheses or constructor parameters

Refers to input parameters (not instance members)

Long constructor implicitly called at end of compact constructor

F IGURE 7.7   Declaring a compact constructor

380  Chapter 7  ■  Beyond Classes

Give up? It validates the string, then formats it such that only the first letter is capitalized.
As before, Java calls the full constructor after the compact constructor but with the modified
constructor parameters.

While compact constructors can modify the constructor parameters, they cannot modify
the fields of the record. For example, this does not compile:

public record Crane(int numberEggs, String name) {
 public Crane {
 this.numberEggs = 10; // DOES NOT COMPILE
 }
}

Removing the this reference allows the code to compile, as the constructor parameter is
modified instead.

Although we covered both the long and compact forms of record con-
structors in this section, it is highly recommended that you stick with the
compact form unless you have a good reason not to.

Overloaded Constructors
You can also create overloaded constructors that take a completely different list of parame-
ters. They are more closely related to the long-form constructor and don’t use any of the syn-
tactical features of compact constructors.

public record Crane(int numberEggs, String name) {
 public Crane(String firstName, String lastName) {
 this(0, firstName + " " + lastName);
 }
}

The first line of an overloaded constructor must be an explicit call to another constructor
via this(). If there are no other constructors, the long constructor must be called. Contrast
this with what you learned about in Chapter 6, where calling super() or this() was often
optional in constructor declarations. Also, unlike compact constructors, you can only trans-
form the data on the first line. After the first line, all of the fields will already be assigned,
and the object is immutable.

public record Crane(int numberEggs, String name) {
 public Crane(int numberEggs, String firstName, String lastName) {
 this(numberEggs + 1, firstName + " " + lastName);
 numberEggs = 10; // NO EFFECT (applies to parameter, not instance field)
 this.numberEggs = 20; // DOES NOT COMPILE
 }
}

Encapsulating Data with Records  381

As you saw in Chapter 6, you also can’t declare two record constructors that call each
other infinitely or as a cycle.

public record Crane(int numberEggs, String name) {
 public Crane(String name) {
 this(1); // DOES NOT COMPILE
 }
 public Crane(int numberEggs) {
 this(""); // DOES NOT COMPILE
 }
}

Customizing Records
Since records are data-oriented, we’ve focused on the features of records you are likely to
use. Records actually support many of the same features as a class. Here are some of the
members that records can include and that you should be familiar with for the exam:

■■ Overloaded and compact constructors

■■ Instance methods including overriding any provided methods (accessors, equals(),
hashCode(), toString())

■■ Nested classes, interfaces, annotations, enum, and records

As an illustrative example, the following overrides two instance methods using the
optional @Override annotation:

public record Crane(int numberEggs, String name) {
 @Override public int numberEggs() { return 10; }
 @Override public String toString() { return name; }
}

While you can add methods, static fields, and other data types, you cannot add instance
fields outside the record declaration, even if they are private. Doing so defeats the purpose
of using a record and could break immutability!

public record Crane(int numberEggs, String name) {
 private static int type = 10;
 public int size; // DOES NOT COMPILE
 private boolean friendly; // DOES NOT COMPILE
}

Records also do not support instance initializers. All initialization for the fields of a
record must happen in a constructor.

382  Chapter 7  ■  Beyond Classes

While it’s a useful feature that records support many of the same mem-
bers as a class, try to keep them simple. Like the POJOs and JavaBeans
they were born out of, the more complicated they get, the less usable
they become.

This is the second time we’ve mentioned nested types, the first being with sealed classes
and now records. Don’t worry; we’re covering them next!

Creating Nested Classes
A nested class is a class that is defined within another class. A nested class can come in one
of four flavors.

■■ Inner class: A non-static type defined at the member level of a class

■■ Static nested class: A static type defined at the member level of a class

■■ Local class: A class defined within a method body

■■ Anonymous class: A special case of a local class that does not have a name

There are many benefits of using nested classes. They can define helper classes and restrict
them to the containing class, thereby improving encapsulation. They can make it easy to
create a class that will be used in only one place. They can even make the code cleaner and
easier to read.

When used improperly, though, nested classes can sometimes make the code harder to
read. They also tend to tightly couple the enclosing and inner class, but there may be cases
where you want to use the inner class by itself. In this case, you should move the inner class
out into a separate top-level class.

Unfortunately, the exam tests edge cases where programmers wouldn’t typically use
a nested class. This tends to create code that is difficult to read, so please never do this
in practice!

By convention, and throughout this chapter, we often use the term nested
class to refer to all nested types, including nested interfaces, enums,
records, and annotations. You might even come across literature that
refers to all of them as inner classes. We agree that this can be confusing!

Declaring an Inner Class
An inner class, also called a member inner class, is a non-static type defined at the member
level of a class (the same level as the methods, instance variables, and constructors). Because
they are not top-level types, they can use any of the four access levels, not just public and
package access.

Creating Nested Classes  383

Inner classes have the following properties:

■■ Can be declared public, protected, package, or private
■■ Can extend a class and implement interfaces

■■ Can be marked abstract or final
■■ Can access members of the outer class, including private members

The last property is pretty cool. It means that the inner class can access variables in
the outer class without doing anything special. Ready for a complicated way to print Hi
three times?

1: public class Home {
2: private String greeting = "Hi"; // Outer class instance variable
3:
4: protected class Room { // Inner class declaration
5: public int repeat = 3;
6: public void enter() {
7: for (int i = 0; i < repeat; i++) greet(greeting);
8: }
9: private static void greet(String message) {
10: System.out.println(message);
11: }
12: }
13:
14: public void enterRoom() { // Instance method in outer class
15: var room = new Room(); // Create the inner class instance
16: room.enter();
17: }
18: public static void main(String[] args) {
19: var home = new Home(); // Create the outer class instance
20: home.enterRoom();
21: } }

An inner class declaration looks just like a stand-alone class declaration except that it
happens to be located inside another class. Line 7 shows that the inner class just refers to
greeting as if it were available in the Room class. This works because it is, in fact, available.
Even though the variable is private, it is accessed within that same class.

Since an inner class is not static, it has to be called using an instance of the outer class.
That means you have to create two objects. Line 19 creates the outer Home object, while
line 15 creates the inner Room object. It’s important to notice that line 15 doesn’t require an
explicit instance of Home because it is an instance method within Home. This works because
enterRoom() is an instance method within the Home class. Both Room and enterRoom() are
members of Home.

384  Chapter 7  ■  Beyond Classes

Nested Classes Can Now Have static Members

Eagle-eyed readers may have noticed that we included a static method in our inner Room
class on line 9. In Java 11, this would have resulted in a compiler error. Previously, only
static nested classes were allowed to include static methods. With the introduction of
records in Java 16, the existing rule that prevented an inner class from having any static
members (other than static constants) was removed. All four types of nested classes can
now define static variables and methods!

Instantiating an Instance of an Inner Class
There is another way to instantiate Room that looks odd at first. Okay, well, maybe not just
at first. This syntax isn’t used often enough to get used to it:

20: public static void main(String[] args) {
21: var home = new Home();
22: Room room = home.new Room(); // Create the inner class instance
23: room.enter();
24: }

Let’s take a closer look at lines 21 and 22. We need an instance of Home to create a Room.
We can’t just call new Room() inside the static main() method, because Java won’t
know which instance of Home it is associated with. Java solves this by calling new as if it
were a method on the room variable. We can shorten lines 21–23 to a single line:

21: new Home().new Room().enter(); // Sorry, it looks ugly to us too!

Creating .class Files for Inner Classes

Compiling the Home.java class with which we have been working creates two class files.
You should be expecting the Home.class file. For the inner class, the compiler creates
Home$Room.class. You don’t need to know this syntax for the exam. We mention it so that
you aren’t surprised to see files with $ appearing in your directories. You do need to under-
stand that multiple class files are created from a single .java file.

Referencing Members of an Inner Class
Inner classes can have the same variable names as outer classes, making scope a little tricky.
There is a special way of calling this to say which variable you want to access. This is
something you might see on the exam but, ideally, not in the real world.

Creating Nested Classes  385

In fact, you aren’t limited to just one inner class. While the following is common on the
exam, please never do this in code you write. Here is how to nest multiple classes and access
a variable with the same name in each:

1: public class A {
2: private int x = 10;
3: class B {
4: private int x = 20;
5: class C {
6: private int x = 30;
7: public void allTheX() {
8: System.out.println(x); // 30
9: System.out.println(this.x); // 30
10: System.out.println(B.this.x); // 20
11: System.out.println(A.this.x); // 10
12: } } }
13: public static void main(String[] args) {
14: A a = new A();
15: A.B b = a.new B();
16: A.B.C c = b.new C();
17: c.allTheX();
18: }}

Yes, this code makes us cringe too. It has two nested classes. Line 14 instantiates the
outermost one. Line 15 uses the awkward syntax to instantiate a B. Notice that the type is
A.B. We could have written B as the type because that is available at the member level of A.
Java knows where to look for it. On line 16, we instantiate a C. This time, the A.B.C type
is necessary to specify. C is too deep for Java to know where to look. Then line 17 calls a
method on the instance variable c.

Lines 8 and 9 are the type of code that we are used to seeing. They refer to the instance
variable on the current class—the one declared on line 6, to be precise. Line 10 uses this in a
special way. We still want an instance variable. But this time, we want the one on the B class,
which is the variable on line 4. Line 11 does the same thing for class A, getting the variable
from line 2.

Inner Classes Require an Instance

Take a look at the following and see whether you can figure out why two of the three con-
structor calls do not compile:

 public class Fox {
 private class Den {}

386  Chapter 7  ■  Beyond Classes

 public void goHome() {
 new Den();
 }
 public static void visitFriend() {
 new Den(); // DOES NOT COMPILE
 }
 }

 public class Squirrel {
 public void visitFox() {
 new Den(); // DOES NOT COMPILE
 }
 }
The first constructor call compiles because goHome() is an instance method, and therefore
the call is associated with the this instance. The second call does not compile because it is
called inside a static method. You can still call the constructor, but you have to explicitly
give it a reference to a Fox instance.

The last constructor call does not compile for two reasons. Even though it is an in-
stance method, it is not an instance method inside the Fox class. Adding a Fox reference
would not fix the problem entirely, though. Den is private and not accessible in the
Squirrel class.

Creating a static Nested Class
A static nested class is a static type defined at the member level. Unlike an inner class, a static
nested class can be instantiated without an instance of the enclosing class. The trade-off,
though, is that it can’t access instance variables or methods declared in the outer class.

In other words, it is like a top-level class except for the following:

■■ The nesting creates a namespace because the enclosing class name must be used to
refer to it.

■■ It can additionally be marked private or protected.

■■ The enclosing class can refer to the fields and methods of the static nested class.

Let’s take a look at an example:

1: public class Park {
2: static class Ride {
3: private int price = 6;
4: }

Creating Nested Classes  387

5: public static void main(String[] args) {
6: var ride = new Ride();
7: System.out.println(ride.price);
8: } }

Line 6 instantiates the nested class. Since the class is static, you do not need an instance
of Park to use it. You are allowed to access private instance variables, as shown on line 7.

Writing a Local Class
A local class is a nested class defined within a method. Like local variables, a local class
declaration does not exist until the method is invoked, and it goes out of scope when the
method returns. This means you can create instances only from within the method. Those
instances can still be returned from the method. This is just how local variables work.

Local classes are not limited to being declared only inside methods. For
example, they can be declared inside constructors and initializers. For
simplicity, we limit our discussion to methods in this chapter.

Local classes have the following properties:

■■ They do not have an access modifier.

■■ They can be declared final or abstract.

■■ They have access to all fields and methods of the enclosing class (when defined in an
instance method).

■■ They can access final and effectively final local variables.

Remember when we presented effectively final in Chapter 5? Well, we
said it would come in handy later, and it’s later! If you need a refresher on
final and effectively final, turn back to Chapter 5 now. Don’t worry;
we’ll wait!

Ready for an example? Here’s a complicated way to multiply two numbers:

1: public class PrintNumbers {
2: private int length = 5;
3: public void calculate() {
4: final int width = 20;
5: class Calculator {
6: public void multiply() {
7: System.out.print(length * width);
8: }
9: }

388  Chapter 7  ■  Beyond Classes

10: var calculator = new Calculator();
11: calculator.multiply();
12: }
13: public static void main(String[] args) {
14: var printer = new PrintNumbers();
15: printer.calculate(); // 100
16: }
17: }

Lines 5–9 are the local class. That class’s scope ends on line 12, where the method ends.
Line 7 refers to an instance variable and a final local variable, so both variable references
are allowed from within the local class.

Earlier, we made the statement that local variable references are allowed if they are final
or effectively final. As an illustrative example, consider the following:

public void processData() {
 final int length = 5;
 int width = 10;
 int height = 2;
 class VolumeCalculator {
 public int multiply() {
 return length * width * height; // DOES NOT COMPILE
 }
 }
 width = 2;
}

The length and height variables are final and effectively final, respectively, so nei-
ther causes a compilation issue. On the other hand, the width variable is reassigned during
the method, so it cannot be effectively final. For this reason, the local class declaration does
not compile.

Why Can Local Classes Only Access final or Effectively Final Variables?

Earlier, we mentioned that the compiler generates a separate .class file for each inner
class. A separate class has no way to refer to a local variable. However, if the local variable
is final or effectively final, Java can handle it by passing a copy of the value or reference
variable to the constructor of the local class. If it weren’t final or effectively final, these
tricks wouldn’t work because the value could change after the copy was made.

Creating Nested Classes  389

Defining an Anonymous Class
An anonymous class is a specialized form of a local class that does not have a name. It is
declared and instantiated all in one statement using the new keyword, a type name with
parentheses, and a set of braces {}. Anonymous classes must extend an existing class or
implement an existing interface. They are useful when you have a short implementation that
will not be used anywhere else. Here’s an example:

1: public class ZooGiftShop {
2: abstract class SaleTodayOnly {
3: abstract int dollarsOff();
4: }
5: public int admission(int basePrice) {
6: SaleTodayOnly sale = new SaleTodayOnly() {
7: int dollarsOff() { return 3; }
8: }; // Don't forget the semicolon!
9: return basePrice - sale.dollarsOff();
10: } }

Lines 2–4 define an abstract class. Lines 6–8 define the anonymous class. Notice
how this anonymous class does not have a name. The code says to instantiate a new
SaleTodayOnly object. But wait: SaleTodayOnly is abstract. This is okay because we
provide the class body right there—anonymously. In this example, writing an anonymous
class is equivalent to writing a local class with an unspecified name that extends
SaleTodayOnly and immediately uses it.

Pay special attention to the semicolon on line 8. We are declaring a local variable on these
lines. Local variable declarations are required to end with semicolons, just like other Java
statements—even if they are long and happen to contain an anonymous class.

Now we convert this same example to implement an interface instead of extending an
abstract class:

1: public class ZooGiftShop {
2: interface SaleTodayOnly {
3: int dollarsOff();
4: }
5: public int admission(int basePrice) {
6: SaleTodayOnly sale = new SaleTodayOnly() {
7: public int dollarsOff() { return 3; }
8: };
9: return basePrice - sale.dollarsOff();
10: } }

390  Chapter 7  ■  Beyond Classes

The most interesting thing here is how little has changed. Lines 2–4 declare an
interface instead of an abstract class. Line 7 is public instead of using default access
since interfaces require public methods. And that is it. The anonymous class is the same
whether you implement an interface or extend a class! Java figures out which one you want
automatically. Just remember that in this second example, an instance of a class is created on
line 6, not an interface.

But what if we want to both implement an interface and extend a class? You can’t do
so with an anonymous class unless the class to extend is java.lang.Object. The Object
class doesn’t count in the rule. Remember that an anonymous class is just an unnamed local
class. You can write a local class and give it a name if you have this problem. Then you can
extend a class and implement as many interfaces as you like. If your code is this complex, a
local class probably isn’t the most readable option anyway.

You can even define anonymous classes outside a method body. The following may look
like we are instantiating an interface as an instance variable, but the {} after the interface
name indicates that this is an anonymous class implementing the interface:

public class Gorilla {
 interface Climb {}
 Climb climbing = new Climb() {};
}

Anonymous Classes and Lambda Expressions

Prior to Java 8, anonymous classes were frequently used for asynchronous tasks and event
handlers. For example, the following shows an anonymous class used as an event handler
in a JavaFX application:

 var redButton = new Button();
 redButton.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent e) {
 System.out.println("Red button pressed!");
 }
 });

Since the introduction of lambda expressions, anonymous classes are now often replaced
with much shorter implementations:

 Button redButton = new Button();
 redButton.setOnAction(e -> System.out.println("Red button pressed!"));

We cover lambda expressions in detail in the next chapter.

Creating Nested Classes  391

Reviewing Nested Classes
For the exam, make sure that you know the information in Table 7.4 about which syntax
rules are permitted in Java.

You should also know the information in Table 7.5 about types of access. For example,
the exam might try to trick you by having a static class access an outer class instance vari-
able without a reference to the outer class.

TABLE 7.4   Modifiers in nested classes

Permitted modifiers Inner class static nested class Local class Anonymous class

Access modifiers All All None None

abstract Yes Yes Yes No

final Yes Yes Yes No

TABLE 7.5   Nested class access rules

Inner class
static
nested class Local class Anonymous class

Can extend a class
or implement any
number of inter-
faces?

Yes Yes Yes No—must have exactly
one superclass or one
interface

Can access instance
members of enclos-
ing class?

Yes No Yes (if declared
in an instance
method)

Yes (if declared in an
instance method)

Can access local
variables of enclos-
ing method?

N/A N/A Yes (if final or
effectively final)

Yes (if final or effectively
final)

392  Chapter 7  ■  Beyond Classes

Understanding Polymorphism
We conclude this chapter with a discussion of polymorphism, the property of an object
to take on many different forms. To put this more precisely, a Java object may be
accessed using:

■■ A reference with the same type as the object

■■ A reference that is a superclass of the object

■■ A reference that defines an interface the object implements or inherits

Furthermore, a cast is not required if the object is being reassigned to a supertype or inter-
face of the object. Phew, that’s a lot! Don’t worry; it’ll make sense shortly.

Let’s illustrate this polymorphism property with the following example:

public class Primate {
 public boolean hasHair() {
 return true;
 }
}

public interface HasTail {
 public abstract boolean isTailStriped();
}

public class Lemur extends Primate implements HasTail {
 public boolean isTailStriped() {
 return false;
 }
 public int age = 10;
 public static void main(String[] args) {
 Lemur lemur = new Lemur();
 System.out.println(lemur.age);

 HasTail hasTail = lemur;
 System.out.println(hasTail.isTailStriped());

 Primate primate = lemur;
 System.out.println(primate.hasHair());
 } }

Understanding Polymorphism  393

This code compiles and prints the following output:

10
false
true

The most important thing to note about this example is that only one object, Lemur, is
created. Polymorphism enables an instance of Lemur to be reassigned or passed to a method
using one of its supertypes, such as Primate or HasTail.

Once the object has been assigned to a new reference type, only the methods and vari-
ables available to that reference type are callable on the object without an explicit cast. For
example, the following snippets of code will not compile:

HasTail hasTail = new Lemur();
System.out.println(hasTail.age); // DOES NOT COMPILE

Primate primate = new Lemur();
System.out.println(primate.isTailStriped()); // DOES NOT COMPILE

In this example, the reference hasTail has direct access only to methods defined with
the HasTail interface; therefore, it doesn’t know that the variable age is part of the object.
Likewise, the reference primate has access only to methods defined in the Primate class,
and it doesn’t have direct access to the isTailStriped() method.

Object vs. Reference
In Java, all objects are accessed by reference, so as a developer you never have direct
access to the object itself. Conceptually, though, you should consider the object as the entity
that exists in memory, allocated by the Java Runtime Environment. Regardless of the type
of the reference you have for the object in memory, the object itself doesn’t change. For
example, since all objects inherit java.lang.Object, they can all be reassigned to
java.lang.Object, as shown in the following example:

Lemur lemur = new Lemur();
Object lemurAsObject = lemur;

Even though the Lemur object has been assigned to a reference with a different type, the
object itself has not changed and still exists as a Lemur object in memory. What has changed,
then, is our ability to access methods within the Lemur class with the lemurAsObject ref-
erence. Without an explicit cast back to Lemur, as you see in the next section, we no longer
have access to the Lemur properties of the object.

We can summarize this principle with the following two rules:

1.	 The type of the object determines which properties exist within the object in memory.

2.	 The type of the reference to the object determines which methods and variables are
accessible to the Java program.

394  Chapter 7  ■  Beyond Classes

It therefore follows that successfully changing a reference of an object to a new reference
type may give you access to new properties of the object; but remember, those properties
existed before the reference change occurred.

Using the Lemur example, we illustrate this property in Figure 7.8.

As you can see in the figure, the same object exists in memory regardless of which
reference is pointing to it. Depending on the type of the reference, we may only have
access to certain methods. For example, the hasTail reference has access to the method
isTailStriped() but doesn’t have access to the variable age defined in the Lemur class.
As you learn in the next section, it is possible to reclaim access to the variable age by explic-
itly casting the hasTail reference to a reference of type Lemur.

Using Interface References

When working with a group of objects that implement a common interface, it is considered
a good coding practice to use an interface as the reference type. This is especially common
with collections that you learn about in Chapter 9, “Collections and Generics.” Consider the
following method:

 public void sortAndPrintZooAnimals(List<String> animals) {
 Collections.sort(animals);
 for(String a : animals) System.out.println(a);
 }

This method sorts and prints animals in alphabetical order. At no point is this class inter-
ested in what the actual underlying object for animals is. It might be an ArrayList or
another type. The point is, our code works on any of these types because we used the inter-
face reference type rather than a class type.

Reference of interface HasTail

Reference of class Lemur

Reference of class Primate

Lemur object in memory

hasTail

lemur

primate

hasHair()
isTailStriped()

age 10

F IGURE 7.8   Object vs. reference

Understanding Polymorphism  395

Casting Objects
In the previous example, we created a single instance of a Lemur object and accessed it via
superclass and interface references. Once we changed the reference type, though, we lost
access to more specific members defined in the subclass that still exist within the object. We
can reclaim those references by casting the object back to the specific subclass it came from:

Lemur lemur = new Lemur();

Primate primate = lemur; // Implicit Cast to supertype

Lemur lemur2 = (Lemur)primate; // Explicit Cast to subtype

Lemur lemur3 = primate; // DOES NOT COMPILE (missing cast)

In this example, we first create a Lemur object and implicitly cast it to a Primate ref-
erence. Since Lemur is a subtype of Primate, this can be done without a cast operator. We
then cast it back to a Lemur object using an explicit cast, gaining access to all of the methods
and fields in the Lemur class. The last line does not compile because an explicit cast is
required. Even though the object is stored in memory as a Lemur object, we need an explicit
cast to assign it to Lemur.

Casting objects is similar to casting primitives, as you saw in Chapter 2, “Operators.”
When casting objects, you do not need a cast operator if casting to an inherited supertype.
This is referred to as an implicit cast and applies to classes or interfaces the object inherits.
Alternatively, if you want to access a subtype of the current reference, you need to perform
an explicit cast with a compatible type. If the underlying object is not compatible with the
type, then a ClassCastException will be thrown at runtime.

When reviewing a question on the exam that involves casting and polymorphism, be sure
to remember what the instance of the object actually is. Then, focus on whether the compiler
will allow the object to be referenced with or without explicit casts.

We summarize these concepts into a set of rules for you to memorize for the exam:

1.	 Casting a reference from a subtype to a supertype doesn’t require an explicit cast.

2.	 Casting a reference from a supertype to a subtype requires an explicit cast.

3.	 At runtime, an invalid cast of a reference to an incompatible type results in a
ClassCastException being thrown.

4.	 The compiler disallows casts to unrelated types.

Disallowed Casts
The first three rules are just a review of what we’ve said so far. The last rule is a bit more
complicated. The exam may try to trick you with a cast that the compiler knows is not per-
mitted (aka impossible). In the previous example, we were able to cast a Primate reference to
a Lemur reference because Lemur is a subclass of Primate and therefore related. Consider this
example instead:

public class Bird {}

396  Chapter 7  ■  Beyond Classes

public class Fish {
 public static void main(String[] args) {
 Fish fish = new Fish();
 Bird bird = (Bird)fish; // DOES NOT COMPILE
 }
}

In this example, the classes Fish and Bird are not related through any class hierarchy
that the compiler is aware of; therefore, the code will not compile. While they both extend
Object implicitly, they are considered unrelated types since one cannot be a subtype of
the other.

Casting Interfaces
While the compiler can enforce rules about casting to unrelated types for classes, it cannot
always do the same for interfaces. Remember, instances support multiple inheritance, which
limits what the compiler can reason about them. While a given class may not implement an
interface, it’s possible that some subclass may implement the interface. When holding a refer-
ence to a particular class, the compiler doesn’t know which specific subtype it is holding.

Let’s try an example. Do you think the following program compiles?

1: interface Canine {}
2: interface Dog {}
3: class Wolf implements Canine {}
4:
5: public class BadCasts {
6: public static void main(String[] args) {
7: Wolf wolfy = new Wolf();
8: Dog badWolf = (Dog)wolfy;
9: } }

In this program, a Wolf object is created and then assigned to a Wolf reference type on
line 7. With interfaces, the compiler has limited ability to enforce many rules because even
though a reference type may not implement an interface, one of its subclasses could. There-
fore, it allows the invalid cast to the Dog reference type on line 8, even though Dog and
Wolf are not related. Fear not, even though the code compiles, it still throws a
ClassCastException at runtime.

This limitation aside, the compiler can enforce one rule around interface casting. The
compiler does not allow a cast from an interface reference to an object reference if the object
type cannot possibly implement the interface, such as if the class is marked final. For
example, if the Wolf interface is marked final on line 3, then line 8 no longer compiles.
The compiler recognizes that there are no possible subclasses of Wolf capable of implement-
ing the Dog interface.

Understanding Polymorphism  397

The instanceof Operator
In Chapter 3, we presented the instanceof operator with pattern matching. The instanceof
operator can be used to check whether an object belongs to a particular class or interface
and to prevent a ClassCastException at runtime. Consider the following example:

1: class Rodent {}
2:
3: public class Capybara extends Rodent {
4: public static void main(String[] args) {
5: Rodent rodent = new Rodent();
6: var capybara = (Capybara)rodent; // ClassCastException
7: }
8: }

This program throws an exception on line 6. We can replace line 6 with the following.

6: if(rodent instanceof Capybara c) {
7: // Do stuff
8: }

Now the code snippet doesn’t throw an exception at runtime and performs the cast only
if the instanceof operator is successful.

Just as the compiler does not allow casting an object to unrelated types, it also does not
allow instanceof to be used with unrelated types. We can demonstrate this with our unrelated
Bird and Fish classes:

public class Bird {}

public class Fish {
 public static void main(String[] args) {
 Fish fish = new Fish();
 if (fish instanceof Bird b) { // DOES NOT COMPILE
 // Do stuff
 }
 }
}

Polymorphism and Method Overriding
In Java, polymorphism states that when you override a method, you replace all calls to it,
even those defined in the parent class. As an example, what do you think the following code
snippet outputs?

class Penguin {
 public int getHeight() { return 3; }

398  Chapter 7  ■  Beyond Classes

 public void printInfo() {
 System.out.print(this.getHeight());
 }
}

public class EmperorPenguin extends Penguin {
 public int getHeight() { return 8; }
 public static void main(String []fish) {
 new EmperorPenguin().printInfo();
 }
}

If you said 8, then you are well on your way to understanding polymorphism. In
this example, the object being operated on in memory is an EmperorPenguin. The
getHeight() method is overridden in the subclass, meaning all calls to it are replaced at
runtime. Despite printInfo() being defined in the Penguin class, calling getHeight()
on the object calls the method associated with the precise object in memory, not the current
reference type where it is called. Even using the this reference, which is optional in this
example, does not call the parent version because the method has been replaced.

Polymorphism’s ability to replace methods at runtime via overriding is one of the most
important properties of Java. It allows you to create complex inheritance models with sub-
classes that have their own custom implementation of overridden methods. It also means
the parent class does not need to be updated to use the custom or overridden method. If the
method is properly overridden, then the overridden version will be used in all places that it
is called.

Remember, you can choose to limit polymorphic behavior by marking methods final,
which prevents them from being overridden by a subclass.

Calling the Parent Version of an Overridden Method

Just because a method is overridden doesn’t mean the parent method is completely inac-
cessible. We can use the super reference that you learned about in Chapter 6 to access it.
How can you modify our previous example to print 3 instead of 8?  You could try
calling super.getHeight() in the parent Penguin class:

 class Penguin {
 public int getHeight() { return 3; }
 public void printInfo() {
 System.out.print(super.getHeight()); // DOES NOT COMPILE
 }
 }

Understanding Polymorphism  399

Unfortunately, this does not compile, as super refers to the superclass of Penguin; in this
case, Object. The solution is to override printInfo() in the child EmperorPenguin
class and use super there.

 public class EmperorPenguin extends Penguin {
 public int getHeight() { return 8; }
 public void printInfo() {
 System.out.print(super.getHeight());
 }
 public static void main(String []fish) {
 new EmperorPenguin().printInfo(); // 3
 }
 }

Overriding vs. Hiding Members
While method overriding replaces the method everywhere it is called, static method and
variable hiding do not. Strictly speaking, hiding members is not a form of polymorphism
since the methods and variables maintain their individual properties. Unlike method overrid-
ing, hiding members is very sensitive to the reference type and location where the member is
being used.

Let’s take a look at an example:

class Penguin {
 public static int getHeight() { return 3; }
 public void printInfo() {
 System.out.println(this.getHeight());
 }
}

public class CrestedPenguin extends Penguin {
 public static int getHeight() { return 8; }
 public static void main(String... fish) {
 new CrestedPenguin().printInfo();
 }
}

The CrestedPenguin example is nearly identical to our previous
EmperorPenguin example, although as you probably already guessed, it prints 3 instead of
8. The getHeight() method is static and is therefore hidden, not overridden. The result
is that calling getHeight() in CrestedPenguin returns a different value than calling it in

400  Chapter 7  ■  Beyond Classes

Penguin, even if the underlying object is the same. Contrast this with overriding a method,
where it returns the same value for an object regardless of which class it is called in.

What about the fact that we used this to access a static method in
this.getHeight()? As discussed in Chapter 5, while you are permitted to use an instance
reference to access a static variable or method, doing so is often discouraged. The com-
piler will warn you when you access static members in a non-static way. In this case,
the this reference had no impact on the program output.

Besides the location, the reference type can also determine the value you get when you are
working with hidden members. Ready? Let’s try a more complex example:

class Marsupial {
 protected int age = 2;
 public static boolean isBiped() {
 return false;
 } }

public class Kangaroo extends Marsupial {
 protected int age = 6;
 public static boolean isBiped() {
 return true;
 }

 public static void main(String[] args) {
 Kangaroo joey = new Kangaroo();
 Marsupial moey = joey;
 System.out.println(joey.isBiped());
 System.out.println(moey.isBiped());
 System.out.println(joey.age);
 System.out.println(moey.age);
 } }

The program prints the following:

true
false
6
2

In this example, only one object (of type Kangaroo) is created and stored in memory!
Since static methods can only be hidden, not overridden, Java uses the reference type to
determine which version of isBiped() should be called, resulting in joey.isBiped()
printing true and moey.isBiped() printing false.

Summary  401

Likewise, the age variable is hidden, not overridden, so the reference type is used to
determine which value to output. This results in joey.age returning 6 and moey.age
returning 2.

For the exam, make sure you understand these examples, as they show how hidden and
overridden methods are fundamentally different. In practice, overriding methods is the cor-
nerstone of polymorphism and an extremely powerful feature.

Don’t Hide Members in Practice

Although Java allows you to hide variables and static methods, it is considered an
extremely poor coding practice. As you saw in the previous example, the value of the var-
iable or method can change depending on what reference is used, making your code very
confusing, difficult to follow, and challenging for others to maintain. This is further com-
pounded when you start modifying the value of the variable in both the parent and child
methods, since it may not be clear which variable you’re updating.

When you’re defining a new variable or static method in a child class, it is consid-
ered good coding practice to select a name that is not already used by an inherited
member. Redeclaring private methods and variables is considered less problematic,
though, because the child class does not have access to the variable in the parent class to
begin with.

Summary
In this chapter, we presented numerous topics in advanced object-oriented design, covering
many top-level types beyond classes. We started with interfaces and described how they can
support multiple inheritance. Remember, interfaces and their members can include a number
of implicit modifiers inserted by the compiler automatically. We then covered all six types of
interface members you need to know for the exam: abstract methods, static constants,
default methods, static methods, private methods, and private static methods.

We next moved on to enums, which are compile-time constant properties. Simple enums
are composed of a list of values, while complex enums can include constructors, methods,
and fields. Enums can also be used in switch statements and expressions. When an enum
method is marked abstract, each enum value must provide an implementation.

Moving on to new topics in Java, we covered sealed classes and how they allow classes to
function like enumerated types in which only certain subclasses are permitted. For the exam,

402  Chapter 7  ■  Beyond Classes

it’s important to remember that the subclasses of a sealed class must be marked final,
sealed, or non-sealed. If the subclasses of the sealed class are defined in the same file,
then the permits clause may be omitted in the sealed class declaration. Finally, sealed inter-
faces may be used to limit which classes can implement an interface, which interfaces may
extend an interface, or both.

Records are another new feature available in Java. Records are a compact way of
declaring an immutable and encapsulated POJO in which the compiler adds a lot of the boil-
erplate code for you. Remember, encapsulation is the practice of preventing external callers
from accessing the internal components of an object. Records include automatic creation of
the accessor methods, a long constructor, and useful implementations of equals(), hashCode(),
and toString(). Records can include overloaded and compact constructors to support data
validation and transformation. Records do not permit instance variables, since this could
break immutability, but they do allow methods, static members, and nested types.

We then moved on to nested types. For simplicity, we focused on nested classes and
covered each of the four types. An inner class requires an instance of the outer class to use,
while a static nested class does not. A local class is commonly defined within a method or
block. Local classes can only access local variables that are final and effectively final. Anony-
mous classes are a special type of local class that does not have a name. Anonymous classes
are required to extend exactly one class or implement one interface. Inner, local, and anony-
mous classes can access private members of the class in which they are defined, provided the
latter two are used inside an instance method.

We concluded this chapter with a discussion of polymorphism, which is central to the
Java language, and showed how objects can be accessed in a variety of forms. Make sure you
understand when casts are needed for accessing objects, and be able to spot the difference
between compile-time and runtime cast problems.

Exam Essentials

Be able to write code that creates, extends, and implements interfaces.   Interfaces are spe-
cialized abstract types that focus on abstract methods and constant variables. An interface
may extend any number of interfaces and, in doing so, inherits their abstract methods. An
interface cannot extend a class, nor can a class extend an interface. A class may implement
any number of interfaces.

Know which interface methods an interface method can reference.   Non-static
private, default, and abstract interface methods are associated with an instance
of an interface. Non-static private and default interface methods may reference
any method within the interface declaration. Alternatively, static interface methods are
associated with class membership and can only reference other static members. Finally,
private methods can only be referenced within the interface declaration.

Exam Essentials  403

Be able to create and use enum types.   An enum is a data structure that defines a list of
values. If the enum does not contain any other elements, the semicolon (;) after the values
is optional. An enum can be used in switch statements and contain instance variables,
constructors, and methods. Enum constructors are implicitly private. Enums can include
methods, both as members or within individual enum values. If the enum declares an
abstract method, each enum value must implement it.

Be able to recognize when sealed classes are being correctly used.   A sealed class is one
that defines a list of permitted subclasses that extend it. Be able to use the correct modifier
(final, sealed, or non-sealed) with sealed classes. Understand when the permits clause
may be excluded.

Identify properly encapsulated classes.   Instance variables in encapsulated classes are
private. All code that retrieves the value or updates it uses methods. Encapsulated classes
may include accessor (getter) or mutator (setter) methods, although this is not required.

Understand records and know which members the compiler is adding automati-
cally.   Records are encapsulated and immutable types in which the compiler inserts a long
constructor, accessor methods, and useful implementations of equals(), hashCode(), and
toString(). Each of these elements may be overridden. Be able to recognize compact con-
structors and know that they are used only for validation and transformation of constructor
parameters, not for accessing fields. Recognize that when a record is declared with an in-
stance member, it does not compile.

Be able to declare and use nested classes.   There are four types of nested types: inner
classes, static classes, local classes, and anonymous classes. Instantiating an inner class
requires an instance of the outer class. On the other hand, static nested classes can be cre-
ated without a reference to the outer class. Local and anonymous classes cannot be declared
with an access modifier. Anonymous classes are limited to extending a single class or imple-
menting one interface.

Understand polymorphism.   An object may take on a variety of forms, referred to as poly-
morphism. The object is viewed as existing in memory in one concrete form but is accessible
in many forms through reference variables. Changing the reference type of an object may
grant access to new members, but the members always exist in memory.

404  Chapter 7  ■  Beyond Classes

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which of the following are valid record declarations? (Choose all that apply.)

public record Iguana(int age) {
 private static final int age = 10; }

public final record Gecko() {}

public abstract record Chameleon() {
 private static String name; }

public record BeardedDragon(boolean fun) {
 @Override public boolean fun() { return false; } }

public record Newt(long size) {
 @Override public boolean equals(Object obj) { return false; }
 public void setSize(long size) {
 this.size = size;
 } }

A.	 Iguana
B.	 Gecko
C.	 Chameleon
D.	 BeardedDragon
E.	 Newt
F.	 None of the above

2.	 Which of the following statements can be inserted in the blank line so that the code will com-
pile successfully? (Choose all that apply.)

interface CanHop {}
public class Frog implements CanHop {
 public static void main(String[] args) {
 frog = new TurtleFrog();
 }
}
class BrazilianHornedFrog extends Frog {}
class TurtleFrog extends Frog {}

Review Questions  405

A.	 Frog
B.	 TurtleFrog
C.	 BrazilianHornedFrog
D.	 CanHop
E.	 var
F.	 Long
G.	 None of the above; the code contains a compilation error.

3.	 What is the result of the following program?

public class Favorites {
 enum Flavors {
 VANILLA, CHOCOLATE, STRAWBERRY
 static final Flavors DEFAULT = STRAWBERRY;
 }
 public static void main(String[] args) {
 for(final var e : Flavors.values())
 System.out.print(e.ordinal()+" ");
 }
}

A.	 0 1 2
B.	 1 2 3
C.	 Exactly one line of code does not compile.

D.	 More than one line of code does not compile.

E.	 The code compiles but produces an exception at runtime.

F.	 None of the above

4.	 What is the output of the following program?

public sealed class ArmoredAnimal permits Armadillo {
 public ArmoredAnimal(int size) {}
 @Override public String toString() { return "Strong"; }
 public static void main(String[] a) {
 var c = new Armadillo(10, null);
 System.out.println(c);
 }
}
class Armadillo extends ArmoredAnimal {
 @Override public String toString() { return "Cute"; }
 public Armadillo(int size, String name) {
 super(size);
 }
}

406  Chapter 7  ■  Beyond Classes

A.	 Strong
B.	 Cute
C.	 The program does not compile.

D.	 The code compiles but produces an exception at runtime.

E.	 None of the above

5.	 Which statements about the following program are correct? (Choose all that apply.)

1: interface HasExoskeleton {
2: double size = 2.0f;
3: abstract int getNumberOfSections();
4: }
5: abstract class Insect implements HasExoskeleton {
6: abstract int getNumberOfLegs();
7: }
8: public class Beetle extends Insect {
9: int getNumberOfLegs() { return 6; }
10: int getNumberOfSections(int count) { return 1; }
11: }

A.	 It compiles without issue.

B.	 The code will produce a ClassCastException if called at runtime.

C.	 The code will not compile because of line 2.

D.	 The code will not compile because of line 5.

E.	 The code will not compile because of line 8.

F.	 The code will not compile because of line 10.

6.	 Which statements about the following program are correct? (Choose all that apply.)

1: public abstract interface Herbivore {
2: int amount = 10;
3: public void eatGrass();
4: public abstract int chew() { return 13; }
5: }
6:
7: abstract class IsAPlant extends Herbivore {
8: Object eatGrass(int season) { return null; }
9: }

A.	 It compiles and runs without issue.

B.	 The code will not compile because of line 1.

C.	 The code will not compile because of line 2.

Review Questions  407

D.	 The code will not compile because of line 4.

E.	 The code will not compile because of line 7.

F.	 The code will not compile because line 8 contains an invalid method override.

7.	 What is the output of the following program?

1: interface Aquatic {
2: int getNumOfGills(int p);
3: }
4: public class ClownFish implements Aquatic {
5: String getNumOfGills() { return "14"; }
6: int getNumOfGills(int input) { return 15; }
7: public static void main(String[] args) {
8: System.out.println(new ClownFish().getNumOfGills(-1));
9: } }

A.	 14
B.	 15
C.	 The code will not compile because of line 4.

D.	 The code will not compile because of line 5.

E.	 The code will not compile because of line 6.

F.	 None of the above

8.	 When inserted in order, which modifiers can fill in the blank to create a properly encapsu-
lated class? (Choose all that apply.)

public class Rabbits {
 int numRabbits = 0;
 void multiply() {
 numRabbits *= 6;
 }
 int getNumberOfRabbits() {
 return numRabbits;
 }
}

A.	 private, public, and public
B.	 private, protected, and private
C.	 private, private, and protected
D.	 public, public, and public
E.	 The class cannot be properly encapsulated since multiply() does not begin with set.

F.	 None of the above

408  Chapter 7  ■  Beyond Classes

9.	 Which of the following statements can be inserted in the blank so that the code will compile
successfully? (Choose all that apply.)

abstract class Snake {}
class Cobra extends Snake {}
class GardenSnake extends Cobra {}
public class SnakeHandler {
 private Snake snakey;
 public void setSnake(Snake mySnake) { this.snakey = mySnake; }
 public static void main(String[] args) {
 new SnakeHandler().setSnake();
 }
}

A.	 new Cobra()
B.	 new Snake()
C.	 new Object()
D.	 new String("Snake")
E.	 new GardenSnake()
F.	 null
G.	 None of the above. The class does not compile, regardless of the value inserted in the

blank.

10.	 What types can be inserted in the blanks on the lines marked X and Z that allow the code to
compile? (Choose all that apply.)

interface Walk { private static List move() { return null; } }
interface Run extends Walk { public ArrayList move(); }
class Leopard implements Walk {
 public move() { // X
 return null;
 }
}
class Panther implements Run {
 public move() { // Z
 return null;
 }
}

A.	 Integer on the line marked X
B.	 ArrayList on the line marked X
C.	 List on the line marked X
D.	 List on the line marked Z

Review Questions  409

E.	 ArrayList on the line marked Z
F.	 None of the above, since the Run interface does not compile

G.	 The code does not compile for a different reason.

11.	 What is the result of the following code? (Choose all that apply.)

1: public class Movie {
2: private int butter = 5;
3: private Movie() {}
4: protected class Popcorn {
5: private Popcorn() {}
6: public static int butter = 10;
7: public void startMovie() {
8: System.out.println(butter);
9: }
10: }
11: public static void main(String[] args) {
12: var movie = new Movie();
13: Movie.Popcorn in = new Movie().new Popcorn();
14: in.startMovie();
15: } }

A.	 The output is 5.

B.	 The output is 10.

C.	 Line 6 generates a compiler error.

D.	 Line 12 generates a compiler error.

E.	 Line 13 generates a compiler error.

F.	 The code compiles but produces an exception at runtime.

12.	 Which of the following are true about encapsulation? (Choose all that apply.)

A.	 It allows getters.

B.	 It allows setters.

C.	 It requires specific naming conventions.

D.	 It requires public instance variables.

E.	 It requires private instance variables.

13.	 What is the result of the following program?

public class Weather {
 enum Seasons {
 WINTER, SPRING, SUMMER, FALL
 }

410  Chapter 7  ■  Beyond Classes

 public static void main(String[] args) {
 Seasons v = null;
 switch (v) {
 case Seasons.SPRING -> System.out.print("s");
 case Seasons.WINTER -> System.out.print("w");
 case Seasons.SUMMER -> System.out.print("m");
 default -> System.out.println("missing data"); }
 }
}

A.	 s
B.	 w
C.	 m
D.	 missing data
E.	 Exactly one line of code does not compile.

F.	 More than one line of code does not compile.

G.	 The code compiles but produces an exception at runtime.

14.	 Which statements about sealed classes are correct? (Choose all that apply.)

A.	 A sealed interface restricts which subinterfaces may extend it.

B.	 A sealed class cannot be indirectly extended by a class that is not listed in its permits
clause.

C.	 A sealed class can be extended by an abstract class.

D.	 A sealed class can be extended by a subclass that uses the non-sealed modifier.

E.	 A sealed interface restricts which subclasses may implement it.

F.	 A sealed class cannot contain any nested subclasses.

G.	 None of the above

15.	 Which lines, when entered independently into the blank, allow the code to print
Not scared at runtime? (Choose all that apply.)

public class Ghost {
 public static void boo() {
 System.out.println("Not scared");
 }
 protected final class Spirit {
 public void boo() {
 System.out.println("Booo!!!");
 }
 }

Review Questions  411

 public static void main(String... haunt) {
 var g = new Ghost().new Spirit() {};
 ;
 }
}

A.	 g.boo()
B.	 g.super.boo()
C.	 new Ghost().boo()
D.	 g.Ghost.boo()
E.	 new Spirit().boo()
F.	 Ghost.boo()
G.	 None of the above

16.	 The following code appears in a file named Ostrich.java. What is the result of compiling
the source file?

1: public class Ostrich {
2: private int count;
3: static class OstrichWrangler {
4: public int stampede() {
5: return count;
6: } } }

A.	 The code compiles successfully, and one bytecode file is generated: Ostrich.class.

B.	 The code compiles successfully, and two bytecode files are generated: Ostrich.class
and OstrichWrangler.class.

C.	 The code compiles successfully, and two bytecode files are generated: Ostrich.class
and Ostrich$OstrichWrangler.class.

D.	 A compiler error occurs on line 3.

E.	 A compiler error occurs on line 5.

17.	 Which lines of the following interface declarations do not compile? (Choose all that apply.)

1: public interface Omnivore {
2: int amount = 10;
3: static boolean gather = true;
4: static void eatGrass() {}
5: int findMore() { return 2; }
6: default float rest() { return 2; }
7: protected int chew() { return 13; }
8: private static void eatLeaves() {}
9: }

412  Chapter 7  ■  Beyond Classes

A.	 All of the lines compile without issue.

B.	 Line 2

C.	 Line 3

D.	 Line 4

E.	 Line 5

F.	 Line 6

G.	 Line 7

H.	 Line 8

18.	 What is printed by the following program?

public class Deer {
 enum Food {APPLES, BERRIES, GRASS}
 protected class Diet {
 private Food getFavorite() {
 return Food.BERRIES;
 }
 }
 public static void main(String[] seasons) {
 System.out.print(switch(new Diet().getFavorite()) {
 case APPLES -> "a";
 case BERRIES -> "b";
 default -> "c";
 });
 } }

A.	 a
B.	 b
C.	 c
D.	 The code declaration of the Diet class does not compile.

E.	 The main() method does not compile.

F.	 The code compiles but produces an exception at runtime.

G.	 None of the above

19.	 Which of the following are printed by the Bear program? (Choose all that apply.)

public class Bear {
 enum FOOD {
 BERRIES, INSECTS {
 public boolean isHealthy() { return true; }},
 FISH, ROOTS, COOKIES, HONEY;
 public abstract boolean isHealthy();
 }

Review Questions  413

 public static void main(String[] args) {
 System.out.print(FOOD.INSECTS);
 System.out.print(FOOD.INSECTS.ordinal());
 System.out.print(FOOD.INSECTS.isHealthy());
 System.out.print(FOOD.COOKIES.isHealthy());
 }
}

A.	 insects
B.	 INSECTS
C.	 0
D.	 1
E.	 false
F.	 true
G.	 The code does not compile.

20.	 Which statements about polymorphism and method inheritance are correct? (Choose all
that apply.)

A.	 Given an arbitrary instance of a class, it cannot be determined until runtime which over-
ridden method will be executed in a parent class.

B.	 It cannot be determined until runtime which hidden method will be executed in a parent
class.

C.	 Marking a method static prevents it from being overridden or hidden.

D.	 Marking a method final prevents it from being overridden or hidden.

E.	 The reference type of the variable determines which overridden method will be called at
runtime.

F.	 The reference type of the variable determines which hidden method will be called at run-
time.

21.	 Given the following record declaration, which lines of code can fill in the blank and allow
the code to compile? (Choose all that apply.)

public record RabbitFood(int size, String brand, LocalDate expires) {
 public static int MAX_STORAGE = 100;
 public RabbitFood() {
 ;
 }
}

A.	 size = MAX_STORAGE
B.	 this.size = 10

414  Chapter 7  ■  Beyond Classes

C.	 if(expires.isAfter(LocalDate.now())) throw new
RuntimeException()

D.	 if(brand==null) super.brand = "Unknown"
E.	 throw new RuntimeException()
F.	 None of the above

22.	 Which of the following can be inserted in the rest() method? (Choose all that apply.)

public class Lion {
 class Cub {}
 static class Den {}
 static void rest() {
 ;
 } }

A.	 Cub a = Lion.new Cub()
B.	 Lion.Cub b = new Lion().Cub()
C.	 Lion.Cub c = new Lion().new Cub()
D.	 var d = new Den()
E.	 var e = Lion.new Cub()
F.	 Lion.Den f = Lion.new Den()
G.	 Lion.Den g = new Lion.Den()
H.	 var h = new Cub()

23.	 Given the following program, what can be inserted into the blank line that would allow it to
print Swim! at runtime?

interface Swim {
 default void perform() { System.out.print("Swim!"); }
}
interface Dance {
 default void perform() { System.out.print("Dance!"); }
}
public class Penguin implements Swim, Dance {
 public void perform() { System.out.print("Smile!"); }
 private void doShow() {
 ;
 }
 public static void main(String[] eggs) {
 new Penguin().doShow();
 }
}

Review Questions  415

A.	 super.perform()
B.	 Swim.perform()
C.	 super.Swim.perform()
D.	 Swim.super.perform()
E.	 The code does not compile regardless of what is inserted into the blank.

F.	 The code compiles, but due to polymorphism, it is not possible to produce the requested
output without creating a new object.

24.	 Which lines of the following interface do not compile? (Choose all that apply.)

1: public interface BigCat {
2: abstract String getName();
3: static int hunt() { getName(); return 5; }
4: default void climb() { rest(); }
5: private void roar() { getName(); climb(); hunt(); }
6: private static boolean sneak() { roar(); return true; }
7: private int rest() { return 2; };
8: }

A.	 Line 2

B.	 Line 3

C.	 Line 4

D.	 Line 5

E.	 Line 6

F.	 Line 7

G.	 None of the above

25.	 What does the following program print?

1: public class Zebra {
2: private int x = 24;
3: public int hunt() {
4: String message = "x is ";
5: abstract class Stripes {
6: private int x = 0;
7: public void print() {
8: System.out.print(message + Zebra.this.x);
9: }
10: }
11: var s = new Stripes() {};
12: s.print();
13: return x;

416  Chapter 7  ■  Beyond Classes

14: }
15: public static void main(String[] args) {
16: new Zebra().hunt();
17: } }

A.	 x is 0
B.	 x is 24
C.	 Line 6 generates a compiler error.

D.	 Line 8 generates a compiler error.

E.	 Line 11 generates a compiler error.

F.	 None of the above

26.	 Which statements about the following enum are true? (Choose all that apply.)

1: public enum Animals {
2: MAMMAL(true), INVERTEBRATE(Boolean.FALSE), BIRD(false),
3: REPTILE(false), AMPHIBIAN(false), FISH(false) {
4: public int swim() { return 4; }
5: }
6: final boolean hasHair;
7: public Animals(boolean hasHair) {
8: this.hasHair = hasHair;
9: }
10: public boolean hasHair() { return hasHair; }
11: public int swim() { return 0; }
12: }

A.	 Compiler error on line 2

B.	 Compiler error on line 3

C.	 Compiler error on line 7

D.	 Compiler error on line 8

E.	 Compiler error on line 10

F.	 Compiler error on another line

G.	 The code compiles successfully.

27.	 Assuming a record is defined with at least one field, which components does the compiler
always insert, each of which may be overridden or redeclared? (Choose all that apply.)

A.	 A no-argument constructor

B.	 An accessor method for each field

C.	 The toString() method

D.	 The equals() method

Review Questions  417

E.	 A mutator method for each field

F.	 A sort method for each field

G.	 The hashCode() method

28.	 Which of the following classes and interfaces do not compile? (Choose all that apply.)

public abstract class Camel { void travel(); }

public interface EatsGrass { private abstract int chew(); }

public abstract class Elephant {
 abstract private class SleepsAlot {
 abstract int sleep();
 } }

public class Eagle { abstract soar(); }

public interface Spider { default void crawl() {} }

A.	 Camel
B.	 EatsGrass
C.	 Elephant
D.	 Eagle
E.	 Spider
F.	 None of the classes or interfaces compile.

29.	 How many lines of the following program contain a compilation error?

1: class Primate {
2: protected int age = 2;
3: { age = 1; }
4: public Primate() {
5: this().age = 3;
6: }
7: }
8: public class Orangutan {
9: protected int age = 4;
10: { age = 5; }
11: public Orangutan() {
12: this().age = 6;
13: }
14: public static void main(String[] bananas) {

418  Chapter 7  ■  Beyond Classes

15: final Primate x = (Primate)new Orangutan();
16: System.out.println(x.age);
17: }
18: }

A.	 None, and the program prints 1 at runtime.

B.	 None, and the program prints 3 at runtime.

C.	 None, but it causes a ClassCastException at runtime.

D.	 1

E.	 2

F.	 3

G.	 4

30.	 Assuming the following classes are declared as top-level types in the same file, which classes
contain compiler errors? (Choose all that apply.)

sealed class Bird {
 public final class Flamingo extends Bird {}
}

sealed class Monkey {}

class EmperorTamarin extends Monkey {}

non-sealed class Mandrill extends Monkey {}

sealed class Friendly extends Mandrill permits Silly {}

final class Silly {}

A.	 Bird
B.	 Monkey
C.	 EmperorTamarin
D.	 Mandrill
E.	 Friendly
F.	 Silly
G.	 All of the classes compile without issue.

Lambdas and
Functional Interfaces

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Utilizing Java Object-Oriented Approach

■■ Understand variable scopes, use local variable type inference,

apply encapsulation, and make objects immutable

■■ Create and use interfaces, identify functional interfaces, and

utilize private, static, and default interface methods

Chapter

8

In this chapter, we start by introducing lambdas, a new piece
of syntax. Lambdas allow you to specify code that will be run
later in the program.

Next, we introduce the concept of functional interfaces, showing how to write your own
and identify whether an interface is a functional interface. After that, we introduce another
new piece of syntax: method references. These are like a shorter form of lambdas.

Then we introduce the functional interfaces you need to know for the exam. Finally, we
emphasize how variables fit into lambdas.

Lambdas, method references, and functional interfaces are used quite a bit in Chapter 9,
“Collections and Generics” and Chapter 10, “Streams.”

Writing Simple Lambdas
Java is an object-oriented language at heart. You’ve seen plenty of objects by now.
Functional programming is a way of writing code more declaratively. You specify what you
want to do rather than dealing with the state of objects. You focus more on expressions
than loops.

Functional programming uses lambda expressions to write code. A lambda expression is a
block of code that gets passed around. You can think of a lambda expression as an unnamed
method existing inside an anonymous class like the ones you saw in Chapter 7, “Beyond
Classes.” It has parameters and a body just like full-fledged methods do, but it doesn’t have a
name like a real method. Lambda expressions are often referred to as lambdas for short. You
might also know them as closures if Java isn’t your first language. If you had a bad experi-
ence with closures in the past, don’t worry. They are far simpler in Java.

Lambdas allow you to write powerful code in Java. In this section, we cover an example
of why lambdas are helpful and the syntax of lambdas.

Looking at a Lambda Example
Our goal is to print out all the animals in a list according to some criteria. We show you how to
do this without lambdas to illustrate how lambdas are useful. We start with the Animal record:

public record Animal(String species, boolean canHop, boolean canSwim) { }

Writing Simple Lambdas  421

The Animal record has three fields. Let’s say we have a list of animals, and we want to pro-
cess the data based on a particular attribute. For example, we want to print all animals that can
hop. We can define an interface to generalize this concept and support a large variety of checks:

public interface CheckTrait {
 boolean test(Animal a);
}

The first thing we want to check is whether the Animal can hop. We provide a class that
implements our interface:

public class CheckIfHopper implements CheckTrait {
 public boolean test(Animal a) {
 return a.canHop();
 }
}

This class may seem simple—and it is. This is part of the problem that lambdas solve. Just
bear with us for a bit. Now we have everything we need to write our code to find out if an
Animal can hop:

1: import java.util.*;
2: public class TraditionalSearch {
3: public static void main(String[] args) {
4:
5: // list of animals
6: var animals = new ArrayList<Animal>();
7: animals.add(new Animal("fish", false, true));
8: animals.add(new Animal("kangaroo", true, false));
9: animals.add(new Animal("rabbit", true, false));
10: animals.add(new Animal("turtle", false, true));
11:
12: // pass class that does check
13: print(animals, new CheckIfHopper());
14: }
15: private static void print(List<Animal> animals, CheckTrait checker) {
16: for (Animal animal : animals) {
17:
18: // General check
19: if (checker.test(animal))
20: System.out.print(animal + " ");
21: }
22: System.out.println();
23: }
24: }

422  Chapter 8  ■  Lambdas and Functional Interfaces

Line 6 shows configuring an ArrayList with a specific type of Animal. The print()
method on line 15 is very general—it can check for any trait. This is good design. It
shouldn’t need to know what specifically we are searching for in order to print a list
of animals.

What happens if we want to print the Animals that swim? Sigh. We need to write another
class, CheckIfSwims. Granted, it is only a few lines, but it is a whole new file. Then we need
to add a new line under line 13 that instantiates that class. That’s two things just to do
another check.

Why can’t we specify the logic we care about right here? It turns out that we can, with
lambda expressions. We could repeat the whole class here and make you find the one line
that changed. Instead, we just show you that we can keep our print() method declaration
unchanged. Let’s replace line 13 with the following, which uses a lambda:

13: print(animals, a -> a.canHop());

Don’t worry that the syntax looks a little funky. You’ll get used to it, and we describe it
in the next section. We also explain the bits that look like magic. For now, just focus on how
easy it is to read. We are telling Java that we only care if an Animal can hop.

It doesn’t take much imagination to figure out how we would add logic to get the
Animals that can swim. We only have to add one line of code—no need for an extra class to
do something simple. Here’s that other line:

13: print(animals, a -> a.canSwim());

How about Animals that cannot swim?

13: print(animals, a -> !a.canSwim());

The point is that it is really easy to write code that uses lambdas once you get the basics
in place. This code uses a concept called deferred execution. Deferred execution means that
code is specified now but will run later. In this case, “later” is inside the print() method
body, as opposed to when it is passed to the method.

Learning Lambda Syntax
One of the simplest lambda expressions you can write is the one you just saw:

a -> a.canHop()

Lambdas work with interfaces that have exactly one abstract method. In this case, Java
looks at the CheckTrait interface, which has one method. The lambda in our example sug-
gests that Java should call a method with an Animal parameter that returns a boolean value
that’s the result of a.canHop(). We know all this because we wrote the code. But how does
Java know?

Java relies on context when figuring out what lambda expressions mean. Context
refers to where and how the lambda is interpreted. For example, if we see someone in line
to enter the zoo and they have their wallet out, it is fair to assume they want to buy zoo

Writing Simple Lambdas  423

tickets. Alternatively, if they are in the concession line with their wallet out, they are prob-
ably hungry.

Referring to our earlier example, we passed the lambda as the second parameter of the
print method():

print(animals, a -> a.canHop());

The print() method expects a CheckTrait as the second parameter:

private static void print(List<Animal> animals, CheckTrait checker) { ... }

Since we are passing a lambda instead, Java tries to map our lambda to the abstract
method declaration in the CheckTrait interface:

boolean test(Animal a);

Since that interface’s method takes an Animal, the lambda parameter has to be an
Animal. And since that interface’s method returns a boolean, we know the lambda returns
a boolean.

The syntax of lambdas is tricky because many parts are optional. These two lines do the
exact same thing:

a -> a.canHop()

(Animal a) -> { return a.canHop(); }

Let’s look at what is going on here. The first example, shown in Figure 8.1, has three parts:

■■ A single parameter specified with the name a
■■ The arrow operator (->) to separate the parameter and body

■■ A body that calls a single method and returns the result of that method

The second example shows the most verbose form of a lambda that returns a boolean
(see Figure 8.2):

■■ A single parameter specified with the name a and stating that the type is Animal
■■ The arrow operator (->) to separate the parameter and body

■■ A body that has one or more lines of code, including a semicolon and a
return statement

a -> a.canHop()

Parameter name Body

Arrow

F IGURE 8 .1   Lambda syntax omitting optional parts

424  Chapter 8  ■  Lambdas and Functional Interfaces

The parentheses around the lambda parameters can be omitted only if there is a single
parameter and its type is not explicitly stated. Java does this because developers commonly
use lambda expressions this way and can do as little typing as possible.

It shouldn’t be news to you that we can omit braces when we have only a single statement.
We did this with if statements and loops already. Java allows you to omit a return state-
ment and semicolon (;) when no braces are used. This special shortcut doesn’t work when you
have two or more statements. At least this is consistent with using {} to create blocks of code
elsewhere.

The syntax in Figure 8.1 and Figure 8.2 can be mixed and matched. For example, the fol-
lowing are valid:

a -> { return a.canHop(); }
(Animal a) -> a.canHop()

Here’s a fun fact: s -> {} is a valid lambda. If there is no code on the
right side of the expression, you don’t need the semicolon or return
statement.

Table 8.1 shows examples of valid lambdas that return a boolean.

TABLE 8 .1   Valid lambdas that return a boolean

Lambda # of parameters

() -> true 0

x -> x.startsWith("test") 1

(String x) -> x.startsWith("test") 1

(x, y) -> { return x.startsWith("test"); } 2

(String x, String y) -> x.startsWith("test") 2

Parameter name Body

Arrow

(Animal a) -> { return a.canHop(); }

F IGURE 8 .2   Lambda syntax including optional parts

Writing Simple Lambdas  425

The first row takes zero parameters and always returns the boolean value true. The
second row takes one parameter and calls a method on it, returning the result. The third row
does the same, except that it explicitly defines the type of the variable. The final two rows
take two parameters and ignore one of them—there isn’t a rule that says you must use all
defined parameters.

Now let’s make sure you can identify invalid syntax for each row in Table 8.2, where
each lambda is supposed to return a boolean. Make sure you understand what’s wrong
with these.

Remember that the parentheses are optional only when there is one parameter and it
doesn’t have a type declared. Those are the basics of writing a lambda. At the end of the
chapter, we cover additional rules about using variables in a lambda.

Assigning Lambdas to var

Why do you think this line of code doesn’t compile?

var invalid = (Animal a) -> a.canHop(); // DOES NOT COMPILE

Remember when we talked about Java inferring information about the lambda from the
context? Well, var assumes the type based on the context as well. There’s not enough con-
text here! Neither the lambda nor var have enough information to determine what type of
functional interface should be used.

TABLE 8 .2   Invalid lambdas that should return a boolean

Invalid lambda Reason

x, y -> x.startsWith("fish") Missing parentheses on left

x -> { x.startsWith("camel"); } Missing return on right

x -> { return x.startsWith("giraffe") } Missing semicolon inside braces

String x -> x.endsWith("eagle") Missing parentheses on left

426  Chapter 8  ■  Lambdas and Functional Interfaces

Coding Functional Interfaces
Earlier in the chapter, we declared the CheckTrait interface, which has exactly one method
for implementers to write. Lambdas have a special relationship with such interfaces. In fact,
these interfaces have a name. A functional interface is an interface that contains a single
abstract method. Your friend Sam can help you remember this because it is officially known
as a single abstract method (SAM) rule.

Defining a Functional Interface
Let’s take a look at an example of a functional interface and a class that implements it:

@FunctionalInterface
public interface Sprint {
 public void sprint(int speed);
}

public class Tiger implements Sprint {
 public void sprint(int speed) {
 System.out.println("Animal is sprinting fast! " + speed);
 }
}

In this example, the Sprint interface is a functional interface because it contains exactly
one abstract method, and the Tiger class is a valid class that implements the interface.

The @FunctionalInterface Annotation

The @FunctionalInterface annotation tells the compiler that you intend for the code to
be a functional interface. If the interface does not follow the rules for a functional interface,
the compiler will give you an error.

@FunctionalInterface
public interface Dance { // DOES NOT COMPILE
 void move();
 void rest();
}
Java includes @FunctionalInterface on some, but not all, functional interfaces. This
annotation means the authors of the interface promise it will be safe to use in a lambda
in the future. However, just because you don’t see the annotation doesn’t mean it’s not a
functional interface. Remember that having exactly one abstract method is what makes it a
functional interface, not the annotation.

Coding Functional Interfaces  427

Consider the following four interfaces. Given our previous Sprint functional interface,
which of the following are functional interfaces?

public interface Dash extends Sprint {}

public interface Skip extends Sprint {
 void skip();
}

public interface Sleep {
 private void snore() {}
 default int getZzz() { return 1; }
}

public interface Climb {
 void reach();
 default void fall() {}
 static int getBackUp() { return 100; }
 private static boolean checkHeight() { return true; }
}

All four of these are valid interfaces, but not all of them are functional interfaces. The
Dash interface is a functional interface because it extends the Sprint interface and inherits
the single abstract method sprint(). The Skip interface is not a valid functional inter-
face because it has two abstract methods: the inherited sprint() method and the declared
skip() method.

The Sleep interface is also not a valid functional interface. Neither snore() nor getZzz()
meets the criteria of a single abstract method. Even though default methods function like
abstract methods, in that they can be overridden in a class implementing the interface, they
are insufficient for satisfying the single abstract method requirement.

Finally, the Climb interface is a functional interface. Despite defining a slew of methods, it
contains only one abstract method: reach().

Adding Object Methods
All classes inherit certain methods from Object. For the exam, you should know the follow-
ing Object method signatures:

■■ public String toString()
■■ public boolean equals(Object)
■■ public int hashCode()

We bring this up now because there is one exception to the single abstract method rule
that you should be familiar with. If a functional interface includes an abstract method with

428  Chapter 8  ■  Lambdas and Functional Interfaces

the same signature as a public method found in Object, those methods do not count
toward the single abstract method test. The motivation behind this rule is that any class that
implements the interface will inherit from Object, as all classes do, and therefore always
implement these methods.

Since Java assumes all classes extend from Object, you also cannot
declare an interface method that is incompatible with Object. For
example, declaring an abstract method int toString() in an inter-
face would not compile since Object’s version of the method returns a
String.

Let’s take a look at an example. Is the Soar class a functional interface?

public interface Soar {
 abstract String toString();
}

It is not. Since toString() is a public method implemented in Object, it does not
count toward the single abstract method test. On the other hand, the following implementa-
tion of Dive is a functional interface:

public interface Dive {
 String toString();
 public boolean equals(Object o);
 public abstract int hashCode();
 public void dive();
}

The dive() method is the single abstract method, while the others are not counted since
they are public methods defined in the Object class.

Be wary of examples that resemble methods in the Object class but are not actu-
ally defined in the Object class. Do you see why the following is not a valid functional
interface?

public interface Hibernate {
 String toString();
 public boolean equals(Hibernate o);
 public abstract int hashCode();
 public void rest();
}

Despite looking a lot like our Dive interface, the Hibernate interface uses
equals(Hibernate) instead of equals(Object). Because this does not match the
method signature of the equals(Object) method defined in the Object class, this inter-
face is counted as containing two abstract methods: equals(Hibernate) and rest().

Using Method References  429

Using Method References
Method references are another way to make the code easier to read, such as simply men-
tioning the name of the method. Like lambdas, it takes time to get used to the new syntax. In
this section, we show the syntax along with the four types of method references. We also mix
in lambdas with method references.

Suppose we are coding a duckling that is trying to learn how to quack. First we have a
functional interface:

public interface LearnToSpeak {
 void speak(String sound);
}

Next, we discover that our duckling is lucky. There is a helper class that the duckling can
work with. We’ve omitted the details of teaching the duckling how to quack and left the part
that calls the functional interface:

public class DuckHelper {
 public static void teacher(String name, LearnToSpeak trainer) {
 // Exercise patience (omitted)
 trainer.speak(name);
 }
}

Finally, it is time to put it all together and meet our little Duckling. This code imple-
ments the functional interface using a lambda:

public class Duckling {
 public static void makeSound(String sound) {
 LearnToSpeak learner = s -> System.out.println(s);
 DuckHelper.teacher(sound, learner);
 }
}

Not bad. There’s a bit of redundancy, though. The lambda declares one parameter named
s. However, it does nothing other than pass that parameter to another method. A method
reference lets us remove that redundancy and instead write this:

LearnToSpeak learner = System.out::println;

The :: operator tells Java to call the println() method later. It will take a little while to
get used to the syntax. Once you do, you may find your code is shorter and less distracting
without writing as many lambdas.

Remember that :: is like a lambda, and it is used for deferred execution
with a functional interface. You can even imagine the method reference
as a lambda if it helps you.

430  Chapter 8  ■  Lambdas and Functional Interfaces

A method reference and a lambda behave the same way at runtime. You can pretend the
compiler turns your method references into lambdas for you.

There are four formats for method references:

■■ static methods

■■ Instance methods on a particular object

■■ Instance methods on a parameter to be determined at runtime

■■ Constructors

Let’s take a brief look at each of these in turn. In each example, we show the method ref-
erence and its lambda equivalent. For now, we create a separate functional interface for each
example. In the next section, we introduce built-in functional interfaces so you don’t have to
keep writing your own.

Calling static Methods
For the first example, we use a functional interface that converts a double to a long:

interface Converter {
 long round(double num);
}

We can implement this interface with the round() method in Math. Here we assign a
method reference and a lambda to this functional interface:

14: Converter methodRef = Math::round;
15: Converter lambda = x -> Math.round(x);
16:
17: System.out.println(methodRef.round(100.1)); // 100

On line 14, we reference a method with one parameter, and Java knows that it’s like a
lambda with one parameter. Additionally, Java knows to pass that parameter to the method.

Wait a minute. You might be aware that the round() method is overloaded—it can take a
double or a float. How does Java know that we want to call the version with a double? With
both lambdas and method references, Java infers information from the context. In this case,
we said that we were declaring a Converter, which has a method taking a double parameter.
Java looks for a method that matches that description. If it can’t find it or finds multiple
matches, then the compiler will report an error. The latter is sometimes called an ambiguous
type error.

Calling Instance Methods on a Particular Object
For this example, our functional interface checks if a String starts with a specified value:

interface StringStart {
 boolean beginningCheck(String prefix);
}

Using Method References  431

Conveniently, the String class has a startsWith() method that takes one parameter
and returns a boolean. Let’s look at how to use method references with this code:

18: var str = "Zoo";
19: StringStart methodRef = str::startsWith;
20: StringStart lambda = s -> str.startsWith(s);
21:
22: System.out.println(methodRef.beginningCheck("A")); // false

Line 19 shows that we want to call str.startsWith() and pass a single parameter to
be supplied at runtime. This would be a nice way of filtering the data in a list.

A method reference doesn’t have to take any parameters. In this example, we create a
functional interface with a method that doesn’t take any parameters but returns a value:

interface StringChecker {
 boolean check();
}

We implement it by checking if the String is empty:

18: var str = "";
19: StringChecker methodRef = str::isEmpty;
20: StringChecker lambda = () -> str.isEmpty();
21:
22: System.out.print(methodRef.check()); // true

Since the method on String is an instance method, we call the method reference on an
instance of the String class.

While all method references can be turned into lambdas, the opposite is not always true.
For example, consider this code:

var str = "";
StringChecker lambda = () -> str.startsWith("Zoo");

How might we write this as a method reference? You might try one of the following:

StringChecker methodReference = str::startsWith; // DOES NOT COMPILE

StringChecker methodReference = str::startsWith("Zoo"); // DOES NOT COMPILE

Neither of these works! While we can pass the str as part of the method reference,
there’s no way to pass the "Zoo" parameter with it. Therefore, it is not possible to write this
lambda as a method reference.

432  Chapter 8  ■  Lambdas and Functional Interfaces

Calling Instance Methods on a Parameter
This time, we are going to call the same instance method that doesn’t take any parameters.
The trick is that we will do so without knowing the instance in advance. We need a different
functional interface this time since it needs to know about the String:

interface StringParameterChecker {
 boolean check(String text);
}

We can implement this functional interface as follows:

23: StringParameterChecker methodRef = String::isEmpty;
24: StringParameterChecker lambda = s -> s.isEmpty();
25:
26: System.out.println(methodRef.check("Zoo")); // false

Line 23 says the method that we want to call is declared in String. It looks like a
static method, but it isn’t. Instead, Java knows that isEmpty() is an instance method that
does not take any parameters. Java uses the parameter supplied at runtime as the instance on
which the method is called.

Compare lines 23 and 24 with lines 19 and 20 of our instance example. They look sim-
ilar, although one references a local variable named str, while the other only references the
functional interface parameters.

You can even combine the two types of instance method references. Again, we need a new
functional interface that takes two parameters:

interface StringTwoParameterChecker {
 boolean check(String text, String prefix);
}

Pay attention to the parameter order when reading the implementation:

26: StringTwoParameterChecker methodRef = String::startsWith;
27: StringTwoParameterChecker lambda = (s, p) -> s.startsWith(p);
28:
29: System.out.println(methodRef.check("Zoo", "A")); // false

Since the functional interface takes two parameters, Java has to figure out what they
represent. The first one will always be the instance of the object for instance methods. Any
others are to be method parameters.

Remember that line 26 may look like a static method, but it is really a method ref-
erence declaring that the instance of the object will be specified later. Line 27 shows some
of the power of a method reference. We were able to replace two lambda parameters
this time.

Using Method References  433

Calling Constructors
A constructor reference is a special type of method reference that uses new instead of a
method and instantiates an object. For this example, our functional interface will not take
any parameters but will return a String:

interface EmptyStringCreator {
 String create();
}

To call this, we use new as if it were a method name:

30: EmptyStringCreator methodRef = String::new;
31: EmptyStringCreator lambda = () -> new String();
32:
33: var myString = methodRef.create();
34: System.out.println(myString.equals("Snake")); // false

It expands like the method references you have seen so far. In the previous example, the
lambda doesn’t have any parameters.

Method references can be tricky. This time we create a functional interface that takes one
parameter and returns a result:

interface StringCopier {
 String copy(String value);
}

In the implementation, notice that line 32 in the following example has the same method
reference as line 30 in the previous example:

32: StringCopier methodRef = String::new;
33: StringCopier lambda = x -> new String(x);
34:
35: var myString = methodRef.copy("Zebra");
36: System.out.println(myString.equals("Zebra")); // true

This means you can’t always determine which method can be called by looking at the
method reference. Instead, you have to look at the context to see what parameters are used
and if there is a return type. In this example, Java sees that we are passing a String param-
eter and calls the constructor of String that takes such a parameter.

Reviewing Method References
Reading method references is helpful in understanding the code. Table 8.3 shows the four
types of method references. If this table doesn’t make sense, please reread the previous sec-
tion. It can take a few tries before method references start to add up.

434  Chapter 8  ■  Lambdas and Functional Interfaces

Working with Built-in Functional
Interfaces
It would be inconvenient to write your own functional interface any time you want to write
a lambda. Luckily, a large number of general-purpose functional interfaces are provided for
you. We cover them in this section.

The core functional interfaces in Table 8.4 are provided in the java.util.function
package. We cover generics in the next chapter, but for now, you just need to know that
<T> allows the interface to take an object of a specified type. If a second type parameter is
needed, we use the next letter, U. If a distinct return type is needed, we choose R for return as
the generic type.

TABLE 8 .3   Method references

Type Before colon After colon Example

static methods Class name Method
name

Math::random

Instance methods on a particular
object

Instance variable
name

Method
name

str::startsWith

Instance methods on a parameter Class name Method
name

String::isEmpty

Constructor Class name new String::new

TABLE 8 .4   Common functional interfaces

Functional interface Return type Method name # of parameters

Supplier<T> T get() 0

Consumer<T> void accept(T) 1 (T)

BiConsumer<T, U> void accept(T,U) 2 (T, U)

Predicate<T> boolean test(T) 1 (T)

BiPredicate<T, U> boolean test(T,U) 2 (T, U)

Function<T, R> R apply(T) 1 (T)

Working with Built-in Functional Interfaces  435

For the exam, you need to memorize Table 8.4. We will give you lots of practice in this
section to help make it memorable. Before you ask, most of the time we don’t assign the
implementation of the interface to a variable. The interface name is implied, and it is passed
directly to the method that needs it. We are introducing the names so that you can better
understand and remember what is going on. By the next chapter, we will assume that you
have this down and stop creating the intermediate variable.

You learn about a few more functional interfaces later in the book. In the
next chapter, we cover Comparator. In Chapter 13, “Concurrency,” we
discuss Runnable and Callable. These may show up on the exam when
you are asked to recognize functional interfaces.

Let’s look at how to implement each of these interfaces. Since both lambdas and method
references appear all over the exam, we show an implementation using both where possible.
After introducing the interfaces, we also cover some convenience methods available on these
interfaces.

Implementing Supplier
A Supplier is used when you want to generate or supply values without taking any input. The
Supplier interface is defined as follows:

@FunctionalInterface
public interface Supplier<T> {
 T get();
}

You can create a LocalDate object using the factory method now(). This example shows
how to use a Supplier to call this factory:

Supplier<LocalDate> s1 = LocalDate::now;
Supplier<LocalDate> s2 = () -> LocalDate.now();

LocalDate d1 = s1.get();
LocalDate d2 = s2.get();

Functional interface Return type Method name # of parameters

BiFunction<T, U, R> R apply(T,U) 2 (T, U)

UnaryOperator<T> T apply(T) 1 (T)

BinaryOperator<T> T apply(T,T) 2 (T, T)

436  Chapter 8  ■  Lambdas and Functional Interfaces

System.out.println(d1); // 2022-02-20
System.out.println(d2); // 2022-02-20

This example prints a date twice. It’s also a good opportunity to review static method
references. The LocalDate::now method reference is used to create a Supplier to assign
to an intermediate variable s1. A Supplier is often used when constructing new objects.
For example, we can print two empty StringBuilder objects:

Supplier<StringBuilder> s1 = StringBuilder::new;
Supplier<StringBuilder> s2 = () -> new StringBuilder();

System.out.println(s1.get()); // Empty string
System.out.println(s2.get()); // Empty string

This time, we used a constructor reference to create the object. We’ve been using generics
to declare what type of Supplier we are using. This can be a little long to read. Can you
figure out what the following does? Just take it one step at a time:

Supplier<ArrayList<String>> s3 = ArrayList::new;
ArrayList<String> a1 = s3.get();
System.out.println(a1); // []

We have a Supplier of a certain type. That type happens to be ArrayList<String>.
Then calling get() creates a new instance of ArrayList<String>, which is the generic
type of the Supplier—in other words, a generic that contains another generic. Be sure to
look at the code carefully when this type of thing comes up.

Notice how we called get() on the functional interface. What would happen if we tried to
print out s3 itself?

System.out.println(s3);

The code prints something like this:

functionalinterface.BuiltIns$$Lambda$1/0x0000000800066840@4909b8da

That’s the result of calling toString() on a lambda. Yuck. This actually does mean
something. Our test class is named BuiltIns, and it is in a package that we created named
functionalinterface. Then comes $$, which means that the class doesn’t exist in a class
file on the file system. It exists only in memory. You don’t need to worry about the rest.

Implementing Consumer and BiConsumer
You use a Consumer when you want to do something with a parameter but not return
anything. BiConsumer does the same thing, except that it takes two parameters. The interfaces
are defined as follows:

@FunctionalInterface
public interface Consumer<T> {

Working with Built-in Functional Interfaces  437

 void accept(T t);
 // omitted default method
}

@FunctionalInterface
public interface BiConsumer<T, U> {
 void accept(T t, U u);
 // omitted default method
}

You’ll notice this pattern. Bi means two. It comes from Latin, but you
can remember it from English words like binary (0 or 1) or bicycle (two
wheels). Always add another parameter when you see Bi.

Printing is a common use of the Consumer interface:

Consumer<String> c1 = System.out::println;
Consumer<String> c2 = x -> System.out.println(x);

c1.accept("Annie"); // Annie
c2.accept("Annie"); // Annie

BiConsumer is called with two parameters. They don’t have to be the same type. For
example, we can put a key and a value in a map using this interface:

var map = new HashMap<String, Integer>();
BiConsumer<String, Integer> b1 = map::put;
BiConsumer<String, Integer> b2 = (k, v) -> map.put(k, v);

b1.accept("chicken", 7);
b2.accept("chick", 1);

System.out.println(map); // {chicken=7, chick=1}

The output is {chicken=7, chick=1}, which shows that both BiConsumer implemen-
tations were called. When declaring b1, we used an instance method reference on an object
since we want to call a method on the local variable map. The code to instantiate b1 is a
good bit shorter than the code for b2. This is probably why the exam is so fond of method
references.

As another example, we use the same type for both generic parameters:

var map = new HashMap<String, String>();
BiConsumer<String, String> b1 = map::put;
BiConsumer<String, String> b2 = (k, v) -> map.put(k, v);

438  Chapter 8  ■  Lambdas and Functional Interfaces

b1.accept("chicken", "Cluck");
b2.accept("chick", "Tweep");

System.out.println(map); // {chicken=Cluck, chick=Tweep}

This shows that a BiConsumer can use the same type for both the T and U generic
parameters.

Implementing Predicate and BiPredicate
Predicate is often used when filtering or matching. Both are common operations. A BiPredicate
is just like a Predicate, except that it takes two parameters instead of one. The interfaces are
defined as follows:

@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);
 // omitted default and static methods
}

@FunctionalInterface
public interface BiPredicate<T, U> {
 boolean test(T t, U u);
 // omitted default methods
}

You can use a Predicate to test a condition.

Predicate<String> p1 = String::isEmpty;
Predicate<String> p2 = x -> x.isEmpty();

System.out.println(p1.test("")); // true
System.out.println(p2.test("")); // true

This prints true twice. More interesting is a BiPredicate. This example also prints
true twice:

BiPredicate<String, String> b1 = String::startsWith;
BiPredicate<String, String> b2 =
 (string, prefix) -> string.startsWith(prefix);

System.out.println(b1.test("chicken", "chick")); // true
System.out.println(b2.test("chicken", "chick")); // true

Working with Built-in Functional Interfaces  439

The method reference includes both the instance variable and parameter for
startsWith(). This is a good example of how method references save quite a lot of typ-
ing. The downside is that they are less explicit, and you really have to understand what
is going on!

Implementing Function and BiFunction
A Function is responsible for turning one parameter into a value of a potentially different
type and returning it. Similarly, a BiFunction is responsible for turning two parameters into a
value and returning it. The interfaces are defined as follows:

@FunctionalInterface
public interface Function<T, R> {
 R apply(T t);
 // omitted default and static methods
}

@FunctionalInterface
public interface BiFunction<T, U, R> {
 R apply(T t, U u);
 // omitted default method
}

For example, this function converts a String to the length of the String:

Function<String, Integer> f1 = String::length;
Function<String, Integer> f2 = x -> x.length();

System.out.println(f1.apply("cluck")); // 5
System.out.println(f2.apply("cluck")); // 5

This function turns a String into an Integer. Well, technically, it turns the String into
an int, which is autoboxed into an Integer. The types don’t have to be different. The fol-
lowing combines two String objects and produces another String:

BiFunction<String, String, String> b1 = String::concat;
BiFunction<String, String, String> b2 =
 (string, toAdd) -> string.concat(toAdd);

System.out.println(b1.apply("baby ", "chick")); // baby chick
System.out.println(b2.apply("baby ", "chick")); // baby chick

The first two types in the BiFunction are the input types. The third is the result type.
For the method reference, the first parameter is the instance that concat() is called on, and
the second is passed to concat().

440  Chapter 8  ■  Lambdas and Functional Interfaces

Implementing UnaryOperator and BinaryOperator
UnaryOperator and BinaryOperator are special cases of a Function. They require all
type parameters to be the same type. A UnaryOperator transforms its value into one of the
same type. For example, incrementing by one is a unary operation. In fact, UnaryOperator
extends Function. A BinaryOperator merges two values into one of the same type. Add-
ing two numbers is a binary operation. Similarly, BinaryOperator extends BiFunction.
The interfaces are defined as follows:

@FunctionalInterface
public interface UnaryOperator<T> extends Function<T, T> {
 // omitted static method
}

@FunctionalInterface
public interface BinaryOperator<T> extends BiFunction<T, T, T> {
 // omitted static methods
}

This means the method signatures look like this:

T apply(T t); // UnaryOperator

T apply(T t1, T t2); // BinaryOperator

In the Javadoc, you’ll notice that these methods are inherited from the
Function/BiFunction superclass. The generic declarations on the subclass are what force
the type to be the same. For the unary example, notice how the return type is the same type
as the parameter.

UnaryOperator<String> u1 = String::toUpperCase;
UnaryOperator<String> u2 = x -> x.toUpperCase();

System.out.println(u1.apply("chirp")); // CHIRP
System.out.println(u2.apply("chirp")); // CHIRP

This prints CHIRP twice. We don’t need to specify the return type in the generics
because UnaryOperator requires it to be the same as the parameter. And now here’s the
binary example:

BinaryOperator<String> b1 = String::concat;
BinaryOperator<String> b2 = (string, toAdd) -> string.concat(toAdd);

System.out.println(b1.apply("baby ", "chick")); // baby chick
System.out.println(b2.apply("baby ", "chick")); // baby chick

Working with Built-in Functional Interfaces  441

Notice that this does the same thing as the BiFunction example. The code is more suc-
cinct, which shows the importance of using the best functional interface. It’s nice to have one
generic type specified instead of three.

Checking Functional Interfaces
It’s really important to know the number of parameters, types, return value, and method
name for each of the functional interfaces. Now would be a good time to memorize
Table 8.4 if you haven’t done so already. Let’s do some examples to practice.

What functional interface would you use in these three situations?
■■ Returns a String without taking any parameters

■■ Returns a Boolean and takes a String
■■ Returns an Integer and takes two Integers

Ready? Think about what your answers are before continuing. Really. You have to
know this cold. Okay. The first one is a Supplier<String> because it generates an object
and takes zero parameters. The second one is a Function<String,Boolean> because
it takes one parameter and returns another type. It’s a little tricky. You might think it is a
Predicate<String>. Note that a Predicate returns a boolean primitive and not a
Boolean object.

Finally, the third one is either a BinaryOperator<Integer> or a
BiFunction<Integer,Integer,Integer>. Since BinaryOperator is a special case of
BiFunction, either is a correct answer. BinaryOperator<Integer> is the better answer
of the two since it is more specific.

Let’s try this exercise again but with code. It’s harder with code. The first thing you do is
look at how many parameters the lambda takes and whether there is a return value. What
functional interface would you use to fill in the blanks for these?

6: <List> ex1 = x -> "".equals(x.get(0));
7: <Long> ex2 = (Long l) -> System.out.println(l);
8: <String, String> ex3 = (s1, s2) -> false;

Again, think about the answers before continuing. Ready? Line 6 passes one List param-
eter to the lambda and returns a boolean. This tells us that it is a Predicate or Function.
Since the generic declaration has only one parameter, it is a Predicate.

Line 7 passes one Long parameter to the lambda and doesn’t return anything. This tells
us that it is a Consumer. Line 8 takes two parameters and returns a boolean. When you see
a boolean returned, think Predicate unless the generics specify a Boolean return type. In this
case, there are two parameters, so it is a BiPredicate.

Are you finding these easy? If not, review Table 8.4 again. We aren’t kidding. You need to
know the table really well. Now that you are fresh from studying the table, we are going to
play “identify the error.” These are meant to be tricky:

6: Function<List<String>> ex1 = x -> x.get(0); // DOES NOT COMPILE
7: UnaryOperator<Long> ex2 = (Long l) -> 3.14; // DOES NOT COMPILE

442  Chapter 8  ■  Lambdas and Functional Interfaces

Line 6 claims to be a Function. A Function needs to specify two generic types: the
input parameter type and the return value type. The return value type is missing from line 6,
causing the code not to compile. Line 7 is a UnaryOperator, which returns the same type
as it is passed in. The example returns a double rather than a Long, causing the code not
to compile.

Using Convenience Methods on Functional Interfaces
By definition, all functional interfaces have a single abstract method. This doesn’t mean they
can have only one method, though. Several of the common functional interfaces provide a
number of helpful default interface methods.

Table 8.5 shows the convenience methods on the built-in functional interfaces that you
need to know for the exam. All of these facilitate modifying or combining functional inter-
faces of the same type. Note that Table 8.5 shows only the main interfaces. The BiConsumer,
BiFunction, and BiPredicate interfaces have similar methods available.

Let’s start with these two Predicate variables:

Predicate<String> egg = s -> s.contains("egg");
Predicate<String> brown = s -> s.contains("brown");

Now we want a Predicate for brown eggs and another for all other colors of eggs. We
could write this by hand, as shown here:

Predicate<String> brownEggs = s -> s.contains("egg") && s.contains("brown");
Predicate<String> otherEggs = s -> s.contains("egg") && !s.contains("brown");

TABLE 8 .5   Convenience methods

Interface instance Method return type Method name Method parameters

Consumer Consumer andThen() Consumer

Function Function andThen() Function

Function Function compose() Function

Predicate Predicate and() Predicate

Predicate Predicate negate() —

Predicate Predicate or() Predicate

Working with Built-in Functional Interfaces  443

This works, but it’s not great. It’s a bit long to read, and it contains duplication. What if
we decide the letter e should be capitalized in egg? We’d have to change it in three variables:
egg, brownEggs, and otherEggs. A better way to deal with this situation is to use two of
the default methods on Predicate.

Predicate<String> brownEggs = egg.and(brown);
Predicate<String> otherEggs = egg.and(brown.negate());

Neat! Now we are reusing the logic in the original Predicate variables to build two new
ones. It’s shorter and clearer what the relationship is between variables. We can also change
the spelling of egg in one place, and the other two objects will have new logic because they
reference it.

Moving on to Consumer, let’s take a look at the andThen() method, which runs two
functional interfaces in sequence:

Consumer<String> c1 = x -> System.out.print("1: " + x);
Consumer<String> c2 = x -> System.out.print(",2: " + x);

Consumer<String> combined = c1.andThen(c2);
combined.accept("Annie"); // 1: Annie,2: Annie

Notice how the same parameter is passed to both c1 and c2. This shows that the
Consumer instances are run in sequence and are independent of each other. By contrast, the
compose() method on Function chains functional interfaces. However, it passes along the
output of one to the input of another.

Function<Integer, Integer> before = x -> x + 1;
Function<Integer, Integer> after = x -> x * 2;

Function<Integer, Integer> combined = after.compose(before);
System.out.println(combined.apply(3)); // 8

This time, the before runs first, turning the 3 into 4. Then the after runs, doubling the
4 to 8. All of the methods in this section are helpful for simplifying your code as you work
with functional interfaces.

Learning the Functional Interfaces for Primitives
Remember when we told you to memorize Table 8.4 with the common functional interfaces?
Did you? If you didn’t, go do it now. We’ll wait. We are about to make it more involved.
There are also a large number of special functional interfaces for primitives. These are useful
in Chapter 10 when we cover streams and optionals.

444  Chapter 8  ■  Lambdas and Functional Interfaces

Most of them are for the double, int, and long types. There is one exception, which is
BooleanSupplier. We cover that before introducing the functional interfaces for double,
int, and long.

Functional Interfaces for boolean
BooleanSupplier is a separate type. It has one method to implement:

@FunctionalInterface
public interface BooleanSupplier {
 boolean getAsBoolean();
}

It works just as you’ve come to expect from functional interfaces. Here’s an example:

12: BooleanSupplier b1 = () -> true;
13: BooleanSupplier b2 = () -> Math.random()> .5;
14: System.out.println(b1.getAsBoolean()); // true
15: System.out.println(b2.getAsBoolean()); // false

Lines 12 and 13 each create a BooleanSupplier, which is the only functional interface
for boolean. Line 14 prints true, since it is the result of b1. Line 15 prints true or false,
depending on the random value generated.

Functional Interfaces for double, int, and long
Most of the functional interfaces are for double, int, and long. Table 8.6 shows the
equivalent of Table 8.4 for these primitives. You probably won’t be surprised that you have
to memorize it. Luckily, you’ve memorized Table 8.4 by now and can apply what you’ve
learned to Table 8.6.

TABLE 8 .6   Common functional interfaces for primitives

Functional interfaces Return type Single abstract method # of parameters

DoubleSupplier
IntSupplier
LongSupplier

double
int
long

getAsDouble
getAsInt
getAsLong

0

DoubleConsumer
IntConsumer
LongConsumer

void accept 1 (double)

1 (int)

1 (long)

DoublePredicate
IntPredicate
LongPredicate

boolean test 1 (double)

1 (int)

1 (long)

DoubleFunction<R>
IntFunction<R>
LongFunction<R>

R apply 1 (double)

1 (int)

1 (long)

Working with Variables in Lambdas  445

There are a few things to notice that are different between Table 8.4 and Table 8.6:

■■ Generics are gone from some of the interfaces, and instead the type name tells us what
primitive type is involved. In other cases, such as IntFunction, only the return type
generic is needed because we’re converting a primitive int into an object.

■■ The single abstract method is often renamed when a primitive type is returned.

In addition to Table 8.4 equivalents, some interfaces are specific to primitives. Table 8.7
lists these.

We’ve been using functional interfaces for a while now, so you should have a good grasp
of how to read the table. Let’s do one example just to be sure. Which functional interface
would you use to fill in the blank to make the following code compile?

var d = 1.0;
 f1 = x -> 1;

f1.applyAsInt(d);

When you see a question like this, look for clues. You can see that the functional interface
in question takes a double parameter and returns an int. You can also see that it has a single
abstract method named applyAsInt. The DoubleToIntFunction and ToIntFunction
functional interfaces meet all three of those criteria.

Working with Variables in Lambdas
Now that we’ve learned about functional interfaces, we will use them to show different
approaches for variables. They can appear in three places with respect to lambdas: the
parameter list, local variables declared inside the lambda body, and variables referenced from
the lambda body. All three of these are opportunities for the exam to trick you. We explore
each one so you’ll be alert when tricks show up!

Functional interfaces Return type Single abstract method # of parameters

DoubleUnaryOperator
IntUnaryOperator
LongUnaryOperator

double
int
long

applyAsDouble
applyAsInt
applyAsLong

1 (double)

1 (int)

1 (long)

DoubleBinaryOperator
IntBinaryOperator
LongBinaryOperator

double
int
long

applyAsDouble
applyAsInt
applyAsLong

2 (double,
double)

2 (int, int)

2 (long, long)

446  Chapter 8  ■  Lambdas and Functional Interfaces

Listing Parameters
Earlier in this chapter, you learned that specifying the type of parameters is optional. Addi-
tionally, var can be used in place of the specific type. That means that all three of these state-
ments are interchangeable:

Predicate<String> p = x -> true;
Predicate<String> p = (var x) -> true;
Predicate<String> p = (String x) -> true;

The exam might ask you to identify the type of the lambda parameter. In our example,
the answer is String. How did we figure that out? A lambda infers the types from the sur-
rounding context. That means you get to do the same.

In this case, the lambda is being assigned to a Predicate that takes a String. Another
place to look for the type is in a method signature. Let’s try another example. Can you figure
out the type of x?

public void whatAmI() {
 consume((var x) -> System.out.print(x), 123);
}

TABLE 8 .7   Primitive-specific functional interfaces

Functional interfaces Return type Single abstract method # of parameters

ToDoubleFunction<T>
ToIntFunction<T>
ToLongFunction<T>

double
int
long

applyAsDouble
applyAsInt
applyAsLong

1 (T)

ToDoubleBiFunction<T, U>
ToIntBiFunction<T, U>
ToLongBiFunction<T, U>

double
int
long

applyAsDouble
applyAsInt
applyAsLong

2 (T, U)

DoubleToIntFunction
DoubleToLongFunction
IntToDoubleFunction
IntToLongFunction
LongToDoubleFunction
LongToIntFunction

int
long
double
long
double
int

applyAsInt
applyAsLong
applyAsDouble
applyAsLong
applyAsDouble
applyAsInt

1 (double)

1 (double)

1 (int)

1 (int)

1 (long)

1 (long)

ObjDoubleConsumer<T>
ObjIntConsumer<T>
ObjLongConsumer<T>

void accept 2 (T, double)
2 (T, int)
2 (T, long)

Working with Variables in Lambdas  447

public void consume(Consumer<Integer> c, int num) {
 c.accept(num);
}

If you guessed Integer, you were right. The whatAmI() method creates a lambda to be
passed to the consume() method. Since the consume() method expects an Integer as the
generic, we know that is what the inferred type of x will be.

But wait; there’s more. In some cases, you can determine the type without even seeing the
method signature. What do you think the type of x is here?

public void counts(List<Integer> list) {
 list.sort((var x, var y) -> x.compareTo(y));
}

The answer is again Integer. Since we are sorting a list, we can use the type of the list to
determine the type of the lambda parameter.

Since lambda parameters are just like method parameters, you can add modifiers to them.
Specifically, you can add the final modifier or an annotation, as shown in this example:

public void counts(List<Integer> list) {
 list.sort((final var x, @Deprecated var y) -> x.compareTo(y));
}

While this tends to be uncommon in real life, modifiers such as these have been known to
appear in passing on the exam.

Parameter List Formats

You have three formats for specifying parameter types within a lambda: without types, with
types, and with var. The compiler requires all parameters in the lambda to use the same
format. Can you see why the following are not valid?

5: (var x, y) -> "Hello" // DOES NOT COMPILE
6: (var x, Integer y) -> true // DOES NOT COMPILE
7: (String x, var y, Integer z) -> true // DOES NOT COMPILE
8: (Integer x, y) -> "goodbye" // DOES NOT COMPILE

Lines 5 needs to remove var from x or add it to y. Next, lines 6 and 7 need to use the type
or var consistently. Finally, line 8 needs to remove Integer from x or add a type to y.

448  Chapter 8  ■  Lambdas and Functional Interfaces

Using Local Variables Inside a Lambda Body
While it is most common for a lambda body to be a single expression, it is legal to define a
block. That block can have anything that is valid in a normal Java block, including local var-
iable declarations.

The following code does just that. It creates a local variable named c that is scoped to the
lambda block:

(a, b) -> { int c = 0; return 5; }

Now let’s try another one. Do you see what’s wrong here?

(a, b) -> { int a = 0; return 5; } // DOES NOT COMPILE

We tried to redeclare a, which is not allowed. Java doesn’t let you create a local variable
with the same name as one already declared in that scope. While this kind of error is less
likely to come up in real life, it has been known to appear on the exam!

Now let’s try a hard one. How many syntax errors do you see in this method?

11: public void variables(int a) {
12: int b = 1;
13: Predicate<Integer> p1 = a -> {
14: int b = 0;
15: int c = 0;
16: return b == c; }
17: }

There are three syntax errors. The first is on line 13. The variable a was already used in
this scope as a method parameter, so it cannot be reused. The next syntax error comes on
line 14, where the code attempts to redeclare local variable b. The third syntax error is quite
subtle and on line 16. See it? Look really closely.

The variable p1 is missing a semicolon at the end. There is a semicolon before the }, but
that is inside the block. While you don’t normally have to look for missing semicolons,
lambdas are tricky in this space, so beware!

Keep Your Lambdas Short

Having a lambda with multiple lines and a return statement is often a clue that you
should refactor and put that code in a method. For example, the previous example could be
rewritten as

Predicate<Integer> p1 = a -> returnSame(a);

This simpler form can be further refactored to use a method reference:

Working with Variables in Lambdas  449

Predicate<Integer> p1 = this::returnSame;

You might be wondering why this is so important. In Chapter 10, lambdas and method
references are used in chained method calls. The shorter the lambda, the easier it is to
read the code.

Referencing Variables from the Lambda Body
Lambda bodies are allowed to reference some variables from the surrounding code. The
following code is legal:

public class Crow {
 private String color;
 public void caw(String name) {
 String volume = "loudly";
 Consumer<String> consumer = s ->
 System.out.println(name + " says "
 + volume + " that she is " + color);
 }
}

This shows that a lambda can access an instance variable, method parameter, or local var-
iable under certain conditions. Instance variables (and class variables) are always allowed.

The only thing lambdas cannot access are variables that are not final or effectively final. If
you need a refresher on effectively final, see Chapter 5, “Methods.”

It gets even more interesting when you look at where the compiler errors occur when the
variables are not effectively final.

2: public class Crow {
3: private String color;
4: public void caw(String name) {
5: String volume = "loudly";
6: name = "Caty";
7: color = "black";
8:
9: Consumer<String> consumer = s ->
10: System.out.println(name + " says " // DOES NOT COMPILE
11: + volume + " that she is " + color); // DOES NOT COMPILE
12: volume = "softly";
13: }
14: }

450  Chapter 8  ■  Lambdas and Functional Interfaces

In this example, the method parameter name is not effectively final because it is set on
line 6. However, the compiler error occurs on line 10. It’s not a problem to assign a value to
a non-final variable. However, once the lambda tries to use it, we do have a problem. The
variable is no longer effectively final, so the lambda is not allowed to use the variable.

The variable volume is not effectively final either since it is updated on line 12. In this
case, the compiler error is on line 11. That’s before the reassignment! Again, the act of
assigning a value is only a problem from the point of view of the lambda. Therefore, the
lambda has to be the one to generate the compiler error.

To review, make sure you’ve memorized Table 8.8.

Summary
We spent a lot of time in this chapter teaching you how to use lambda expressions, and with
good reason. The next two chapters depend heavily on your ability to create and use lambda
expressions. We recommend that you understand this chapter well before moving on.

Lambda expressions, or lambdas, allow passing around blocks of code. The full syntax
looks like this:

(String a, String b) -> { return a.equals(b); }

The parameter types can be omitted. When only one parameter is specified without a
type, the parentheses can also be omitted. The braces and return statement can be omitted
for a single statement, making the short form as follows:

a -> a.equals(b)

Lambdas can be passed to a method expecting an instance of a functional interface. A
lambda can define parameters or variables in the body as long as their names are different from
existing local variables. The body of a lambda is allowed to use any instance or class variables.

TABLE 8 .8   Rules for accessing a variable from a lambda body inside a method

Variable type Rule

Instance variable Allowed

Static variable Allowed

Local variable Allowed if final or effectively final

Method parameter Allowed if final or effectively final

Lambda parameter Allowed

Exam Essentials  451

Additionally, it can use any local variables or method parameters that are final or effec-
tively final.

A method reference is a compact syntax for writing lambdas that refer to methods. There
are four types: static methods, instance methods on a particular object, instance methods on
a parameter, and constructor references.

A functional interface has a single abstract method. Any functional interface can be
implemented with a lambda expression. You must know the built-in functional interfaces.

You should review the tables in the chapter. While there are many tables, some share
common patterns, making it easier to remember them. You absolutely must memorize
Table 8.4, which lists the common functional interfaces.

Exam Essentials
Write simple lambda expressions.   Look for the presence or absence of optional elements
in lambda code. Parameter types are optional. Braces and the return keyword are optional
when the body is a single statement. Parentheses are optional when only one parameter is
specified and the type is implicit.

Determine whether a variable can be used in a lambda body.   Local variables and method
parameters must be final or effectively final to be referenced. This means the code must
compile if you were to add the final keyword to these variables. Instance and class vari-
ables are always allowed.

Translate method references to the “long form” lambda.   Be able to convert method refer-
ences into regular lambda expressions and vice versa. For example, System.out::print
and x -> System.out.print(x) are equivalent. Remember that the order of method
parameters is inferred when using a method reference.

Determine whether an interface is a functional interface.   Use the single abstract method
(SAM) rule to determine whether an interface is a functional interface. Other interface
method types (default, private, static, and private static) do not count toward
the single abstract method count, nor do any public methods with signatures found
in Object.

Identify the correct functional interface given the number of parameters, return type, and
method name—and vice versa.   The most common functional interfaces are Supplier,
Consumer, Function, and Predicate. There are also binary versions and primitive ver-
sions of many of these methods. You can use the number of parameters and return type to
tell them apart.

452  Chapter 8  ■  Lambdas and Functional Interfaces

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 What is the result of the following class?

1: import java.util.function.*;
2:
3: public class Panda {
4: int age;
5: public static void main(String[] args) {
6: Panda p1 = new Panda();
7: p1.age = 1;
8: check(p1, p -> p.age < 5);
9: }
10: private static void check(Panda panda,
11: Predicate<Panda> pred) {
12: String result =
13: pred.test(panda) ? "match" : "not match";
14: System.out.print(result);
15: } }

A.	 match
B.	 not match
C.	 Compiler error on line 8

D.	 Compiler error on lines 10 and 11

E.	 Compiler error on lines 12 and 13

F.	 A runtime exception is thrown.

2.	 What is the result of the following code?

1: interface Climb {
2: boolean isTooHigh(int height, int limit);
3: }
4:
5: public class Climber {
6: public static void main(String[] args) {
7: check((h, m) -> h.append(m).isEmpty(), 5);
8: }
9: private static void check(Climb climb, int height) {
10: if (climb.isTooHigh(height, 10))
11: System.out.println("too high");

Review Questions  453

12: else
13: System.out.println("ok");
14: }
15: }

A.	 ok
B.	 too high
C.	 Compiler error on line 7

D.	 Compiler error on line 10

E.	 Compiler error on a different line

F.	 A runtime exception is thrown.

3.	 Which statements about functional interfaces are true? (Choose all that apply.)

A.	 A functional interface can contain default and private methods.

B.	 A functional interface can be defined as a class or an interface.

C.	 Abstract methods with signatures that are contained in public methods of
java.lang.Object do not count toward the abstract method count for a functional
interface.

D.	 A functional interface cannot contain static or private static methods.

E.	 A functional interface must be marked with the @FunctionalInterface annotation.

4.	 Which lambda can replace the MySecret class to return the same value? (Choose all
that apply.)

interface Secret {
 String magic(double d);
}

class MySecret implements Secret {
 public String magic(double d) {
 return "Poof";
 } }

A.	 (e) -> "Poof"
B.	 (e) -> {"Poof"}
C.	 (e) -> { String e = ""; "Poof" }
D.	 (e) -> { String e = ""; return "Poof"; }
E.	 (e) -> { String e = ""; return "Poof" }
F.	 (e) -> { String f = ""; return "Poof"; }

454  Chapter 8  ■  Lambdas and Functional Interfaces

5.	 Which of the following functional interfaces contain an abstract method that returns a primi-
tive value? (Choose all that apply.)

A.	 BooleanSupplier
B.	 CharSupplier
C.	 DoubleSupplier
D.	 FloatSupplier
E.	 IntSupplier
F.	 StringSupplier

6.	 Which of the following lambda expressions can be passed to a function of Predicate<String>
type? (Choose all that apply.)

A.	 s -> s.isEmpty()
B.	 s --> s.isEmpty()
C.	 (String s) -> s.isEmpty()
D.	 (String s) --> s.isEmpty()
E.	 (StringBuilder s) -> s.isEmpty()
F.	 (StringBuilder s) --> s.isEmpty()

7.	 Which of these statements is true about the following code?

public void method() {
 x((var x) -> {}, (var x, var y) -> false);
}
public void x(Consumer<String> x, BinaryOperator<Boolean> y) {}

A.	 The code does not compile because of one of the variables named x.

B.	 The code does not compile because of one of the variables named y.

C.	 The code does not compile for another reason.

D.	 The code compiles, and the x in each lambda refers to the same type.

E.	 The code compiles, and the x in each lambda refers to a different type.

8.	 Which of the following is equivalent to this code? (Choose all that apply.)
UnaryOperator<Integer> u = x -> x * x;
A.	 BiFunction<Integer> f = x -> x*x;
B.	 BiFunction<Integer, Integer> f = x -> x*x;
C.	 BinaryOperator<Integer, Integer> f = x -> x*x;
D.	 Function<Integer> f = x -> x*x;
E.	 Function<Integer, Integer> f = x -> x*x;
F.	 None of the above

Review Questions  455

9.	 Which statements are true? (Choose all that apply.)

A.	 The Consumer interface is good for printing out an existing value.

B.	 The Supplier interface is good for printing out an existing value.

C.	 The IntegerSupplier interface returns an int.

D.	 The Predicate interface returns an int.

E.	 The Function interface has a method named test().

F.	 The Predicate interface has a method named test().

10.	 Which of the following can be inserted without causing a compilation error? (Choose all
that apply.)

public void remove(List<Character> chars) {
 char end = 'z';
 Predicate<Character> predicate = c -> {
 char start = 'a'; return start <= c && c <= end; };

 // INSERT LINE HERE
}

A.	 char start = 'a';
B.	 char c = 'x';
C.	 chars = null;
D.	 end = '1';
E.	 None of the above

11.	 How many times is true printed out by this code?

import java.util.function.Predicate;
public class Fantasy {
 public static void scary(String animal) {
 var dino = s -> "dino".equals(animal);
 var dragon = s -> "dragon".equals(animal);
 var combined = dino.or(dragon);
 System.out.println(combined.test(animal));
 }
 public static void main(String[] args) {
 scary("dino");
 scary("dragon");
 scary("unicorn");
 }
}

456  Chapter 8  ■  Lambdas and Functional Interfaces

A.	 One

B.	 Two

C.	 Three

D.	 The code does not compile.

E.	 A runtime exception is thrown.

12.	 What does the following code output?

Function<Integer, Integer> s = a -> a + 4;
Function<Integer, Integer> t = a -> a * 3;
Function<Integer, Integer> c = s.compose(t);
System.out.print(c.apply(1));

A.	 7
B.	 15
C.	 The code does not compile because of the data types in the lambda expressions.

D.	 The code does not compile because of the compose() call.

E.	 The code does not compile for another reason.

13.	 Which is true of the following code?

int length = 3;

for (int i = 0; i<3; i++) {
 if (i%2 == 0) {
 Supplier<Integer> supplier = () -> length; // A
 System.out.println(supplier.get()); // B
 } else {
 int j = i;
 Supplier<Integer> supplier = () -> j; // C
 System.out.println(supplier.get()); // D
 }
}

A.	 The first compiler error is on line A.

B.	 The first compiler error is on line B.

C.	 The first compiler error is on line C.

D.	 The first compiler error is on line D.

E.	 The code compiles successfully.

Review Questions  457

14.	 Which of the following are valid lambda expressions? (Choose all that apply.)

A.	 (Wolf w, var c) -> 39
B.	 (final Camel c) -> {}
C.	 (a,b,c) -> {int b = 3; return 2;}
D.	 (x,y) -> new RuntimeException()
E.	 (var y) -> return 0;
F.	 () -> {float r}
G.	 (Cat a, b) -> {}

15.	 Which lambda expression, when entered into the blank line in the following code, causes the
program to print hahaha? (Choose all that apply.)

import java.util.function.Predicate;
public class Hyena {
 private int age = 1;
 public static void main(String[] args) {
 var p = new Hyena();
 double height = 10;
 int age = 1;
 testLaugh(p,);
 age = 2;
 }
 static void testLaugh(Hyena panda, Predicate<Hyena> joke) {
 var r = joke.test(panda) ? "hahaha" : "silence";
 System.out.print(r);
 }
}

A.	 var -> p.age <= 10
B.	 shenzi -> age==1
C.	 p -> true
D.	 age==1
E.	 shenzi -> age==2
F.	 h -> h.age < 5
G.	 None of the above, as the code does not compile

16.	 Which of the following can be inserted without causing a compilation error? (Choose all
that apply.)

public void remove(List<Character> chars) {
 char end = 'z';

458  Chapter 8  ■  Lambdas and Functional Interfaces

 // INSERT LINE HERE

 Predicate<Character> predicate = c -> {
 char start = 'a'; return start <= c && c <= end; };
}

A.	 char start = 'a';
B.	 char c = 'x';
C.	 chars = null;
D.	 end = '1';
E.	 None of the above

17.	 What is the result of running the following class?

1: import java.util.function.*;
2:
3: public class Panda {
4: int age;
5: public static void main(String[] args) {
6: Panda p1 = new Panda();
7: p1.age = 1;
8: check(p1, p -> {p.age < 5});
9: }
10: private static void check(Panda panda,
11: Predicate<Panda> pred) {
12: String result = pred.test(panda)
13: ? "match" : "not match";
14: System.out.print(result);
15: } }

A.	 match
B.	 not match
C.	 Compiler error on line 8

D.	 Compiler error on line 10

E.	 Compiler error on line 12

F.	 A runtime exception is thrown.

Review Questions  459

18.	 Which functional interfaces complete the following code? For line 7, assume m and n are
instances of functional interfaces that exist and have the same type as y. (Choose three.)

6: x = String::new;
7: y = m.andThen(n);
8: z = a -> a + a;

A.	 BinaryConsumer<String, String>
B.	 BiConsumer<String, String>
C.	 BinaryFunction<String, String>
D.	 BiFunction<String, String>
E.	 Predicate<String>
F.	 Supplier<String>
G.	 UnaryOperator<String>
H.	 UnaryOperator<String, String>

19.	 Which of the following compiles and prints out the entire set? (Choose all that apply.)

Set<?> set = Set.of("lion", "tiger", "bear");
var s = Set.copyOf(set);
Consumer<Object> consumer = ;
s.forEach(consumer);

A.	 () -> System.out.println(s)
B.	 s -> System.out.println(s)
C.	 (s) -> System.out.println(s)
D.	 System.out.println(s)
E.	 System::out::println
F.	 System.out::println

20.	 Which lambdas can replace the new Sloth() call in the main() method and produce the
same output at runtime? (Choose all that apply.)

import java.util.List;
interface Yawn {
 String yawn(double d, List<Integer> time);
}
class Sloth implements Yawn {
 public String yawn(double zzz, List<Integer> time) {
 return "Sleep: " + zzz;
 } }

460  Chapter 8  ■  Lambdas and Functional Interfaces

public class Vet {
 public static String takeNap(Yawn y) {
 return y.yawn(10, null);
 }
 public static void main(String... unused) {
 System.out.print(takeNap(new Sloth()));
 } }

A.	 (z,f) -> { String x = ""; return "Sleep: " + x }
B.	 (t,s) -> { String t = ""; return "Sleep: " + t; }
C.	 (w,q) -> {"Sleep: " + w}
D.	 (e,u) -> { String g = ""; "Sleep: " + e }
E.	 (a,b) -> "Sleep: " + (double)(b==null ? a : a)
F.	 (r,k) -> { String g = ""; return "Sleep:"; }
G.	 None of the above, as the program does not compile

21.	 Which of the following are valid functional interfaces? (Choose all that apply.)

public interface Transport {
 public int go();
 public boolean equals(Object o);
}

public abstract class Car {
 public abstract Object swim(double speed, int duration);
}

public interface Locomotive extends Train {
 public int getSpeed();
}

public interface Train extends Transport {}

abstract interface Spaceship extends Transport {
 default int blastOff();
}

Review Questions  461

public interface Boat {
 int hashCode();
 int hashCode(String input);
}

A.	 Boat
B.	 Car
C.	 Locomotive
D.	 Spaceship
E.	 Transport
F.	 Train
G.	 None of these is a valid functional interface.

Collections
and Generics

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Working with Arrays and Collections

■■ Create Java arrays, List, Set, Map, and Deque collections, and

add, remove, update, retrieve and sort their elements

Chapter

9

In this chapter, we introduce the Java Collections Framework
classes and interfaces you need to know for the exam. The thread-
safe collection types are discussed in Chapter 13, “Concurrency.”

As you may remember from Chapter 8, “Lambdas and Functional Interfaces,” we covered
lambdas, method references, and built-in functional interfaces. Many of these are used in this
chapter. Please go back and review Table 8.4 if the functional interfaces are unfamiliar.

Next, we cover details about Comparator and Comparable. Finally, we discuss how to
create your own classes and methods that use generics so that the same class can be used
with many types.

Using Common Collection APIs
A collection is a group of objects contained in a single object. The Java Collections Frame-
work is a set of classes in java.util for storing collections. There are four main interfaces
in the Java Collections Framework.

■■ List: A list is an ordered collection of elements that allows duplicate entries. Elements
in a list can be accessed by an int index.

■■ Set: A set is a collection that does not allow duplicate entries.

■■ Queue: A queue is a collection that orders its elements in a specific order for processing.
A Deque is a subinterface of Queue that allows access at both ends.

■■ Map: A map is a collection that maps keys to values, with no duplicate keys allowed. The
elements in a map are key/value pairs.

Figure 9.1 shows the Collection interface, its subinterfaces, and some classes that
implement the interfaces that you should know for the exam. The interfaces are shown in
rectangles, with the classes in rounded boxes.

Notice that Map doesn’t implement the Collection interface. It is considered part of the
Java Collections Framework even though it isn’t technically a Collection. It is a collection
(note the lowercase), though, in that it contains a group of objects. The reason maps are
treated differently is that they need different methods due to being key/value pairs.

Using Common Collection APIs  465

In this section, we discuss the common methods that the Collections API provides to the
implementing classes. Many of these methods are convenience methods that could be imple-
mented in other ways but make your code easier to write and read. This is why they are
convenient.

In this section, we use ArrayList and HashSet as our implementation classes, but they
can apply to any class that inherits the Collection interface. We cover the specific prop-
erties of each Collection class in the next section.

Using the Diamond Operator
When constructing a Java Collections Framework, you need to specify the type that will go
inside. We could write code using generics like the following:

List<Integer> list = new ArrayList<Integer>();

You might even have generics that contain other generics, such as this:

Map<Long,List<Integer>> mapLists = new HashMap<Long,List<Integer>>();

That’s a lot of duplicate code to write! Luckily, the diamond operator (<>) is a shorthand
notation that allows you to omit the generic type from the right side of a statement when
the type can be inferred. It is called the diamond operator because <> looks like a diamond.
Compare the previous declarations with these new, much shorter versions:

List<Integer> list = new ArrayList<>();
Map<Long,List<Integer>> mapOfLists = new HashMap<>();

To the compiler, both these declarations and our previous ones are equivalent. To us,
though, the latter is a lot shorter and easier to read.

List

Collection

Queue Set

Map

HashMap

ArrayList

LinkedList

TreeMap

TreeSetHashSetDeque

F IGURE 9 .1   Java Collections Framework

466  Chapter 9  ■  Collections and Generics

The diamond operator cannot be used as the type in a variable declaration. It can be
used only on the right side of an assignment operation. For example, neither of the follow-
ing compiles:

List<> list = new ArrayList<Integer>(); // DOES NOT COMPILE

class InvalidUse {
 void use(List<> data) {} // DOES NOT COMPILE
}

Adding Data
The add() method inserts a new element into the Collection and returns whether it was suc-
cessful. The method signature is as follows:

public boolean add(E element)

Remember that the Collections Framework uses generics. You will see E appear frequently.
It means the generic type that was used to create the collection. For some Collection types,
add() always returns true. For other types, there is logic as to whether the add() call was
successful. The following shows how to use this method:

3: Collection<String> list = new ArrayList<>();
4: System.out.println(list.add("Sparrow")); // true
5: System.out.println(list.add("Sparrow")); // true
6:
7: Collection<String> set = new HashSet<>();
8: System.out.println(set.add("Sparrow")); // true
9: System.out.println(set.add("Sparrow")); // false

A List allows duplicates, making the return value true each time. A Set does not
allow duplicates. On line 9, we tried to add a duplicate so that Java returns false from the
add() method.

Removing Data
The remove() method removes a single matching value in the Collection and returns whether it
was successful. The method signature is as follows:

public boolean remove(Object object)

This time, the boolean return value tells us whether a match was removed. The follow-
ing shows how to use this method:

3: Collection<String> birds = new ArrayList<>();
4: birds.add("hawk"); // [hawk]

Using Common Collection APIs  467

5: birds.add("hawk"); // [hawk, hawk]
6: System.out.println(birds.remove("cardinal")); // false
7: System.out.println(birds.remove("hawk")); // true
8: System.out.println(birds); // [hawk]

Line 6 tries to remove an element that is not in birds. It returns false because no such
element is found. Line 7 tries to remove an element that is in birds, so it returns true.
Notice that it removes only one match.

Counting Elements
The isEmpty() and size() methods look at how many elements are in the Collection. The
method signatures are as follows:

public boolean isEmpty()
public int size()

The following shows how to use these methods:

Collection<String> birds = new ArrayList<>();
System.out.println(birds.isEmpty()); // true
System.out.println(birds.size()); // 0
birds.add("hawk"); // [hawk]
birds.add("hawk"); // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); // 2

At the beginning, birds has a size of 0 and is empty. It has a capacity that is greater than 0.
After we add elements, the size becomes positive, and it is no longer empty.

Clearing the Collection
The clear() method provides an easy way to discard all elements of the Collection. The method
signature is as follows:
public void clear()

The following shows how to use this method:

Collection<String> birds = new ArrayList<>();
birds.add("hawk"); // [hawk]
birds.add("hawk"); // [hawk, hawk]
System.out.println(birds.isEmpty()); // false
System.out.println(birds.size()); // 2
birds.clear(); // []

468  Chapter 9  ■  Collections and Generics

System.out.println(birds.isEmpty()); // true
System.out.println(birds.size()); // 0

After calling clear(), birds is back to being an empty ArrayList of size 0.

Check Contents
The contains() method checks whether a certain value is in the Collection. The method
signature is as follows:

public boolean contains(Object object)

The following shows how to use this method:

Collection<String> birds = new ArrayList<>();
birds.add("hawk"); // [hawk]
System.out.println(birds.contains("hawk")); // true
System.out.println(birds.contains("robin")); // false

The contains() method calls equals() on elements of the ArrayList to see whether
there are any matches.

Removing with Conditions
The removeIf() method removes all elements that match a condition. We can specify what
should be deleted using a block of code or even a method reference.

The method signature looks like the following. (We explain what the ? super means in
the “Working with Generics” section later in this chapter.)

public boolean removeIf(Predicate<? super E> filter)

It uses a Predicate, which takes one parameter and returns a boolean. Let’s take a
look at an example:

4: Collection<String> list = new ArrayList<>();
5: list.add("Magician");
6: list.add("Assistant");
7: System.out.println(list); // [Magician, Assistant]
8: list.removeIf(s -> s.startsWith("A"));
9: System.out.println(list); // [Magician]

Line 8 shows how to remove all of the String values that begin with the letter A. This
allows us to make the Assistant disappear. Let’s try an example with a method reference:

11: Collection<String> set = new HashSet<>();
12: set.add("Wand");
13: set.add("");

Using Common Collection APIs  469

14: set.removeIf(String::isEmpty); // s -> s.isEmpty()
15: System.out.println(set); // [Wand]

On line 14, we remove any empty String objects from set. The comment on that line
shows the lambda equivalent of the method reference. Line 15 shows that the removeIf()
method successfully removed one element from list.

Iterating
There’s a forEach() method that you can call on a Collection instead of writing a loop. It uses a
Consumer that takes a single parameter and doesn’t return anything. The method signature is
as follows:

public void forEach(Consumer<? super T> action)

Cats like to explore, so let’s print out two of them using both method references
and lambdas:

Collection<String> cats = List.of("Annie", "Ripley");
cats.forEach(System.out::println);
cats.forEach(c -> System.out.println(c));

The cats have discovered how to print their names. Now they have more time to play
(as do we)!

Other Iteration Approaches

There are other ways to iterate through a Collection. For example, in Chapter 3, “Making
Decisions,” you saw how to loop through a list using an enhanced for loop.

 for (String element: coll)
 System.out.println(element);

You may see another older approach used.

 Iterator<String> iter = coll.iterator();
 while(iter.hasNext()) {
 String string = iter.next();
 System.out.println(string);
 }

Pay attention to the difference between these techniques. The hasNext() method checks
whether there is a next value. In other words, it tells you whether next() will execute
without throwing an exception. The next() method actually moves the Iterator to the
next element.

470  Chapter 9  ■  Collections and Generics

Determining Equality
There is a custom implementation of equals() so you can compare two Collections to compare
the type and contents. The implementation will vary. For example, ArrayList checks order,
while HashSet does not.

boolean equals(Object object)

The following shows an example:

23: var list1 = List.of(1, 2);
24: var list2 = List.of(2, 1);
25: var set1 = Set.of(1, 2);
26: var set2 = Set.of(2, 1);
27:
28: System.out.println(list1.equals(list2)); // false
29: System.out.println(set1.equals(set2)); // true
30: System.out.println(list1.equals(set1)); // false

Line 28 prints false because the elements are in a different order, and a List cares
about order. By contrast, line 29 prints true because a Set is not sensitive to order. Finally,
line 30 prints false because the types are different.

Unboxing nulls

Java protects us from many problems with Collections. However, it is still possible to
write a NullPointerException:

3: var heights = new ArrayList<Integer>();
4: heights.add(null);
5: int h = heights.get(0); // NullPointerException

On line 4, we add a null to the list. This is legal because a null reference can be assigned
to any reference variable. On line 5, we try to unbox that null to an int primitive. This is a
problem. Java tries to get the int value of null. Since calling any method on null gives a
NullPointerException, that is just what we get. Be careful when you see null in rela-
tion to autoboxing.

Using the List Interface  471

Using the List Interface
Now that you’re familiar with some common Collection interface methods, let’s move on
to specific interfaces. You use a list when you want an ordered collection that can contain
duplicate entries. For example, a list of names may contain duplicates, as two animals can
have the same name. Items can be retrieved and inserted at specific positions in the list based
on an int index, much like an array. Unlike an array, though, many List implementations can
change in size after they are declared.

Lists are commonly used because there are many situations in programming where you
need to keep track of a list of objects. For example, you might make a list of what you want
to see at the zoo: first, see the lions, because they go to sleep early; second, see the pandas,
because there is a long line later in the day; and so forth.

Figure 9.2 shows how you can envision a List. Each element of the List has an index,
and the indexes begin with zero.

Sometimes you don’t care about the order of elements in a list. List is like the “go to”
data type. When we make a shopping list before going to the store, the order of the list hap-
pens to be the order in which we thought of the items. We probably aren’t attached to that
particular order, but it isn’t hurting anything.

While the classes implementing the List interface have many methods, you need to know
only the most common ones. Conveniently, these methods are the same for all of the imple-
mentations that might show up on the exam.

The main thing all List implementations have in common is that they are ordered and
allow duplicates. Beyond that, they each offer different functionality. We look at the imple-
mentations that you need to know and the available methods.

Pay special attention to which names are classes and which are inter-
faces. The exam may ask you which is the best class or which is the best
interface for a scenario.

List

0

2

1

lions

zebras

pandas

Ordered index Data

... ...

F IGURE 9 .2   Example of a List

472  Chapter 9  ■  Collections and Generics

Comparing List Implementations
An ArrayList is like a resizable array. When elements are added, the ArrayList automatically
grows. When you aren’t sure which collection to use, use an ArrayList.

The main benefit of an ArrayList is that you can look up any element in constant time.
Adding or removing an element is slower than accessing an element. This makes an ArrayList
a good choice when you are reading more often than (or the same amount as) writing to the
ArrayList.

A LinkedList is special because it implements both List and Deque. It has all the methods
of a List. It also has additional methods to facilitate adding or removing from the beginning
and/or end of the list.

The main benefits of a LinkedList are that you can access, add to, and remove from the
beginning and end of the list in constant time. The trade-off is that dealing with an arbitrary
index takes linear time. This makes a LinkedList a good choice when you’ll be using it
as Deque. As you saw in Figure 9.1, a LinkedList implements both the List and Deque
interfaces.

Creating a List with a Factory
When you create a List of type ArrayList or LinkedList, you know the type. There are
a few special methods where you get a List back but don’t know the type. These methods
let you create a List including data in one line using a factory method. This is convenient,
especially when testing. Some of these methods return an immutable object. As we saw in
Chapter 6, “Class Design,” an immutable object cannot be changed or modified. Table 9.1
summarizes these three lists.

TABLE 9 .1   Factory methods to create a List

Method Description
Can add
elements?

Can replace
elements?

Can delete
elements?

Arrays.
asList(varargs)

Returns fixed size
list backed by an
array

No Yes No

List.of(varargs) Returns immutable
list

No No No

List.
copyOf(collection)

Returns immutable
list with copy of
original collection’s
values

No No No

Let’s take a look at an example of these three methods:

16: String[] array = new String[] {"a", "b", "c"};
17: List<String> asList = Arrays.asList(array); // [a, b, c]
18: List<String> of = List.of(array); // [a, b, c]
19: List<String> copy = List.copyOf(asList); // [a, b, c]
20:
21: array[0] = "z";
22:
23: System.out.println(asList); // [z, b, c]
24: System.out.println(of); // [a, b, c]
25: System.out.println(copy); // [a, b, c]
26:
27: asList.set(0, "x");
28: System.out.println(Arrays.toString(array)); // [x, b, c]
29:
30: copy.add("y"); // UnsupportedOperationException

Line 17 creates a List that is backed by an array. Line 21 changes the array, and line
23 reflects that change. Lines 27 and 28 show the other direction where changing the List
updates the underlying array. Lines 18 and 19 create an immutable List. Line 30 shows it is
immutable by throwing an exception when trying to add a value. All three lists would throw
an exception when adding or removing a value. The of and copy lists would also throw one
on trying to update an element.

Creating a List with a Constructor
Most Collections have two constructors that you need to know for the exam. The following
shows them for LinkedList:

var linked1 = new LinkedList<String>();
var linked2 = new LinkedList<String>(linked1);

The first says to create an empty LinkedList containing all the defaults. The second tells
Java that we want to make a copy of another LinkedList. Granted, linked1 is empty in
this example, so it isn’t particularly interesting.

ArrayList has an extra constructor you need to know. We now show the three constructors:

var list1 = new ArrayList<String>();
var list2 = new ArrayList<String>(list1);
var list3 = new ArrayList<String>(10);

The first two are the common constructors you need to know for all Collections. The
final example says to create an ArrayList containing a specific number of slots, but again
not to assign any. You can think of this as the size of the underlying array.

Using the List Interface  473

474  Chapter 9  ■  Collections and Generics

Using var with ArrayList

Consider this code, which mixes var and generics:

var strings = new ArrayList<String>();
strings.add("a");
for (String s: strings) { }

The type of var is ArrayList<String>. This means you can add a String or loop
through the String objects. What if we use the diamond operator with var?

var list = new ArrayList<>();

Believe it or not, this does compile. The type of the var is ArrayList<Object>. Since
there isn’t a type specified for the generic, Java has to assume the ultimate superclass. This
is a bit silly and unexpected, so please don’t write it. But if you see it on the exam, you’ll
know what to expect. Now can you figure out why this doesn’t compile?

var list = new ArrayList<>();
list.add("a");
for (String s: list) { } // DOES NOT COMPILE

The type of var is ArrayList<Object>. Since there isn’t a type in the diamond operator,
Java has to assume the most generic option it can. Therefore, it picks Object, the ultimate
superclass. Adding a String to the list is fine. You can add any subclass of Object. How-
ever, in the loop, we need to use the Object type rather than String.

Working with List Methods
The methods in the List interface are for working with indexes. In addition to the inherited
Collection methods, the method signatures that you need to know are in Table 9.2.

TABLE 9 .2   List methods

Method Description

public boolean add(E element) Adds element to end (available on all
Collection APIs).

public void add(int index,
E element)

Adds element at index and moves the rest
toward the end.

public E get(int index) Returns element at index.

public E remove(int index) Removes element at index and moves the rest
toward the front.

The following statements demonstrate most of these methods for working with a List:

3: List<String> list = new ArrayList<>();
4: list.add("SD"); // [SD]
5: list.add(0, "NY"); // [NY,SD]
6: list.set(1, "FL"); // [NY,FL]
7: System.out.println(list.get(0)); // NY
8: list.remove("NY"); // [FL]
9: list.remove(0); // []
10: list.set(0, "?"); // IndexOutOfBoundsException

On line 3, list starts out empty. Line 4 adds an element to the end of the list. Line 5
adds an element at index 0 that bumps the original index 0 to index 1. Notice how the
ArrayList is now automatically one larger. Line 6 replaces the element at index 1 with a
new value.

Line 7 uses the get() method to print the element at a specific index. Line 8 removes the
element matching NY. Finally, line 9 removes the element at index 0, and list is empty again.

Line 10 throws an IndexOutOfBoundsException because there are no elements in
the List. Since there are no elements to replace, even index 0 isn’t allowed. If line 10 were
moved up between lines 4 and 5, the call would succeed.

The output would be the same if you tried these examples with LinkedList. Although the
code would be less efficient, it wouldn’t be noticeable until you had very large lists.

Now let’s take a look at the replaceAll() method. It uses a UnaryOperator that takes one
parameter and returns a value of the same type:

var numbers = Arrays.asList(1, 2, 3);
numbers.replaceAll(x -> x*2);
System.out.println(numbers); // [2, 4, 6]

This lambda doubles the value of each element in the list. The replaceAll() method
calls the lambda on each element of the list and replaces the value at that index.

Method Description

public default void replaceAll(
UnaryOperator<E> op)

Replaces each element in list with result of
operator.

public E set(int index, E e) Replaces element at index and returns original.
Throws IndexOutOfBoundsException if
index is invalid.

public default void sort(
Comparator<? super E> c)

Sorts list. We cover this later in the chapter in
the “Sorting Data” section.

Using the List Interface  475

476  Chapter 9  ■  Collections and Generics

Overloaded remove() Methods

We’ve now seen two overloaded remove() methods. The one from Collection removes
an object that matches the parameter. By contrast, the one from List removes an element
at a specified index.

This gets tricky when you have an Integer type. What do you think the following prints?

31: var list = new LinkedList<Integer>();
32: list.add(3);
33: list.add(2);
34: list.add(1);
35: list.remove(2);
36: list.remove(Integer.valueOf(2));
37: System.out.println(list);

The correct answer is [3]. Let’s look at how we got there. At the end of line 34, we have
[3, 2, 1]. Line 35 passes a primitive, which means we are requesting deletion of the
element at index 2. This leaves us with [3, 2]. Then line 36 passes an Integer object,
which means we are deleting the value 2. That brings us to [3].

Since calling remove() with an int uses the index, an index that doesn’t exist
will throw an exception. For example, list.remove(100) throws an
IndexOutOfBoundsException.

Converting from List to an Array
Since an array can be passed as a vararg, Table 9.1 covered how to convert an array to a List.
You should also know how to do the reverse. Let’s start with turning a List into an array:

13: List<String> list = new ArrayList<>();
14: list.add("hawk");
15: list.add("robin");
16: Object[] objectArray = list.toArray();
17: String[] stringArray = list.toArray(new String[0]);
18: list.clear();
19: System.out.println(objectArray.length); // 2
20: System.out.println(stringArray.length); // 2

Line 16 shows that a List knows how to convert itself to an array. The only problem is
that it defaults to an array of class Object. This isn’t usually what you want. Line 17 spec-
ifies the type of the array and does what we want. The advantage of specifying a size of 0

Using the Set Interface  477

for the parameter is that Java will create a new array of the proper size for the return value.
If you like, you can suggest a larger array to be used instead. If the List fits in that array, it
will be returned. Otherwise, a new array will be created.

Also, notice that line 18 clears the original List. This does not affect either array. The array
is a newly created object with no relationship to the original List. It is simply a copy.

Using the Set Interface
You use a Set when you don’t want to allow duplicate entries. For example, you might want
to keep track of the unique animals that you want to see at the zoo. You aren’t concerned
with the order in which you see these animals, but there isn’t time to see them more than
once. You just want to make sure you see the ones that are important to you and remove
them from the set of outstanding animals to see after you see them.

Figure 9.3 shows how you can envision a Set. The main thing that all Set implementa-
tions have in common is that they do not allow duplicates. We look at each implementation
that you need to know for the exam and how to write code using Set.

Comparing Set Implementations
A HashSet stores its elements in a hash table, which means the keys are a hash and the
values are an Object. This means that the HashSet uses the hashCode() method of the
objects to retrieve them more efficiently. Remember that a valid hashCode() doesn’t mean
every object will get a unique value, but the method is often written so that hash values are
spread out over a large range to reduce collisions.

The main benefit is that adding elements and checking whether an element is in the set
both have constant time. The trade-off is that you lose the order in which you inserted the
elements. Most of the time, you aren’t concerned with this in a Set anyway, making HashSet
the most common set.

lions

zebras

pandas

Set

F IGURE 9 .3   Example of a Set

478  Chapter 9  ■  Collections and Generics

A TreeSet stores its elements in a sorted tree structure. The main benefit is that the set is
always in sorted order. The trade-off is that adding and checking whether an element exists
takes longer than with a HashSet, especially as the tree grows larger.

Figure 9.4 shows how you can envision HashSet and TreeSet being stored. HashSet is
more complicated in reality, but this is fine for the purpose of the exam.

For the exam, you don’t need to know how to create a hash or tree set (the implementa-
tion can be complex). Phew! You just need to know how to use them!

Working with Set Methods
Like a List, you can create an immutable Set in one line or make a copy of an existing one.

Set<Character> letters = Set.of('z', 'o', 'o');
Set<Character> copy = Set.copyOf(letters);

Those are the only extra methods you need to know for the Set interface for the exam!
You do have to know how sets behave with respect to the traditional Collection methods.
You also have to know the differences between the types of sets. Let’s start with HashSet:

3: Set<Integer> set = new HashSet<>();
4: boolean b1 = set.add(66); // true
5: boolean b2 = set.add(10); // true
6: boolean b3 = set.add(66); // false
7: boolean b4 = set.add(8); // true
8: set.forEach(System.out::println);

This code prints three lines:

66
8
10

HashSet

−705903059

102978519

−995544615

zebras

lions

pandas

hashCode() value Data

TreeSet

zebras

pandas

lions

...

...

F IGURE 9 .4   Examples of a HashSet and TreeSet

The add() methods should be straightforward. They return true unless the Integer
is already in the set. Line 6 returns false, because we already have 66 in the set, and a set
must preserve uniqueness. Line 8 prints the elements of the set in an arbitrary order. In this
case, it happens not to be sorted order or the order in which we added the elements.

Remember that the equals() method is used to determine equality. The hashCode()
method is used to know which bucket to look in so that Java doesn’t have to look through
the whole set to find out whether an object is there. The best case is that hash codes are
unique and Java has to call equals() on only one object. The worst case is that all imple-
mentations return the same hashCode() and Java has to call equals() on every element of
the set anyway.

Now let’s look at the same example with TreeSet:

3: Set<Integer> set = new TreeSet<>();
4: boolean b1 = set.add(66); // true
5: boolean b2 = set.add(10); // true
6: boolean b3 = set.add(66); // false
7: boolean b4 = set.add(8); // true
8: set.forEach(System.out::println);

This time, the code prints the following:

8
10
66

The elements are printed out in their natural sorted order. Numbers implement the
Comparable interface in Java, which is used for sorting. Later in the chapter, you learn how
to create your own Comparable objects.

Using the Queue and Deque Interfaces
You use a Queue when elements are added and removed in a specific order. You can think of
a queue as a line. For example, when you want to enter a stadium and someone is waiting in
line, you get in line behind that person. And if you are British, you get in the queue behind
that person, making this really easy to remember! This is a FIFO (first-in, first-out) queue.

A Deque (double-ended queue), often pronounced “deck,” is different from a regular
queue in that you can insert and remove elements from both the front (head) and back (tail).
Think, “Dr. Woodie Flowers, come right to the front! You are the only one who gets this spe-
cial treatment. Everyone else will have to start at the back of the line.”

You can envision a double-ended queue as shown in Figure 9.5.

Front (head) Back (tail)Rover BellaSpot

F IGURE 9 .5   Example of a Deque

Using the Queue and Deque Interfaces  479

480  Chapter 9  ■  Collections and Generics

Supposing we are using this as a FIFO queue. Rover is first, which means he was first to
arrive. Bella is last, which means she was last to arrive and has the longest wait remaining.
All queues have specific requirements for adding and removing the next element. Beyond
that, they each offer different functionality. We look at the implementations you need to
know and the available methods.

Comparing Deque Implementations
You saw LinkedList earlier in the List section. In addition to being a list, it is a Deque.
The main benefit of a LinkedList is that it implements both the List and Deque
interfaces. The trade-off is that it isn’t as efficient as a “pure” queue. You can use the
ArrayDeque class if you don’t need the List methods.

Working with Queue and Deque Methods
The Queue interface contains six methods, shown in Table 9.3. There are three pieces of
functionality and versions of the methods that throw an exception or use the return type,
such as null, for all information. We’ve bolded the ones that throw an exception when
something goes wrong, like trying to read from an empty Queue.

Let’s show a simple queue example:

4: Queue<Integer> queue = new LinkedList<>();
5: queue.add(10);
6: queue.add(4);
7: System.out.println(queue.remove()); // 10
8: System.out.println(queue.peek()); // 4

TABLE 9 .3   Queue methods

Functionality Methods

Add to back public boolean add(E e)
public boolean offer(E e)

Read from front public E element ()
public E peek()

Get and remove from front public E remove()
public E poll()

Lines 5 and 6 add elements to the queue. Line 7 asks the first element waiting the longest
to come off the queue. Line 8 checks for the next entry in the queue while leaving it in place.

Next, we move on to the Deque interface. Since the Deque interface supports double-
ended queues, it inherits all Queue methods and adds more so that it is clear if we are
working with the front or back of the queue. Table 9.4 shows the methods when using it as a
double-ended queue.

Let’s try an example that works with both ends of the queue:

Deque<Integer> deque = new LinkedList<>();

This is more complicated, so we use Figure 9.6 to show what the queue looks like at each
step of the code.

Lines 13 and 14 successfully add an element to the front and back of the queue, respec-
tively. Some queues are limited in size, which would cause offering an element to the queue
to fail. You won’t encounter a scenario like that on the exam. Line 15 looks at the first
element in the queue, but it does not remove it. Lines 16 and 17 remove the elements from
the queue, one from each end. This results in an empty queue. Lines 18 and 19 try to look at
the first element of the queue, which results in null.

TABLE 9 .4   Deque methods

Functionality Methods

Add to front public void addFirst(E e)
public boolean offerFirst(E e)

Add to back public void addLast(E e)
public boolean offerLast(E e)

Read from front public E getFirst()
public E peekFirst()

Read from back public E getLast()
public E peekLast()

Get and remove from front public E removeFirst()
public E pollFirst()

Get and remove from back public E removeLast()
public E pollLast()

Using the Queue and Deque Interfaces  481

482  Chapter 9  ■  Collections and Generics

In addition to FIFO queues, there are LIFO (last-in, first-out) queues, which are com-
monly referred to as stacks. Picture a stack of plates. You always add to or remove from the
top of the stack to avoid a mess. Luckily, we can use the same double-ended queue imple-
mentations. Different methods are used for clarity, as shown in Table 9.5.

Let’s try another one using the Deque as a stack:

Deque<Integer> stack = new ArrayDeque<>();

This time, Figure 9.7 shows what the stack looks like at each step of the code. Lines 13
and 14 successfully put an element on the front/top of the stack. The remaining code looks
at the front as well.

When using a Deque, it is really important to determine if it is being used as a FIFO
queue, a LIFO stack, or a double-ended queue. To review, a FIFO queue is like a line of peo-
ple. You get on in the back and off in the front. A LIFO stack is like a stack of plates. You
put the plate on the top and take it off the top. A double-ended queue uses both ends.

TABLE 9 .5   Using a Deque as a stack

Functionality Methods

Add to the front/top public void push(E e)

Remove from the front/top public E pop()

Get first element public E peek()

17: deque.pollLast(); // 4

18: deque.pollFirst(); // null

13: deque.offerFirst(10); // true 10

14: deque.offerLast(4); // true 10 4

15: deque.peekFirst(); // 10 10 4

16: deque.pollFirst(); // 10 4

19: deque.peekFirst(); // null

F IGURE 9 .6   Working with a Deque

Using the Map Interface  483

Using the Map Interface
You use a Map when you want to identify values by a key. For example, when you use the
contact list in your phone, you look up “George” rather than looking through each phone
number in turn.

You can envision a Map as shown in Figure 9.8. You don’t need to know the names of the
specific interfaces that the different maps implement, but you do need to know that TreeMap
is sorted.

The main thing that all Map classes have in common is that they have keys and values.
Beyond that, they each offer different functionality. We look at the implementations you
need to know and the available methods.

Map.of() and Map.copyOf()

Just like List and Set, there is a factory method to create a Map. You pass any number of
pairs of keys and values.

Map.of("key1", "value1", "key2", "value2");

17: stack.poll(); // 10

18: stack.peek(); // null

13: stack.push(10); 10

14: stack.push(4); 4 10

15: stack.peek(); // 4 4 10

16: stack.poll(); // 4 10

F IGURE 9 .7   Working with a stack

Map

George

May

555-555-5555

777-777-7777

Key Value

F IGURE 9 .8   Example of a Map

484  Chapter 9  ■  Collections and Generics

Unlike List and Set, this is less than ideal. Passing keys and values is harder to read
because you have to keep track of which parameter is which. Luckily, there is a better way.
Map also provides a method that lets you supply key/value pairs.

Map.ofEntries(
 Map.entry("key1", "value1"),
 Map.entry("key2", "value2"));

Now we can’t forget to pass a value. If we leave out a parameter, the entry() method
won’t compile. Conveniently, Map.copyOf(map) works just like the List and Set inter-
face copyOf() methods.

Comparing Map Implementations
A HashMap stores the keys in a hash table. This means that it uses the hashCode() method of
the keys to retrieve their values more efficiently.

The main benefit is that adding elements and retrieving the element by key both have
constant time. The trade-off is that you lose the order in which you inserted the elements.
Most of the time, you aren’t concerned with this in a map anyway. If you were, you could
use LinkedHashMap, but that’s not in scope for the exam.

A TreeMap stores the keys in a sorted tree structure. The main benefit is that the keys are
always in sorted order. Like a TreeSet, the trade-off is that adding and checking whether a
key is present takes longer as the tree grows larger.

Working with Map Methods
Given that Map doesn’t extend Collection, more methods are specified on the Map interface.
Since there are both keys and values, we need generic type parameters for both. The class
uses K for key and V for value. The methods you need to know for the exam are in Table 9.6.
Some of the method signatures are simplified to make them easier to understand.

TABLE 9 .6   Map methods

Method Description

public void clear() Removes all keys and values from map.

public boolean containsKey(Object key) Returns whether key is in map.

public boolean containsValue(
Object value)

Returns whether value is in map.

public Set<Map.Entry<K,V>> entrySet() Returns Set of key/value pairs.

While Table 9.6 is a pretty long list of methods, don’t worry; many of the names are
straightforward. Also, many exist as a convenience. For example, containsKey() can be
replaced with a get() call that checks if the result is null. Which one you use is up to you.

Method Description

public void forEach(
BiConsumer<K key, V value>)

Loops through each key/value pair.

public V get(Object key) Returns value mapped by key or null if
none is mapped.

public V getOrDefault(Object key,
V defaultValue)

Returns value mapped by key or default
value if none is mapped.

public boolean isEmpty() Returns whether map is empty.

public Set<K> keySet() Returns set of all keys.

public V merge(K key, V value,
Function(<V, V, V> func))

Sets value if key not set. Runs function
if key is set, to determine new value.
Removes if value is null.

public V put(K key, V value) Adds or replaces key/value pair. Returns
previous value or null.

public V putIfAbsent(K key, V value) Adds value if key not present and returns
null. Otherwise, returns existing value.

public V remove(Object key) Removes and returns value mapped to
key. Returns null if none.

public V replace(K key, V value) Replaces value for given key if key is set.
Returns original value or null if none.

public void replaceAll(
BiFunction<K, V, V> func)

Replaces each value with results of
function.

public int size() Returns number of entries (key/value
pairs) in map.

public Collection<V> values() Returns Collection of all values.

Using the Map Interface  485

486  Chapter 9  ■  Collections and Generics

Calling Basic Methods
Let’s start out by comparing the same code with two Map types. First up is HashMap:

Map<String, String> map = new HashMap<>();
map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
 System.out.print(key + ","); // koala,giraffe,lion,

Here we use the put() method to add key/value pairs to the map and get() to get a
value given a key. We also use the keySet() method to get all the keys.

Java uses the hashCode() of the key to determine the order. The order here happens not
to be sorted order or the order in which we typed the values. Now let’s look at TreeMap:

Map<String, String> map = new TreeMap<>();
map.put("koala", "bamboo");
map.put("lion", "meat");
map.put("giraffe", "leaf");
String food = map.get("koala"); // bamboo
for (String key: map.keySet())
 System.out.print(key + ","); // giraffe,koala,lion,

TreeMap sorts the keys as we would expect. If we called values() instead of keySet(),
the order of the values would correspond to the order of the keys.

With our same map, we can try some boolean checks:

System.out.println(map.contains("lion")); // DOES NOT COMPILE
System.out.println(map.containsKey("lion")); // true
System.out.println(map.containsValue("lion")); // false
System.out.println(map.size()); // 3
map.clear();
System.out.println(map.size()); // 0
System.out.println(map.isEmpty()); // true

The first line is a little tricky. The contains() method is on the Collection interface
but not the Map interface. The next two lines show that keys and values are checked sepa-
rately. We can see that there are three key/value pairs in our map. Then we clear out the con-
tents of the map and see that there are zero elements and it is empty.

In the following sections, we show Map methods you might not be as familiar with.

Iterating through a Map
You saw the forEach() method earlier in the chapter. Note that it works a little differently on
a Map. This time, the lambda used by the forEach() method has two parameters: the key and
the value. Let’s look at an example, shown here:

Map<Integer, Character> map = new HashMap<>();
map.put(1, 'a');
map.put(2, 'b');
map.put(3, 'c');
map.forEach((k, v) -> System.out.println(v));

The lambda has both the key and value as the parameters. It happens to print out the
value but could do anything with the key and/or value. Interestingly, since we don’t care
about the key, this particular code could have been written with the values() method and
a method reference instead.
map.values().forEach(System.out::println);

Another way of going through all the data in a map is to get the key/value pairs in a Set.
Java has a static interface inside Map called Entry. It provides methods to get the key and
value of each pair.

map.entrySet().forEach(e ->
 System.out.println(e.getKey() + " " + e.getValue()));

Getting Values Safely
The get() method returns null if the requested key is not in the map. Sometimes you
prefer to have a different value returned. Luckily, the getOrDefault() method makes this
easy. Let’s compare the two methods:

3: Map<Character, String> map = new HashMap<>();
4: map.put('x', "spot");
5: System.out.println("X marks the " + map.get('x'));
6: System.out.println("X marks the " + map.getOrDefault('x', ""));
7: System.out.println("Y marks the " + map.get('y'));
8: System.out.println("Y marks the " + map.getOrDefault('y', ""));

This code prints the following:

X marks the spot
X marks the spot
Y marks the null
Y marks the

Using the Map Interface  487

488  Chapter 9  ■  Collections and Generics

As you can see, lines 5 and 6 have the same output because get() and getOrDefault()
behave the same way when the key is present. They return the value mapped by that key.
Lines 7 and 8 give different output, showing that get() returns null when the key is not
present. By contrast, getOrDefault() returns the empty string we passed as a parameter.

Replacing Values
These methods are similar to the List version, except a key is involved:

21: Map<Integer, Integer> map = new HashMap<>();
22: map.put(1, 2);
23: map.put(2, 4);
24: Integer original = map.replace(2, 10); // 4
25: System.out.println(map); // {1=2, 2=10}
26: map.replaceAll((k, v) -> k + v);
27: System.out.println(map); // {1=3, 2=12}

Line 24 replaces the value for key 2 and returns the original value. Line 26 calls a
function and sets the value of each element of the map to the result of that function. In our
case, we added the key and value together.

Putting if Absent
The putIfAbsent() method sets a value in the map but skips it if the value is already set to a
non-null value.

Map<String, String> favorites = new HashMap<>();
favorites.put("Jenny", "Bus Tour");
favorites.put("Tom", null);
favorites.putIfAbsent("Jenny", "Tram");
favorites.putIfAbsent("Sam", "Tram");
favorites.putIfAbsent("Tom", "Tram");
System.out.println(favorites); // {Tom=Tram, Jenny=Bus Tour, Sam=Tram}

As you can see, Jenny’s value is not updated because one was already present. Sam
wasn’t there at all, so he was added. Tom was present as a key but had a null value. There-
fore, he was added as well.

Merging Data
The merge() method adds logic of what to choose. Suppose we want to choose the ride with
the longest name. We can write code to express this by passing a mapping function to the
merge() method:

11: BiFunction<String, String, String> mapper = (v1, v2)
12: -> v1.length()> v2.length() ? v1: v2;

13:
14: Map<String, String> favorites = new HashMap<>();
15: favorites.put("Jenny", "Bus Tour");
16: favorites.put("Tom", "Tram");
17:
18: String jenny = favorites.merge("Jenny", "Skyride", mapper);
19: String tom = favorites.merge("Tom", "Skyride", mapper);
20:
21: System.out.println(favorites); // {Tom=Skyride, Jenny=Bus Tour}
22: System.out.println(jenny); // Bus Tour
23: System.out.println(tom); // Skyride

The code on lines 11 and 12 takes two parameters and returns a value. Our implementa-
tion returns the one with the longest name. Line 18 calls this mapping function, and it sees
that Bus Tour is longer than Skyride, so it leaves the value as Bus Tour. Line 19 calls this
mapping function again. This time, Tram is shorter than Skyride, so the map is updated.
Line 21 prints out the new map contents. Lines 22 and 23 show that the result is returned
from merge().

The merge() method also has logic for what happens if null values or missing keys are
involved. In this case, it doesn’t call the BiFunction at all, and it simply uses the new value.

BiFunction<String, String, String> mapper =
 (v1, v2) -> v1.length()> v2.length() ? v1 : v2;
Map<String, String> favorites = new HashMap<>();
favorites.put("Sam", null);
favorites.merge("Tom", "Skyride", mapper);
favorites.merge("Sam", "Skyride", mapper);
System.out.println(favorites); // {Tom=Skyride, Sam=Skyride}

Notice that the mapping function isn’t called. If it were, we’d have a
NullPointerException. The mapping function is used only when there are two actual
values to decide between.

The final thing to know about merge() is what happens when the mapping function is
called and returns null. The key is removed from the map when this happens:

BiFunction<String, String, String> mapper = (v1, v2) -> null;
Map<String, String> favorites = new HashMap<>();
favorites.put("Jenny", "Bus Tour");
favorites.put("Tom", "Bus Tour");

favorites.merge("Jenny", "Skyride", mapper);
favorites.merge("Sam", "Skyride", mapper);
System.out.println(favorites); // {Tom=Bus Tour, Sam=Skyride}

Using the Map Interface  489

490  Chapter 9  ■  Collections and Generics

Tom was left alone since there was no merge() call for that key. Sam was added since
that key was not in the original list. Jenny was removed because the mapping function
returned null.

Table 9.7 shows all of these scenarios as a reference.

Comparing Collection Types
We conclude this section with a review of all the collection classes. Make sure that you can
fill in Table 9.8 to compare the four collection types from memory.

TABLE 9 .7   Behavior of the merge() method

If the requested
key ________

And mapping function
returns ________ Then:

Has a null value in
map

N/A (mapping function not
called)

Update key’s value in map with value
parameter

Has a non-null value
in map

null Remove key from map

Has a non-null value
in map

A non-null value Set key to mapping function result

Is not in map N/A (mapping function not
called)

Add key with value parameter to map
directly without calling mapping function

TABLE 9 .8   Java Collections Framework types

Type
Can contain
duplicate elements?

Elements
always ordered?

Has keys
and values?

Must add/remove
in specific order?

List Yes Yes (by index) No No

Map Yes (for values) No Yes No

Queue Yes Yes (retrieved in
defined order)

No Yes

Set No No No No

Comparing Collection Types  491

Additionally, make sure you can fill in Table 9.9 to describe the types on the exam.

Next, the exam expects you to know which data structures allow null values. The data
structures that involve sorting do not allow null values.

Finally, the exam expects you to be able to choose the right collection type given a
description of a problem. We recommend first identifying which type of collection the
question is asking about. Figure out whether you are looking for a list, map, queue, or set.
This lets you eliminate a number of answers. Then you can figure out which of the remaining
choices is the best answer.

Older Collections

There are a few collections that are no longer on the exam but that you might come across
in older code. All three were early Java data structures you could use with threads:

■■ Vector: Implements List.

■■ Hashtable: Implements Map.

■■ Stack: Implements Queue.

These classes are rarely used anymore, as there are much better concurrent alternatives
that we cover in Chapter 13.

TABLE 9 .9   Collection attributes

Type
Java Collections
Framework interface Sorted? Calls hashCode?

Calls
compareTo?

ArrayDeque Deque No No No

ArrayList List No No No

HashMap Map No Yes No

HashSet Set No Yes No

LinkedList List, Deque No No No

TreeMap Map Yes No Yes

TreeSet Set Yes No Yes

492  Chapter 9  ■  Collections and Generics

Sorting Data
We discussed “order” for the TreeSet and TreeMap classes. For numbers, order is obvi-
ous—it is numerical order. For String objects, order is defined according to the Unicode
character mapping.

When working with a String, remember that numbers sort before
letters, and uppercase letters sort before lowercase letters.

We use Collections.sort() in many of these examples. It returns void because the
method parameter is what gets sorted.

You can also sort objects that you create yourself. Java provides an interface called
Comparable. If your class implements Comparable, it can be used in data structures that
require comparison. There is also a class called Comparator, which is used to specify that
you want to use a different order than the object itself provides.

Comparable and Comparator are similar enough to be tricky. The exam likes to see
if it can trick you into mixing up the two. Don’t be confused! In this section, we discuss
Comparable first. Then, as we go through Comparator, we point out all of the differences.

Creating a Comparable Class
The Comparable interface has only one method. In fact, this is the entire interface:

public interface Comparable<T> {
 int compareTo(T o);
}

The generic T lets you implement this method and specify the type of your object. This
lets you avoid a cast when implementing compareTo(). Any object can be Comparable.
For example, we have a bunch of ducks and want to sort them by name. First, we update
the class declaration to inherit Comparable<Duck>, and then we implement the
compareTo() method:

import java.util.*;
public class Duck implements Comparable<Duck> {
 private String name;
 public Duck(String name) {
 this.name = name;
 }
 public String toString() { // use readable output
 return name;
 }

Sorting Data  493

 public int compareTo(Duck d) {
 return name.compareTo(d.name); // sorts ascendingly by name
 }
 public static void main(String[] args) {
 var ducks = new ArrayList<Duck>();
 ducks.add(new Duck("Quack"));
 ducks.add(new Duck("Puddles"));
 Collections.sort(ducks); // sort by name
 System.out.println(ducks); // [Puddles, Quack]
}}

Without implementing that interface, all we have is a method named compareTo(), but
it wouldn’t be a Comparable object. We could also implement Comparable<Object> or
some other class for T, but this wouldn’t be as useful for sorting a group of Duck objects.

The Duck class overrides the toString() method from Object, which
we described in Chapter 8. This override provides useful output when
printing out ducks. Without this override, the output would be something
like [Duck@70dea4e, Duck@5c647e05]—hardly useful in seeing which
duck’s name comes first.

Finally, the Duck class implements compareTo(). Since Duck is comparing objects of
type String and the String class already has a compareTo() method, it can just delegate.

We still need to know what the compareTo() method returns so that we can write our own.
There are three rules to know:

■■ The number 0 is returned when the current object is equivalent to the argument to
compareTo().

■■ A negative number (less than 0) is returned when the current object is smaller than the
argument to compareTo().

■■ A positive number (greater than 0) is returned when the current object is larger than the
argument to compareTo().

Let’s look at an implementation of compareTo() that compares numbers instead of
String objects:

1: public class Animal implements Comparable<Animal> {
2: private int id;
3: public int compareTo(Animal a) {
4: return id - a.id; // sorts ascending by id
5: }
6: public static void main(String[] args) {
7: var a1 = new Animal();

494  Chapter 9  ■  Collections and Generics

8: var a2 = new Animal();
9: a1.id = 5;
10: a2.id = 7;
11: System.out.println(a1.compareTo(a2)); // -2
12: System.out.println(a1.compareTo(a1)); // 0
13: System.out.println(a2.compareTo(a1)); // 2
14: } }

Lines 7 and 8 create two Animal objects. Lines 9 and 10 set their id values. This is not a
good way to set instance variables. It would be better to use a constructor or setter method.
Since the exam shows nontraditional code to make sure that you understand the rules, we
throw in some nontraditional code as well.

Lines 3–5 show one way to compare two int values. We could have used
Integer.compare(id, a.id) instead. Be sure you can recognize both approaches.

Remember that id - a.id sorts in ascending order, and a.id - id
sorts in descending order.

Lines 11–13 confirm that we’ve implemented compareTo() correctly. Line 11 compares
a smaller id to a larger one, and therefore it prints a negative number. Line 12 compares ani-
mals with the same id, and therefore it prints 0. Line 13 compares a larger id to a smaller
one, and therefore it returns a positive number.

Casting the compareTo() Argument
When dealing with legacy code or code that does not use generics, the compareTo() method
requires a cast since it is passed an Object.

public class LegacyDuck implements Comparable {
 private String name;
 public int compareTo(Object obj) {
 LegacyDuck d = (LegacyDuck) obj; // cast because no generics
 return name.compareTo(d.name);
 }
}

Since we don’t specify a generic type for Comparable, Java assumes that we want an
Object, which means that we have to cast to LegacyDuck before accessing instance vari-
ables on it.

Checking for null
When working with Comparable and Comparator in this chapter, we tend to assume the
data has values, but this is not always the case. When writing your own compare methods,
you should check the data before comparing it if it is not validated ahead of time.

Sorting Data  495

public class MissingDuck implements Comparable<MissingDuck> {
 private String name;
 public int compareTo(MissingDuck quack) {
 if (quack == null)
 throw new IllegalArgumentException("Poorly formed duck!");
 if (this.name == null && quack.name == null)
 return 0;
 else if (this.name == null) return -1;
 else if (quack.name == null) return 1;
 else return name.compareTo(quack.name);
 }
}

This method throws an exception if it is passed a null MissingDuck object. What
about the ordering? If the name of a duck is null, it’s sorted first.

Keeping compareTo() and equals() Consistent
If you write a class that implements Comparable, you introduce new business logic for deter-
mining equality. The compareTo() method returns 0 if two objects are equal, while your equals()
method returns true if two objects are equal. A natural ordering that uses compareTo() is said
to be consistent with equals if, and only if, x.equals(y) is true whenever x.compareTo(y) equals 0.

Similarly, x.equals(y) must be false whenever x.compareTo(y) is not 0. You are strongly
encouraged to make your Comparable classes consistent with equals because not all collection
classes behave predictably if the compareTo() and equals() methods are not consistent.

For example, the following Product class defines a compareTo() method that is not
consistent with equals:

public class Product implements Comparable<Product> {
 private int id;
 private String name;

 public int hashCode() { return id; }
 public boolean equals(Object obj) {
 if(!(obj instanceof Product)) return false;
 var other = (Product) obj;
 return this.id == other.id;
 }
 public int compareTo(Product obj) {
 return this.name.compareTo(obj.name);
 } }

496  Chapter 9  ■  Collections and Generics

You might be sorting Product objects by name, but names are not unique. The
compareTo() method does not have to be consistent with equals. One way to fix that is to
use a Comparator to define the sort elsewhere.

Now that you know how to implement Comparable objects, you get to look at a
Comparator and focus on the differences.

Comparing Data with a Comparator
Sometimes you want to sort an object that did not implement Comparable, or you want to
sort objects in different ways at different times. Suppose that we add weight to our Duck
class. We now have the following:

1: import java.util.ArrayList;
2: import java.util.Collections;
3: import java.util.Comparator;
4:
5: public class Duck implements Comparable<Duck> {
6: private String name;
7: private int weight;
8:
9: // Assume getters/setters/constructors provided
10:
11: public String toString() { return name; }
12:
13: public int compareTo(Duck d) {
14: return name.compareTo(d.name);
15: }
16:
17: public static void main(String[] args) {
18: Comparator<Duck> byWeight = new Comparator<Duck>() {
19: public int compare(Duck d1, Duck d2) {
20: return d1.getWeight()-d2.getWeight();
21: }
22: };
23: var ducks = new ArrayList<Duck>();
24: ducks.add(new Duck("Quack", 7));
25: ducks.add(new Duck("Puddles", 10));
26: Collections.sort(ducks);
27: System.out.println(ducks); // [Puddles, Quack]
28: Collections.sort(ducks, byWeight);

Sorting Data  497

29: System.out.println(ducks); // [Quack, Puddles]
30: }
31: }

First, notice that this program imports java.util.Comparator on line 3. We don’t
always show imports since you can assume they are present if not shown. Here, we do show
the import to call attention to the fact that Comparable and Comparator are in different
packages: java.lang and java.util, respectively. That means Comparable can be used
without an import statement, while Comparator cannot.

The Duck class itself can define only one compareTo() method. In this case, name was
chosen. If we want to sort by something else, we have to define that sort order outside the
compareTo() method using a separate class or lambda expression.

Lines 18–22 of the main() method show how to define a Comparator using an inner class.
On lines 26–29, we sort without the Comparator and then with the Comparator to see the
difference in output.

Comparator is a functional interface since there is only one abstract method to implement.
This means that we can rewrite the Comparator on lines 18–22 using a lambda expression, as
shown here:

Comparator<Duck> byWeight = (d1, d2) -> d1.getWeight()-d2.getWeight();

Alternatively, we can use a method reference and a helper method to specify that we want
to sort by weight.

Comparator<Duck> byWeight = Comparator.comparing(Duck::getWeight);

In this example, Comparator.comparing() is a static interface method that creates a
Comparator given a lambda expression or method reference. Convenient, isn’t it?

Is Comparable a Functional Interface?

We said that Comparator is a functional interface because it has a single abstract method.
Comparable is also a functional interface since it also has a single abstract method. How-
ever, using a lambda for Comparable would be silly. The point of Comparable is to imple-
ment it inside the object being compared.

Comparing Comparable and Comparator
There are several differences between Comparable and Comparator. We’ve listed them for
you in Table 9.10.

498  Chapter 9  ■  Collections and Generics

Memorize this table—really. The exam will try to trick you by mixing up the two and see-
ing if you can catch it. Do you see why this doesn’t compile?

var byWeight = new Comparator<Duck>() { // DOES NOT COMPILE
 public int compareTo(Duck d1, Duck d2) {
 return d1.getWeight()-d2.getWeight();
 }
};

The method name is wrong. A Comparator must implement a method named
compare(). Pay special attention to method names and the number of parameters when you
see Comparator and Comparable in questions.

Comparing Multiple Fields
When writing a Comparator that compares multiple instance variables, the code gets a little
messy. Suppose that we have a Squirrel class, as shown here:

public class Squirrel {
 private int weight;
 private String species;
 // Assume getters/setters/constructors provided
}

We want to write a Comparator to sort by species name. If two squirrels are from the
same species, we want to sort the one that weighs the least first. We could do this with code
that looks like this:

TABLE 9 .10   Comparison of Comparable and Comparator

Difference Comparable Comparator

Package name java.lang java.util

Interface must be implemented by class comparing? Yes No

Method name in interface compareTo() compare()

Number of parameters 1 2

Common to declare using a lambda No Yes

Sorting Data  499

public class MultiFieldComparator implements Comparator<Squirrel> {
 public int compare(Squirrel s1, Squirrel s2) {
 int result = s1.getSpecies().compareTo(s2.getSpecies());
 if (result != 0) return result;
 return s1.getWeight()-s2.getWeight();
 }}

This works assuming no species’ names are null. It checks one field. If they don’t match,
we are finished sorting. If they do match, it looks at the next field. This isn’t easy to read,
though. It is also easy to get wrong. Changing != to == breaks the sort completely.

Alternatively, we can use method references and build the Comparator. This code repre-
sents logic for the same comparison:

Comparator<Squirrel> c = Comparator.comparing(Squirrel::getSpecies)
 .thenComparingInt(Squirrel::getWeight);

This time, we chain the methods. First, we create a Comparator on species ascending.
Then, if there is a tie, we sort by weight. We can also sort in descending order. Some methods
on Comparator, like thenComparingInt(), are default methods.

Suppose we want to sort in descending order by species.

var c = Comparator.comparing(Squirrel::getSpecies).reversed();

Table 9.11 shows the helper methods you should know for building a Comparator.
We’ve omitted the parameter types to keep you focused on the methods. They use many of
the functional interfaces you learned about in the previous chapter.

TABLE 9 .11   Helper static methods for building a Comparator

Method Description

comparing(function) Compare by results of function that returns any Object
(or primitive autoboxed into Object).

comparingDouble(function) Compare by results of function that returns double.

comparingInt(function) Compare by results of function that returns int.

comparingLong(function) Compare by results of function that returns long.

naturalOrder() Sort using order specified by the Comparable
implementation on object itself.

reverseOrder() Sort using reverse of order specified by Comparable
implementation on object itself.

500  Chapter 9  ■  Collections and Generics

Table 9.12 shows the methods that you can chain to a Comparator to further specify
its behavior.

You’ve probably noticed by now that we often ignore null values in
checking equality and comparing objects. This works fine for the exam. In
the real world, though, things aren’t so neat. You will have to decide how
to handle null values or prevent them from being in your object.

Sorting and Searching
Now that you’ve learned all about Comparable and Comparator, we can finally do
something useful with them, like sorting. The Collections.sort() method uses the
compareTo() method to sort. It expects the objects to be sorted to be Comparable.

2: public class SortRabbits {
3: static record Rabbit(int id) {}
4: public static void main(String[] args) {
5: List<Rabbit> rabbits = new ArrayList<>();
6: rabbits.add(new Rabbit(3));
7: rabbits.add(new Rabbit(1));
8: Collections.sort(rabbits); // DOES NOT COMPILE
9: } }

TABLE 9 .12   Helper default methods for building a Comparator

Method Description

reversed() Reverse order of chained Comparator.

thenComparing(function) If previous Comparator returns 0, use this
comparator that returns Object or can be
autoboxed into one.

thenComparingDouble(function) If previous Comparator returns 0, use this
comparator that returns double. Otherwise, return
value from previous Comparator.

thenComparingInt(function) If previous Comparator returns 0, use this
comparator that returns int. Otherwise, return
value from previous Comparator.

thenComparingLong(function) If previous Comparator returns 0, use this
comparator that returns long. Otherwise, return
value from previous Comparator.

Sorting Data  501

Java knows that the Rabbit record is not Comparable. It knows sorting will fail, so it
doesn’t even let the code compile. You can fix this by passing a Comparator to sort().
Remember that a Comparator is useful when you want to specify sort order without using a
compareTo() method.

8: Comparator<Rabbit> c = (r1, r2) -> r1.id - r2.id;
9: Collections.sort(rabbits, c);
10: System.out.println(rabbits); // [Rabbit[id=1], Rabbit[id=3]]

Suppose you want to sort the rabbits in descending order. You could change the Comparator
to r2.id - r1.id. Alternatively, you could reverse the contents of the list afterward:

8: Comparator<Rabbit> c = (r1, r2) -> r1.id - r2.id;
9: Collections.sort(rabbits, c);
10: Collections.reverse(rabbits);
11: System.out.println(rabbits); // [Rabbit[id=3], Rabbit[id=1]]

The sort() and binarySearch() methods allow you to pass in a Comparator object
when you don’t want to use the natural order.

Reviewing binarySearch()

The binarySearch() method requires a sorted List.

11: List<Integer> list = Arrays.asList(6,9,1,8);
12: Collections.sort(list); // [1, 6, 8, 9]
13: System.out.println(Collections.binarySearch(list, 6)); // 1
14: System.out.println(Collections.binarySearch(list, 3)); // -2

Line 12 sorts the List so we can call binary search properly. Line 13 prints the index
at which a match is found. Line 14 prints one less than the negated index of where the
requested value would need to be inserted. The number 3 would need to be inserted at
index 1 (after the number 1 but before the number 6). Negating that gives us −1, and sub-
tracting 1 gives us −2.

There is a trick in working with binarySearch(). What do you think the follow-
ing outputs?

3: var names = Arrays.asList("Fluffy", "Hoppy");
4: Comparator<String> c = Comparator.reverseOrder();
5: var index = Collections.binarySearch(names, "Hoppy", c);
6: System.out.println(index);

The answer happens to be -1. Before you panic, you don’t need to know that the
answer is -1. You do need to know that the answer is not defined. Line 3 creates a list,

502  Chapter 9  ■  Collections and Generics

[Fluffy, Hoppy]. This list happens to be sorted in ascending order. Line 4 creates a Com-
parator that reverses the natural order. Line 5 requests a binary search in descending order.
Since the list is not in that order, we don’t meet the precondition for doing a search.

While the result of calling binarySearch() on an improperly sorted list is undefined, some-
times you can get lucky. For example, search starts in the middle of an odd-numbered list. If
you happen to ask for the middle element, the index returned will be what you expect.

Earlier in the chapter, we talked about collections that require classes to implement
Comparable. Unlike sorting, they don’t check that you have implemented Comparable at
compile time.

Going back to our Rabbit that does not implement Comparable, we try to add it to
a TreeSet:

2: public class UseTreeSet {
3: static class Rabbit{ int id; }
4: public static void main(String[] args) {
5: Set<Duck> ducks = new TreeSet<>();
6: ducks.add(new Duck("Puddles"));
7:
8: Set<Rabbit> rabbits = new TreeSet<>();
9: rabbits.add(new Rabbit()); // ClassCastException
10: } }

Line 6 is fine. Duck does implement Comparable. TreeSet is able to sort it into the
proper position in the set. Line 9 is a problem. When TreeSet tries to sort it, Java dis-
covers the fact that Rabbit does not implement Comparable. Java throws an exception
that looks like this:

Exception in thread "main" java.lang.ClassCastException:
 class Rabbit cannot be cast to class java.lang.Comparable

It may seem weird for this exception to be thrown when the first object is added to the
set. After all, there is nothing to compare yet. Java works this way for consistency.

Just like searching and sorting, you can tell collections that require sorting that you want
to use a specific Comparator. For example:

8: Set<Rabbit> rabbits = new TreeSet<>((r1, r2) -> r1.id - r2.id);
9: rabbits.add(new Rabbit());

Now Java knows that you want to sort by id, and all is well. A Comparator is a help-
ful object. It lets you separate sort order from the object to be sorted. Notice that line
9 in both of the previous examples is the same. It’s the declaration of the TreeSet that
has changed.

Working with Generics  503

Sorting a List
While you can call Collections.sort(list), you can also sort directly on the list object.

3: List<String> bunnies = new ArrayList<>();
4: bunnies.add("long ear");
5: bunnies.add("floppy");
6: bunnies.add("hoppy");
7: System.out.println(bunnies); // [long ear, floppy, hoppy]
8: bunnies.sort((b1, b2) -> b1.compareTo(b2));
9: System.out.println(bunnies); // [floppy, hoppy, long ear]

On line 8, we sort the list alphabetically. The sort() method takes a Comparator that
provides the sort order. Remember that Comparator takes two parameters and returns an
int. If you need a review of what the return value of a compare() operation means, check
the Comparator section in this chapter or the “Comparing” section in Chapter 4, “Core
APIs.” This is really important to memorize!

There is not a sort method on Set or Map. Both of those types are unordered, so it
wouldn’t make sense to sort them.

Working with Generics
We conclude this chapter with one of the most useful, and at times most confusing, features
in the Java language: generics. In fact, we’ve been using them extensively in the last two
chapters—the type between the <>. Why do we need generics? Imagine if we weren’t speci-
fying the type of our lists and merely hoped the caller didn’t put in something that we didn’t
expect. The following does just that:

14: static void printNames(List list) {
15: for (int i = 0; i < list.size(); i++) {
16: String name = (String) list.get(i); // ClassCastException
17: System.out.println(name);
18: }
19: }
20: public static void main(String[] args) {
21: List names = new ArrayList();
22: names.add(new StringBuilder("Webby"));
23: printNames(names);
24: }

504  Chapter 9  ■  Collections and Generics

This code throws a ClassCastException. Line 22 adds a StringBuilder to list.
This is legal because a non-generic list can contain anything. However, line 16 is written to
expect a specific class to be in there. It casts to a String, reflecting this assumption.
Since the assumption is incorrect, the code throws a ClassCastException that
java.lang.StringBuilder cannot be cast to java.lang.String.

Generics fix this by allowing you to write and use parameterized types. Since we specify
that we want an ArrayList of String objects, the compiler has enough information to
prevent this problem in the first place.

List<String> names = new ArrayList<String>();
names.add(new StringBuilder("Webby")); // DOES NOT COMPILE

Getting a compiler error is good. You’ll know right away that something is wrong rather
than hoping to discover it later.

Creating Generic Classes
You can introduce generics into your own classes. The syntax for introducing a generic is to
declare a formal type parameter in angle brackets. For example, the following class named
Crate has a generic type variable declared after the name of the class:

public class Crate<T> {
 private T contents;
 public T lookInCrate() {
 return contents;
 }
 public void packCrate(T contents) {
 this.contents = contents;
 }
}

The generic type T is available anywhere within the Crate class. When you instantiate the
class, you tell the compiler what T should be for that particular instance.

Naming Conventions for Generics

A type parameter can be named anything you want. The convention is to use single upper-
case letters to make it obvious that they aren’t real class names. The following are common
letters to use:

■■ E for an element

■■ K for a map key

Working with Generics  505

■■ V for a map value

■■ N for a number

■■ T for a generic data type

■■ S, U, V, and so forth for multiple generic types

For example, suppose an Elephant class exists, and we are moving our elephant to a new
and larger enclosure in our zoo. (The San Diego Zoo did this in 2009. It was interesting see-
ing the large metal crate.)

Elephant elephant = new Elephant();
Crate<Elephant> crateForElephant = new Crate<>();
crateForElephant.packCrate(elephant);
Elephant inNewHome = crateForElephant.lookInCrate();

To be fair, we didn’t pack the crate so much as the elephant walked into it. How-
ever, you can see that the Crate class is able to deal with an Elephant without knowing
anything about it.

This probably doesn’t seem particularly impressive. We could have just typed in Elephant
instead of T when coding Crate. What if we wanted to create a Crate for another animal?

Crate<Zebra> crateForZebra = new Crate<>();

Now we couldn’t have simply hard-coded Elephant in the Crate class since a Zebra is
not an Elephant. However, we could have created an Animal superclass or interface and
used that in Crate.

Generic classes become useful when the classes used as the type parameter can have abso-
lutely nothing to do with each other. For example, we need to ship our 120-pound robot to
another city:

Robot joeBot = new Robot();
Crate<Robot> robotCrate = new Crate<>();
robotCrate.packCrate(joeBot);

// ship to Houston
Robot atDestination = robotCrate.lookInCrate();

Now it is starting to get interesting. The Crate class works with any type of class.
Before generics, we would have needed Crate to use the Object class for its instance var-
iable, which would have put the burden on the caller to cast the object it receives on emp-
tying the crate.

In addition to Crate not needing to know about the objects that go into it, those objects
don’t need to know about Crate. We aren’t requiring the objects to implement an interface
named Crateable or the like. A class can be put in the Crate without any changes at all.

506  Chapter 9  ■  Collections and Generics

Don’t worry if you can’t think of a use for generic classes of your own.
Unless you are writing a library for others to reuse, generics hardly show
up in the class definitions you write. You’ve already seen them frequently
in the code you call, such as functional interfaces and collections.

Generic classes aren’t limited to having a single type parameter. This class shows two
generic parameters:

public class SizeLimitedCrate<T, U> {
 private T contents;
 private U sizeLimit;
 public SizeLimitedCrate(T contents, U sizeLimit) {
 this.contents = contents;
 this.sizeLimit = sizeLimit;
 } }

T represents the type that we are putting in the crate. U represents the unit that we are
using to measure the maximum size for the crate. To use this generic class, we can write the
following:

Elephant elephant = new Elephant();
Integer numPounds = 15_000;
SizeLimitedCrate<Elephant, Integer> c1
 = new SizeLimitedCrate<>(elephant, numPounds);

Here we specify that the type is Elephant, and the unit is Integer. We also throw in a
reminder that numeric literals can contain underscores.

Understanding Type Erasure
Specifying a generic type allows the compiler to enforce proper use of the generic type. For
example, specifying the generic type of Crate as Robot is like replacing the T in the Crate class
with Robot. However, this is just for compile time.

Behind the scenes, the compiler replaces all references to T in Crate with Object. In other
words, after the code compiles, your generics are just Object types. The Crate class looks like
the following at runtime:

 public class Crate {
 private Object contents;
 public Object lookInCrate() {
 return contents;
 }
 public void packCrate(Object contents) {
 this.contents = contents;
 }
 }

Working with Generics  507

This means there is only one class file. There aren’t different copies for different parame-
terized types. (Some other languages work that way.) This process of removing the generics
syntax from your code is referred to as type erasure. Type erasure allows your code to be
compatible with older versions of Java that do not contain generics.

The compiler adds the relevant casts for your code to work with this type of erased class.
For example, you type the following:

 Robot r = crate.lookInCrate();

The compiler turns it into the following:

 Robot r = (Robot) crate.lookInCrate();

In the following sections, we look at the implications of generics for method
declarations.

Overloading a Generic Method
Only one of these two methods is allowed in a class because type erasure will reduce both
sets of arguments to (List input):

public class LongTailAnimal {
 protected void chew(List<Object> input) {}
 protected void chew(List<Double> input) {} // DOES NOT COMPILE
}

For the same reason, you also can’t overload a generic method from a parent class.

public class LongTailAnimal {
 protected void chew(List<Object> input) {}
}

public class Anteater extends LongTailAnimal {
 protected void chew(List<Double> input) {} // DOES NOT COMPILE
}

Both of these examples fail to compile because of type erasure. In the compiled form, the
generic type is dropped, and it appears as an invalid overloaded method. Now, let’s look at
a subclass:

public class Anteater extends LongTailAnimal {
 protected void chew(List<Object> input) {}
 protected void chew(ArrayList<Double> input) {}
}

The first chew() method compiles because it uses the same generic type in the overridden
method as the one defined in the parent class. The second chew() method compiles as well.

508  Chapter 9  ■  Collections and Generics

However, it is an overloaded method because one of the method arguments is a List and
the other is an ArrayList. When working with generic methods, it’s important to consider
the underlying type.

Returning Generic Types
When you’re working with overridden methods that return generics, the return values must
be covariant. In terms of generics, this means that the return type of the class or interface
declared in the overriding method must be a subtype of the class defined in the parent class.
The generic parameter type must match its parent’s type exactly.

Given the following declaration for the Mammal class, which of the two subclasses,
Monkey and Goat, compile?

public class Mammal {
 public List<CharSequence> play() { ... }
 public CharSequence sleep() { ... }
}

public class Monkey extends Mammal {
 public ArrayList<CharSequence> play() { ... }
}

public class Goat extends Mammal {
 public List<String> play() { ... } // DOES NOT COMPILE
 public String sleep() { ... }
}

The Monkey class compiles because ArrayList is a subtype of List. The play() method
in the Goat class does not compile, though. For the return types to be covariant, the generic
type parameter must match. Even though String is a subtype of CharSequence, it does not
exactly match the generic type defined in the Mammal class. Therefore, this is considered an
invalid override.

Notice that the sleep() method in the Goat class does compile since String is a subtype of
CharSequence. This example shows that covariance applies to the return type, just not the
generic parameter type.

For the exam, it might be helpful for you to apply type erasure to questions involving
generics to ensure that they compile properly. Once you’ve determined which methods are
overridden and which are being overloaded, work backward, making sure the generic types
match for overridden methods. And remember, generic methods cannot be overloaded by
changing the generic parameter type only.

Working with Generics  509

Implementing Generic Interfaces
Just like a class, an interface can declare a formal type parameter. For example, the following
Shippable interface uses a generic type as the argument to its ship() method:

public interface Shippable<T> {
 void ship(T t);
}

There are three ways a class can approach implementing this interface. The first is to
specify the generic type in the class. The following concrete class says that it deals only with
robots. This lets it declare the ship() method with a Robot parameter:

class ShippableRobotCrate implements Shippable<Robot> {
 public void ship(Robot t) { }
}

The next way is to create a generic class. The following concrete class allows the caller to
specify the type of the generic:

class ShippableAbstractCrate<U> implements Shippable<U> {
 public void ship(U t) { }
}

In this example, the type parameter could have been named anything, including T. We
used U in the example to avoid confusion about what T refers to. The exam won’t mind try-
ing to confuse you by using the same type parameter name.

The final way is to not use generics at all. This is the old way of writing code. It generates
a compiler warning about Shippable being a raw type, but it does compile. Here the ship()
method has an Object parameter since the generic type is not defined:

class ShippableCrate implements Shippable {
 public void ship(Object t) { }
}

What You Can’t Do with Generic Types

There are some limitations on what you can do with a generic type. These aren’t on the
exam, but it will be helpful to refer to this scenario when you are writing practice programs
and run into one of these situations.

Most of the limitations are due to type erasure. Oracle refers to types whose information is
fully available at runtime as reifiable. Reifiable types can do anything that Java allows. Non-
reifiable types have some limitations.

510  Chapter 9  ■  Collections and Generics

Here are the things that you can’t do with generics (and by “can’t,” we mean without resort-
ing to contortions like passing in a class object):

■■ Call a constructor: Writing new T() is not allowed because at runtime, it would be
new Object().

■■ Create an array of that generic type: This one is the most annoying, but it makes sense
because you’d be creating an array of Object values.

■■ Call instanceof: This is not allowed because at runtime List<Integer> and
List<String> look the same to Java, thanks to type erasure.

■■ Use a primitive type as a generic type parameter: This isn’t a big deal because you can
use the wrapper class instead. If you want a type of int, just use Integer.

■■ Create a static variable as a generic type parameter: This is not allowed because the
type is linked to the instance of the class.

Writing Generic Methods
Up until this point, you’ve seen formal type parameters declared on the class or interface
level. It is also possible to declare them on the method level. This is often useful for static
methods since they aren’t part of an instance that can declare the type. However, it is also
allowed on non-static methods.

In this example, both methods use a generic parameter:

public class Handler {
 public static <T> void prepare(T t) {
 System.out.println("Preparing " + t);
 }
 public static <T> Crate<T> ship(T t) {
 System.out.println("Shipping " + t);
 return new Crate<T>();
 }
}

The method parameter is the generic type T. Before the return type, we declare the formal
type parameter of <T>. In the ship() method, we show how you can use the generic param-
eter in the return type, Crate<T>, for the method.

Unless a method is obtaining the generic formal type parameter from the class/inter-
face, it is specified immediately before the return type of the method. This can lead to some
interesting-looking code!

2: public class More {
3: public static <T> void sink(T t) { }

Working with Generics  511

4: public static <T> T identity(T t) { return t; }
5: public static T noGood(T t) { return t; } // DOES NOT COMPILE
6: }

Line 3 shows the formal parameter type immediately before the return type of void. Line
4 shows the return type being the formal parameter type. It looks weird, but it is correct.
Line 5 omits the formal parameter type and therefore does not compile.

Optional Syntax for Invoking a Generic Method

You can call a generic method normally, and the compiler will try to figure out which
one you want. Alternatively, you can specify the type explicitly to make it obvious what
the type is.

Box.<String>ship("package");
Box.<String[]>ship(args);

It is up to you whether this makes things clearer. You should at least be aware that this
syntax exists.

When you have a method declare a generic parameter type, it is independent of the class
generics. Take a look at this class that declares a generic T at both levels:

1: public class TrickyCrate<T> {
2: public <T> T tricky(T t) {
3: return t;
4: }
5: }

See if you can figure out the type of T on lines 1 and 2 when we call the code as follows:

10: public static String crateName() {
11: TrickyCrate<Robot> crate = new TrickyCrate<>();
12: return crate.tricky("bot");
13: }

Clearly, “T is for tricky.” Let’s see what is happening. On line 1, T is Robot because that
is what gets referenced when constructing a Crate. On line 2, T is String because that is
what is passed to the method. When you see code like this, take a deep breath and write
down what is happening so you don’t get confused.

512  Chapter 9  ■  Collections and Generics

Creating a Generic Record
Generics can also be used with records. This record takes a single generic type parameter:

public record CrateRecord<T>(T contents) {
 @Override
 public T contents() {
 if (contents == null)
 throw new IllegalStateException("missing contents");
 return contents;
 }
}

This works the same way as classes. You can create a record of the robot!

Robot robot = new Robot();
CrateRecord<Robot> record = new CrateRecord<>(robot);

This is convenient. Now we have an immutable, generic record!

Bounding Generic Types
By now, you might have noticed that generics don’t seem particularly useful since they are
treated as Objects and, therefore, don’t have many methods available. Bounded wildcards
solve this by restricting what types can be used in a wildcard. A bounded parameter type is a
generic type that specifies a bound for the generic. Be warned that this is the hardest section
in the chapter, so don’t feel bad if you have to read it more than once.

A wildcard generic type is an unknown generic type represented with a question mark (?).
You can use generic wildcards in three ways, as shown in Table 9.13. This section looks at
each of these three wildcard types.

TABLE 9 .13   Types of bounds

Type of bound Syntax Example

Unbounded wildcard ? List<?> a = new ArrayList<String>();

Wildcard with upper
bound

? extends
type

List<? extends Exception> a = new
ArrayList<RuntimeException>();

Wildcard with lower
bound

? super
type

List<? super Exception> a = new
ArrayList<Object>();

Working with Generics  513

Creating Unbounded Wildcards
An unbounded wildcard represents any data type. You use ? when you want to specify that
any type is okay with you. Let’s suppose that we want to write a method that looks through
a list of any type.

public static void printList(List<Object> list) {
 for (Object x: list)
 System.out.println(x);
}
public static void main(String[] args) {
 List<String> keywords = new ArrayList<>();
 keywords.add("java");
 printList(keywords); // DOES NOT COMPILE
}

Wait. What’s wrong? A String is a subclass of an Object. This is true. However,
List<String> cannot be assigned to List<Object>. We know, it doesn’t sound logical.
Java is trying to protect us from ourselves with this one. Imagine if we could write code
like this:

4: List<Integer> numbers = new ArrayList<>();
5: numbers.add(Integer.valueOf(42));
6: List<Object> objects = numbers; // DOES NOT COMPILE
7: objects.add("forty two");
8: System.out.println(numbers.get(1));

On line 4, the compiler promises us that only Integer objects will appear in numbers.
If line 6 compiled, line 7 would break that promise by putting a String in there since
numbers and objects are references to the same object. Good thing the compiler prevents this.

Going back to printing a list, we cannot assign a List<String> to a List<Object>.
That’s fine; we don’t need a List<Object>. What we really need is a List of “whatever.”
That’s what List<?> is. The following code does what we expect:

public static void printList(List<?> list) {
 for (Object x: list)
 System.out.println(x);
}
public static void main(String[] args) {
 List<String> keywords = new ArrayList<>();
 keywords.add("java");
 printList(keywords);
}

514  Chapter 9  ■  Collections and Generics

The printList() method takes any type of list as a parameter. The keywords var-
iable is of type List<String>. We have a match! List<String> is a list of anything.
“Anything” just happens to be a String here.

Finally, let’s look at the impact of var. Do you think these two statements are
equivalent?

List<?> x1 = new ArrayList<>();
var x2 = new ArrayList<>();

They are not. There are two key differences. First, x1 is of type List, while x2 is of type
ArrayList. Additionally, we can only assign x2 to a List<Object>. These two variables
do have one thing in common. Both return type Object when calling the get() method.

Creating Upper-Bounded Wildcards
Let’s try to write a method that adds up the total of a list of numbers. We’ve established that
a generic type can’t just use a subclass.

ArrayList<Number> list = new ArrayList<Integer>(); // DOES NOT COMPILE

Instead, we need to use a wildcard:

List<? extends Number> list = new ArrayList<Integer>();

The upper-bounded wildcard says that any class that extends Number or Number itself
can be used as the formal parameter type:

public static long total(List<? extends Number> list) {
 long count = 0;
 for (Number number: list)
 count += number.longValue();
 return count;
}

Remember how we kept saying that type erasure makes Java think that a generic type
is an Object? That is still happening here. Java converts the previous code to something
equivalent to the following:

public static long total(List list) {
 long count = 0;
 for (Object obj: list) {
 Number number = (Number) obj;
 count += number.longValue();
 }
 return count;
}

Working with Generics  515

Something interesting happens when we work with upper bounds or unbounded wild-
cards. The list becomes logically immutable and therefore cannot be modified. Technically,
you can remove elements from the list, but the exam won’t ask about this.

2: static class Sparrow extends Bird { }
3: static class Bird { }
4:
5: public static void main(String[] args) {
6: List<? extends Bird> birds = new ArrayList<Bird>();
7: birds.add(new Sparrow()); // DOES NOT COMPILE
8: birds.add(new Bird()); // DOES NOT COMPILE
9: }

The problem stems from the fact that Java doesn’t know what type List<? extends
Bird> really is. It could be List<Bird> or List<Sparrow> or some other generic type
that hasn’t even been written yet. Line 7 doesn’t compile because we can’t add a Sparrow
to List<? extends Bird>, and line 8 doesn’t compile because we can’t add a Bird to
List<Sparrow>. From Java’s point of view, both scenarios are equally possible, so neither
is allowed.

Now let’s try an example with an interface. We have an interface and two classes that
implement it.

interface Flyer { void fly(); }
class HangGlider implements Flyer { public void fly() {} }
class Goose implements Flyer { public void fly() {} }

We also have two methods that use it. One just lists the interface, and the other uses an
upper bound.

private void anyFlyer(List<Flyer> flyer) {}
private void groupOfFlyers(List<? extends Flyer> flyer) {}

Note that we used the keyword extends rather than implements. Upper bounds are
like anonymous classes in that they use extends regardless of whether we are working with
a class or an interface.

You already learned that a variable of type List<Flyer> can be passed to either method.
A variable of type List<Goose> can be passed only to the one with the upper bound. This
shows a benefit of generics. Random flyers don’t fly together. We want our groupOfFlyers()
method to be called only with the same type. Geese fly together but don’t fly with hang gliders.

516  Chapter 9  ■  Collections and Generics

Creating Lower-Bounded Wildcards
Let’s try to write a method that adds a string "quack" to two lists:

List<String> strings = new ArrayList<String>();
strings.add("tweet");

List<Object> objects = new ArrayList<Object>(strings);
addSound(strings);
addSound(objects);

The problem is that we want to pass a List<String> and a List<Object> to the same
method. First, make sure you understand why the first three examples in Table 9.14 do not
solve this problem.

To solve this problem, we need to use a lower bound.

public static void addSound(List<? super String> list) {
 list.add("quack");
}

With a lower bound, we are telling Java that the list will be a list of String objects or a
list of some objects that are a superclass of String. Either way, it is safe to add a String to
that list.

Just like generic classes, you probably won’t use this in your code unless you are writing
code for others to reuse. Even then, it would be rare. But it’s on the exam, so now is the time
to learn it!

TABLE 9 .14   Why we need a lower bound

static void
addSound(list)
{list.add("quack");}

Method
compiles

Can pass a
List<String>

Can pass a
List<Object>

List<?> No (unbounded
generics are immutable)

Yes Yes

List<? extends Object> No (upper-bounded
generics are immutable)

Yes Yes

List<Object> Yes No (with generics,
must pass exact
match)

Yes

List<? super String> Yes Yes Yes

Working with Generics  517

Understanding Generic Supertypes

When you have subclasses and superclasses, lower bounds can get tricky.

3: List<? super IOException> exceptions = new ArrayList<Exception>();
4: exceptions.add(new Exception()); // DOES NOT COMPILE
5: exceptions.add(new IOException());
6: exceptions.add(new FileNotFoundException());

Line 3 references a List that could be List<IOException> or List<Exception> or
List<Object>. Line 4 does not compile because we could have a List<IOException>,
and an Exception object wouldn’t fit in there.

Line 5 is fine. IOException can be added to any of those types. Line 6 is also fine.
FileNotFoundException can also be added to any of those three types. This is tricky
because FileNotFoundException is a subclass of IOException, and the keyword says
super. Java says, “Well, FileNotFoundException also happens to be an IOException,
so everything is fine.”

Putting It All Together
At this point, you know everything that you need to know to ace the exam questions on
generics. It is possible to put these concepts together to write some really confusing code,
which the exam likes to do.

This section is going to be difficult to read. It contains the hardest questions that you
could possibly be asked about generics. The exam questions will probably be easier to read
than these. We want you to encounter the really tough ones here so that you are ready
for the exam. In other words, don’t panic. Take it slow, and reread the code a few times.
You’ll get it.

Combining Generic Declarations
Let’s try an example. First, we declare three classes that the example will use:

class A {}
class B extends A {}
class C extends B {}

Ready? Can you figure out why these do or don’t compile? Also, try to figure out
what they do.

6: List<?> list1 = new ArrayList<A>();
7: List<? extends A> list2 = new ArrayList<A>();
8: List<? super A> list3 = new ArrayList<A>();

518  Chapter 9  ■  Collections and Generics

Line 6 creates an ArrayList that can hold instances of class A. It is stored in a variable
with an unbounded wildcard. Any generic type can be referenced from an unbounded wild-
card, making this okay.

Line 7 tries to store a list in a variable declaration with an upper-bounded wildcard.
This is okay. You can have ArrayList<A>, ArrayList, or ArrayList<C> stored
in that reference. Line 8 is also okay. This time, you have a lower-bounded wildcard. The
lowest type you can reference is A. Since that is what you have, it compiles.

Did you get those right? Let’s try a few more.

9: List<? extends B> list4 = new ArrayList<A>(); // DOES NOT COMPILE
10: List<? super B> list5 = new ArrayList<A>();
11: List<?> list6 = new ArrayList<? extends A>(); // DOES NOT COMPILE

Line 9 has an upper-bounded wildcard that allows ArrayList or ArrayList<C>
to be referenced. Since you have ArrayList<A> that is trying to be referenced, the code
does not compile. Line 10 has a lower-bounded wildcard, which allows a reference to
ArrayList<A>, ArrayList, or ArrayList<Object>.

Finally, line 11 allows a reference to any generic type since it is an unbounded wildcard. The
problem is that you need to know what that type will be when instantiating the ArrayList.
It wouldn’t be useful anyway, because you can’t add any elements to that ArrayList.

Passing Generic Arguments
Now on to the methods. Same question: try to figure out why they don’t compile or what
they do. We will present the methods one at a time because there is more to think about.

<T> T first(List<? extends T> list) {
 return list.get(0);
}

The first method, first(), is a perfectly normal use of generics. It uses a method-specific
type parameter, T. It takes a parameter of List<T>, or some subclass of T, and it returns a
single object of that T type. For example, you could call it with a List<String> parameter
and have it return a String. Or you could call it with a List<Number> parameter and have
it return a Number. Or—well, you get the idea.

Given that, you should be able to see what is wrong with this one:

<T> <? extends T> second(List<? extends T> list) { // DOES NOT COMPILE
 return list.get(0);
}

The next method, second(), does not compile because the return type isn’t actually a
type. You are writing the method. You know what type it is supposed to return. You don’t
get to specify this as a wildcard.

Summary  519

Now be careful—this one is extra tricky:

<B extends A> B third(List list) {
 return new B(); // DOES NOT COMPILE
}

This method, third(), does not compile. <B extends A> says that you want to use B
as a type parameter just for this method and that it needs to extend the A class. Coinciden-
tally, B is also the name of a class. Well, it isn’t a coincidence. It’s an evil trick. Within the
scope of the method, B can represent class A, B, or C, because all extend the A class. Since B
no longer refers to the B class in the method, you can’t instantiate it.

After that, it would be nice to get something straightforward.

void fourth(List<? super B> list) {}

We finally get a method, fourth(), that is a normal use of generics. You can pass the
type List, List<A>, or List<Object>.

Finally, can you figure out why this example does not compile?

<X> void fifth(List<X super B> list) { // DOES NOT COMPILE
}

This last method, fifth(), does not compile because it tries to mix a method-specific
type parameter with a wildcard. A wildcard must have a ? in it.

Phew. You made it through generics. It’s the hardest topic in this chapter (and why we
covered it last!). Remember that it’s okay if you need to go over this material a few times to
get your head around it.

Summary
The Java Collections Framework includes four main types of data structures: lists, sets,
queues, and maps. The Collection interface is the parent interface of List, Set, and Queue.
Additionally, Deque extends Queue. The Map interface does not extend Collection. You need
to recognize the following:

■■ List: An ordered collection of elements that allows duplicate entries

■■ ArrayList: Standard resizable list

■■ LinkedList: Can easily add/remove from beginning or end

■■ Set: Does not allow duplicates

■■ HashSet: Uses hashCode() to find unordered elements.

■■ TreeSet: Sorted. Does not allow null values.

■■ Queue/Deque: Orders elements for processing

■■ ArrayDeque: Double-ended queue

■■ LinkedList: Double-ended queue and list

520  Chapter 9  ■  Collections and Generics

■■ Map: Maps unique keys to values

■■ HashMap: Uses hashCode() to find keys.

■■ TreeMap: Sorted map. Does not allow null keys.

The Comparable interface declares the compareTo() method. This method returns a
negative number if the object is smaller than its argument, 0 if the two objects are equal, and
a positive number otherwise. The compareTo() method is declared on the object that is
being compared, and it takes one parameter. The Comparator interface defines the compare()
method. A negative number is returned if the first argument is smaller, zero if they are equal,
and a positive number otherwise. The compare() method can be declared in any code, and
it takes two parameters. A Comparator is often implemented using a lambda.

Generics are type parameters for code. To create a class with a generic parameter, add
<T> after the class name. You can use any name you want for the type parameter. Single
uppercase letters are common choices. Generics allow you to specify wildcards. <?> is an
unbounded wildcard that means any type. <? extends Object> is an upper bound that
means any type that is Object or extends it. <? extends MyInterface> means any type
that implements MyInterface. <? super Number> is a lower bound that means any type
that is Number or a superclass. A compiler error results from code that attempts to add an
item in a list with an unbounded or upper-bounded wildcard.

Exam Essentials
Pick the correct type collection from a description.   A List allows duplicates and orders
the elements. A Set does not allow duplicates. A Deque orders its elements to facilitate
retrievals from the front or back. A Map maps keys to values. Be familiar with the differences
in implementations of these interfaces.

Work with convenience methods.   The Collections Framework contains many methods
such as contains(), forEach(), and removeIf() that you need to know for the exam.
There are too many to list in this paragraph for review, so please do review the tables in
this chapter.

Differentiate between Comparable and Comparator.   Classes that implement Comparable
are said to have a natural ordering and implement the compareTo() method. A class is
allowed to have only one natural ordering. A Comparator takes two objects in the compare()
method. Different ones can have different sort orders. A Comparator is often implemented
using a lambda such as (a, b) -> a.num - b.num.

Identify valid and invalid uses of generics and wildcards.   <T> represents a type parameter.
Any name can be used, but a single uppercase letter is the convention. <?> is an unbounded
wildcard. <? extends X> is an upper-bounded wildcard. <? super X> is a lower-
bounded wildcard.

Review Questions  521

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Suppose you need to display a collection of products for sale, which may contain duplicates.
Additionally, you have a collection of sales that you need to track, sorted by the natural order
of the sale ID, and you need to retrieve the text of each. Which two of the following from the
java.util package best suit your needs for this scenario? (Choose two.)

A.	 ArrayList
B.	 HashMap
C.	 HashSet
D.	 LinkedList
E.	 TreeMap
F.	 TreeSet

2.	 Which of the following are true? (Choose all that apply.)

12: List<?> q = List.of("mouse", "parrot");
13: var v = List.of("mouse", "parrot");
14:
15: q.removeIf(String::isEmpty);
16: q.removeIf(s -> s.length() == 4);
17: v.removeIf(String::isEmpty);
18: v.removeIf(s -> s.length() == 4);

A.	 This code compiles and runs without error.

B.	 Exactly one of these lines contains a compiler error.

C.	 Exactly two of these lines contain a compiler error.

D.	 Exactly three of these lines contain a compiler error.

E.	 Exactly four of these lines contain a compiler error.

F.	 If any lines with compiler errors are removed, this code runs without throwing an
exception.

G.	 If any lines with compiler errors are removed, this code throws an exception.

3.	 What is the result of the following statements?

3: var greetings = new ArrayDeque<String>();
4: greetings.offerLast("hello");
5: greetings.offerLast("hi");
6: greetings.offerFirst("ola");
7: greetings.pop();
8: greetings.peek();

522  Chapter 9  ■  Collections and Generics

9: while (greetings.peek() != null)
10: System.out.print(greetings.pop());

A.	 hello
B.	 hellohi
C.	 hellohiola
D.	 hiola
E.	 The code does not compile.

F.	 An exception is thrown.

4.	 Which of these statements compile? (Choose all that apply.)

A.	 HashSet<Number> hs = new HashSet<Integer>();
B.	 HashSet<? super ClassCastException> set = new

HashSet<Exception>();
C.	 List<> list = new ArrayList<String>();
D.	 List<Object> values = new HashSet<Object>();
E.	 List<Object> objects = new ArrayList<? extends Object>();
F.	 Map<String, ? extends Number> hm = new HashMap<String,

Integer>();

5.	 What is the result of the following code?

1: public record Hello<T>(T t) {
2: public Hello(T t) { this.t = t; }
3: private <T> void println(T message) {
4: System.out.print(t + "-" + message);
5: }
6: public static void main(String[] args) {
7: new Hello<String>("hi").println(1);
8: new Hello("hola").println(true);
9: } }

A.	 hi followed by a runtime exception

B.	 hi-1hola-true
C.	 The first compiler error is on line 1.

D.	 The first compiler error is on line 3.

E.	 The first compiler error is on line 8.

F.	 The first compiler error is on another line.

Review Questions  523

6.	 Which of the following can fill in the blank to print [7, 5, 3]? (Choose all that apply.)

8: public record Platypus(String name, int beakLength) {
9: @Override public String toString() {return "" + beakLength;}
10:
11: public static void main(String[] args) {
12: Platypus p1 = new Platypus("Paula", 3);
13: Platypus p2 = new Platypus("Peter", 5);
14: Platypus p3 = new Platypus("Peter", 7);
15:
16: List<Platypus> list = Arrays.asList(p1, p2, p3);
17:
18: Collections.sort(list, Comparator.comparing);
19:
20: System.out.println(list);
21: }
22: }
A.	
(Platypus::beakLength)
B.	
(Platypus::beakLength).reversed()
C.	

(Platypus::name)
 .thenComparing(Platypus::beakLength)
D.	

(Platypus::name)
 .thenComparing(
 Comparator.comparing(Platypus::beakLength)
 .reversed())
E.	

(Platypus::name)
 .thenComparingNumber(Platypus::beakLength)
 .reversed()
F.	

(Platypus::name)
 .thenComparingInt(Platypus::beakLength)
 .reversed()

G.	 None of the above

524  Chapter 9  ■  Collections and Generics

7.	 Which of the following method signatures are valid overrides of the hairy() method in the
Alpaca class? (Choose all that apply.)

import java.util.*;

public class Alpaca {
 public List<String> hairy(List<String> list) { return null; }
}

A.	 public List<String> hairy(List<CharSequence> list) { return null; }
B.	 public List<String> hairy(ArrayList<String> list) { return null; }
C.	 public List<String> hairy(List<Integer> list) { return null; }
D.	 public List<CharSequence> hairy(List<String> list) { return null; }
E.	 public Object hairy(List<String> list) { return null; }
F.	 public ArrayList<String> hairy(List<String> list) { return null; }

8.	 What is the result of the following program?

3: public class MyComparator implements Comparator<String> {
4: public int compare(String a, String b) {
5: return b.toLowerCase().compareTo(a.toLowerCase());
6: }
7: public static void main(String[] args) {
8: String[] values = { "123", "Abb", "aab" };
9: Arrays.sort(values, new MyComparator());
10: for (var s: values)
11: System.out.print(s + " ");
12: }
13: }

A.	 Abb aab 123
B.	 aab Abb 123
C.	 123 Abb aab
D.	 123 aab Abb
E.	 The code does not compile.

F.	 A runtime exception is thrown.

9.	 Which of these statements can fill in the blank so that the Helper class compiles successfully?
(Choose all that apply.)

2: public class Helper {
3: public static <U extends Exception>
4: void printException(U u) {
5:

Review Questions  525

6: System.out.println(u.getMessage());
7: }
8: public static void main(String[] args) {
9: Helper. ;
10: } }

A.	 printException(new FileNotFoundException("A"))
B.	 printException(new Exception("B"))
C.	 <Throwable>printException(new Exception("C"))
D.	 <NullPointerException>printException(new NullPointerException

("D"))
E.	 printException(new Throwable("E"))

10.	 Which of the following will compile when filling in the blank? (Choose all that apply.)

var list = List.of(1, 2, 3);
var set = Set.of(1, 2, 3);
var map = Map.of(1, 2, 3, 4);

.forEach(System.out::println);

A.	 list
B.	 set
C.	 map
D.	 map.keys()
E.	 map.keySet()
F.	 map.values()
G.	 map.valueSet()

11.	 Which of these statements can fill in the blank so that the Wildcard class compiles success-
fully? (Choose all that apply.)

3: public class Wildcard {
4: public void showSize(List<?> list) {
5: System.out.println(list.size());
6: }
7: public static void main(String[] args) {
8: Wildcard card = new Wildcard();
9: ;
10: card.showSize(list);
11: } }

526  Chapter 9  ■  Collections and Generics

A.	 List<?> list = new HashSet <String>()
B.	 ArrayList<? super Date> list = new ArrayList<Date>()
C.	 List<?> list = new ArrayList<?>()
D.	 List<Exception> list = new LinkedList<java.io.IOException>()
E.	 ArrayList <? extends Number> list = new ArrayList <Integer>()
F.	 None of the above

12.	 What is the result of the following program?

3: public record Sorted(int num, String text)
4: implements Comparable<Sorted>, Comparator<Sorted> {
5:
6: public String toString() { return "" + num; }
7: public int compareTo(Sorted s) {
8: return text.compareTo(s.text);
9: }
10: public int compare(Sorted s1, Sorted s2) {
11: return s1.num - s2.num;
12: }
13: public static void main(String[] args) {
14: var s1 = new Sorted(88, "a");
15: var s2 = new Sorted(55, "b");
16: var t1 = new TreeSet<Sorted>();
17: t1.add(s1); t1.add(s2);
18: var t2 = new TreeSet<Sorted>(s1);
19: t2.add(s1); t2.add(s2);
20: System.out.println(t1 + " " + t2);
21: } }

A.	 [55, 88] [55, 88]
B.	 [55, 88] [88, 55]
C.	 [88, 55] [55, 88]
D.	 [88, 55] [88, 55]
E.	 The code does not compile.

F.	 A runtime exception is thrown.

13.	 What is the result of the following code? (Choose all that apply.)

Comparator<Integer> c1 = (o1, o2) -> o2 - o1;
Comparator<Integer> c2 = Comparator.naturalOrder();
Comparator<Integer> c3 = Comparator.reverseOrder();

Review Questions  527

var list = Arrays.asList(5, 4, 7, 2);
Collections.sort(list,);
Collections.reverse(list);
Collections.reverse(list);
System.out.println(Collections.binarySearch(list, 2));

A.	 One or more of the comparators can fill in the blank so that the code prints 0.

B.	 One or more of the comparators can fill in the blank so that the code prints 1.

C.	 One or more of the comparators can fill in the blank so that the code prints 2.

D.	 The result is undefined regardless of which comparator is used.

E.	 A runtime exception is thrown regardless of which comparator is used.

F.	 The code does not compile.

14.	 Which of the following lines can be inserted to make the code compile? (Choose all
that apply.)

class W {}
class X extends W {}
class Y extends X {}
class Z<Y> {
 // INSERT CODE HERE
}

A.	 W w1 = new W();
B.	 W w2 = new X();
C.	 W w3 = new Y();
D.	 Y y1 = new W();
E.	 Y y2 = new X();
F.	 Y y1 = new Y();

15.	 Which options are true of the following code? (Choose all that apply.)

3: q = new LinkedList<>();
4: q.add(10);
5: q.add(12);
6: q.remove(1);
7: System.out.print(q);

A.	 If we fill in the blank with List<Integer>, the output is [10].

B.	 If we fill in the blank with Queue<Integer>, the output is [10].

C.	 If we fill in the blank with var, the output is [10].

D.	 One or more of the scenarios does not compile.

E.	 One or more of the scenarios throws a runtime exception.

528  Chapter 9  ■  Collections and Generics

16.	 What is the result of the following code?

4: Map m = new HashMap();
5: m.put(123, "456");
6: m.put("abc", "def");
7: System.out.println(m.contains("123"));

A.	 false
B.	 true
C.	 Compiler error on line 4

D.	 Compiler error on line 5

E.	 Compiler error on line 7

F.	 A runtime exception is thrown.

17.	 What is the result of the following code? (Choose all that apply.)

48: var map = Map.of(1,2, 3, 6);
49: var list = List.copyOf(map.entrySet());
50:
51: List<Integer> one = List.of(8, 16, 2);
52: var copy = List.copyOf(one);
53: var copyOfCopy = List.copyOf(copy);
54: var thirdCopy = new ArrayList<>(copyOfCopy);
55:
56: list.replaceAll(x -> x * 2);
57: one.replaceAll(x -> x * 2);
58: thirdCopy.replaceAll(x -> x * 2);
59:
60: System.out.println(thirdCopy);

A.	 One line fails to compile.

B.	 Two lines fail to compile.

C.	 Three lines fail to compile.

D.	 The code compiles but throws an exception at runtime.

E.	 If any lines with compiler errors are removed, the code throws an exception at runtime.

F.	 If any lines with compiler errors are removed, the code prints [16, 32, 4].

G.	 The code compiles and prints [16, 32, 4] without any changes.

18.	 What code change is needed to make the method compile, assuming there is no
class named T?

public static T identity(T t) {
 return t;
}

Review Questions  529

A.	 Add <T> after the public keyword.

B.	 Add <T> after the static keyword.

C.	 Add <T> after T.

D.	 Add <?> after the public keyword.

E.	 Add <?> after the static keyword.

F.	 No change is required. The code already compiles.

19.	 What is the result of the following?

var map = new HashMap<Integer, Integer>();
map.put(1, 10);
map.put(2, 20);
map.put(3, null);
map.merge(1, 3, (a,b) -> a + b);
map.merge(3, 3, (a,b) -> a + b);
System.out.println(map);

A.	 {1=10, 2=20}
B.	 {1=10, 2=20, 3=null}
C.	 {1=10, 2=20, 3=3}
D.	 {1=13, 2=20}
E.	 {1=13, 2=20, 3=null}
F.	 {1=13, 2=20, 3=3}
G.	 The code does not compile.

H.	 An exception is thrown.

20.	 Which of the following statements are true? (Choose all that apply.)

A.	 Comparable is in the java.util package.

B.	 Comparator is in the java.util package.

C.	 compare() is in the Comparable interface.

D.	 compare() is in the Comparator interface.

E.	 compare() takes one method parameter.

F.	 compare() takes two method parameters.

Streams

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Working with Streams and Lambda expressions

■■ Use Java object and primitive Streams, including lambda

expressions implementing functional interfaces, to supply,

filter, map, consume, and sort data

■■ Perform decomposition, concatenation and reduction, and

grouping and partitioning on sequential and parallel streams

Chapter

10

By now, you should be comfortable with the lambda and
method reference syntax. Both are used when implementing
functional interfaces. If you need more practice, you may want

to go back and review Chapter 8, “Lambdas and Functional Interfaces,” and Chapter 9,
“Collections and Generics.” In this chapter, we add actual functional programming to that,
focusing on the Streams API.

Note that the Streams API in this chapter is used for functional programming. By con-
trast, there are also java.io streams, which we talk about in Chapter 14, “I/O.” Despite
both using the word stream, they are nothing alike.

In this chapter, we introduce Optional. Then we introduce the Stream pipeline and tie it
all together. You might want to read this chapter twice before doing the review questions so
that you really get it. Functional programming tends to have a steep learning curve but can
be very exciting once you get the hang of it.

Returning an Optional
Suppose that you are taking an introductory Java class and receive scores of 90 and 100 on
the first two exams. Now, we ask you what your average is. An average is calculated by add-
ing the scores and dividing by the number of scores, so you have (90+100)/2. This gives
190/2, so you answer with 95. Great!

Now suppose that you are taking your second class on Java, and it is the first day of class.
We ask you what your average is in this class that just started. You haven’t taken any exams
yet, so you don’t have anything to average. It wouldn’t be accurate to say that your average
is zero. That sounds bad and isn’t true. There simply isn’t any data, so you don’t have
an average.

How do we express this “we don’t know” or “not applicable” answer in Java? We use the
Optional type. An Optional is created using a factory. You can either request an empty
Optional or pass a value for the Optional to wrap. Think of an Optional as a box that
might have something in it or might instead be empty. Figure 10.1 shows both options.

Optional.empty() Optional.of(95)

95

F IGURE 10 .1   Optional

Returning an Optional  533

Creating an Optional
Here’s how to code our average method:

10: public static Optional<Double> average(int... scores) {
11: if (scores.length == 0) return Optional.empty();
12: int sum = 0;
13: for (int score: scores) sum += score;
14: return Optional.of((double) sum / scores.length);
15: }

Line 11 returns an empty Optional when we can’t calculate an average. Lines 12 and
13 add up the scores. There is a functional programming way of doing this math, but we
will get to that later in the chapter. In fact, the entire method could be written in one line,
but that wouldn’t teach you how Optional works! Line 14 creates an Optional to wrap
the average.

Calling the method shows what is in our two boxes:

System.out.println(average(90, 100)); // Optional[95.0]
System.out.println(average()); // Optional.empty

You can see that one Optional contains a value and the other is empty. Normally,
we want to check whether a value is there and/or get it out of the box. Here’s one way
to do that:

Optional<Double> opt = average(90, 100);
if (opt.isPresent())
 System.out.println(opt.get()); // 95.0

First we check whether the Optional contains a value. Then we print it out. What if we
didn’t do the check, and the Optional was empty?

Optional<Double> opt = average();
System.out.println(opt.get()); // NoSuchElementException

We’d get an exception since there is no value inside the Optional.

java.util.NoSuchElementException: No value present

When creating an Optional, it is common to want to use empty() when the value is
null. You can do this with an if statement or ternary operator. We use the ternary operator
(? :) to simplify the code, which you saw in Chapter 2, “Operators.”

Optional o = (value == null) ? Optional.empty() : Optional.of(value);

If value is null, o is assigned the empty Optional. Otherwise, we wrap the value. Since
this is such a common pattern, Java provides a factory method to do the same thing.

Optional o = Optional.ofNullable(value);

534  Chapter 10  ■  Streams

That covers the static methods you need to know about Optional. Table 10.1 summa-
rizes most of the instance methods on Optional that you need to know for the exam. There
are a few others that involve chaining. We cover those later in the chapter.

You’ve already seen get() and isPresent(). The other methods allow you to write
code that uses an Optional in one line without having to use the ternary operator. This
makes the code easier to read. Instead of using an if statement, which we used when
checking the average earlier, we can specify a Consumer to be run when there is a value
inside the Optional. When there isn’t, the method simply skips running the Consumer.

Optional<Double> opt = average(90, 100);
opt.ifPresent(System.out::println);

Using ifPresent() better expresses our intent. We want something done if a value is
present. You can think of it as an if statement with no else.

Dealing with an Empty Optional
The remaining methods allow you to specify what to do if a value isn’t present. There are
a few choices. The first two allow you to specify a return value either directly or using
a Supplier.

30: Optional<Double> opt = average();
31: System.out.println(opt.orElse(Double.NaN));
32: System.out.println(opt.orElseGet(() -> Math.random()));

TABLE 10 .1   Common Optional instance methods

Method When Optional is empty
When Optional
contains value

get() Throws exception Returns value

ifPresent(Consumer c) Does nothing Calls Consumer with
value

isPresent() Returns false Returns true

orElse(T other) Returns other parameter Returns value

orElseGet(Supplier s) Returns result of calling Supplier Returns value

orElseThrow() Throws NoSuchElementException Returns value

orElseThrow(Supplier
s)

Throws exception created by calling
Supplier

Returns value

This prints something like the following:

NaN
0.49775932295380165

Line 31 shows that you can return a specific value or variable. In our case, we print the
“not a number” value. Line 32 shows using a Supplier to generate a value at runtime to
return instead. I’m glad our professors didn’t give us a random average, though!

Alternatively, we can have the code throw an exception if the Optional is empty.

30: Optional<Double> opt = average();
31: System.out.println(opt.orElseThrow());

This prints something like the following:

Exception in thread "main" java.util.NoSuchElementException:
 No value present
 at java.base/java.util.Optional.orElseThrow(Optional.java:382)

Without specifying a Supplier for the exception, Java will throw a
NoSuchElementException. Alternatively, we can have the code throw a custom exception
if the Optional is empty. Remember that the stack trace looks weird because the lambdas are
generated rather than named classes.

30: Optional<Double> opt = average();
31: System.out.println(opt.orElseThrow(
32: () -> new IllegalStateException()));

This prints something like the following:

Exception in thread "main" java.lang.IllegalStateException
 at optionals.Methods.lambda$orElse$1(Methods.java:31)
 at java.base/java.util.Optional.orElseThrow(Optional.java:408)

Line 32 shows using a Supplier to create an exception that should be thrown. Notice
that we do not write throw new IllegalStateException(). The orElseThrow()
method takes care of actually throwing the exception when we run it.

The two methods that take a Supplier have different names. Do you see why this code
does not compile?

System.out.println(opt.orElseGet(
 () -> new IllegalStateException())); // DOES NOT COMPILE

The opt variable is an Optional<Double>. This means the Supplier must return a
Double. Since this Supplier returns an exception, the type does not match.

The last example with Optional is really easy. What do you think this does?

Optional<Double> opt = average(90, 100);
System.out.println(opt.orElse(Double.NaN));
System.out.println(opt.orElseGet(() -> Math.random()));
System.out.println(opt.orElseThrow());

Returning an Optional  535

536  Chapter 10  ■  Streams

It prints out 95.0 three times. Since the value does exist, there is no need to use the “or
else” logic.

Is Optional the Same as null?

An alternative to Optional is to return null. There are a few shortcomings with this
approach. One is that there isn’t a clear way to express that null might be a special value.
By contrast, returning an Optional is a clear statement in the API that there might not
be a value.

Another advantage of Optional is that you can use a functional programming style with
ifPresent() and the other methods rather than needing an if statement. Finally, you
see toward the end of the chapter that you can chain Optional calls.

Using Streams
A stream in Java is a sequence of data. A stream pipeline consists of the operations that run
on a stream to produce a result. First, we look at the flow of pipelines conceptually. After
that, we get into the code.

Understanding the Pipeline Flow
Think of a stream pipeline as an assembly line in a factory. Suppose that we are running an
assembly line to make signs for the animal exhibits at the zoo. We have a number of jobs. It
is one person’s job to take the signs out of a box. It is a second person’s job to paint the sign.
It is a third person’s job to stencil the name of the animal on the sign. It’s the last person’s
job to put the completed sign in a box to be carried to the proper exhibit.

Notice that the second person can’t do anything until one sign has been taken out of the
box by the first person. Similarly, the third person can’t do anything until one sign has been
painted, and the last person can’t do anything until it is stenciled.

The assembly line for making signs is finite. Once we process the contents of our box of
signs, we are finished. Finite streams have a limit. Other assembly lines essentially run for-
ever, like one for food production. Of course, they do stop at some point when the factory
closes down, but pretend that doesn’t happen. Or think of a sunrise/sunset cycle as infinite,
since it doesn’t end for an inordinately large period of time.

Another important feature of an assembly line is that each person touches each element to
do their operation, and then that piece of data is gone. It doesn’t come back. The next person
deals with it at that point. This is different than the lists and queues that you saw in the
previous chapter. With a list, you can access any element at any time. With a queue, you are

Using Streams  537

limited in which elements you can access, but all of the elements are there. With streams,
the data isn’t generated up front—it is created when needed. This is an example of
lazy evaluation, which delays execution until necessary.

Many things can happen in the assembly line stations along the way. In functional
programming, these are called stream operations. Just like with the assembly line, operations
occur in a pipeline. Someone has to start and end the work, and there can be any number of
stations in between. After all, a job with one person isn’t an assembly line! There are three
parts to a stream pipeline, as shown in Figure 10.2.

■■ Source: Where the stream comes from.

■■ Intermediate operations: Transforms the stream into another one. There can be as few
or as many intermediate operations as you’d like. Since streams use lazy evaluation, the
intermediate operations do not run until the terminal operation runs.

■■ Terminal operation: Produces a result. Since streams can be used only once, the stream is
no longer valid after a terminal operation completes.

Notice that the operations are unknown to us. When viewing the assembly line from the
outside, you care only about what comes in and goes out. What happens in between is an
implementation detail.

You will need to know the differences between intermediate and terminal operations well.
Make sure you can fill in Table 10.2.

Intermediate
operationsSource Terminal operation

F IGURE 10 .2   Stream pipeline

TABLE 10 .2   Intermediate vs. terminal operations

Scenario Intermediate operation Terminal operation

Required part of useful pipeline? No Yes

Can exist multiple times in pipeline? Yes No

Return type is stream type? Yes No

Executed upon method call? No Yes

Stream valid after call? Yes No

538  Chapter 10  ■  Streams

A factory typically has a foreperson who oversees the work. Java serves as the foreperson
when working with stream pipelines. This is a really important role, especially when dealing
with lazy evaluation and infinite streams. Think of declaring the stream as giving instructions
to the foreperson. As the foreperson finds out what needs to be done, they set up the stations
and tell the workers what their duties will be. However, the workers do not start until the
foreperson tells them to begin. The foreperson waits until they see the terminal operation to
kick off the work. They also watch the work and stop the line as soon as work is complete.

Let’s look at a few examples of this. We aren’t using code in these examples because it is
really important to understand the stream pipeline concept before starting to write the code.
Figure 10.3 shows a stream pipeline with one intermediate operation.

Let’s take a look at what happens from the point of view of the foreperson. First, they see
that the source is taking signs out of the box. The foreperson sets up a worker at the table to
unpack the box and says to await a signal to start. Then the foreperson sees the intermediate
operation to paint the sign. They set up a worker with paint and say to await a signal to
start. Finally, the foreperson sees the terminal operation to put the signs into a pile. They set
up a worker to do this and yell that all three workers should start.

Suppose that there are two signs in the box. Step 1 is the first worker taking one sign out
of the box and handing it to the second worker. Step 2 is the second worker painting it and
handing it to the third worker. Step 3 is the third worker putting it in the pile. Steps 4–6 are
this same process for the other sign. Then the foreperson sees that there are no signs left and
shuts down the entire enterprise.

The foreperson is smart and can make decisions about how to best do the work based on
what is needed. As an example, let’s explore the stream pipeline in Figure 10.4.

Take sign
out of box

Put sign
in pile

Intermediate
operations

Only do 2 signsPaint sign

F IGURE 10 .4   A stream pipeline with a limit

1 2 3

4 5 6

Take sign
out of box

Put sign
in pile

Intermediate
operations

Paint sign

F IGURE 10 .3   Steps in running a stream pipeline

Using Streams  539

The foreperson still sees a source of taking signs out of the box and assigns a worker to
do that on command. They still see an intermediate operation to paint and set up another
worker with instructions to wait and then paint. Then they see an intermediate step that
we need only two signs. They set up a worker to count the signs that go by and notify the
foreperson when the worker has seen two. Finally, they set up a worker for the terminal
operation to put the signs in a pile.

This time, suppose that there are 10 signs in the box. We start like last time. The first sign
makes its way down the pipeline. The second sign also makes its way down the pipeline.
When the worker in charge of counting sees the second sign, they tell the foreperson. The
foreperson lets the terminal operation worker finish their task and then yells, “Stop the line.”
It doesn’t matter that there are eight more signs in the box. We don’t need them, so it would
be unnecessary work to paint them. And we all want to avoid unnecessary work!

Similarly, the foreperson would have stopped the line after the first sign if the terminal
operation was to find the first sign that gets created.

In the following sections, we cover the three parts of the pipeline. We also discuss special
types of streams for primitives and how to print a stream.

Creating Stream Sources
In Java, the streams we have been talking about are represented by the Stream<T> interface,
defined in the java.util.stream package.

Creating Finite Streams
For simplicity, we start with finite streams. There are a few ways to create them.

11: Stream<String> empty = Stream.empty(); // count = 0
12: Stream<Integer> singleElement = Stream.of(1); // count = 1
13: Stream<Integer> fromArray = Stream.of(1, 2, 3); // count = 3

Line 11 shows how to create an empty stream. Line 12 shows how to create a stream
with a single element. Line 13 shows how to create a stream from a varargs.

Java also provides a convenient way of converting a Collection to a stream.

14: var list = List.of("a", "b", "c");
15: Stream<String> fromList = list.stream();

Line 15 shows that it is a simple method call to create a stream from a list. This is helpful
since such conversions are common.

Creating a Parallel Stream

It is just as easy to create a parallel stream from a list.

24: var list = List.of("a", "b", "c");
25: Stream<String> fromListParallel = list.parallelStream();

540  Chapter 10  ■  Streams

This is a great feature because you can write code that uses concurrency before even
learning what a thread is. Using parallel streams is like setting up multiple tables of workers
who can do the same task. Painting would be a lot faster if we could have five painters
painting signs instead of just one. Just keep in mind some tasks cannot be done in parallel,
such as putting the signs away in the order that they were created in the stream. Also be
aware that there is a cost in coordinating the work, so for smaller streams, it might be faster
to do it sequentially. You learn much more about running tasks concurrently in Chapter 13,
“Concurrency.”

Creating Infinite Streams
So far, this isn’t particularly impressive. We could do all this with lists. We can’t create an
infinite list, though, which makes streams more powerful.

17: Stream<Double> randoms = Stream.generate(Math::random);
18: Stream<Integer> oddNumbers = Stream.iterate(1, n -> n + 2);

Line 17 generates a stream of random numbers. How many random numbers? However
many you need. If you call randoms.forEach(System.out::println), the program will
print random numbers until you kill it. Later in the chapter, you learn about operations like
limit() to turn the infinite stream into a finite stream.

Line 18 gives you more control. The iterate() method takes a seed or starting value as the
first parameter. This is the first element that will be part of the stream. The other parameter
is a lambda expression that is passed the previous value and generates the next value. As
with the random numbers example, it will keep on producing odd numbers as long as you
need them.

Printing a Stream Reference

If you try to call System.out.print(stream), you’ll get something like the following:

 java.util.stream.ReferencePipeline$3@4517d9a3

This is different from a Collection, where you see the contents. You don’t need to know
this for the exam. We mention it so that you aren’t caught by surprise when writing code
for practice.

What if you wanted just odd numbers less than 100? There’s an overloaded version of
iterate() that helps:

19: Stream<Integer> oddNumberUnder100 = Stream.iterate(
20: 1, // seed

Using Streams  541

21: n -> n < 100, // Predicate to specify when done
22: n -> n + 2); // UnaryOperator to get next value

This method takes three parameters. Notice how they are separated by commas (,) just
like in all other methods. The exam may try to trick you by using semicolons since it is sim-
ilar to a for loop. Similar to a for loop, you have to take care that you aren’t accidentally
creating an infinite stream.

Reviewing Stream Creation Methods
To review, make sure you know all the methods in Table 10.3. These are the ways of creating
a source for streams, given a Collection instance coll.

Using Common Terminal Operations
You can perform a terminal operation without any intermediate operations but not the other
way around. This is why we talk about terminal operations first. Reductions are a special
type of terminal operation where all of the contents of the stream are combined into a single
primitive or Object. For example, you might have an int or a Collection.

TABLE 10 .3   Creating a source

Method
Finite
or infinite? Notes

Stream.empty() Finite Creates Stream with zero elements.

Stream.of(varargs) Finite Creates Stream with elements listed.

coll.stream() Finite Creates Stream from Collection.

coll.parallelStream() Finite Creates Stream from Collection where the
stream can run in parallel.

Stream.
generate(supplier)

Infinite Creates Stream by calling Supplier for each
element upon request.

Stream.iterate(seed,
unaryOperator)

Infinite Creates Stream by using seed for first element
and then calling UnaryOperator for each
subsequent element upon request.

Stream.iterate(seed,
predicate,
unaryOperator)

Finite or
infinite

Creates Stream by using seed for first element
and then calling UnaryOperator for each
subsequent element upon request. Stops if
Predicate returns false.

542  Chapter 10  ■  Streams

Table 10.4 summarizes this section. Feel free to use it as a guide to remember the most
important points as we go through each one individually. We explain them from simplest to
most complex rather than alphabetically.

Counting
The count() method determines the number of elements in a finite stream. For an infinite
stream, it never terminates. Why? Count from 1 to infinity, and let us know when you are
finished. Or rather, don’t do that, because we’d rather you study for the exam than spend
the rest of your life counting. The count() method is a reduction because it looks at each
element in the stream and returns a single value. The method signature is as follows:
public long count()

This example shows calling count() on a finite stream:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
System.out.println(s.count()); // 3

Finding the Minimum and Maximum
The min() and max() methods allow you to pass a custom comparator and find the small-
est or largest value in a finite stream according to that sort order. Like the count() method,

TABLE 10 .4   Terminal stream operations

Method What happens for infinite streams Return value Reduction

count() Does not terminate long Yes

min()
max()

Does not terminate Optional<T> Yes

findAny()
findFirst()

Terminates Optional<T> No

allMatch()
anyMatch()
noneMatch()

Sometimes terminates boolean No

forEach() Does not terminate void No

reduce() Does not terminate Varies Yes

collect() Does not terminate Varies Yes

Using Streams  543

min() and max() hang on an infinite stream because they cannot be sure that a smaller
or larger value isn’t coming later in the stream. Both methods are reductions because they
return a single value after looking at the entire stream. The method signatures are as follows:

public Optional<T> min(Comparator<? super T> comparator)
public Optional<T> max(Comparator<? super T> comparator)

This example finds the animal with the fewest letters in its name:

Stream<String> s = Stream.of("monkey", "ape", "bonobo");
Optional<String> min = s.min((s1, s2) -> s1.length()-s2.length());
min.ifPresent(System.out::println); // ape

Notice that the code returns an Optional rather than the value. This allows the method
to specify that no minimum or maximum was found. We use the Optional method
ifPresent() and a method reference to print out the minimum only if one is found. As an
example of where there isn’t a minimum, let’s look at an empty stream:

Optional<?> minEmpty = Stream.empty().min((s1, s2) -> 0);
System.out.println(minEmpty.isPresent()); // false

Since the stream is empty, the comparator is never called, and no value is present in
the Optional.

What if you need both the min() and max() values of the same stream?
For now, you can’t have both, at least not using these methods.
Remember, a stream can have only one terminal operation. Once a
terminal operation has been run, the stream cannot be used again. As
you see later in this chapter, there are built-in summary methods for
some numeric streams that will calculate a set of values for you.

Finding a Value
The findAny() and findFirst() methods return an element of the stream unless the
stream is empty. If the stream is empty, they return an empty Optional. This is the first
method you’ve seen that can terminate with an infinite stream. Since Java generates only the
amount of stream you need, the infinite stream needs to generate only one element.

As its name implies, the findAny() method can return any element of the stream.
When called on the streams you’ve seen up until now, it commonly returns the first element,
although this behavior is not guaranteed. As you see in Chapter 13, the findAny() method
is more likely to return a random element when working with parallel streams.

These methods are terminal operations but not reductions. The reason is that they some-
times return without processing all of the elements. This means that they return a value
based on the stream but do not reduce the entire stream into one value.

The method signatures are as follows:

public Optional<T> findAny()
public Optional<T> findFirst()

544  Chapter 10  ■  Streams

This example finds an animal:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
Stream<String> infinite = Stream.generate(() -> "chimp");

s.findAny().ifPresent(System.out::println); // monkey (usually)
infinite.findAny().ifPresent(System.out::println); // chimp

Finding any one match is more useful than it sounds. Sometimes we just want to sample
the results and get a representative element, but we don’t need to waste the processing
generating them all. After all, if we plan to work with only one element, why bother
looking at more?

Matching
The allMatch(), anyMatch(), and noneMatch() methods search a stream and return information
about how the stream pertains to the predicate. These may or may not terminate for infinite
streams. It depends on the data. Like the find methods, they are not reductions because they
do not necessarily look at all of the elements.

The method signatures are as follows:

public boolean anyMatch(Predicate <? super T> predicate)
public boolean allMatch(Predicate <? super T> predicate)
public boolean noneMatch(Predicate <? super T> predicate)

This example checks whether animal names begin with letters:

var list = List.of("monkey", "2", "chimp");
Stream<String> infinite = Stream.generate(() -> "chimp");
Predicate<String> pred = x -> Character.isLetter(x.charAt(0));

System.out.println(list.stream().anyMatch(pred)); // true
System.out.println(list.stream().allMatch(pred)); // false
System.out.println(list.stream().noneMatch(pred)); // false
System.out.println(infinite.anyMatch(pred)); // true

This shows that we can reuse the same predicate, but we need a different stream each
time. The anyMatch() method returns true because two of the three elements match. The
allMatch() method returns false because one doesn’t match. The noneMatch() method
also returns false because at least one matches. On the infinite stream, one match is found,
so the call terminates. If we called allMatch(), it would run until we killed the program.

Remember that allMatch(), anyMatch(), and noneMatch() return a
boolean. By contrast, the find methods return an Optional because
they return an element of the stream.

Using Streams  545

Iterating
As in the Java Collections Framework, it is common to iterate over the elements of a stream.
As expected, calling forEach() on an infinite stream does not terminate. Since there is no
return value, it is not a reduction.

Before you use it, consider if another approach would be better. Developers who learned
to write loops first tend to use them for everything. For example, a loop with an if state-
ment could be written with a filter. You will learn about filters in the intermediate opera-
tions section.

The method signature is as follows:

public void forEach(Consumer<? super T> action)

Notice that this is the only terminal operation with a return type of void. If you want
something to happen, you have to make it happen in the Consumer. Here’s one way to print
the elements in the stream (there are other ways, which we cover later in the chapter):

Stream<String> s = Stream.of("Monkey", "Gorilla", "Bonobo");
s.forEach(System.out::print); // MonkeyGorillaBonobo

Remember that you can call forEach() directly on a Collection or on a
Stream. Don’t get confused on the exam when you see both approaches.

Notice that you can’t use a traditional for loop on a stream.

Stream<Integer> s = Stream.of(1);
for (Integer i : s) {} // DOES NOT COMPILE

While forEach() sounds like a loop, it is really a terminal operator for streams. Streams
cannot be used as the source in a for-each loop because they don’t implement the Iterable
interface.

Reducing
The reduce() method combines a stream into a single object. It is a reduction, which means it
processes all elements. The three method signatures are these:

public T reduce(T identity, BinaryOperator<T> accumulator)

public Optional<T> reduce(BinaryOperator<T> accumulator)

public <U> U reduce(U identity,
 BiFunction<U,? super T,U> accumulator,
 BinaryOperator<U> combiner)

Let’s take them one at a time. The most common way of doing a reduction is to start with
an initial value and keep merging it with the next value. Think about how you would con-
catenate an array of String objects into a single String without functional programming.

546  Chapter 10  ■  Streams

It might look something like this:

var array = new String[] { "w", "o", "l", "f" };
var result = "";
for (var s: array) result = result + s;
System.out.println(result); // wolf

The identity is the initial value of the reduction, in this case an empty String. The accu-
mulator combines the current result with the current value in the stream. With lambdas, we
can do the same thing with a stream and reduction:

Stream<String> stream = Stream.of("w", "o", "l", "f");
String word = stream.reduce("", (s, c) -> s + c);
System.out.println(word); // wolf

Notice how we still have the empty String as the identity. We also still concatenate the
String objects to get the next value. We can even rewrite this with a method reference:

Stream<String> stream = Stream.of("w", "o", "l", "f");
String word = stream.reduce("", String::concat);
System.out.println(word); // wolf

Let’s try another one. Can you write a reduction to multiply all of the Integer objects in
a stream? Try it. Our solution is shown here:

Stream<Integer> stream = Stream.of(3, 5, 6);
System.out.println(stream.reduce(1, (a, b) -> a*b)); // 90

We set the identity to 1 and the accumulator to multiplication. In many cases, the iden-
tity isn’t really necessary, so Java lets us omit it. When you don’t specify an identity, an
Optional is returned because there might not be any data. There are three choices for what
is in the Optional:

■■ If the stream is empty, an empty Optional is returned.

■■ If the stream has one element, it is returned.

■■ If the stream has multiple elements, the accumulator is applied to combine them.

The following illustrates each of these scenarios:

BinaryOperator<Integer> op = (a, b) -> a * b;
Stream<Integer> empty = Stream.empty();
Stream<Integer> oneElement = Stream.of(3);
Stream<Integer> threeElements = Stream.of(3, 5, 6);

empty.reduce(op).ifPresent(System.out::println); // no output
oneElement.reduce(op).ifPresent(System.out::println); // 3
threeElements.reduce(op).ifPresent(System.out::println); // 90

Using Streams  547

Why are there two similar methods? Why not just always require the identity? Java could
have done that. However, sometimes it is nice to differentiate the case where the stream is
empty rather than the case where there is a value that happens to match the identity being
returned from the calculation. The signature returning an Optional lets us differentiate
these cases. For example, we might return Optional.empty() when the stream is empty
and Optional.of(3) when there is a value.

The third method signature is used when we are dealing with different types. It allows
Java to create intermediate reductions and then combine them at the end. Let’s take a look at
an example that counts the number of characters in each String:

Stream<String> stream = Stream.of("w", "o", "l", "f!");
int length = stream.reduce(0, (i, s) -> i+s.length(), (a, b) -> a+b);
System.out.println(length); // 5

The first parameter (0) is the value for the initializer. If we had an empty stream, this
would be the answer. The second parameter is the accumulator. Unlike the accumulators you
saw previously, this one handles mixed data types. In this example, the first argument, i, is
an Integer, while the second argument, s, is a String. It adds the length of the current
String to our running total. The third parameter is called the combiner, which combines
any intermediate totals. In this case, a and b are both Integer values.

The three-argument reduce() operation is useful when working with parallel streams
because it allows the stream to be decomposed and reassembled by separate threads. For
example, if we needed to count the length of four 100-character strings, the first two values
and the last two values could be computed independently. The intermediate result (200 +
200) would then be combined into the final value.

Collecting
The collect() method is a special type of reduction called a mutable reduction. It is more effi-
cient than a regular reduction because we use the same mutable object while accumulating.
Common mutable objects include StringBuilder and ArrayList. This is a really useful method,
because it lets us get data out of streams and into another form. The method signatures are
as follows:

public <R> R collect(Supplier<R> supplier,
 BiConsumer<R, ? super T> accumulator,
 BiConsumer<R, R> combiner)

public <R,A> R collect(Collector<? super T, A,R> collector)

Let’s start with the first signature, which is used when we want to code specifically
how collecting should work. Our wolf example from reduce can be converted to use
collect():

Stream<String> stream = Stream.of("w", "o", "l", "f");

548  Chapter 10  ■  Streams

StringBuilder word = stream.collect(
 StringBuilder::new,
 StringBuilder::append,
 StringBuilder::append);

System.out.println(word); // wolf

The first parameter is the supplier, which creates the object that will store the results
as we collect data. Remember that a Supplier doesn’t take any parameters and returns a
value. In this case, it constructs a new StringBuilder.

The second parameter is the accumulator, which is a BiConsumer that takes two param-
eters and doesn’t return anything. It is responsible for adding one more element to the data
collection. In this example, it appends the next String to the StringBuilder.

The final parameter is the combiner, which is another BiConsumer. It is responsible for
taking two data collections and merging them. This is useful when we are processing in
parallel. Two smaller collections are formed and then merged into one. This would work
with StringBuilder only if we didn’t care about the order of the letters. In this case, the accu-
mulator and combiner have similar logic.

Now let’s look at an example where the logic is different in the accumulator
and combiner:

Stream<String> stream = Stream.of("w", "o", "l", "f");

TreeSet<String> set = stream.collect(
 TreeSet::new,
 TreeSet::add,
 TreeSet::addAll);

System.out.println(set); // [f, l, o, w]

The collector has three parts as before. The supplier creates an empty TreeSet. The accu-
mulator adds a single String from the Stream to the TreeSet. The combiner adds all of
the elements of one TreeSet to another in case the operations were done in parallel and
need to be merged.

We started with the long signature because that’s how you implement your own collector.
It is important to know how to do this for the exam and understand how collectors work. In
practice, many common collectors come up over and over. Rather than making developers
keep reimplementing the same ones, Java provides a class with common collectors cleverly
named Collectors. This approach also makes the code easier to read because it is more
expressive. For example, we could rewrite the previous example as follows:

Stream<String> stream = Stream.of("w", "o", "l", "f");
TreeSet<String> set =
 stream.collect(Collectors.toCollection(TreeSet::new));
System.out.println(set); // [f, l, o, w]

Using Streams  549

If we didn’t need the set to be sorted, we could make the code even shorter:

Stream<String> stream = Stream.of("w", "o", "l", "f");
Set<String> set = stream.collect(Collectors.toSet());
System.out.println(set); // [f, w, l, o]

You might get different output for this last one since toSet() makes no guarantees as
to which implementation of Set you’ll get. It is likely to be a HashSet, but you shouldn’t
expect or rely on that.

The exam expects you to know about common predefined collectors in
addition to being able to write your own by passing a supplier, accumu-
lator, and combiner.

Later in this chapter, we show many Collectors that are used for grouping data. It’s
a big topic, so it’s best to master how streams work before adding too many Collectors
into the mix.

Using Common Intermediate Operations
Unlike a terminal operation, an intermediate operation produces a stream as its result. An
intermediate operation can also deal with an infinite stream simply by returning another
infinite stream. Since elements are produced only as needed, this works fine. The assembly
line worker doesn’t need to worry about how many more elements are coming through and
instead can focus on the current element.

Filtering
The filter() method returns a Stream with elements that match a given expression. Here is the
method signature:

public Stream<T> filter(Predicate<? super T> predicate)

This operation is easy to remember and powerful because we can pass any Predicate to
it. For example, this retains all elements that begin with the letter m:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
s.filter(x -> x.startsWith("m"))
 .forEach(System.out::print); // monkey

Removing Duplicates
The distinct() method returns a stream with duplicate values removed. The duplicates do not
need to be adjacent to be removed. As you might imagine, Java calls equals() to determine
whether the objects are equivalent. The method signature is as follows:

public Stream<T> distinct()

550  Chapter 10  ■  Streams

Here’s an example:

Stream<String> s = Stream.of("duck", "duck", "duck", "goose");
s.distinct()
 .forEach(System.out::print); // duckgoose

Restricting by Position
The limit() and skip() methods can make a Stream smaller, or limit() could make a
finite stream out of an infinite stream. The method signatures are shown here:

public Stream<T> limit(long maxSize)
public Stream<T> skip(long n)

The following code creates an infinite stream of numbers counting from 1. The skip()
operation returns an infinite stream starting with the numbers counting from 6, since it skips
the first five elements. The limit() call takes the first two of those. Now we have a finite
stream with two elements, which we can then print with the forEach() method:

Stream<Integer> s = Stream.iterate(1, n -> n + 1);
s.skip(5)
 .limit(2)
 .forEach(System.out::print); // 67

Mapping
The map() method creates a one-to-one mapping from the elements in the stream to the ele-
ments of the next step in the stream. The method signature is as follows:

public <R> Stream<R> map(Function<? super T, ? extends R> mapper)

This one looks more complicated than the others you have seen. It uses the lambda
expression to figure out the type passed to that function and the one returned. The return
type is the stream that is returned.

The map() method on streams is for transforming data. Don’t confuse it
with the Map interface, which maps keys to values.

As an example, this code converts a list of String objects to a list of Integer objects
representing their lengths:

Stream<String> s = Stream.of("monkey", "gorilla", "bonobo");
s.map(String::length)
 .forEach(System.out::print); // 676

Remember that String::length is shorthand for the lambda x -> x.length(),
which clearly shows it is a function that turns a String into an Integer.

Using Streams  551

Using flatMap
The flatMap() method takes each element in the stream and makes any elements it contains
top-level elements in a single stream. This is helpful when you want to remove empty ele-
ments from a stream or combine a stream of lists. We are showing you the method signature
for consistency with the other methods so you don’t think we are hiding anything. You aren’t
expected to be able to read this:

public <R> Stream<R> flatMap(
 Function<? super T, ? extends Stream<? extends R>> mapper)

This gibberish basically says that it returns a Stream of the type that the function con-
tains at a lower level. Don’t worry about the signature. It’s a headache.

What you should understand is the example. This gets all of the animals into the same
level and removes the empty list.

List<String> zero = List.of();
var one = List.of("Bonobo");
var two = List.of("Mama Gorilla", "Baby Gorilla");
Stream<List<String>> animals = Stream.of(zero, one, two);

animals.flatMap(m -> m.stream())
 .forEach(System.out::println);

Here’s the output:

Bonobo
Mama Gorilla
Baby Gorilla

As you can see, it removed the empty list completely and changed all elements of each list
to be at the top level of the stream.

Concatenating Streams

While flatMap() is good for the general case, there is a more convenient way to concate-
nate two streams:

var one = Stream.of("Bonobo");
var two = Stream.of("Mama Gorilla", "Baby Gorilla");

Stream.concat(one, two)
 .forEach(System.out::println);

This produces the same three lines as the previous example. The two streams are
concatenated, and the terminal operation, forEach(), is called.

552  Chapter 10  ■  Streams

Sorting
The sorted() method returns a stream with the elements sorted. Just like sorting arrays, Java
uses natural ordering unless we specify a comparator. The method signatures are these:

public Stream<T> sorted()
public Stream<T> sorted(Comparator<? super T> comparator)

Calling the first signature uses the default sort order.

Stream<String> s = Stream.of("brown-", "bear-");
s.sorted()
 .forEach(System.out::print); // bear-brown-

We can optionally use a Comparator implementation via a method or a lambda. In this
example, we are using a method:

Stream<String> s = Stream.of("brown bear-", "grizzly-");
s.sorted(Comparator.reverseOrder())
 .forEach(System.out::print); // grizzly-brown bear-

Here we pass a Comparator to specify that we want to sort in the reverse of natural sort
order. Ready for a tricky one? Do you see why this doesn’t compile?

Stream<String> s = Stream.of("brown bear-", "grizzly-");
s.sorted(Comparator::reverseOrder); // DOES NOT COMPILE

Take a look at the second sorted() method signature again. It takes a Comparator,
which is a functional interface that takes two parameters and returns an int. However,
Comparator::reverseOrder doesn’t do that. Because reverseOrder() takes
no arguments and returns a value, the method reference is equivalent to
() -> Comparator.reverseOrder(), which is really a Supplier<Comparator>. This
is not compatible with sorted(). We bring this up to remind you that you really do need to
know method references well.

Taking a Peek
The peek() method is our final intermediate operation. It is useful for debugging because it
allows us to perform a stream operation without changing the stream. The method signature
is as follows:

public Stream<T> peek(Consumer<? super T> action)

You might notice the intermediate peek() operation takes the same argument as the
terminal forEach() operation. Think of peek() as an intermediate version of forEach()
that returns the original stream to you.

The most common use for peek() is to output the contents of the stream as it goes by. Sup-
pose that we made a typo and counted bears beginning with the letter g instead of b. We are
puzzled why the count is 1 instead of 2. We can add a peek() method to find out why.

var stream = Stream.of("black bear", "brown bear", "grizzly");
long count = stream.filter(s -> s.startsWith("g"))
 .peek(System.out::println).count(); // grizzly
System.out.println(count); // 1

Using Streams  553

In Chapter 9, you saw that peek() looks only at the first element when working with a
Queue. In a stream, peek() looks at each element that goes through that part of the stream
pipeline. It’s like having a worker take notes on how a particular step of the process is doing.

Danger: Changing State with peek()

Remember that peek() is intended to perform an operation without changing the result.
Here’s a straightforward stream pipeline that doesn’t use peek():

 var numbers = new ArrayList<>();
 var letters = new ArrayList<>();
 numbers.add(1);
 letters.add('a');

 Stream<List<?>> stream = Stream.of(numbers, letters);
 stream.map(List::size).forEach(System.out::print); // 11

Now we add a peek() call and note that Java doesn’t prevent us from writing bad
peek code:

 Stream<List<?>> bad = Stream.of(numbers, letters);
 bad.peek(x -> x.remove(0))
 .map(List::size)
 .forEach(System.out::print); // 00

This example is bad because peek() is modifying the data structure that is used in the
stream, which causes the result of the stream pipeline to be different than if the peek
wasn’t present.

Putting Together the Pipeline
Streams allow you to use chaining and express what you want to accomplish rather than
how to do so. Let’s say that we wanted to get the first two names of our friends alphabeti-
cally that are four characters long. Without streams, we’d have to write something like the
following:

var list = List.of("Toby", "Anna", "Leroy", "Alex");
List<String> filtered = new ArrayList<>();
for (String name: list)
 if (name.length() == 4) filtered.add(name);

554  Chapter 10  ■  Streams

Collections.sort(filtered);
var iter = filtered.iterator();
if (iter.hasNext()) System.out.println(iter.next());
if (iter.hasNext()) System.out.println(iter.next());

This works. It takes some reading and thinking to figure out what is going on. The
problem we are trying to solve gets lost in the implementation. It is also very focused on the
how rather than on the what. With streams, the equivalent code is as follows:

var list = List.of("Toby", "Anna", "Leroy", "Alex");
list.stream().filter(n -> n.length() == 4).sorted()
 .limit(2).forEach(System.out::println);

Before you say that it is harder to read, we can format it.

var list = List.of("Toby", "Anna", "Leroy", "Alex");
list.stream()
 .filter(n -> n.length() == 4)
 .sorted()
 .limit(2)
 .forEach(System.out::println);

The difference is that we express what is going on. We care about String objects of
length 4. Then we want them sorted. Then we want the first two. Then we want to print
them out. It maps better to the problem that we are trying to solve, and it is simpler.

Once you start using streams in your code, you may find yourself using them in many
places. Having shorter, briefer, and clearer code is definitely a good thing!

In this example, you see all three parts of the pipeline. Figure 10.5 shows how each
intermediate operation in the pipeline feeds into the next.

Remember that the assembly line foreperson is figuring out how to best implement the
stream pipeline. They set up all of the tables with instructions to wait before starting. They
tell the limit() worker to inform them when two elements go by. They tell the sorted()
worker that they should just collect all of the elements as they come in and sort them all at
once. After sorting, they should start passing them to the limit() worker one at a time. The
data flow looks like this:

stream() forEach()

Intermediate
operations

filter() limit()sorted()

F IGURE 10 .5   Stream pipeline with multiple intermediate operations

Using Streams  555

1.	 The stream() method sends Toby to filter(). The filter() method sees that
the length is good and sends Toby to sorted(). The sorted() method can’t sort yet
because it needs all of the data, so it holds Toby.

2.	 The stream() method sends Anna to filter(). The filter() method sees that
the length is good and sends Anna to sorted(). The sorted() method can’t sort yet
because it needs all of the data, so it holds Anna.

3.	 The stream() method sends Leroy to filter(). The filter() method sees that the
length is not a match, and it takes Leroy out of the assembly line processing.

4.	 The stream() method sends Alex to filter(). The filter() method sees that
the length is good and sends Alex to sorted(). The sorted() method can’t sort yet
because it needs all of the data, so it holds Alex. It turns out sorted() does have all of
the required data, but it doesn’t know it yet.

5.	 The foreperson lets sorted() know that it is time to sort, and the sort occurs.

6.	 The sorted() method sends Alex to limit(). The limit() method remembers that it has seen
one element and sends Alex to forEach(), printing Alex.

7.	 The sorted() method sends Anna to limit(). The limit() method remembers that it has seen
two elements and sends Anna to forEach(), printing Anna.

8.	 The limit() method has now seen all of the elements that are needed and tells the foreper-
son. The foreperson stops the line, and no more processing occurs in the pipeline.

Make sense? Let’s try a few more examples to make sure that you understand this well.
What do you think the following does?

Stream.generate(() -> "Elsa")
 .filter(n -> n.length() == 4)
 .sorted()
 .limit(2)
 .forEach(System.out::println);

It hangs until you kill the program, or it throws an exception after running out of
memory. The foreperson has instructed sorted() to wait until everything to sort is present.
That never happens because there is an infinite stream. What about this example?

Stream.generate(() -> "Elsa")
 .filter(n -> n.length() == 4)
 .limit(2)
 .sorted()
 .forEach(System.out::println);

This one prints Elsa twice. The filter lets elements through, and limit() stops the ear-
lier operations after two elements. Now sorted() can sort because we have a finite list.
Finally, what do you think this does?

Stream.generate(() -> "Olaf Lazisson")
 .filter(n -> n.length() == 4)

556  Chapter 10  ■  Streams

 .limit(2)
 .sorted()
 .forEach(System.out::println);

This one hangs as well until we kill the program. The filter doesn’t allow anything
through, so limit() never sees two elements. This means we have to keep waiting and hope
that they show up.

You can even chain two pipelines together. See if you can identify the two sources and
two terminal operations in this code.

30: long count = Stream.of("goldfish", "finch")
31: .filter(s -> s.length()> 5)
32: .collect(Collectors.toList())
33: .stream()
34: .count();
35: System.out.println(count); // 1

Lines 30–32 are one pipeline, and lines 33 and 34 are another. For the first pipeline, line
30 is the source, and line 32 is the terminal operation. For the second pipeline, line 33 is the
source, and line 34 is the terminal operation. Now that’s a complicated way of outputting
the number 1!

On the exam, you might see long or complex pipelines as answer
choices. If this happens, focus on the differences between the answers.
Those will be your clues to the correct answer. This approach will also
save you time by not having to study the whole pipeline on each option.

When you see chained pipelines, note where the source and terminal operations are. This
will help you keep track of what is going on. You can even rewrite the code in your head
to have a variable in between so it isn’t as long and complicated. Our prior example can be
written as follows:

List<String> helper = Stream.of("goldfish", "finch")
 .filter(s -> s.length()> 5)
 .collect(Collectors.toList());
long count = helper.stream()
 .count();
System.out.println(count);

Which style you use is up to you. However, you need to be able to read both styles before
you take the exam.

Working with Primitive Streams  557

Working with Primitive Streams
Up until now, all of the streams we’ve created used the Stream interface with a generic type,
like Stream<String>, Stream<Integer>, and so on. For numeric values, we have been using
wrapper classes. We did this with the Collections API in Chapter 9, so it should feel natural.

Java actually includes other stream classes besides Stream that you can use to work with
select primitives: int, double, and long. Let’s take a look at why this is needed. Suppose that
we want to calculate the sum of numbers in a finite stream:

Stream<Integer> stream = Stream.of(1, 2, 3);
System.out.println(stream.reduce(0, (s, n) -> s + n)); // 6

Not bad. It wasn’t hard to write a reduction. We started the accumulator with zero. We
then added each number to that running total as it came up in the stream. There is another
way of doing that, shown here:

Stream<Integer> stream = Stream.of(1, 2, 3);
System.out.println(stream.mapToInt(x -> x).sum()); // 6

This time, we converted our Stream<Integer> to an IntStream and asked the
IntStream to calculate the sum for us. An IntStream has many of the same intermediate
and terminal methods as a Stream but includes specialized methods for working with
numeric data. The primitive streams know how to perform certain common operations
automatically.

So far, this seems like a nice convenience but not terribly important. Now think about
how you would compute an average. You need to divide the sum by the number of elements.
The problem is that streams allow only one pass. Java recognizes that calculating an average
is a common thing to do, and it provides a method to calculate the average on the stream
classes for primitives.

IntStream intStream = IntStream.of(1, 2, 3);
OptionalDouble avg = intStream.average();
System.out.println(avg.getAsDouble()); // 2.0

Not only is it possible to calculate the average, but it is also easy to do so. Clearly, primi-
tive streams are important. We look at creating and using such streams, including optionals
and functional interfaces.

Creating Primitive Streams
Here are the three types of primitive streams:

■■ IntStream: Used for the primitive types int, short, byte, and char
■■ LongStream: Used for the primitive type long
■■ DoubleStream: Used for the primitive types double and float

558  Chapter 10  ■  Streams

Why doesn’t each primitive type have its own primitive stream? These three are the most
common, so the API designers went with them.

When you see the word stream on the exam, pay attention to the case.
With a capital S or in code, Stream is the name of a class that contains an
Object type. With a lowercase s, a stream is a concept that might be a
Stream, DoubleStream, IntStream, or LongStream.

Table 10.5 shows some of the methods that are unique to primitive streams. Notice that
we don’t include methods in the table like empty() that you already know from the Stream
interface.

TABLE 10 .5   Common primitive stream methods

Method Primitive stream Description

OptionalDouble average() IntStream
LongStream
DoubleStream

Arithmetic mean of elements

Stream<T> boxed() IntStream
LongStream
DoubleStream

Stream<T> where T is
wrapper class associated with
primitive value

OptionalInt max() IntStream Maximum element of stream

OptionalLong max() LongStream

OptionalDouble max() DoubleStream

OptionalInt min() IntStream Minimum element of stream

OptionalLong min() LongStream

OptionalDouble min() DoubleStream

IntStream range(int a, int b) IntStream Returns primitive stream from
a (inclusive) to b (exclusive)

LongStream range(long a,
long b)

LongStream

IntStream rangeClosed(int a,
int b)

IntStream Returns primitive stream from
a (inclusive) to b (inclusive)

LongStream rangeClosed(long a,
long b)

LongStream

Working with Primitive Streams  559

Some of the methods for creating a primitive stream are equivalent to how we created the
source for a regular Stream. You can create an empty stream with this:

DoubleStream empty = DoubleStream.empty();

Another way is to use the of() factory method from a single value or by using the
varargs overload.

DoubleStream oneValue = DoubleStream.of(3.14);
oneValue.forEach(System.out::println);

DoubleStream varargs = DoubleStream.of(1.0, 1.1, 1.2);
varargs.forEach(System.out::println);

This code outputs the following:

3.14
1.0
1.1
1.2

You can also use the two methods for creating infinite streams, just like we did
with Stream.

var random = DoubleStream.generate(Math::random);
var fractions = DoubleStream.iterate(.5, d -> d / 2);
random.limit(3).forEach(System.out::println);
fractions.limit(3).forEach(System.out::println);

Method Primitive stream Description

int sum() IntStream Returns sum of elements in
stream

long sum() LongStream

double sum() DoubleStream

IntSummaryStatistics
summaryStatistics()

IntStream Returns object containing
numerous stream statistics
such as average, min, max, etc.

LongSummaryStatistics
summaryStatistics()

LongStream

DoubleSummaryStatistics
summaryStatistics()

DoubleStream

560  Chapter 10  ■  Streams

Since the streams are infinite, we added a limit intermediate operation so that the output
doesn’t print values forever. The first stream calls a static method on Math to get a
random double. Since the numbers are random, your output will obviously be different. The
second stream keeps creating smaller numbers, dividing the previous value by two each time.
The output from when we ran this code was as follows:

0.07890654781186413
0.28564363465842346
0.6311403511266134
0.5
0.25
0.125

You don’t need to know this for the exam, but the Random class provides a method to get
primitives streams of random numbers directly. Fun fact! For example, ints() generates an
infinite IntStream of primitives.

It works the same way for each type of primitive stream. When dealing with int or long
primitives, it is common to count. Suppose that we wanted a stream with the numbers from
1 through 5. We could write this using what we’ve explained so far:

IntStream count = IntStream.iterate(1, n -> n+1).limit(5);
count.forEach(System.out::print); // 12345

This code does print out the numbers 1–5. However, it is a lot of code to do something so
simple. Java provides a method that can generate a range of numbers.

IntStream range = IntStream.range(1, 6);
range.forEach(System.out::print); // 12345

This is better. If we wanted numbers 1–5, why did we pass 1–6? The first parameter to the
range() method is inclusive, which means it includes the number. The second parameter to
the range() method is exclusive, which means it stops right before that number. However,
it still could be clearer. We want the numbers 1–5 inclusive. Luckily, there’s another method,
rangeClosed(), which is inclusive on both parameters.

IntStream rangeClosed = IntStream.rangeClosed(1, 5);
rangeClosed.forEach(System.out::print); // 12345

Even better. This time we expressed that we want a closed range or an inclusive range.
This method better matches how we express a range of numbers in plain English.

Mapping Streams
Another way to create a primitive stream is by mapping from another stream type.
Table 10.6 shows that there is a method for mapping between any stream types.

Working with Primitive Streams  561

Obviously, they have to be compatible types for this to work. Java requires a mapping
function to be provided as a parameter, for example:

Stream<String> objStream = Stream.of("penguin", "fish");
IntStream intStream = objStream.mapToInt(s -> s.length());

This function takes an Object, which is a String in this case. The function returns an
int. The function mappings are intuitive here. They take the source type and return the
target type. In this example, the actual function type is ToIntFunction. Table 10.7 shows
the mapping function names. As you can see, they do what you might expect.

You do have to memorize Table 10.6 and Table 10.7. It’s not as hard as it might seem.
There are patterns in the names if you remember a few rules. For Table 10.6, mapping
to the same type you started with is just called map(). When returning an object stream,
the method is mapToObj(). Beyond that, it’s the name of the primitive type in the map
method name.

For Table 10.7, you can start by thinking about the source and target types. When
the target type is an object, you drop the To from the name. When the mapping is to the
same type you started with, you use a unary operator instead of a function for the primi-
tive streams.

Using flatMap()

We can use this approach on primitive streams as well. It works the same way as on a reg-
ular Stream, except the method name is different. Here’s an example:

var integerList = new ArrayList<Integer>();
IntStream ints = integerList.stream()
 .flatMapToInt(x -> IntStream.of(x));
DoubleStream doubles = integerList.stream()
 .flatMapToDouble(x -> DoubleStream.of(x));
LongStream longs = integerList.stream()
 .flatMapToLong(x -> LongStream.of(x));

TABLE 10 .6   Mapping methods between types of streams

Source
stream class

To create
Stream

To create
DoubleStream

To create
IntStream

To create
LongStream

Stream<T> map() mapToDouble() mapToInt() mapToLong()

DoubleStream mapToObj() map() mapToInt() mapToLong()

IntStream mapToObj() mapToDouble() map() mapToLong()

LongStream mapToObj() mapToDouble() mapToInt() map()

562  Chapter 10  ■  Streams

Additionally, you can create a Stream from a primitive stream. These methods show two
ways of accomplishing this:

private static Stream<Integer> mapping(IntStream stream) {
 return stream.mapToObj(x -> x);
}

private static Stream<Integer> boxing(IntStream stream) {
 return stream.boxed();
}

The first one uses the mapToObj() method we saw earlier. The second one is more suc-
cinct. It does not require a mapping function because all it does is autobox each primitive to
the corresponding wrapper object. The boxed() method exists on all three types of primi-
tive streams.

Using Optional with Primitive Streams
Earlier in the chapter, we wrote a method to calculate the average of an int[] and promised
a better way later. Now that you know about primitive streams, you can calculate the
average in one line.

var stream = IntStream.rangeClosed(1,10);
OptionalDouble optional = stream.average();

The return type is not the Optional you have become accustomed to using. It is a new
type called OptionalDouble. Why do we have a separate type, you might wonder? Why
not just use Optional<Double>? The difference is that OptionalDouble is for a primi-
tive and Optional<Double> is for the Double wrapper class. Working with the primitive
optional class looks similar to working with the Optional class itself.

TABLE 10 .7   Function parameters when mapping between types of streams

Source
stream class

To create
Stream

To create
DoubleStream

To create
IntStream

To create
LongStream

Stream<T> Function<T,R> ToDouble
Function<T>

ToInt
Function<T>

ToLong
Function<T>

DoubleStream Double
Function<R>

DoubleUnary
Operator

DoubleToInt
Function

DoubleToLong
Function

IntStream IntFunction<R> IntToDouble
Function

IntUnary
Operator

IntToLong
Function

LongStream Long
Function<R>

LongToDouble
Function

LongToInt
Function

LongUnary
Operator

Working with Primitive Streams  563

optional.ifPresent(System.out::println); // 5.5
System.out.println(optional.getAsDouble()); // 5.5
System.out.println(optional.orElseGet(() -> Double.NaN)); // 5.5

The only noticeable difference is that we called getAsDouble() rather than get().
This makes it clear that we are working with a primitive. Also, orElseGet() takes a
DoubleSupplier instead of a Supplier.

As with the primitive streams, there are three type-specific classes for primitives.
Table 10.8 shows the minor differences among the three. You probably won’t be surprised
that you have to memorize this table as well. This is really easy to remember since the primi-
tive name is the only change. As you should remember from the terminal operations section,
a number of stream methods return an optional such as min() or findAny(). These each
return the corresponding optional type. The primitive stream implementations also add two
new methods that you need to know. The sum() method does not return an optional. If you
try to add up an empty stream, you simply get zero. The average() method always returns
an OptionalDouble since an average can potentially have fractional data for any type.

Let’s try an example to make sure that you understand this:

5: LongStream longs = LongStream.of(5, 10);
6: long sum = longs.sum();
7: System.out.println(sum); // 15
8: DoubleStream doubles = DoubleStream.generate(() -> Math.PI);
9: OptionalDouble min = doubles.min(); // runs infinitely

Line 5 creates a stream of long primitives with two elements. Line 6 shows that we don’t
use an optional to calculate a sum. Line 8 creates an infinite stream of double primitives.
Line 9 is there to remind you that a question about code that runs infinitely can appear with
primitive streams as well.

TABLE 10 .8   Optional types for primitives

OptionalDouble OptionalInt OptionalLong

Getting as primitive getAsDouble() getAsInt() getAsLong()

orElseGet() parameter type DoubleSupplier IntSupplier LongSupplier

Return type of max() and min() OptionalDouble OptionalInt OptionalLong

Return type of sum() double int long

Return type of average() OptionalDouble OptionalDouble OptionalDouble

564  Chapter 10  ■  Streams

Summarizing Statistics
You’ve learned enough to be able to get the maximum value from a stream of int primi-
tives. If the stream is empty, we want to throw an exception.

private static int max(IntStream ints) {
 OptionalInt optional = ints.max();
 return optional.orElseThrow(RuntimeException::new);
}

This should be old hat by now. We got an OptionalInt because we have an
IntStream. If the optional contains a value, we return it. Otherwise, we throw a new
RuntimeException.

Now we want to change the method to take an IntStream and return a range. The
range is the minimum value subtracted from the maximum value. Uh-oh. Both min() and
max() are terminal operations, which means that they use up the stream when they are run.
We can’t run two terminal operations against the same stream. Luckily, this is a common
problem, and the primitive streams solve it for us with summary statistics. Statistic is just a
big word for a number that was calculated from data.

private static int range(IntStream ints) {
 IntSummaryStatistics stats = ints.summaryStatistics();
 if (stats.getCount() == 0) throw new RuntimeException();
 return stats.getMax()-stats.getMin();
}

Here we asked Java to perform many calculations about the stream. Summary statistics
include the following:

■■ getCount(): Returns a long representing the number of values.

■■ getAverage(): Returns a double representing the average. If the stream is empty, returns 0.

■■ getSum(): Returns the sum as a double for DoubleSummaryStream and long for
IntSummaryStream and LongSummaryStream.

■■ getMin(): Returns the smallest number (minimum) as a double, int, or long, depending on
the type of the stream. If the stream is empty, returns the largest numeric value based
on the type.

■■ getMax(): Returns the largest number (maximum) as a double, int, or long depend-
ing on the type of the stream. If the stream is empty, returns the smallest numeric value
based on the type.

Working with Advanced Stream Pipeline Concepts  565

Working with Advanced Stream
Pipeline Concepts
Congrats, you only have a few more topics left! In this last stream section, we learn about
the relationship between streams and the underlying data, chaining Optional, and grouping
collectors. After this, you should be a pro with streams!

Linking Streams to the Underlying Data
What do you think this outputs?

25: var cats = new ArrayList<String>();
26: cats.add("Annie");
27: cats.add("Ripley");
28: var stream = cats.stream();
29: cats.add("KC");
30: System.out.println(stream.count());

The correct answer is 3. Lines 25–27 create a List with two elements. Line 28 requests
that a stream be created from that List. Remember that streams are lazily evaluated. This
means that the stream isn’t created on line 28. An object is created that knows where to
look for the data when it is needed. On line 29, the List gets a new element. On line 30, the
stream pipeline runs. First, it looks at the source and seeing three elements.

Chaining Optionals
By now, you are familiar with the benefits of chaining operations in a stream pipeline. A few
of the intermediate operations for streams are available for Optional.

Suppose that you are given an Optional<Integer> and asked to print the value, but only if
it is a three-digit number. Without functional programming, you could write the following:

private static void threeDigit(Optional<Integer> optional) {
 if (optional.isPresent()) { // outer if
 var num = optional.get();
 var string = "" + num;
 if (string.length() == 3) // inner if
 System.out.println(string);
 }
}

566  Chapter 10  ■  Streams

It works, but it contains nested if statements. That’s extra complexity. Let’s try this again
with functional programming:

private static void threeDigit(Optional<Integer> optional) {
 optional.map(n -> "" + n) // part 1
 .filter(s -> s.length() == 3) // part 2
 .ifPresent(System.out::println); // part 3
}

This is much shorter and more expressive. With lambdas, the exam is fond of carving
up a single statement and identifying the pieces with a comment. We’ve done that here to
show what happens with both the functional programming and nonfunctional programming
approaches.

Suppose that we are given an empty Optional. The first approach returns false for the outer
if statement. The second approach sees an empty Optional and has both map() and filter() pass
it through. Then ifPresent() sees an empty Optional and doesn’t call the Consumer parameter.

The next case is where we are given an Optional.of(4). The first approach returns
false for the inner if statement. The second approach maps the number 4 to "4".
The filter() then returns an empty Optional since the filter doesn’t match, and
ifPresent() doesn’t call the Consumer parameter.

The final case is where we are given an Optional.of(123). The first approach returns
true for both if statements. The second approach maps the number 123 to "123".
The filter() then returns the same Optional, and ifPresent() now does call the
Consumer parameter.

Now suppose that we wanted to get an Optional<Integer> representing the length of the
String contained in another Optional. Easy enough:

Optional<Integer> result = optional.map(String::length);

What if we had a helper method that did the logic of calculating something for us that
returns Optional<Integer>? Using map doesn’t work:

Optional<Integer> result = optional
 .map(ChainingOptionals::calculator); // DOES NOT COMPILE

The problem is that calculator returns Optional<Integer>. The map() method adds
another Optional, giving us Optional<Optional<Integer>>. Well, that’s no good. The
solution is to call flatMap(), instead:

Optional<Integer> result = optional
 .flatMap(ChainingOptionals::calculator);

This one works because flatMap removes the unnecessary layer. In other words, it flat-
tens the result. Chaining calls to flatMap() is useful when you want to transform one
Optional type to another.

Working with Advanced Stream Pipeline Concepts  567

Checked Exceptions and Functional Interfaces

You might have noticed by now that most functional interfaces do not declare checked
exceptions. This is normally okay. However, it is a problem when working with methods
that declare checked exceptions. Suppose that we have a class with a method that throws a
checked exception:

import java.io.*;
import java.util.*;
public class ExceptionCaseStudy {
 private static List<String> create() throws IOException {
 throw new IOException();
 }
}

Now we use it in a stream:

public void good() throws IOException {
 ExceptionCaseStudy.create().stream().count();
}
Nothing new here. The create() method throws a checked exception. The calling method
handles or declares it. Now, what about this one?

public void bad() throws IOException {
 Supplier<List<String>> s = ExceptionCaseStudy::create; // DOES NOT COMPILE
}

The actual compiler error is as follows:

 unhandled exception type IOException

Say what now? The problem is that the lambda to which this method reference expands
does not declare an exception. The Supplier interface does not allow checked exceptions.
There are two approaches to get around this problem. One is to catch the exception and
turn it into an unchecked exception.

public void ugly() {
 Supplier<List<String>> s = () -> {
 try {
 return ExceptionCaseStudy.create();
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 };
}

568  Chapter 10  ■  Streams

This works. But the code is ugly. One of the benefits of functional programming is that the
code is supposed to be easy to read and concise. Another alternative is to create a wrapper
method with try/catch.

private static List<String> createSafe() {
 try {
 return ExceptionCaseStudy.create();
 } catch (IOException e) {
 throw new RuntimeException(e);
 } }

Now we can use the safe wrapper in our Supplier without issue.

public void wrapped() {
 Supplier<List<String>> s2 = ExceptionCaseStudy::createSafe;
}

Using a Spliterator
Suppose you buy a bag of food so two children can feed the animals at the petting zoo. To
avoid arguments, you have come prepared with an extra empty bag. You take roughly half
the food out of the main bag and put it into the bag you brought from home. The original
bag still exists with the other half of the food.

A Spliterator provides this level of control over processing. It starts with a Collection or a
stream—that is your bag of food. You call trySplit() to take some food out of the bag. The
rest of the food stays in the original Spliterator object.

The characteristics of a Spliterator depend on the underlying data source. A Collection data
source is a basic Spliterator. By contrast, when using a Stream data source, the Spliterator can
be parallel or even infinite. The Stream itself is executed lazily rather than when the Spliterator
is created.

Implementing your own Spliterator can get complicated and is conveniently not on the
exam. You do need to know how to work with some of the common methods declared on
this interface. The simplified methods you need to know are in Table 10.9.

Working with Advanced Stream Pipeline Concepts  569

Now let’s look at an example where we divide the bag into three:

12: var stream = List.of("bird-", "bunny-", "cat-", "dog-", "fish-", "lamb-",
13: "mouse-");
14: Spliterator<String> originalBagOfFood = stream.spliterator();
15: Spliterator<String> emmasBag = originalBagOfFood.trySplit();
16: emmasBag.forEachRemaining(System.out::print); // bird-bunny-cat-
17:
18: Spliterator<String> jillsBag = originalBagOfFood.trySplit();
19: jillsBag.tryAdvance(System.out::print); // dog-
20: jillsBag.forEachRemaining(System.out::print); // fish-
21:
22: originalBagOfFood.forEachRemaining(System.out::print); // lamb-mouse-

On lines 12 and 13, we define a List. Lines 14 and 15 create two Spliterator refer-
ences. The first is the original bag, which contains all seven elements. The second is our split
of the original bag, putting roughly half of the elements at the front into Emma’s bag. We
then print the three contents of Emma’s bag on line 16.

Our original bag of food now contains four elements. We create a new Spliterator on
line 18 and put the first two elements into Jill’s bag. We use tryAdvance() on line 19 to
output a single element, and then line 20 prints all remaining elements (just one left!).

We started with seven elements, removed three, and then removed two more. This leaves
us with two elements in the original bag created on line 14. These two items are output
on line 22.

TABLE 10 .9   Spliterator methods

Method Description

Spliterator<T> trySplit() Returns Spliterator containing ideally half
of the data, which is removed from current
Spliterator. This method can be called
multiple times and will eventually return null
when data is no longer splittable.

void forEachRemaining(
Consumer<T> c)

Processes remaining elements in
Spliterator.

boolean tryAdvance(Consumer<T> c) Processes single element from Spliterator
if any remain. Returns whether element was
processed.

570  Chapter 10  ■  Streams

Now let’s try an example with a Stream. This is a complicated way to print out 123:

var originalBag = Stream.iterate(1, n -> ++n)
 .spliterator();

Spliterator<Integer> newBag = originalBag.trySplit();

newBag.tryAdvance(System.out::print); // 1
newBag.tryAdvance(System.out::print); // 2
newBag.tryAdvance(System.out::print); // 3

You might have noticed that this is an infinite stream. No problem! The Spliterator
recognizes that the stream is infinite and doesn’t attempt to give you half. Instead, newBag
contains a large number of elements. We get the first three since we call tryAdvance()
three times. It would be a bad idea to call forEachRemaining() on an infinite stream!

Note that a Spliterator can have a number of characteristics such as CONCURRENT,
ORDERED, SIZED, and SORTED. You will only see a straightforward Spliterator on the
exam. For example, our infinite stream was not SIZED.

Collecting Results
You’re almost finished learning about streams. The last topic builds on what you’ve learned
so far to group the results. Early in the chapter, you saw the collect() terminal operation.
There are many predefined collectors, including those shown in Table 10.10. These collectors
are available via static methods on the Collectors class. We look at the different types of col-
lectors in the following sections. We left out the generic types for simplicity.

There is one more collector called reducing(). You don’t need to know it
for the exam. It is a general reduction in case all of the previous collectors
don’t meet your needs.

Using Basic Collectors
Luckily, many of these collectors work the same way. Let’s look at an example:

var ohMy = Stream.of("lions", "tigers", "bears");
String result = ohMy.collect(Collectors.joining(", "));
System.out.println(result); // lions, tigers, bears

Notice how the predefined collectors are in the Collectors class rather than the
Collector interface. This is a common theme, which you saw with Collection versus
Collections. In fact, you see this pattern again in Chapter 14 when working with Paths
and Path and other related types.

Working with Advanced Stream Pipeline Concepts  571

TABLE 10 .10   Examples of grouping/partitioning collectors

Collector Description
Return value when passed
to collect

averagingDouble(
ToDoubleFunction f)
averagingInt
(ToIntFunction f)
averagingLong
(ToLongFunction f)

Calculates average for
three core primitive
types

Double

counting() Counts number of ele-
ments

Long

filtering(Predicate p,
Collector c)

Applies filter before
calling downstream
collector

R

groupingBy(Function f)
groupingBy(Function f,
Collector dc)
groupingBy(Function f,
Supplier s, Collector dc)

Creates map grouping
by specified function
with optional map
type supplier and
optional downstream
collector

Map<K, List<T>>

joining(CharSequence cs) Creates
single String using
cs as delimiter bet-
ween elements if one
is specified

String

maxBy(Comparator c)
minBy(Comparator c)

Finds largest/smallest
elements

Optional<T>

mapping(Function f,
Collector dc)

Adds another level of
collectors

Collector

partitioningBy(Predicate p)
partitioningBy(Predicate p,
Collector dc)

Creates map grouping
by specified predicate
with optional further
downstream collector

Map<Boolean, List<T>>

summarizingDouble(
ToDoubleFunction f)
summarizingInt(
ToIntFunction f)
summarizingLong(
ToLongFunction f)

Calculates average,
min, max, etc.

DoubleSummaryStatistics
IntSummaryStatistics
LongSummaryStatistics

(continued)

572  Chapter 10  ■  Streams

We pass the predefined joining() collector to the collect() method. All elements of
the stream are then merged into a String with the specified delimiter between each element.
It is important to pass the Collector to the collect method. It exists to help collect ele-
ments. A Collector doesn’t do anything on its own.

Let’s try another one. What is the average length of the three animal names?

var ohMy = Stream.of("lions", "tigers", "bears");
Double result = ohMy.collect(Collectors.averagingInt(String::length));
System.out.println(result); // 5.333333333333333

The pattern is the same. We pass a collector to collect(), and it performs the average
for us. This time, we needed to pass a function to tell the collector what to average. We used
a method reference, which returns an int upon execution. With primitive streams, the result
of an average was always a double, regardless of what type is being averaged. For collec-
tors, it is a Double since those need an Object.

Collector Description
Return value when passed
to collect

summingDouble(
ToDoubleFunction f)
summingInt(ToIntFunction f)
summingLong(ToLongFunction f)

Calculates sum for our
three core primitive
types

Double
Integer
Long

teeing(Collector c1,
Collector c2, BiFunction f)

Works with results of
two collectors to cre-
ate new type

R

toList()
toSet()

Creates arbitrary type
of list or set

List
Set

toCollection(Supplier s) Creates Collection
of specified type

Collection

toMap(Function k, Function v)
toMap(Function k, Function v,
BinaryOperator m)
toMap(Function k, Function v,
BinaryOperator m, Supplier s)

Creates map using
functions to map
keys, values, optional
merge function, and
optional map type
supplier

Map

TABLE 10 .10   Examples of grouping/partitioning collectors

Working with Advanced Stream Pipeline Concepts  573

Often, you’ll find yourself interacting with code that was written without streams. This
means that it will expect a Collection type rather than a Stream type. No problem. You
can still express yourself using a Stream and then convert to a Collection at the end.
For example:

var ohMy = Stream.of("lions", "tigers", "bears");
TreeSet<String> result = ohMy
 .filter(s -> s.startsWith("t"))
 .collect(Collectors.toCollection(TreeSet::new));
System.out.println(result); // [tigers]

This time we have all three parts of the stream pipeline. Stream.of() is the source
for the stream. The intermediate operation is filter(). Finally, the terminal operation is
collect(), which creates a TreeSet. If we didn’t care which implementation of Set we
got, we could have written Collectors.toSet(), instead.

At this point, you should be able to use all of the Collectors in Table 10.10 except
groupingBy(), mapping(), partitioningBy(), toMap(), and teeing().

Collecting into Maps
Code using Collectors involving maps can get quite long. We will build it up slowly. Make
sure that you understand each example before going on to the next one. Let’s start with a
straightforward example to create a map from a stream:

var ohMy = Stream.of("lions", "tigers", "bears");
Map<String, Integer> map = ohMy.collect(
 Collectors.toMap(s -> s, String::length));
System.out.println(map); // {lions=5, bears=5, tigers=6}

When creating a map, you need to specify two functions. The first function tells the
collector how to create the key. In our example, we use the provided String as the key. The
second function tells the collector how to create the value. In our example, we use the length
of the String as the value.

Returning the same value passed into a lambda is a common oper-
ation, so Java provides a method for it. You can rewrite s -> s as
Function.identity(). It is not shorter and may or may not be clearer,
so use your judgment about whether to use it.

Now we want to do the reverse and map the length of the animal name to the name itself.
Our first incorrect attempt is shown here:

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, String> map = ohMy.collect(Collectors.toMap(
 String::length,
 k -> k)); // BAD

574  Chapter 10  ■  Streams

Running this gives an exception similar to the following:

Exception in thread "main"
 java.lang.IllegalStateException: Duplicate key 5

What’s wrong? Two of the animal names are the same length. We didn’t tell Java what
to do. Should the collector choose the first one it encounters? The last one it encounters?
Concatenate the two? Since the collector has no idea what to do, it “solves” the problem
by throwing an exception and making it our problem. How thoughtful. Let’s suppose that
our requirement is to create a comma-separated String with the animal names. We could
write this:

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, String> map = ohMy.collect(Collectors.toMap(
 String::length,
 k -> k,
 (s1, s2) -> s1 + "," + s2));
System.out.println(map); // {5=lions,bears, 6=tigers}
System.out.println(map.getClass()); // class java.util.HashMap

It so happens that the Map returned is a HashMap. This behavior is not guaranteed. Sup-
pose that we want to mandate that the code return a TreeMap instead. No problem. We
would just add a constructor reference as a parameter:

var ohMy = Stream.of("lions", "tigers", "bears");
TreeMap<Integer, String> map = ohMy.collect(Collectors.toMap(
 String::length,
 k -> k,
 (s1, s2) -> s1 + "," + s2,
 TreeMap::new));
System.out.println(map); // // {5=lions,bears, 6=tigers}
System.out.println(map.getClass()); // class java.util.TreeMap

This time we get the type that we specified. With us so far? This code is long but not par-
ticularly complicated. We did promise you that the code would be long!

Grouping, Partitioning, and Mapping
Great job getting this far. The exam creators like asking about groupingBy() and
partitioningBy(), so make sure you understand these sections very well. Now suppose
that we want to get groups of names by their length. We can do that by saying that we want
to group by length.

Working with Advanced Stream Pipeline Concepts  575

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, List<String>> map = ohMy.collect(
 Collectors.groupingBy(String::length));
System.out.println(map); // {5=[lions, bears], 6=[tigers]}

The groupingBy() collector tells collect() that it should group all of the elements of
the stream into a Map. The function determines the keys in the Map. Each value in the Map is
a List of all entries that match that key.

Note that the function you call in groupingBy() cannot return null. It
does not allow null keys.

Suppose that we don’t want a List as the value in the map and prefer a Set instead. No
problem. There’s another method signature that lets us pass a downstream collector. This is
a second collector that does something special with the values.

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, Set<String>> map = ohMy.collect(
 Collectors.groupingBy(
 String::length,
 Collectors.toSet()));
System.out.println(map); // {5=[lions, bears], 6=[tigers]}

We can even change the type of Map returned through yet another parameter.

var ohMy = Stream.of("lions", "tigers", "bears");
TreeMap<Integer, Set<String>> map = ohMy.collect(
 Collectors.groupingBy(
 String::length,
 TreeMap::new,
 Collectors.toSet()));
System.out.println(map); // {5=[lions, bears], 6=[tigers]}

This is very flexible. What if we want to change the type of Map returned but leave the
type of values alone as a List? There isn’t a method for this specifically because it is easy
enough to write with the existing ones.

var ohMy = Stream.of("lions", "tigers", "bears");
TreeMap<Integer, List<String>> map = ohMy.collect(
 Collectors.groupingBy(
 String::length,
 TreeMap::new,
 Collectors.toList()));
System.out.println(map);

576  Chapter 10  ■  Streams

Partitioning is a special case of grouping. With partitioning, there are only two possible
groups: true and false. Partitioning is like splitting a list into two parts.

Suppose that we are making a sign to put outside each animal’s exhibit. We have two sizes
of signs. One can accommodate names with five or fewer characters. The other is needed for
longer names. We can partition the list according to which sign we need.

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Boolean, List<String>> map = ohMy.collect(
 Collectors.partitioningBy(s -> s.length() <= 5));
System.out.println(map); // {false=[tigers], true=[lions, bears]}

Here we pass a Predicate with the logic for which group each animal name belongs in.
Now suppose that we’ve figured out how to use a different font, and seven characters can
now fit on the smaller sign. No worries. We just change the Predicate.

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Boolean, List<String>> map = ohMy.collect(
 Collectors.partitioningBy(s -> s.length() <= 7));
System.out.println(map); // {false=[], true=[lions, tigers, bears]}

Notice that there are still two keys in the map—one for each boolean value. It so hap-
pens that one of the values is an empty list, but it is still there. As with groupingBy(), we
can change the type of List to something else.

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Boolean, Set<String>> map = ohMy.collect(
 Collectors.partitioningBy(
 s -> s.length() <= 7,
 Collectors.toSet()));
System.out.println(map); // {false=[], true=[lions, tigers, bears]}

Unlike groupingBy(), we cannot change the type of Map that is returned. However,
there are only two keys in the map, so does it really matter which Map type we use?

Instead of using the downstream collector to specify the type, we can use any of the col-
lectors that we’ve already shown. For example, we can group by the length of the animal
name to see how many of each length we have.

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, Long> map = ohMy.collect(
 Collectors.groupingBy(
 String::length,
 Collectors.counting()));
System.out.println(map); // {5=2, 6=1}

Working with Advanced Stream Pipeline Concepts  577

Debugging Complicated Generics

When working with collect(), there are often many levels of generics, making compiler
errors unreadable. Here are three useful techniques for dealing with this situation:

■■ Start over with a simple statement, and keep adding to it. By making one tiny change at
a time, you will know which code introduced the error.

■■ Extract parts of the statement into separate statements. For example, try writing
Collectors.groupingBy(String::length, Collectors.counting());. If it
compiles, you know that the problem lies elsewhere. If it doesn’t compile, you have a
much shorter statement to troubleshoot.

■■ Use generic wildcards for the return type of the final statement: for example,
Map<?, ?>. If that change alone allows the code to compile, you’ll know that the
problem lies with the return type not being what you expect.

Finally, there is a mapping() collector that lets us go down a level and add another
collector. Suppose that we wanted to get the first letter of the first animal alphabetically of
each length. Why? Perhaps for random sampling. The examples on this part of the exam are
fairly contrived as well. We’d write the following:

var ohMy = Stream.of("lions", "tigers", "bears");
Map<Integer, Optional<Character>> map = ohMy.collect(
 Collectors.groupingBy(
 String::length,
 Collectors.mapping(
 s -> s.charAt(0),
 Collectors.minBy((a, b) -> a - b))));
System.out.println(map); // {5=Optional[b], 6=Optional[t]}

We aren’t going to tell you that this code is easy to read. We will tell you that it is the
most complicated thing you need to understand for the exam. Comparing it to the previous
example, you can see that we replaced counting() with mapping(). It so happens that
mapping() takes two parameters: the function for the value and how to group it further.

You might see collectors used with a static import to make the code shorter. The exam
might even use var for the return value and less indentation than we used. This means that
you might see something like this:

var ohMy = Stream.of("lions", "tigers", "bears");
var map = ohMy.collect(groupingBy(String::length,
 mapping(s -> s.charAt(0), minBy((a, b) -> a - b))));
System.out.println(map); // {5=Optional[b], 6=Optional[t]}

578  Chapter 10  ■  Streams

The code does the same thing as in the previous example. This means that it is important
to recognize the collector names because you might not have the Collectors class name to
call your attention to it.

Teeing Collectors
Suppose you want to return two things. As we’ve learned, this is problematic with streams
because you only get one pass. The summary statistics are good when you want those opera-
tions. Luckily, you can use teeing() to return multiple values of your own.

First, define the return type. We use a record here:

record Separations(String spaceSeparated, String commaSeparated) {}

Now we write the stream. As you read, pay attention to the number of Collectors:

var list = List.of("x", "y", "z");
Separations result = list.stream()
 .collect(Collectors.teeing(
 Collectors.joining(" "),
 Collectors.joining(","),
 (s, c) -> new Separations(s, c)));
System.out.println(result);

When executed, the code prints the following:

Separations[spaceSeparated=x y z, commaSeparated=x,y,z]

There are three Collectors in this code. Two of them are for joining() and produce
the values we want to return. The third is teeing(), which combines the results into the
single object we want to return. This way, Java is happy because only one object is returned,
and we are happy because we don’t have to go through the stream twice.

Summary
An Optional<T> can be empty or store a value. You can check whether it contains a
value with isPresent() and get() the value inside. You can return a different value
with orElse(T t) or throw an exception with orElseThrow(). There are even three
methods that take functional interfaces as parameters: ifPresent(Consumer c),
orElseGet(Supplier s), and orElseThrow(Supplier s). There are three optional
types for primitives: OptionalDouble, OptionalInt, and OptionalLong. These have the
methods getAsDouble(), getAsInt(), and getAsLong(), respectively.

A stream pipeline has three parts. The source is required, and it creates the data in the
stream. There can be zero or more intermediate operations, which aren’t executed until the

Exam Essentials  579

terminal operation runs. The first stream class we covered was Stream<T>, which takes a
generic argument T. The Stream<T> class includes many useful intermediate operations
including filter(), map(), flatMap(), and sorted(). Examples of terminal operations
include allMatch(), count(), and forEach().

Besides the Stream<T> class, there are three primitive streams: DoubleStream,
IntStream, and LongStream. In addition to the usual Stream<T> methods, IntStream
and LongStream have range() and rangeClosed(). The call range(1, 10) on
IntStream and LongStream creates a stream of the primitives from 1 to 9. By contrast,
rangeClosed(1, 10) creates a stream of the primitives from 1 to 10. The primitive
streams have math operations including average(), max(), and sum(). They also have
summaryStatistics() to get many statistics in one call.

You can use a Collector to transform a stream into a traditional collection. You can
even group fields to create a complex map in one line. Partitioning works the same way as
grouping, except that the keys are always true and false. A partitioned map always has
two keys, even if the value is empty for the key. A teeing collector allows you to combine the
results of two other collectors.

You should memorize Table 10.6 and Table 10.7. At the least, be able to spot incom-
patibilities, such as type differences. Finally, remember that streams are lazily evaluated.
They take lambdas or method references as parameters, which execute later when the
method is run.

Exam Essentials
Write code that uses Optional.   Creating an Optional uses Optional.empty() or
Optional.of(). Retrieval frequently uses isPresent() and get(). Alternatively, there
are the functional ifPresent() and orElseGet() methods.

Recognize which operations cause a stream pipeline to execute.   Intermediate operations
do not run until the terminal operation is encountered. If no terminal operation is in the
pipeline, a Stream is returned but not executed. Examples of terminal operations include
collect(), forEach(), min(), and reduce().

Determine which terminal operations are reductions.   Reductions use all elements of the
stream in determining the result. The reductions that you need to know are collect(),
count(), max(), min(), and reduce(). A mutable reduction collects into the same object
as it goes. The collect() method is a mutable reduction.

Write code for common intermediate operations.   The filter() method returns a
Stream<T> filtering on a Predicate<T>. The map() method returns a Stream, transform-
ing each element of type T to another type R through a Function <T,R>. The flatMap()
method flattens nested streams into a single level and removes empty streams.

580  Chapter 10  ■  Streams

Compare primitive streams to Stream<T>.   Primitive streams are useful for performing
common operations on numeric types, including statistics like average(), sum(), and so
on. There are three primitive stream classes: DoubleStream, IntStream, and LongStream.
There are also three primitive Optional classes: OptionalDouble, OptionalInt, and
OptionalLong. Aside from BooleanSupplier, they all involve the double, int, or long
primitives.

Convert primitive stream types to other primitive stream types.   Normally, when map-
ping, you just call the map() method. When changing the class used for the stream, a
different method is needed. To convert to Stream, you use mapToObj(). To convert to
DoubleStream, you use mapToDouble(). To convert to IntStream, you use mapToInt().
To convert to LongStream, you use mapToLong().

Use peek() to inspect the stream.   The peek() method is an intermediate operation often
used for debugging purposes. It executes a lambda or method reference on the input and
passes that same input through the pipeline to the next operator. It is useful for printing out
what passes through a certain point in a stream.

Search a stream.   The findFirst() and findAny() methods return a single element
from a stream in an Optional. The anyMatch(), allMatch(), and noneMatch()
methods return a boolean. Be careful, because these three can hang if called on an infinite
stream with some data. All of these methods are terminal operations.

Sort a stream.   The sorted() method is an intermediate operation that sorts a stream.
There are two versions: the signature with zero parameters that sorts using the natural
sort order, and the signature with one parameter that sorts using that Comparator as the
sort order.

Compare groupingBy() and partitioningBy().   The groupingBy() method is a terminal
operation that creates a Map. The keys and return types are determined by the parameters
you pass. The values in the Map are a Collection for all the entries that map to that key.
The partitioningBy() method also returns a Map. This time, the keys are true and
false. The values are again a Collection of matches. If there are no matches for that
boolean, the Collection is empty.

Review Questions  581

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 What could be the output of the following?

var stream = Stream.iterate("", (s) -> s + "1");
System.out.println(stream.limit(2).map(x -> x + "2"));

A.	 12112
B.	 212
C.	 212112
D.	 java.util.stream.ReferencePipeline$3@4517d9a3
E.	 The code does not compile.

F.	 An exception is thrown.

G.	 The code hangs.

2.	 What could be the output of the following?

Predicate<String> predicate = s -> s.startsWith("g");
var stream1 = Stream.generate(() -> "growl!");
var stream2 = Stream.generate(() -> "growl!");
var b1 = stream1.anyMatch(predicate);
var b2 = stream2.allMatch(predicate);
System.out.println(b1 + " " + b2);

A.	 true false
B.	 true true
C.	 java.util.stream.ReferencePipeline$3@4517d9a3
D.	 The code does not compile.

E.	 An exception is thrown.

F.	 The code hangs.

3.	 What could be the output of the following?

Predicate<String> predicate = s -> s.length()> 3;
var stream = Stream.iterate("-",
 s -> ! s.isEmpty(), (s) -> s + s);
var b1 = stream.noneMatch(predicate);
var b2 = stream.anyMatch(predicate);
System.out.println(b1 + " " + b2);

582  Chapter 10  ■  Streams

A.	 false false
B.	 false true
C.	 java.util.stream.ReferencePipeline$3@4517d9a3
D.	 The code does not compile.

E.	 An exception is thrown.

F.	 The code hangs.

4.	 Which are true statements about terminal operations in a stream that runs successfully?
(Choose all that apply.)

A.	 At most one terminal operation can exist in a stream pipeline.

B.	 Terminal operations are a required part of the stream pipeline in order to get a result.

C.	 Terminal operations have Stream as the return type.

D.	 The peek() method is an example of a terminal operation.

E.	 The referenced Stream may be used after calling a terminal operation.

5.	 Which of the following sets result to 8.0? (Choose all that apply.)

A.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> (int) x)
 .collect(Collectors.groupingBy(x -> x))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));
B.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> x)
 .boxed()
 .collect(Collectors.groupingBy(x -> x))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));
C.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> (int) x)
 .boxed()
 .collect(Collectors.groupingBy(x -> x))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));

Review Questions  583

D.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> (int) x)
 .collect(Collectors.groupingBy(x -> x, Collectors.toSet()))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));
E.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> x)
 .boxed()
 .collect(Collectors.groupingBy(x -> x, Collectors.toSet()))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));
F.	

double result = LongStream.of(6L, 8L, 10L)
 .mapToInt(x -> (int) x)
 .boxed()
 .collect(Collectors.groupingBy(x -> x, Collectors.toSet()))
 .keySet()
 .stream()
 .collect(Collectors.averagingInt(x -> x));

6.	 Which of the following can fill in the blank so that the code prints out false? (Choose all
that apply.)

var s = Stream.generate(() -> "meow");
var match = s. (String::isEmpty);
System.out.println(match);

A.	 allMatch
B.	 anyMatch
C.	 findAny
D.	 findFirst
E.	 noneMatch
F.	 None of the above

584  Chapter 10  ■  Streams

7.	 We have a method that returns a sorted list without changing the original. Which of the fol-
lowing can replace the method implementation to do the same with streams?

private static List<String> sort(List<String> list) {
 var copy = new ArrayList<String>(list);
 Collections.sort(copy, (a, b) -> b.compareTo(a));
 return copy;
}
A.	

return list.stream()
 .compare((a, b) -> b.compareTo(a))
 .collect(Collectors.toList());
B.	

return list.stream()
 .compare((a, b) -> b.compareTo(a))
 .sort();
C.	

return list.stream()
 .compareTo((a, b) -> b.compareTo(a))
 .collect(Collectors.toList());
D.	

return list.stream()
 .compareTo((a, b) -> b.compareTo(a))
 .sort();
E.	

return list.stream()
 .sorted((a, b) -> b.compareTo(a))
 .collect();
F.	

return list.stream()
 .sorted((a, b) -> b.compareTo(a))
 .collect(Collectors.toList());

8.	 Which of the following are true given this declaration? (Choose all that apply.)
var is = IntStream.empty();
A.	 is.average() returns the type int.

B.	 is.average() returns the type OptionalInt.

C.	 is.findAny() returns the type int.

Review Questions  585

D.	 is.findAny() returns the type OptionalInt.

E.	 is.sum() returns the type int.

F.	 is.sum() returns the type OptionalInt.

9.	 Which of the following can we add after line 6 for the code to run without error and not pro-
duce any output? (Choose all that apply.)

4: var stream = LongStream.of(1, 2, 3);
5: var opt = stream.map(n -> n * 10)
6: .filter(n -> n < 5).findFirst();

A.	
if (opt.isPresent())
 System.out.println(opt.get());
B.	

if (opt.isPresent())
 System.out.println(opt.getAsLong());
C.	
opt.ifPresent(System.out.println);
D.	
opt.ifPresent(System.out::println);
E.	 None of these; the code does not compile.

F.	 None of these; line 6 throws an exception at runtime.

10.	 Given the four statements (L, M, N, O), select and order the ones that would complete the
expression and cause the code to output 10 lines. (Choose all that apply.)

Stream.generate(() -> "1")
 L: .filter(x -> x.length()> 1)
 M: .forEach(System.out::println)
 N: .limit(10)
 O: .peek(System.out::println)
;

A.	 L, N

B.	 L, N, O

C.	 L, N, M

D.	 L, N, M, O

E.	 L, O, M

F.	 N, M

G.	 N, O

586  Chapter 10  ■  Streams

11.	 What changes need to be made together for this code to print the string 12345? (Choose all
that apply.)

Stream.iterate(1, x -> x++)
 .limit(5).map(x -> x)
 .collect(Collectors.joining());

A.	 Change Collectors.joining() to Collectors.joining(",").

B.	 Change map(x -> x) to map(x -> "" + x).

C.	 Change x -> x++ to x -> ++x.

D.	 Add .forEach(System.out::print) after the call to collect().

E.	 Wrap the entire line in a System.out.print statement.

F.	 None of the above. The code already prints 12345.

12.	 Which is true of the following code?

Set<String> birds = Set.of("oriole", "flamingo");
Stream.concat(birds.stream(), birds.stream(), birds.stream())
 .sorted() // line X
 .distinct()
 .findAny()
 .ifPresent(System.out::println);

A.	 It is guaranteed to print flamingo as is and when line X is removed.

B.	 It is guaranteed to print oriole as is and when line X is removed.

C.	 It is guaranteed to print flamingo as is, but not when line X is removed.

D.	 It is guaranteed to print oriole as is, but not when line X is removed.

E.	 The output may vary as is.

F.	 The code does not compile.

G.	 It throws an exception because the same list is used as the source for multiple streams.

13.	 Which of the following is true?

List<Integer> x1 = List.of(1, 2, 3);
List<Integer> x2 = List.of(4, 5, 6);
List<Integer> x3 = List.of();
Stream.of(x1, x2, x3).map(x -> x + 1)
 .flatMap(x -> x.stream())
 .forEach(System.out::print);

A.	 The code compiles and prints 123456.

B.	 The code compiles and prints 234567.

C.	 The code compiles but does not print anything.

D.	 The code compiles but prints stream references.

Review Questions  587

E.	 The code runs infinitely.

F.	 The code does not compile.

G.	 The code throws an exception.

14.	 Which of the following are true? (Choose all that apply.)

4: Stream<Integer> s = Stream.of(1);
5: IntStream is = s.boxed();
6: DoubleStream ds = s.mapToDouble(x -> x);
7: Stream<Integer> s2 = ds.mapToInt(x -> x);
8: s2.forEach(System.out::print);

A.	 Line 4 causes a compiler error.

B.	 Line 5 causes a compiler error.

C.	 Line 6 causes a compiler error.

D.	 Line 7 causes a compiler error.

E.	 Line 8 causes a compiler error.

F.	 The code compiles but throws an exception at runtime.

G.	 The code compiles and prints 1.

15.	 Given the generic type String, the partitioningBy() collector creates a
Map<Boolean, List<String>> when passed to collect() by default. When a down-
stream collector is passed to partitioningBy(), which return types can be created?
(Choose all that apply.)

A.	 Map<boolean, List<String>>
B.	 Map<Boolean, List<String>>
C.	 Map<Boolean, Map<String>>
D.	 Map<Boolean, Set<String>>
E.	 Map<Long, TreeSet<String>>
F.	 None of the above

16.	 Which of the following statements are true about this code? (Choose all that apply.)

20: Predicate<String> empty = String::isEmpty;
21: Predicate<String> notEmpty = empty.negate();
22:
23: var result = Stream.generate(() -> "")
24: .limit(10)
25: .filter(notEmpty)
26: .collect(Collectors.groupingBy(k -> k))
27: .entrySet()
28: .stream()
29: .map(Entry::getValue)

588  Chapter 10  ■  Streams

30: .flatMap(Collection::stream)
31: .collect(Collectors.partitioningBy(notEmpty));
32: System.out.println(result);

A.	 It outputs {}.

B.	 It outputs {false=[], true=[]}.

C.	 If we changed line 31 from partitioningBy(notEmpty) to
groupingBy(n -> n), it would output {}.

D.	 If we changed line 31 from partitioningBy(notEmpty) to
groupingBy(n -> n), it would output {false=[], true=[]}.

E.	 The code does not compile.

F.	 The code compiles but does not terminate at runtime.

17.	 What is the result of the following?

var s = DoubleStream.of(1.2, 2.4);
s.peek(System.out::println).filter(x -> x> 2).count();

A.	 1
B.	 2
C.	 2.4
D.	 1.2 and 2.4
E.	 There is no output.

F.	 The code does not compile.

G.	 An exception is thrown.

18.	 What is the output of the following?

11: public class Paging {
12: record Sesame(String name, boolean human) {
13: @Override public String toString() {
14: return name();
15: }
16: }
17: record Page(List<Sesame> list, long count) {}
18:
19: public static void main(String[] args) {
20: var monsters = Stream.of(new Sesame("Elmo", false));
21: var people = Stream.of(new Sesame("Abby", true));
22: printPage(monsters, people);
23: }
24:

Review Questions  589

25: private static void printPage(Stream<Sesame> monsters,
26: Stream<Sesame> people) {
27: Page page = Stream.concat(monsters, people)
28: .collect(Collectors.teeing(
29: Collectors.filtering(s -> s.name().startsWith("E"),
30: Collectors.toList()),
31: Collectors.counting(),
32: (l, c) -> new Page(l, c)));
33: System.out.println(page);
34: } }

A.	 Page[list=[Abby], count=1]
B.	 Page[list=[Abby], count=2]
C.	 Page[list=[Elmo], count=1]
D.	 Page[list=[Elmo], count=2]
E.	 The code does not compile due to Stream.concat().

F.	 The code does not compile due to Collectors.teeing().

G.	 The code does not compile for another reason.

19.	 What is the simplest way of rewriting this code?

List<Integer> x = IntStream.range(1, 6)
 .mapToObj(i -> i)
 .collect(Collectors.toList());
x.forEach(System.out::println);
A.	
IntStream.range(1, 6);
B.	

IntStream.range(1, 6)
 .forEach(System.out::println);
C.	

 IntStream.range(1, 6)
 .mapToObj(i -> i)
 .forEach(System.out::println);

D.	 None of the above is equivalent.

E.	 The provided code does not compile.

590  Chapter 10  ■  Streams

20.	 Which of the following throw an exception when an Optional is empty? (Choose all
that apply.)

A.	 opt.orElse("");
B.	 opt.orElseGet(() -> "");
C.	 opt.orElseThrow();
D.	 opt.orElseThrow(() -> throw new Exception());
E.	 opt.orElseThrow(RuntimeException::new);
F.	 opt.get();
G.	 opt.get("");

21.	 What is the output of the following?

var spliterator = Stream.generate(() -> "x")
 .spliterator();

spliterator.tryAdvance(System.out::print);
var split = spliterator.trySplit();
split.tryAdvance(System.out::print);

A.	 x
B.	 xx
C.	 A long list of x’s

D.	 There is no output.

E.	 The code does not compile.

F.	 The code compiles but does not terminate at runtime.

Exceptions and
Localization

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Handling Exceptions
■■ Handle exceptions using try/catch/finally, try-with-resources,

and multi-catch blocks, including custom exceptions

✓✓ Implementing Localization
■■ Implement localization using locales, resource bundles, parse

and format messages, dates, times, and numbers including

currency and percentage values

Chapter

11

This chapter is about creating applications that adapt to
change. What happens if a user enters invalid data on a web
page? What if our connection to a database goes down in the

middle of a sale? Finally, how do we build applications that can support multiple languages
or geographic regions?

In this chapter, we discuss these problems and solutions to them using exceptions, for-
matting, and localization. One way to make sure your applications respond to change is to
build in support early on. For example, supporting localization doesn’t mean you actually
need to support specific languages right away. It just means your application can be more
easily adapted in the future. By the end of this chapter, we hope we’ve provided structure for
designing applications that better adapt to change.

Understanding Exceptions
A program can fail for just about any reason. Here are just a few possibilities:

■■ The code tries to connect to a website, but the Internet connection is down.

■■ You made a coding mistake and tried to access an invalid index in an array.

■■ One method calls another with a value that the method doesn’t support.

As you can see, some of these are coding mistakes. Others are completely beyond your
control. Your program can’t help it if the Internet connection goes down. What it can do is
deal with the situation.

The Role of Exceptions
An exception is Java’s way of saying, “I give up. I don’t know what to do right now. You
deal with it.” When you write a method, you can either deal with the exception or make it
the calling code’s problem.

As an example, think of Java as a child who visits the zoo. The happy path is when
nothing goes wrong. The child continues to look at the animals until the program ends
nicely. Nothing went wrong, and there were no exceptions to deal with.

This child’s younger sister doesn’t experience the happy path. In all the excitement, she
trips and falls. Luckily, it isn’t a bad fall. The little girl gets up and proceeds to look at more
animals. She has handled the issue all by herself. Unfortunately, she falls again later in the
day and starts crying. This time, she has declared that she needs help by crying. The story

Understanding Exceptions  593

ends well. Her daddy rubs her knee and gives her a hug. Then they go back to seeing more
animals and enjoy the rest of the day.

These are the two approaches Java uses when dealing with exceptions. A method can
handle the exception case itself or make it the caller’s responsibility.

Return Codes vs. Exceptions

Exceptions are used when “something goes wrong.” However, the word wrong is
subjective. The following code returns –1 instead of throwing an exception if no
match is found:

public int indexOf(String[] names, String name) {
 for (int i = 0; i < names.length; i++) {
 if (names[i].equals(name)) { return i; }
 }
 return -1;
}

While common for certain tasks like searching, return codes should generally be avoided.
After all, Java provided an exception framework, so you should use it!

Understanding Exception Types
An exception is an event that alters program flow. Java has a Throwable class for all objects
that represent these events. Not all of them have the word exception in their class name,
which can be confusing. Figure 11.1 shows the key subclasses of Throwable.

java.lang.Throwable

java.lang.Exception

java.lang.RuntimeException

java.lang.Error

Checked

Unchecked

F IGURE 11.1   Categories of exception

594  Chapter 11  ■  Exceptions and Localization

Checked Exceptions
A checked exception is an exception that must be declared or handled by the application
code where it is thrown. In Java, checked exceptions all inherit Exception but not
RuntimeException. Checked exceptions tend to be more anticipated—for example, trying
to read a file that doesn’t exist.

Checked exceptions also include any class that inherits Throwable but
not Error or RuntimeException, such as a class that directly extends
Throwable. For the exam, you just need to know about checked excep-
tions that extend Exception.

Checked exceptions? What are we checking? Java has a rule called the handle or declare
rule. The handle or declare rule means that all checked exceptions that could be thrown
within a method are either wrapped in compatible try and catch blocks or declared in the
method signature.

Because checked exceptions tend to be anticipated, Java enforces the rule that the pro-
grammer must do something to show that the exception was thought about. Maybe it was
handled in the method. Or maybe the method declares that it can’t handle the exception and
someone else should.

Let’s take a look at an example. The following fall() method declares that it might throw
an IOException, which is a checked exception:

void fall(int distance) throws IOException {
 if(distance > 10) {
 throw new IOException();
 }
}

Notice that you’re using two different keywords here. The throw keyword tells Java
that you want to throw an Exception, while the throws keyword simply declares that the
method might throw an Exception. It also might not.

Now that you know how to declare an exception, how do you handle it? The following
alternate version of the fall() method handles the exception:

void fall(int distance) {
 try {
 if(distance > 10) {
 throw new IOException();
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
}

Understanding Exceptions  595

Notice that the catch statement uses Exception, not IOException. Since
IOException is a subclass of Exception, the catch block is allowed to catch it. We cover
try and catch blocks in more detail later in this chapter.

Unchecked Exceptions
An unchecked exception is any exception that does not need to be declared or handled by
the application code where it is thrown. Unchecked exceptions are often referred to as
runtime exceptions, although in Java, unchecked exceptions include any class that inherits
RuntimeException or Error.

It is permissible to handle or declare an unchecked exception. That said, it
is better to document the unchecked exceptions callers should know about
in a Javadoc comment rather than declaring an unchecked exception.

A runtime exception is defined as the RuntimeException class and its subclasses. Run-
time exceptions tend to be unexpected but not necessarily fatal. For example, accessing an
invalid array index is unexpected. Even though they do inherit the Exception class, they are
not checked exceptions.

An unchecked exception can occur on nearly any line of code, as it is not required to be
handled or declared. For example, a NullPointerException can be thrown in the body of the
following method if the input reference is null:

void fall(String input) {
 System.out.println(input.toLowerCase());
}

We work with objects in Java so frequently that a NullPointerException can hap-
pen almost anywhere. If you had to declare unchecked exceptions everywhere, every
single method would have that clutter! The code will compile if you declare an unchecked
exception. However, it is redundant.

Error and Throwable
Error means something went so horribly wrong that your program should not attempt to
recover from it. For example, the disk drive “disappeared” or the program ran out of memory.
These are abnormal conditions that you aren’t likely to encounter and cannot recover from.

For the exam, the only thing you need to know about Throwable is that it’s the parent
class of all exceptions, including the Error class. While you can handle Throwable and
Error exceptions, it is not recommended you do so in your application code. When we refer
to exceptions in this chapter, we generally mean any class that inherits Throwable, although
we are almost always working with the Exception class or subclasses of it.

Reviewing Exception Types
Be sure to closely study everything in Table 11.1. For the exam, remember that a Throwable is
either an Exception or an Error. You should not catch Throwable directly in your code.

596  Chapter 11  ■  Exceptions and Localization

Throwing an Exception
Any Java code can throw an exception; this includes code you write. Some exceptions are
provided with Java. You might encounter an exception that was made up for the exam. This
is fine. The question will make it obvious that this is an exception by having the class name
end with Exception. For example, MyMadeUpException is clearly an exception.

On the exam, you will see two types of code that result in an exception. The first is code
that’s wrong. Here’s an example:

String[] animals = new String[0];
System.out.println(animals[0]); // ArrayIndexOutOfBoundsException

This code throws an ArrayIndexOutOfBoundsException since the array has no ele-
ments. That means questions about exceptions can be hidden in questions that appear to be
about something else.

On the exam, some questions have a choice about not compiling and
about throwing an exception. Pay special attention to code that calls a
method on a null reference or that references an invalid array or List
index. If you spot this, you know the correct answer is that the code
throws an exception at runtime.

The second way for code to result in an exception is to explicitly request Java to throw
one. Java lets you write statements like these:

throw new Exception();
throw new Exception("Ow! I fell.");
throw new RuntimeException();
throw new RuntimeException("Ow! I fell.");

TABLE 11.1   Types of exceptions and errors

Type How to recognize
Okay for
program to catch?

Is program required to
handle or declare?

Unchecked
exception

Subclass of RuntimeException Yes No

Checked
exception

Subclass of Exception but not
subclass of RuntimeException

Yes Yes

Error Subclass of Error No No

Understanding Exceptions  597

The throw keyword tells Java that you want some other part of the code to deal with
the exception. This is the same as the young girl crying for her daddy. Someone else needs to
figure out what to do about the exception.

throw vs. throws

Anytime you see throw or throws on the exam, make sure the correct one is being used.
The throw keyword is used as a statement inside a code block to throw a new exception
or rethrow an existing exception, while the throws keyword is used only at the end of a
method declaration to indicate what exceptions it supports.

When creating an exception, you can usually pass a String parameter with a message, or
you can pass no parameters and use the defaults. We say usually because this is a convention.
Someone has declared a constructor that takes a String. Someone could also create an
exception class that does not have a constructor that takes a message.

Additionally, you should know that an Exception is an Object. This means you can
store it in an object reference, and this is legal:

var e = new RuntimeException();
throw e;

The code instantiates an exception on one line and then throws on the next. The
exception can come from anywhere, even passed into a method. As long as it is a valid
exception, it can be thrown.

The exam might also try to trick you. Do you see why this code doesn’t compile?

throw RuntimeException(); // DOES NOT COMPILE

If your answer is that there is a missing keyword, you’re absolutely right. The exception is
never instantiated with the new keyword.

Let’s take a look at another place the exam might try to trick you. Can you see why the
following does not compile?

3: try {
4: throw new RuntimeException();
5: throw new ArrayIndexOutOfBoundsException(); // DOES NOT COMPILE
6: } catch (Exception e) {}

Since line 4 throws an exception, line 5 can never be reached during runtime. The com-
piler recognizes this and reports an unreachable code error.

598  Chapter 11  ■  Exceptions and Localization

Calling Methods That Throw Exceptions
When you’re calling a method that throws an exception, the rules are the same as within a
method. Do you see why the following doesn’t compile?

class NoMoreCarrotsException extends Exception {}

public class Bunny {
 public static void main(String[] args) {
 eatCarrot(); // DOES NOT COMPILE
 }
 private static void eatCarrot() throws NoMoreCarrotsException {}
}

The problem is that NoMoreCarrotsException is a checked exception. Checked excep-
tions must be handled or declared. The code would compile if you changed the main()
method to either of these:

 public static void main(String[] args) throws NoMoreCarrotsException {
 eatCarrot();
 }

 public static void main(String[] args) {
 try {
 eatCarrot();
 } catch (NoMoreCarrotsException e) {
 System.out.print("sad rabbit");
 }
 }

You might have noticed that eatCarrot() didn’t throw an exception; it just declared that it
could. This is enough for the compiler to require the caller to handle or declare the exception.

The compiler is still on the lookout for unreachable code. Declaring an unused exception
isn’t considered unreachable code. It gives the method the option to change the implementa-
tion to throw that exception in the future. Do you see the issue here?

public void bad() {
 try {
 eatCarrot();
 } catch (NoMoreCarrotsException e) { // DOES NOT COMPILE
 System.out.print("sad rabbit");
 }
}

private void eatCarrot() {}

Understanding Exceptions  599

Java knows that eatCarrot() can’t throw a checked exception—which means there’s no
way for the catch block in bad() to be reached.

When you see a checked exception declared inside a catch block on the
exam, make sure the code in the associated try block is capable of throwing
the exception or a subclass of the exception. If not, the code is unreachable
and does not compile. Remember that this rule does not extend to
unchecked exceptions or exceptions declared in a method signature.

Overriding Methods with Exceptions
When we introduced overriding methods in Chapter 6, “Class Design,” we included a rule
related to exceptions. An overridden method may not declare any new or broader checked
exceptions than the method it inherits. For example, this code isn’t allowed:

class CanNotHopException extends Exception {}

class Hopper {
 public void hop() {}
}

class Bunny extends Hopper {
 public void hop() throws CanNotHopException {} // DOES NOT COMPILE
}

Java knows hop() isn’t allowed to throw any checked exceptions because the hop()
method in the superclass Hopper doesn’t declare any. Imagine what would happen if the
subclasses’ versions of the method could add checked exceptions—you could write code that
calls Hopper’s hop() method and not handle any exceptions. Then, if Bunny were used in
its place, the code wouldn’t know to handle or declare CanNotHopException.

An overridden method in a subclass is allowed to declare fewer exceptions than the super-
class or interface. This is legal because callers are already handling them.

class Hopper {
 public void hop() throws CanNotHopException {}
}
class Bunny extends Hopper {
 public void hop() {} // This is fine
}

An overridden method not declaring one of the exceptions thrown by the parent method
is similar to the method declaring that it throws an exception it never actually throws. This
is perfectly legal. Similarly, a class is allowed to declare a subclass of an exception type. The
idea is the same. The superclass or interface has already taken care of a broader type.

600  Chapter 11  ■  Exceptions and Localization

Printing an Exception
There are three ways to print an exception. You can let Java print it out, print just the mes-
sage, or print where the stack trace comes from. This example shows all three approaches:

5: public static void main(String[] args) {
6: try {
7: hop();
8: } catch (Exception e) {
9: System.out.println(e + "\n");
10: System.out.println(e.getMessage()+ "\n");
11: e.printStackTrace();
12: }
13: }
14: private static void hop() {
15: throw new RuntimeException("cannot hop");
16: }

This code prints the following:

java.lang.RuntimeException: cannot hop

cannot hop

java.lang.RuntimeException: cannot hop
 at Handling.hop(Handling.java:15)
 at Handling.main(Handling.java:7)

The first line shows what Java prints out by default: the exception type and message. The
second line shows just the message. The rest shows a stack trace. The stack trace is usually
the most helpful because it shows the hierarchy of method calls that were made to reach the
line that threw the exception.

Recognizing Exception Classes
You need to recognize three groups of exception classes for the exam: RuntimeException,
checked Exception, and Error. We look at common examples of each type. For the exam,
you’ll need to recognize which type of an exception it is and whether it’s thrown by the Java
Virtual Machine (JVM) or by a programmer. For some exceptions, you also need to know
which are inherited from one another.

Recognizing Exception Classes  601

RuntimeException Classes
RuntimeException and its subclasses are unchecked exceptions that don’t have to be han-
dled or declared. They can be thrown by the programmer or the JVM. Common unchecked
exception classes are listed in Table 11.2.

ArithmeticException
Trying to divide an int by zero gives an undefined result. When this occurs, the JVM will
throw an ArithmeticException:

int answer = 11 / 0;

Running this code results in the following output:

Exception in thread "main" java.lang.ArithmeticException: / by zero

Java doesn’t spell out the word divide. That’s okay, though, because we know that / is the
division operator and that Java is trying to tell you division by zero occurred.

The thread "main" is telling you the code was called directly or indirectly from a
program with a main method. On the exam, this is all the output you will see. Next comes
the name of the exception, followed by extra information (if any) that goes with the
exception.

TABLE 11.2   Unchecked exceptions

Unchecked exception Description

ArithmeticException Thrown when code attempts to divide by zero.

ArrayIndexOutOfBoundsException Thrown when code uses illegal index to access
array.

ClassCastException Thrown when attempt is made to cast object to
class of which it is not an instance.

NullPointerException Thrown when there is a null reference where an
object is required.

IllegalArgumentException Thrown by programmer to indicate that method
has been passed illegal or inappropriate argument.

NumberFormatException Subclass of IllegalArgumentException.
Thrown when attempt is made to convert String
to numeric type but String doesn’t have appro-
priate format.

602  Chapter 11  ■  Exceptions and Localization

ArrayIndexOutOfBoundsException
You know by now that array indexes start with 0 and go up to 1 less than the length of the
array—which means this code will throw an ArrayIndexOutOfBoundsException:

int[] countsOfMoose = new int[3];
System.out.println(countsOfMoose[-1]);

This is a problem because there’s no such thing as a negative array index. Running this
code yields the following output:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException:
Index -1 out of bounds for length 3

ClassCastException
Java tries to protect you from impossible casts. This code doesn’t compile because Integer
is not a subclass of String:

String type = "moose";
Integer number = (Integer) type; // DOES NOT COMPILE

More complicated code thwarts Java’s attempts to protect you. When the cast fails at run-
time, Java will throw a ClassCastException:

String type = "moose";
Object obj = type;
Integer number = (Integer) obj; // ClassCastException

The compiler sees a cast from Object to Integer. This could be okay. The compiler doesn’t
realize there’s a String in that Object. When the code runs, it yields the following output:

Exception in thread "main" java.lang.ClassCastException:
java.base/java.lang.String
cannot be cast to java.lang.base/java.lang.Integer

Java tells you both types that were involved in the problem, making it apparent what’s wrong.

NullPointerException
Instance variables and methods must be called on a non-null reference. If the reference is null,
the JVM will throw a NullPointerException.

1: public class Frog {
2: public void hop(String name, Integer jump) {
3: System.out.print(name.toLowerCase() + " " + jump.intValue());
4: }
5:
6: public static void main(String[] args) {
7: new Frog().hop(null, 1);
8: } }

Recognizing Exception Classes  603

Running this code results in the following output:

Exception in thread "main" java.lang.NullPointerException: Cannot invoke
"String.toLowerCase()" because "<parameter1>" is null

If you’re new to Java 17, you should have noticed something special about the output.
The JVM now tells you the object reference that triggered the NullPointerException!
This new feature is called Helpful NullPointerExceptions.

As another example, suppose we change line 7:

7: new Frog().hop("Kermit", null);

Then the output at runtime changes as follows:

Exception in thread "main" java.lang.NullPointerException: Cannot invoke
"java.lang.Integer.intValue()" because "<parameter2>" is null

By default, a NullPointerException on a local variable or method
parameter is printed with a number indicating the order in which it
appears in the method, such as <local2> or <parameter4>. If you’re
like us and want the actual variable name to be shown, compile the code
with the -g:vars flag, which adds debug info. In the previous examples,
<parameter1> and <parameter2> are then replaced with name and
jump, respectively.

Since this is a new feature in Java, it’s possible you’ll see it in a question on the exam.

Enabling/Disabling Helpful NullPointerExceptions

When helpful NullPointerExceptions were added in Java 14, the feature
was disabled by default and had to be enabled via a command-line argument
ShowCodeDetailsInExceptionMessages to the JVM:

 java -XX:+ShowCodeDetailsInExceptionMessages Frog

In Java 15 and above, the default behavior was changed so that it is enabled by default,
although it can still be disabled via the command-line argument.

 java -XX:-ShowCodeDetailsInExceptionMessages Frog

IllegalArgumentException
IllegalArgumentException is a way for your program to protect itself. You want to
tell the caller that something is wrong—preferably in an obvious way that the caller can’t
ignore so the programmer will fix the problem. Seeing the code end with an exception

604  Chapter 11  ■  Exceptions and Localization

is a great reminder that something is wrong. Consider this example when called as
setNumberEggs(-2):

public void setNumberEggs(int numberEggs) {
 if (numberEggs < 0)
 throw new IllegalArgumentException("# eggs must not be negative");
 this.numberEggs = numberEggs;
}

The program throws an exception when it’s not happy with the parameter values. The
output looks like this:

Exception in thread "main"
java.lang.IllegalArgumentException: # eggs must not be negative

Clearly, this is a problem that must be fixed if the programmer wants the program to do
anything useful.

NumberFormatException
Java provides methods to convert strings to numbers. When these are passed an invalid
value, they throw a NumberFormatException. The idea is similar to IllegalArgumentException.
Since this is a common problem, Java gives it a separate class. In fact, NumberFormatException
is a subclass of IllegalArgumentException. Here’s an example of trying to convert something
non-numeric into an int:

Integer.parseInt("abc");

The output looks like this:

Exception in thread "main"
java.lang.NumberFormatException: For input string: "abc"

For the exam, you need to know that NumberFormatException is a subclass of
IllegalArgumentException. We cover more about why that is important later in
the chapter.

Checked Exception Classes
Checked exceptions have Exception in their hierarchy but not RuntimeException. They must be
handled or declared. Common checked exceptions are listed in Table 11.3.

For the exam, you need to know that these are all checked exceptions that must be
handled or declared. You also need to know that FileNotFoundException and
NotSerializableException are subclasses of IOException. You see these three classes
in Chapter 14, “I/O,” and SQLException in Chapter 15, “JDBC.”

Handling Exceptions  605

Error Classes
Errors are unchecked exceptions that extend the Error class. They are thrown by the JVM and
should not be handled or declared. Errors are rare, but you might see the ones listed in Table 11.4.

For the exam, you just need to know that these errors are unchecked and the code is often
unable to recover from them.

Handling Exceptions
What do you do when you encounter an exception? How do you handle or recover from
the exception? In this section, we show the various statements in Java that support handling
exceptions.

TABLE 11.3   Checked exceptions

Checked exception Description

FileNotFoundException Subclass of IOException. Thrown programmatically
when code tries to reference file that does not exist.

IOException Thrown programmatically when problem reading or
writing file.

NotSerializableException Subclass of IOException. Thrown programmati-
cally when attempting to serialize or deserialize non-
serializable class.

ParseException Indicates problem parsing input.

SQLException Thrown when error related to accessing database.

TABLE 11.4   Errors

Error Description

ExceptionInInitializerError Thrown when static initializer throws exception and
doesn’t handle it

StackOverflowError Thrown when method calls itself too many times (called
infinite recursion because method typically calls itself
without end)

NoClassDefFoundError Thrown when class that code uses is available at com-
pile time but not runtime

606  Chapter 11  ■  Exceptions and Localization

Using try and catch Statements
Now that you know what exceptions are, let’s explore how to handle them. Java uses a try
statement to separate the logic that might throw an exception from the logic to handle that
exception. Figure 11.2 shows the syntax of a try statement.

The code in the try block is run normally. If any of the statements throws an exception
that can be caught by the exception type listed in the catch block, the try block stops
running, and execution goes to the catch statement. If none of the statements in the try
block throws an exception that can be caught, the catch clause is not run.

You probably noticed the words block and clause used interchangeably. The exam does
this as well, so get used to it. Both are correct. Block is correct because there are braces pre-
sent. Clause is correct because it is part of a try statement.

There aren’t a ton of syntax rules here. The curly braces are required for try and catch
blocks. In our example, the little girl gets up by herself the first time she falls. Here’s what
this looks like:

3: void explore() {
4: try {
5: fall();
6: System.out.println("never get here");
7: } catch (RuntimeException e) {
8: getUp();
9: }
10: seeAnimals();
11: }
12: void fall() { throw new RuntimeException(); }

try {

 // Protected code

} catch (exception_type identifier) {

 // Exception handler

}

The try keyword

The identifier of the
exception object

The type of exception
being caught

The catch keyword

Curly braces are
required.

F IGURE 11.2   The syntax of a try statement

Handling Exceptions  607

First, line 5 calls the fall() method. Line 12 throws an exception. This means Java
jumps straight to the catch block, skipping line 6. The girl gets up on line 8. Now the try
statement is over, and execution proceeds normally with line 10.

Now let’s look at some invalid try statements that the exam might try to trick you with.
Do you see what’s wrong with this one?

try // DOES NOT COMPILE
 fall();
catch (Exception e)
 System.out.println("get up");

The problem is that the braces {} are missing. The try statements are like methods in
that the curly braces are required even if there is only one statement inside the code blocks,
while if statements and loops are special and allow you to omit the curly braces.

What about this one?

try { // DOES NOT COMPILE
 fall();
}

This code doesn’t compile because the try block doesn’t have anything after it. Remember, the
point of a try statement is for something to happen if an exception is thrown. Without another
clause, the try statement is lonely. As you see shortly, there is a special type of try statement that
includes an implicit finally block, although the syntax is quite different from this example.

Chaining catch Blocks
For the exam, you may be given exception classes and need to understand how they
function. Here’s how to tackle them. First, you must be able to recognize if the exception
is a checked or an unchecked exception. Second, you need to determine whether any of the
exceptions are subclasses of the others.

class AnimalsOutForAWalk extends RuntimeException {}

class ExhibitClosed extends RuntimeException {}

class ExhibitClosedForLunch extends ExhibitClosed {}

In this example, there are three custom exceptions. All are unchecked exceptions because
they directly or indirectly extend RuntimeException. Now we chain both types of excep-
tions with two catch blocks and handle them by printing out the appropriate message:

public void visitPorcupine() {
 try {
 seeAnimal();
 } catch (AnimalsOutForAWalk e) { // first catch block
 System.out.print("try back later");

608  Chapter 11  ■  Exceptions and Localization

 } catch (ExhibitClosed e) { // second catch block
 System.out.print("not today");
 }
}

There are three possibilities when this code is run. If seeAnimal() doesn’t throw an
exception, nothing is printed out. If the animal is out for a walk, only the first catch block
runs. If the exhibit is closed, only the second catch block runs. It is not possible for both
catch blocks to be executed when chained together like this.

A rule exists for the order of the catch blocks. Java looks at them in the order they appear.
If it is impossible for one of the catch blocks to be executed, a compiler error about unreach-
able code occurs. For example, this happens when a superclass catch block appears before a
subclass catch block. Remember, we warned you to pay attention to any subclass exceptions.

In the porcupine example, the order of the catch blocks could be reversed because the
exceptions don’t inherit from each other. And yes, we have seen a porcupine be taken for a
walk on a leash.

The following example shows exception types that do inherit from each other:

public void visitMonkeys() {
 try {
 seeAnimal();
 } catch (ExhibitClosedForLunch e) { // Subclass exception
 System.out.print("try back later");
 } catch (ExhibitClosed e) { // Superclass exception
 System.out.print("not today");
 }
}

If the more specific ExhibitClosedForLunch exception is thrown, the first catch block
runs. If not, Java checks whether the superclass ExhibitClosed exception is thrown and
catches it. This time, the order of the catch blocks does matter. The reverse does not work.

public void visitMonkeys() {
 try {
 seeAnimal();
 } catch (ExhibitClosed e) {
 System.out.print("not today");
 } catch (ExhibitClosedForLunch e) { // DOES NOT COMPILE
 System.out.print("try back later");
 }
}

If the more specific ExhibitClosedForLunch exception is thrown, the catch block for
ExhibitClosed runs—which means there is no way for the second catch block to ever
run. Java correctly tells you there is an unreachable catch block.

Handling Exceptions  609

Let’s try this one more time. Do you see why this code doesn’t compile?

public void visitSnakes() {
 try {
 } catch (IllegalArgumentException e) {
 } catch (NumberFormatException e) { // DOES NOT COMPILE
 }
}

Remember we said earlier that you needed to know that NumberFormatException is
a subclass of IllegalArgumentException? This example is the reason why. Since
NumberFormatException is a subclass, it will always be caught by the first catch block,
making the second catch block unreachable code that does not compile. Likewise, for the
exam, you need to know that FileNotFoundException is a subclass of IOException and
cannot be used in a similar manner.

To review multiple catch blocks, remember that at most one catch block will run, and it will
be the first catch block that can handle the exception. Also, remember that an exception defined
by the catch statement is only in scope for that catch block. For example, the following causes a
compiler error since it tries to use the exception object outside the block for which it was defined:

public void visitManatees() {
 try {
 } catch (NumberFormatException e1) {
 System.out.println(e1);
 } catch (IllegalArgumentException e2) {
 System.out.println(e1); // DOES NOT COMPILE
 }
}

Applying a Multi-catch Block
Often, we want the result of an exception that is thrown to be the same, regardless of which
particular exception is thrown. For example, take a look at this method:

public static void main(String args[]) {
 try {
 System.out.println(Integer.parseInt(args[1]));
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println("Missing or invalid input");
 } catch (NumberFormatException e) {
 System.out.println("Missing or invalid input");
 }
}

610  Chapter 11  ■  Exceptions and Localization

Notice that we have the same println() statement for two different catch blocks.
We can handle this more gracefully using a multi-catch block. A multi-catch block allows
multiple exception types to be caught by the same catch block. Let’s rewrite the previous
example using a multi-catch block:

public static void main(String[] args) {
 try {
 System.out.println(Integer.parseInt(args[1]));
 } catch (ArrayIndexOutOfBoundsException | NumberFormatException e) {
 System.out.println("Missing or invalid input");
 }
}

This is much better. There’s no duplicate code, the common logic is all in one place, and the
logic is exactly where you would expect to find it. If you wanted, you could still have a second
catch block for Exception in case you want to handle other types of exceptions differently.

Figure 11.3 shows the syntax of multi-catch. It’s like a regular catch clause, except two
or more exception types are specified, separated by a pipe. The pipe (|) is also used as the
“or” operator, making it easy to remember that you can use either/or of the exception types.
Notice how there is only one variable name in the catch clause. Java is saying that the vari-
able named e can be of type Exception1 or Exception2.

The exam might try to trick you with invalid syntax. Remember that the exceptions can
be listed in any order within the catch clause. However, the variable name must appear only
once and at the end. Do you see why these are valid or invalid?

catch(Exception1 e | Exception2 e | Exception3 e) // DOES NOT COMPILE

catch(Exception1 e1 | Exception2 e2 | Exception3 e3) // DOES NOT COMPILE

catch(Exception1 | Exception2 | Exception3 e)

Catch either of
these exceptions.

try {

 // Protected code

} catch (Exception1 | Exception2 e) {

 // Exception handler

} Required | between
exception types

Single identifier for
all exception types

F IGURE 11.3   The syntax of a multi-catch block

Handling Exceptions  611

The first line is incorrect because the variable name appears three times. Just because it
happens to be the same variable name doesn’t make it okay. The second line is incorrect
because the variable name again appears three times. Using different variable names doesn’t
make it any better. The third line does compile. It shows the correct syntax for specifying
three exceptions.

Java intends multi-catch to be used for exceptions that aren’t related, and it prevents you
from specifying redundant types in a multi-catch. Do you see what is wrong here?

try {
 throw new IOException();
} catch (FileNotFoundException | IOException p) {} // DOES NOT COMPILE

Specifying related exceptions in the multi-catch is redundant, and the compiler gives a
message such as this:

The exception FileNotFoundException is already caught by the alternative
IOException

Since FileNotFoundException is a subclass of IOException, this code will not com-
pile. A multi-catch block follows rules similar to chaining catch blocks together, which you
saw in the previous section. For example, both trigger compiler errors when they encounter
unreachable code or duplicate exceptions being caught. The one difference between multi-
catch blocks and chaining catch blocks is that order does not matter for a multi-catch block
within a single catch expression.

Getting back to the example, the correct code is just to drop the extraneous subclass ref-
erence, as shown here:

try {
 throw new IOException();
} catch (IOException e) {}

Adding a finally Block
The try statement also lets you run code at the end with a finally clause, regardless of
whether an exception is thrown. Figure 11.4 shows the syntax of a try statement with this
extra functionality.

There are two paths through code with both a catch and a finally. If an exception
is thrown, the finally block is run after the catch block. If no exception is thrown, the
finally block is run after the try block completes.

Let’s go back to our young girl example, this time with finally:

12: void explore() {
13: try {
14: seeAnimals();
15: fall();

612  Chapter 11  ■  Exceptions and Localization

16: } catch (Exception e) {
17: getHugFromDaddy();
18: } finally {
19: seeMoreAnimals();
20: }
21: goHome();
22: }

The girl falls on line 15. If she gets up by herself, the code goes on to the finally block
and runs line 19. Then the try statement is over, and the code proceeds on line 21. If the
girl doesn’t get up by herself, she throws an exception. The catch block runs, and she gets
a hug on line 17. With that hug, she is ready to see more animals on line 19. Then the try
statement is over, and the code proceeds on line 21. Either way, the ending is the same. The
finally block is executed, and execution continues after the try statement.

The exam will try to trick you with missing clauses or clauses in the wrong order. Do you
see why the following do or do not compile?

25: try { // DOES NOT COMPILE
26: fall();
27: } finally {
28: System.out.println("all better");
29: } catch (Exception e) {
30: System.out.println("get up");
31: }
32:
33: try { // DOES NOT COMPILE
34: fall();
35: }

try {

 // Protected code

} catch (exception_type identifier) {

 // Exception handler

} finally {

 // finally block

}

The finally block
always executes,
whether or not an
exception occurs.

The finally keyword

The catch block is optional
when finally is used.

F IGURE 11.4   The syntax of a try statement with finally

Handling Exceptions  613

36:
37: try {
38: fall();
39: } finally {
40: System.out.println("all better");
41: }

The first example (lines 25–31) does not compile because the catch and finally blocks
are in the wrong order. The second example (lines 33–35) does not compile because there
must be a catch or finally block. The third example (lines 37–41) is just fine. The catch
block is not required if finally is present.

Most of the examples you encounter on the exam with finally are going to look contrived.
For example, you’ll get asked questions such as what this code outputs:

public static void main(String[] unused) {
 StringBuilder sb = new StringBuilder();
 try {
 sb.append("t");
 } catch (Exception e) {
 sb.append("c");
 } finally {
 sb.append("f");
 }
 sb.append("a");
 System.out.print(sb.toString());
}

The answer is tfa. The try block is executed. Since no exception is thrown, Java goes
straight to the finally block. Then the code after the try statement is run. We know that
this is a silly example, but you can expect to see examples like this on the exam.

There is one additional rule you should know for finally blocks. If a try statement with a
finally block is entered, then the finally block will always be executed, regardless of whether
the code completes successfully. Take a look at the following goHome() method. Assuming
an exception may or may not be thrown on line 14, what are the possible values that this
method could print? Also, what would the return value be in each case?

12: int goHome() {
13: try {
14: // Optionally throw an exception here
15: System.out.print("1");
16: return -1;
17: } catch (Exception e) {
18: System.out.print("2");
19: return -2;

614  Chapter 11  ■  Exceptions and Localization

20: } finally {
21: System.out.print("3");
22: return -3;
23: }
24: }

If an exception is not thrown on line 14, then line 15 will be executed, printing 1. Before
the method returns, though, the finally block is executed, printing 3. If an exception is
thrown, then lines 15 and 16 will be skipped and lines 17–19 will be executed, printing 2,
followed by 3 from the finally block. While the first value printed may differ, the method
always prints 3 last since it’s in the finally block.

What is the return value of the goHome() method? In this case, it’s always -3. Because
the finally block is executed shortly before the method completes, it interrupts the
return statement from inside both the try and catch blocks.

For the exam, you need to remember that a finally block will always be executed. That
said, it may not complete successfully. Take a look at the following code snippet. What
would happen if info was null on line 32?

31: } finally {
32: info.printDetails();
33: System.out.print("Exiting");
34: return "zoo";
35: }

If info was null, then the finally block would be executed, but it would stop on line
32 and throw a NullPointerException. Lines 33 and 34 would not be executed. In this
example, you see that while a finally block will always be executed, it may not finish.

System.exit()

There is one exception to “the finally block will always be executed” rule: Java defines a
method that you call as System.exit(). It takes an integer parameter that represents the
status code that is returned.

 try {
 System.exit(0);
 } finally {
 System.out.print("Never going to get here"); // Not printed
 }

System.exit() tells Java, “Stop. End the program right now. Do not pass Go. Do not col-
lect $200.” When System.exit() is called in the try or catch block, the finally block
does not run.

Automating Resource Management  615

Automating Resource Management
Often, your application works with files, databases, and various connection objects. Com-
monly, these external data sources are referred to as resources. In many cases, you open
a connection to the resource, whether it’s over the network or within a file system. You
then read/write the data you want. Finally, you close the resource to indicate that you are
done with it.

What happens if you don’t close a resource when you are done with it? In short, a lot
of bad things could happen. If you are connecting to a database, you could use up all
available connections, meaning no one can talk to the database until you release your con-
nections. Although you commonly hear about memory leaks causing programs to fail, a
resource leak is just as bad and occurs when a program fails to release its connections to a
resource, resulting in the resource becoming inaccessible. This could mean your program
can no longer talk to the database—or, even worse, all programs are unable to reach
the database!

For the exam, a resource is typically a file or database that requires some kind of stream
or connection to read or write data. In Chapter 14 and Chapter 15, you create numerous
resources that will need to be closed when you are finished with them.

Introducing Try-with-Resources
Let’s take a look at a method that opens a file, reads the data, and closes it:

4: public void readFile(String file) {
5: FileInputStream is = null;
6: try {
7: is = new FileInputStream("myfile.txt");
8: // Read file data
9: } catch (IOException e) {
10: e.printStackTrace();
11: } finally {
12: if(is != null) {
13: try {
14: is.close();
15: } catch (IOException e2) {
16: e2.printStackTrace();
17: }
18: }
19: }
20: }

616  Chapter 11  ■  Exceptions and Localization

Wow, that’s a long method! Why do we have two try and catch blocks? Well, lines
7 and 14 both include checked IOException calls, and those need to be caught in the
method or rethrown by the method. Half the lines of code in this method are just clos-
ing a resource. And the more resources you have, the longer code like this becomes. For
example, you may have multiple resources that need to be closed in a particular order.
You also don’t want an exception caused by closing one resource to prevent the closing of
another resource.

To solve this, Java includes the try-with-resources statement to automatically close
all resources opened in a try clause. This feature is also known as automatic resource
management, because Java automatically takes care of the closing.

Let’s take a look at our same example using a try-with-resources statement:

4: public void readFile(String file) {
5: try (FileInputStream is = new FileInputStream("myfile.txt")) {
6: // Read file data
7: } catch (IOException e) {
8: e.printStackTrace();
9: }
10: }

Functionally, they are similar, but our new version has half as many lines. More impor-
tantly, though, by using a try-with-resources statement, we guarantee that as soon as a con-
nection passes out of scope, Java will attempt to close it within the same method.

Behind the scenes, the compiler replaces a try-with-resources block with a try and finally
block. We refer to this “hidden” finally block as an implicit finally block since it is created
and used by the compiler automatically. You can still create a programmer-defined finally
block when using a try-with-resources statement; just be aware that the implicit one will be
called first.

Unlike garbage collection, resources are not automatically closed when
they go out of scope. Therefore, it is recommended that you close
resources in the same block of code that opens them. By using a try-with-
resources statement to open all your resources, this happens automatically.

Basics of Try-with-Resources
Figure 11.5 shows what a try-with-resources statement looks like. Notice that one or more
resources can be opened in the try clause. When multiple resources are opened, they are
closed in the reverse of the order in which they were created. Also, notice that parentheses
are used to list those resources, and semicolons are used to separate the declarations. This
works just like declaring multiple indexes in a for loop.

Automating Resource Management  617

What happened to the catch block in Figure 11.5? Well, it turns out a catch block
is optional with a try-with-resources statement. For example, we can rewrite the previous
readFile() example so that the method declares the exception to make it even shorter:

4: public void readFile(String file) throws IOException {
5: try (FileInputStream is = new FileInputStream("myfile.txt")) {
6: // Read file data
7: }
8: }

Earlier in the chapter, you learned that a try statement must have one or more catch
blocks or a finally block. A try-with-resources statement differs from a try statement in
that neither of these is required, although a developer may add both. For the exam, you need
to know that the implicit finally block runs before any programmer-coded ones.

Constructing Try-with-Resources Statements
Only classes that implement the AutoCloseable interface can be used in a try-with-resources
statement. For example, the following does not compile as String does not implement the
AutoCloseable interface:

try (String reptile = "lizard") {}

Inheriting AutoCloseable requires implementing a compatible close() method.

interface AutoCloseable {
 public void close() throws Exception;
}

From your studies of method overriding, this means that the implemented version of
close() can choose to throw Exception or a subclass or not throw any exceptions at all.

Resources

Resources are
closed here in
reverse order.

try (var in = new FileInputStream("data.txt");
 var out = new FileOutputStream("output.txt");) {

 // Protected code

} catch (IOException e) {

 // Exception handler

} finally {

 // finally block

}

Optional catch and
finally clauses

Required semicolon
between resources

Optional semicolon

F IGURE 11.5   The syntax of a basic try-with-resources statement

618  Chapter 11  ■  Exceptions and Localization

Throughout the rest of this section, we use the following custom resource class that
simply prints a message when the close() method is called:

public class MyFileClass implements AutoCloseable {
 private final int num;
 public MyFileClass(int num) { this.num = num; }
 @Override public void close() {
 System.out.println("Closing: " + num);
 } }

In Chapter 14, you encounter resources that implement
Closeable rather than AutoCloseable. Since Closeable extends
AutoCloseable, they are both supported in try-with-resources state-
ments. The only difference between the two is that Closeable’s
close() method declares IOException, while AutoCloseable’s
close() method declares Exception.

Declaring Resources
While try-with-resources does support declaring multiple variables, each variable must be
declared in a separate statement. For example, the following do not compile:

try (MyFileClass is = new MyFileClass(1), // DOES NOT COMPILE
 os = new MyFileClass(2)) {
}

try (MyFileClass ab = new MyFileClass(1), // DOES NOT COMPILE
 MyFileClass cd = new MyFileClass(2)) {
}

The first example does not compile because it is missing the data type, and it uses a
comma (,) instead of a semicolon (;). The second example does not compile because it also
uses a comma (,) instead of a semicolon (;). Each resource must include the data type and
be separated by a semicolon (;).

You can declare a resource using var as the data type in a try-with-resources statement,
since resources are local variables.

try (var f = new BufferedInputStream(new FileInputStream("it.txt"))) {
 // Process file
}

Declaring resources is a common situation where using var is quite helpful, as it shortens
the already long line of code.

Automating Resource Management  619

Scope of Try-with-Resources
The resources created in the try clause are in scope only within the try block. This is another
way to remember that the implicit finally runs before any catch/finally blocks that you code
yourself. The implicit close has run already, and the resource is no longer available. Do you
see why lines 6 and 8 don’t compile in this example?

3: try (Scanner s = new Scanner(System.in)) {
4: s.nextLine();
5: } catch(Exception e) {
6: s.nextInt(); // DOES NOT COMPILE
7: } finally {
8: s.nextInt(); // DOES NOT COMPILE
9: }

The problem is that Scanner has gone out of scope at the end of the try clause. Lines 6
and 8 do not have access to it. This is a nice feature. You can’t accidentally use an object that
has been closed. In a traditional try statement, the variable has to be declared before the try
statement so that both the try and finally blocks can access it, which has the unpleasant
side effect of making the variable in scope for the rest of the method, just inviting you to call it
by accident.

Following Order of Operations
When working with try-with-resources statements, it is important to know that resources
are closed in the reverse of the order in which they are created. Using our custom MyFileClass,
can you figure out what this method prints?

public static void main(String... xyz) {
 try (MyFileClass bookReader = new MyFileClass(1);
 MyFileClass movieReader = new MyFileClass(2)) {
 System.out.println("Try Block");
 throw new RuntimeException();
 } catch (Exception e) {
 System.out.println("Catch Block");
 } finally {
 System.out.println("Finally Block");
 }
}

The output is as follows:

Try Block
Closing: 2
Closing: 1
Catch Block
Finally Block

620  Chapter 11  ■  Exceptions and Localization

For the exam, make sure you understand why the method prints the statements in this
order. Remember, the resources are closed in the reverse of the order in which they are
declared, and the implicit finally is executed before the programmer-defined finally.

Applying Effectively Final
While resources are often created in the try-with-resources statement, it is possible to declare
them ahead of time, provided they are marked final or effectively final. The syntax uses the
resource name in place of the resource declaration, separated by a semicolon (;). Let’s try
another example:

11: public static void main(String... xyz) {
12: final var bookReader = new MyFileClass(4);
13: MyFileClass movieReader = new MyFileClass(5);
14: try (bookReader;
15: var tvReader = new MyFileClass(6);
16: movieReader) {
17: System.out.println("Try Block");
18: } finally {
19: System.out.println("Finally Block");
20: }
21: }

Let’s take this one line at a time. Line 12 declares a final variable bookReader, while
line 13 declares an effectively final variable movieReader. Both of these resources can be
used in a try-with-resources statement. We know movieReader is effectively final because it
is a local variable that is assigned a value only once. Remember, the test for effectively final is
that if we insert the final keyword when the variable is declared, the code still compiles.

Lines 14 and 16 use the new syntax to declare resources in a try-with-resources statement,
using just the variable name and separating the resources with a semicolon (;). Line 15 uses
the normal syntax for declaring a new resource within the try clause.

On execution, the code prints the following:

Try Block
Closing: 5
Closing: 6
Closing: 4
Finally Block

If you come across a question on the exam that uses a try-with-resources statement with a
variable not declared in the try clause, make sure it is effectively final. For example, the fol-
lowing does not compile:

31: var writer = Files.newBufferedWriter(path);
32: try (writer) { // DOES NOT COMPILE

Automating Resource Management  621

33: writer.append("Welcome to the zoo!");
34: }
35: writer = null;

The writer variable is reassigned on line 35, resulting in the compiler not considering
it effectively final. Since it is not an effectively final variable, it cannot be used in a try-with-
resources statement on line 32.

The other place the exam might try to trick you is accessing a resource after it has been
closed. Consider the following:

41: var writer = Files.newBufferedWriter(path);
42: writer.append("This write is permitted but a really bad idea!");
43: try (writer) {
44: writer.append("Welcome to the zoo!");
45: }
46: writer.append("This write will fail!"); // IOException

This code compiles but throws an exception on line 46 with the message Stream
closed. While it is possible to write to the resource before the try-with-resources statement,
it is not afterward.

Understanding Suppressed Exceptions
We conclude our discussion of exceptions with probably the most confusing topic: sup-
pressed exceptions. What happens if the close() method throws an exception? Let’s try an
illustrative example:

public class TurkeyCage implements AutoCloseable {
 public void close() {
 System.out.println("Close gate");
 }
 public static void main(String[] args) {
 try (var t = new TurkeyCage()) {
 System.out.println("Put turkeys in");
 }
 }
}

If the TurkeyCage doesn’t close, the turkeys could all escape. Clearly, we need to handle
such a condition. We already know that the resources are closed before any programmer-
coded catch blocks are run. This means we can catch the exception thrown by close() if
we want to. Alternatively, we can allow the caller to deal with it.

622  Chapter 11  ■  Exceptions and Localization

Let’s expand our example with a new JammedTurkeyCage implementation, shown here:

1: public class JammedTurkeyCage implements AutoCloseable {
2: public void close() throws IllegalStateException {
3: throw new IllegalStateException("Cage door does not close");
4: }
5: public static void main(String[] args) {
6: try (JammedTurkeyCage t = new JammedTurkeyCage()) {
7: System.out.println("Put turkeys in");
8: } catch (IllegalStateException e) {
9: System.out.println("Caught: " + e.getMessage());
10: }
11: }
12: }

The close() method is automatically called by try-with-resources. It throws an
exception, which is caught by our catch block and prints the following:

Caught: Cage door does not close

This seems reasonable enough. What happens if the try block also throws an exception?
When multiple exceptions are thrown, all but the first are called suppressed exceptions. The
idea is that Java treats the first exception as the primary one and tacks on any that come up
while automatically closing.

What do you think the following implementation of our main() method outputs?

5: public static void main(String[] args) {
6: try (JammedTurkeyCage t = new JammedTurkeyCage()) {
7: throw new IllegalStateException("Turkeys ran off");
8: } catch (IllegalStateException e) {
9: System.out.println("Caught: " + e.getMessage());
10: for (Throwable t: e.getSuppressed())
11: System.out.println("Suppressed: "+t.getMessage());
12: }
13: }

Line 7 throws the primary exception. At this point, the try clause ends, and
Java automatically calls the close() method. Line 3 of JammedTurkeyCage throws an
IllegalStateException, which is added as a suppressed exception. Then line 8 catches
the primary exception. Line 9 prints the message for the primary exception. Lines 10 and
11 iterate through any suppressed exceptions and print them. The program prints the
following:

Caught: Turkeys ran off
Suppressed: Cage door does not close

Automating Resource Management  623

Keep in mind that the catch block looks for matches on the primary exception. What do
you think this code prints?

5: public static void main(String[] args) {
6: try (JammedTurkeyCage t = new JammedTurkeyCage()) {
7: throw new RuntimeException("Turkeys ran off");
8: } catch (IllegalStateException e) {
9: System.out.println("caught: " + e.getMessage());
10: }
11: }

Line 7 again throws the primary exception. Java calls the close() method and adds a
suppressed exception. Line 8 would catch the IllegalStateException. However, we
don’t have one of those. The primary exception is a RuntimeException. Since this does
not match the catch clause, the exception is thrown to the caller. Eventually, the main()
method would output something like the following:

Exception in thread "main" java.lang.RuntimeException: Turkeys ran off
 at JammedTurkeyCage.main(JammedTurkeyCage.java:7)
 Suppressed: java.lang.IllegalStateException:
 Cage door does not close
 at JammedTurkeyCage.close(JammedTurkeyCage.java:3)
 at JammedTurkeyCage.main(JammedTurkeyCage.java:8)

Java remembers the suppressed exceptions that go with a primary exception even if we
don’t handle them in the code.

If more than two resources throw an exception, the first one to be thrown
becomes the primary exception, and the rest are grouped as suppressed
exceptions. And since resources are closed in the reverse of the order
in which they are declared, the primary exception will be on the last
declared resource that throws an exception.

Keep in mind that suppressed exceptions apply only to exceptions thrown in the try
clause. The following example does not throw a suppressed exception:

5: public static void main(String[] args) {
6: try (JammedTurkeyCage t = new JammedTurkeyCage()) {
7: throw new IllegalStateException("Turkeys ran off");
8: } finally {
9: throw new RuntimeException("and we couldn't find them");
10: }
11: }

Line 7 throws an exception. Then Java tries to close the resource and adds a suppressed
exception to it. Now we have a problem. The finally block runs after all this. Since line 9

624  Chapter 11  ■  Exceptions and Localization

also throws an exception, the previous exception from line 7 is lost, with the code printing
the following:

Exception in thread "main" java.lang.RuntimeException:
 and we couldn't find them
 at JammedTurkeyCage.main(JammedTurkeyCage.java:9)

This has always been and continues to be bad programming practice. We don’t want to lose
exceptions! Although out of scope for the exam, the reason for this has to do with backward
compatibility. This behavior existed before automatic resource management was added.

Formatting Values
We now shift gears a bit and talk about how to format data for users. In this section, we’re
going to be working with numbers, dates, and times. This is especially important in the next
section when we expand customization to different languages and locales. You may want to
review Chapter 4, “Core APIs,” if you need a refresher on creating various date/time objects.

Formatting Numbers
In Chapter 4, you saw how to control the output of a number using the String.format()
method. That’s useful for simple stuff, but sometimes you need finer-grained control. With
that, we introduce the NumberFormat interface, which has two commonly used methods:

public final String format(double number)
public final String format(long number)

Since NumberFormat is an interface, we need the concrete DecimalFormat class to use
it. It includes a constructor that takes a pattern String:

public DecimalFormat(String pattern)

The patterns can get quite complex. But luckily, for the exam you only need to know
about two formatting characters, shown in Table 11.5.

TABLE 11.5   DecimalFormat symbols

Symbol Meaning Examples

Omit position if no digit exists for it. $2.2

0 Put 0 in position if no digit exists for it. $002.20

Formatting Values  625

These examples should help illuminate how these symbols work:

12: double d = 1234.567;
13: NumberFormat f1 = new DecimalFormat("###,###,###.0");
14: System.out.println(f1.format(d)); // 1,234.6
15:
16: NumberFormat f2 = new DecimalFormat("000,000,000.00000");
17: System.out.println(f2.format(d)); // 000,001,234.56700
18:
19: NumberFormat f3 = new DecimalFormat("Your Balance $#,###,###.##");
20: System.out.println(f3.format(d)); // Your Balance $1,234.57

Line 14 displays the digits in the number, rounding to the nearest 10th after the decimal.
The extra positions to the left are omitted because we used #. Line 17 adds leading and
trailing zeros to make the output the desired length. Line 20 shows prefixing a nonformat-
ting character along with rounding because fewer digits are printed than available. Notice
that the commas are automatically removed if they are used between # symbols.

As you see in the localization section, there’s a second concrete class that inherits
NumberFormat that you’ll need to know for the exam.

Formatting Dates and Times
The date and time classes support many methods to get data out of them.

LocalDate date = LocalDate.of(2022, Month.OCTOBER, 20);
System.out.println(date.getDayOfWeek()); // THURSDAY
System.out.println(date.getMonth()); // OCTOBER
System.out.println(date.getYear()); // 2022
System.out.println(date.getDayOfYear()); // 293

Java provides a class called DateTimeFormatter to display standard formats.

LocalDate date = LocalDate.of(2022, Month.OCTOBER, 20);
LocalTime time = LocalTime.of(11, 12, 34);
LocalDateTime dt = LocalDateTime.of(date, time);

System.out.println(date.format(DateTimeFormatter.ISO_LOCAL_DATE));
System.out.println(time.format(DateTimeFormatter.ISO_LOCAL_TIME));
System.out.println(dt.format(DateTimeFormatter.ISO_LOCAL_DATE_TIME));

The code snippet prints the following:

2022-10-20
11:12:34
2022-10-20T11:12:34

626  Chapter 11  ■  Exceptions and Localization

The DateTimeFormatter will throw an exception if it encounters an incompatible type.
For example, each of the following will produce an exception at runtime since it attempts to
format a date with a time value, and vice versa:

date.format(DateTimeFormatter.ISO_LOCAL_TIME); // RuntimeException
time.format(DateTimeFormatter.ISO_LOCAL_DATE); // RuntimeException

Customizing the Date/Time Format
If you don’t want to use one of the predefined formats, DateTimeFormatter supports a
custom format using a date format String.

var f = DateTimeFormatter.ofPattern("MMMM dd, yyyy 'at' hh:mm");
System.out.println(dt.format(f)); // October 20, 2022 at 11:12

Let’s break this down a bit. Java assigns each letter or symbol a specific date/time part.
For example, M is used for month, while y is used for year. And case matters! Using m instead
of M means it will return the minute of the hour, not the month of the year.

What about the number of symbols? The number often dictates the format of the date/time
part. Using M by itself outputs the minimum number of characters for a month, such as 1 for
January, while using MM always outputs two digits, such as 01. Furthermore, using MMM prints
the three-letter abbreviation, such as Jul for July, while MMMM prints the full month name.

It’s possible, albeit unlikely, to come across questions on the exam
that use SimpleDateFormat rather than the more useful
DateTimeFormatter. If you do see it on the exam used with an older
java.util.Date object, just know that the custom formats that are likely
to appear on the exam will be compatible with both.

Learning the Standard Date/Time Symbols
For the exam, you should be familiar enough with the various symbols that you can look at
a date/time String and have a good idea of what the output will be. Table 11.6 includes the
symbols you should be familiar with for the exam.

TABLE 11.6   Common date/time symbols

Symbol Meaning Examples

y Year 22, 2022

M Month 1, 01, Jan, January

d Day 5, 05

Formatting Values  627

Let’s try some examples. What do you think the following prints?

var dt = LocalDateTime.of(2022, Month.OCTOBER, 20, 6, 15, 30);

var formatter1 = DateTimeFormatter.ofPattern("MM/dd/yyyy hh:mm:ss");
System.out.println(dt.format(formatter1)); // 10/20/2022 06:15:30

var formatter2 = DateTimeFormatter.ofPattern("MM_yyyy_-_dd");
System.out.println(dt.format(formatter2)); // 10_2022_-_20

var formatter3 = DateTimeFormatter.ofPattern("h:mm z");
System.out.println(dt.format(formatter3)); // DateTimeException

The first example prints the date, with the month before the day, followed by the time.
The second example prints the date in a weird format with extra characters that are just dis-
played as part of the output.

The third example throws an exception at runtime because the underlying
LocalDateTime does not have a time zone specified. If ZonedDateTime were used instead,
the code would complete successfully and print something like 06:15 EDT, depending on
the time zone.

As you saw in the previous example, you need to make sure the format String is com-
patible with the underlying date/time type. Table 11.7 shows which symbols you can use
with each of the date/time objects.

Make sure you know which symbols are compatible with which date/time types. For
example, trying to format a month for a LocalTime or an hour for a LocalDate will result
in a runtime exception.

Symbol Meaning Examples

h Hour 9, 09

m Minute 45

S Second 52

a a.m./p.m. AM, PM

z Time zone name Eastern Standard Time, EST

Z Time zone offset -0400

628  Chapter 11  ■  Exceptions and Localization

Selecting a format() Method
The date/time classes contain a format() method that will take a formatter, while the for-
matter classes contain a format() method that will take a date/time value. The result is that
either of the following is acceptable:

var dateTime = LocalDateTime.of(2022, Month.OCTOBER, 20, 6, 15, 30);
var formatter = DateTimeFormatter.ofPattern("MM/dd/yyyy hh:mm:ss");

System.out.println(dateTime.format(formatter)); // 10/20/2022 06:15:30
System.out.println(formatter.format(dateTime)); // 10/20/2022 06:15:30

These statements print the same value at runtime. Which syntax you use is up to you.

Adding Custom Text Values
What if you want your format to include some custom text values? If you just type them as part
of the format String, the formatter will interpret each character as a date/time symbol. In the
best case, it will display weird data based on extra symbols you enter. In the worst case, it will
throw an exception because the characters contain invalid symbols. Neither is desirable!

One way to address this would be to break the formatter into multiple smaller formatters
and then concatenate the results.

var dt = LocalDateTime.of(2022, Month.OCTOBER, 20, 6, 15, 30);

TABLE 11.7   Supported date/time symbols

Symbol LocalDate LocalTime LocalDateTime ZonedDateTime

y √ √ √

M √ √ √

d √ √ √

h √ √ √

m √ √ √

s √ √ √

a √ √ √

z √

Z √

Supporting Internationalization and Localization  629

var f1 = DateTimeFormatter.ofPattern("MMMM dd, yyyy ");
var f2 = DateTimeFormatter.ofPattern(" hh:mm");
System.out.println(dt.format(f1) + "at" + dt.format(f2));

This prints October 20, 2022 at 06:15 at runtime.
While this works, it could become difficult if a lot of text values and date symbols are

intermixed. Luckily, Java includes a much simpler solution. You can escape the text by sur-
rounding it with a pair of single quotes ('). Escaping text instructs the formatter to ignore
the values inside the single quotes and just insert them as part of the final value.

var f = DateTimeFormatter.ofPattern("MMMM dd, yyyy 'at' hh:mm");
System.out.println(dt.format(f)); // October 20, 2022 at 06:15

But what if you need to display a single quote in the output, too? Welcome to the fun of
escaping characters! Java supports this by putting two single quotes next to each other.

We conclude our discussion of date formatting with some examples of formats and their
output that rely on text values, shown here:

var g1 = DateTimeFormatter.ofPattern("MMMM dd', Party''s at' hh:mm");
System.out.println(dt.format(g1)); // October 20, Party's at 06:15

var g2 = DateTimeFormatter.ofPattern("'System format, hh:mm: 'hh:mm");
System.out.println(dt.format(g2)); // System format, hh:mm: 06:15

var g3 = DateTimeFormatter.ofPattern("'NEW! 'yyyy', yay!'");
System.out.println(dt.format(g3)); // NEW! 2022, yay!

If you don’t escape the text values with single quotes, an exception will be thrown at run-
time if the text cannot be interpreted as a date/time symbol.

DateTimeFormatter.ofPattern("The time is hh:mm"); // Exception thrown

This line throws an exception since T is an unknown symbol. The exam might also pre-
sent you with an incomplete escape sequence.

DateTimeFormatter.ofPattern("'Time is: hh:mm: "); // Exception thrown

Failure to terminate an escape sequence will trigger an exception at runtime.

Supporting Internationalization and
Localization
Many applications need to work in different countries and with different languages. For
example, consider the sentence “The zoo is holding a special event on 4/1/22 to look at
animal behaviors.” When is the event? In the United States, it is on April 1. However, a
British reader would interpret this as January 4. A British reader might also wonder why we

630  Chapter 11  ■  Exceptions and Localization

didn’t write “behaviours.” If we are making a website or program that will be used in mul-
tiple countries, we want to use the correct language and formatting.

Internationalization is the process of designing your program so it can be adapted. This
involves placing strings in a properties file and ensuring that the proper data formatters are
used. Localization means supporting multiple locales or geographic regions. You can think
of a locale as being like a language and country pairing. Localization includes translating
strings to different languages. It also includes outputting dates and numbers in the correct
format for that locale.

Initially, your program does not need to support multiple locales. The key
is to future-proof your application by using these techniques. This way,
when your product becomes successful, you can add support for new
languages or regions without rewriting everything.

In this section, we look at how to define a locale and use it to format dates, numbers,
and strings.

Picking a Locale
While Oracle defines a locale as “a specific geographical, political, or cultural region,” you’ll
only see languages and countries on the exam. Oracle certainly isn’t going to delve into
political regions that are not countries. That’s too controversial for an exam!

The Locale class is in the java.util package. The first useful Locale to find is the
user’s current locale. Try running the following code on your computer:

Locale locale = Locale.getDefault();
System.out.println(locale);

When we run it, it prints en_US. It might be different for you. This default output tells us
that our computers are using English and are sitting in the United States.

Notice the format. First comes the lowercase language code. The language is always
required. Then comes an underscore followed by the uppercase country code. The country
is optional. Figure 11.6 shows the two formats for Locale objects that you are expected
to remember.

fr en_US

Lowercase
language

code

Uppercase
country

code

Lowercase
language

code

Locale
(language)

Locale
(language, country)

F IGURE 11.6   Locale formats

Supporting Internationalization and Localization  631

As practice, make sure that you understand why each of these Locale identifiers
is invalid:

US // Cannot have country without language
enUS // Missing underscore
US_en // The country and language are reversed
EN // Language must be lowercase

The corrected versions are en and en_US.

You do not need to memorize language or country codes. The exam will
let you know about any that are being used. You do need to recognize
valid and invalid formats. Pay attention to uppercase/lowercase and the
underscore. For example, if you see a locale expressed as es_CO, then
you should know that the language is es and the country is CO, even if
you didn’t know that they represent Spanish and Colombia, respectively.

As a developer, you often need to write code that selects a locale other than the default
one. There are three common ways of doing this. The first is to use the built-in constants in
the Locale class, available for some common locales.

System.out.println(Locale.GERMAN); // de
System.out.println(Locale.GERMANY); // de_DE

The first example selects the German language, which is spoken in many countries,
including Austria (de_AT) and Liechtenstein (de_LI). The second example selects both
German the language and Germany the country. While these examples may look similar, they
are not the same. Only one includes a country code.

The second way of selecting a Locale is to use the constructors to create a new object. You
can pass just a language, or both a language and country:

System.out.println(new Locale("fr")); // fr
System.out.println(new Locale("hi", "IN")); // hi_IN

The first is the language French, and the second is Hindi in India. Again, you don’t need
to memorize the codes. There is another constructor that lets you be even more specific
about the locale. Luckily, providing a variant value is not on the exam.

Java will let you create a Locale with an invalid language or country, such as xx_XX.
However, it will not match the Locale that you want to use, and your program will not
behave as expected.

There’s a third way to create a Locale that is more flexible. The builder design pattern
lets you set all of the properties that you care about and then build the Locale at the end.
This means that you can specify the properties in any order. The following two Locale
values both represent en_US:

Locale l1 = new Locale.Builder()
 .setLanguage("en")

632  Chapter 11  ■  Exceptions and Localization

 .setRegion("US")
 .build();

Locale l2 = new Locale.Builder()
 .setRegion("US")
 .setLanguage("en")
 .build();

When testing a program, you might need to use a Locale other than your comput-
er’s default.

System.out.println(Locale.getDefault()); // en_US
Locale locale = new Locale("fr");
Locale.setDefault(locale);
System.out.println(Locale.getDefault()); // fr

Try it, and don’t worry—the Locale changes for only that one Java program. It does
not change any settings on your computer. It does not even change future executions of the
same program.

The exam may use setDefault() because it can’t make assumptions
about where you are located. In practice, we rarely write code to change
a user’s default locale.

Localizing Numbers
It might surprise you that formatting or parsing currency and number values can change
depending on your locale. For example, in the United States, the dollar sign is prepended
before the value along with a decimal point for values less than one dollar, such as $2.15. In
Germany, though, the euro symbol is appended to the value along with a comma for values
less than one euro, such as 2,15 €.

Luckily, the java.text package includes classes to save the day. The following sections
cover how to format numbers, currency, and dates based on the locale.

The first step to formatting or parsing data is the same: obtain an instance of a
NumberFormat. Table 11.8 shows the available factory methods.

Once you have the NumberFormat instance, you can call format() to turn a number into a
String, or you can use parse() to turn a String into a number.

The format classes are not thread-safe. Do not store them in instance
variables or static variables. You learn more about thread safety in
Chapter 13, “Concurrency.”

Supporting Internationalization and Localization  633

Formatting Numbers
When we format data, we convert it from a structured object or primitive value into a
String. The NumberFormat.format() method formats the given number based on the
locale associated with the NumberFormat object.

Let’s go back to our zoo for a minute. For marketing literature, we want to share the
average monthly number of visitors to the San Diego Zoo. The following shows printing out
the same number in three different locales:

int attendeesPerYear = 3_200_000;
int attendeesPerMonth = attendeesPerYear / 12;

var us = NumberFormat.getInstance(Locale.US);
System.out.println(us.format(attendeesPerMonth)); // 266,666

var gr = NumberFormat.getInstance(Locale.GERMANY);
System.out.println(gr.format(attendeesPerMonth)); // 266.666

var ca = NumberFormat.getInstance(Locale.CANADA_FRENCH);
System.out.println(ca.format(attendeesPerMonth)); // 266 666

TABLE 11.8   Factory methods to get a NumberFormat

Description Using default Locale and a specified Locale

General-purpose formatter NumberFormat.getInstance()
NumberFormat.getInstance(Locale locale)

Same as getInstance NumberFormat.getNumberInstance()
NumberFormat.getNumberInstance(Locale locale)

For formatting monetary
amounts

NumberFormat.getCurrencyInstance()
NumberFormat.getCurrencyInstance(Locale locale)

For formatting
percentages

NumberFormat.getPercentInstance()
NumberFormat.getPercentInstance(Locale locale)

Rounds decimal values
before displaying

NumberFormat.getIntegerInstance()
NumberFormat.getIntegerInstance(Locale locale)

Returns compact number
formatter

NumberFormat.getCompactNumberInstance()
NumberFormat.getCompactNumberInstance(
Locale locale, NumberFormat.Style formatStyle)

634  Chapter 11  ■  Exceptions and Localization

This shows how our U.S., German, and French Canadian guests can all see the same
information in the number format they are accustomed to using. In practice, we would
just call NumberFormat.getInstance() and rely on the user’s default locale to format
the output.

Formatting currency works the same way.

double price = 48;
var myLocale = NumberFormat.getCurrencyInstance();
System.out.println(myLocale.format(price));

When run with the default locale of en_US for the United States, this code outputs
$48.00. On the other hand, when run with the default locale of en_GB for Great Britain, it
outputs £48.00.

In the real world, use int or BigDecimal for money and not double.
Doing math on amounts with double is dangerous because the values
are stored as floating-point numbers. Your boss won’t appreciate it if you
lose pennies or fractions of pennies during transactions!

Finally, the exam may have examples that show formatting percentages:

double successRate = 0.802;
var us = NumberFormat.getPercentInstance(Locale.US);
System.out.println(us.format(successRate)); // 80%

var gr = NumberFormat.getPercentInstance(Locale.GERMANY);
System.out.println(gr.format(successRate)); // 80 %

Not much difference, we know, but you should at least be aware that the ability to print a
percentage is locale-specific for the exam!

Parsing Numbers
When we parse data, we convert it from a String to a structured object or primitive
value. The NumberFormat.parse() method accomplishes this and takes the locale into
consideration.

For example, if the locale is the English/United States (en_US) and the number contains
commas, the commas are treated as formatting symbols. If the locale relates to a country or
language that uses commas as a decimal separator, the comma is treated as a decimal point.

The parse() method, found in various types, declares a checked
exception ParseException that must be handled or declared in the
method in which it is called.

Supporting Internationalization and Localization  635

Let’s look at an example. The following code parses a discounted ticket price with dif-
ferent locales. The parse() method throws a checked ParseException, so make sure to
handle or declare it in your own code.

String s = "40.45";

var en = NumberFormat.getInstance(Locale.US);
System.out.println(en.parse(s)); // 40.45

var fr = NumberFormat.getInstance(Locale.FRANCE);
System.out.println(fr.parse(s)); // 40

In the United States, a dot (.) is part of a number, and the number is parsed as you might
expect. France does not use a decimal point to separate numbers. Java parses it as a format-
ting character, and it stops looking at the rest of the number. The lesson is to make sure that
you parse using the right locale!

The parse() method is also used for parsing currency. For example, we can read in the
zoo’s monthly income from ticket sales:

String income = "$92,807.99";
var cf = NumberFormat.getCurrencyInstance();
double value = (Double) cf.parse(income);
System.out.println(value); // 92807.99

The currency string "$92,807.99" contains a dollar sign and a comma. The parse
method strips out the characters and converts the value to a number. The return value of
parse is a Number object. Number is the parent class of all the java.lang wrapper classes,
so the return value can be cast to its appropriate data type. The Number is cast to a Double
and then automatically unboxed into a double.

Formatting with CompactNumberFormat
The second class that inherits NumberFormat that you need to know for the exam is
CompactNumberFormat. It is new to the Java 17 exam, so you’re likely to see a
question on it!

CompactNumberFormat is similar to DecimalFormat, but it is designed to be used in places
where print space may be limited. It is opinionated in the sense that it picks a format for
you, and locale-specific in that output can change depending on your location.

Consider the following sample code that applies a CompactNumberFormat five times to
two locales, using a static import for Style (an enum with value SHORT or LONG):

var formatters = Stream.of(
 NumberFormat.getCompactNumberInstance(),
 NumberFormat.getCompactNumberInstance(Locale.getDefault(), Style.SHORT),
 NumberFormat.getCompactNumberInstance(Locale.getDefault(), Style.LONG),

636  Chapter 11  ■  Exceptions and Localization

 NumberFormat.getCompactNumberInstance(Locale.GERMAN, Style.SHORT),
 NumberFormat.getCompactNumberInstance(Locale.GERMAN, Style.LONG),
 NumberFormat.getNumberInstance());

formatters.map(s -> s.format(7_123_456)).forEach(System.out::println);

The following is printed by this code when run in the en_US locale (line breaks added for
readability):

7M
7M
7 million

7 Mio.
7 Millionen

7,123,456

Notice that the first two lines are the same. If you don’t specify a style, SHORT is used
by default. Next, notice that the values except the last one (which doesn’t use a compact
number formatter) are truncated. There’s a reason it’s called a compact number formatter!
Also, notice that the short form uses common labels for large values, such as K for thou-
sand. Last but not least, the output may differ for you when you run this, as it was run in an
en_US locale.

Using the same formatters, let’s try another example:

formatters.map(s -> s.format(314_900_000)).forEach(System.out::println);

This prints the following when run in the en_US locale:

315M
315M
315 million

315 Mio.
315 Millionen

314,900,000

Notice that the third digit is automatically rounded up for the entries that use a
CompactNumberFormat. The following summarizes the rules for CompactNumberFormat:

■■ First it determines the highest range for the number, such as thousand (K), million (M),
billion (B), or trillion (T).

■■ It then returns up to the first three digits of that range, rounding the last digit as needed.

■■ Finally, it prints an identifier. If SHORT is used, a symbol is returned. If LONG is used, a
space followed by a word is returned.

Supporting Internationalization and Localization  637

For the exam, make sure you understand the difference between the SHORT and LONG for-
mats and common symbols like M for million.

Localizing Dates
Like numbers, date formats can vary by locale. Table 11.9 shows methods used to retrieve an
instance of a DateTimeFormatter using the default locale.

Each method in the table takes a FormatStyle parameter (or two) with possible values
SHORT, MEDIUM, LONG, and FULL. For the exam, you are not required to know the format of
each of these styles.

What if you need a formatter for a specific locale? Easy enough—just append
withLocale(locale) to the method call.

Let’s put it all together. Take a look at the following code snippet, which relies on a
static import for the java.time.format.FormatStyle.SHORT value:

public static void print(DateTimeFormatter dtf,
 LocalDateTime dateTime, Locale locale) {
 System.out.println(dtf.format(dateTime) + " --- "
 + dtf.withLocale(locale).format(dateTime));
}
public static void main(String[] args) {
 Locale.setDefault(new Locale("en", "US"));
 var italy = new Locale("it", "IT");
 var dt = LocalDateTime.of(2022, Month.OCTOBER, 20, 15, 12, 34);

TABLE 11.9   Factory methods to get a DateTimeFormatter

Description Using default Locale

For formatting dates DateTimeFormatter.ofLocalizedDate(FormatStyle
dateStyle)

For formatting times DateTimeFormatter.ofLocalizedTime(FormatStyle
timeStyle)

For formatting dates and
times

DateTimeFormatter.ofLocalizedDateTime
(FormatStyle dateStyle,
 FormatStyle timeStyle)
DateTimeFormatter.ofLocalizedDateTime
(FormatStyle dateTimeStyle)

638  Chapter 11  ■  Exceptions and Localization

 // 10/20/22 --- 20/10/22
 print(DateTimeFormatter.ofLocalizedDate(SHORT),dt,italy);

 // 3:12 PM --- 15:12
 print(DateTimeFormatter.ofLocalizedTime(SHORT),dt,italy);

 // 10/20/22, 3:12 PM --- 20/10/22, 15:12
 print(DateTimeFormatter.ofLocalizedDateTime(SHORT,SHORT),dt,italy);
}

First we establish en_US as the default locale, with it_IT as the requested locale. We
then output each value using the two locales. As you can see, applying a locale has a big
impact on the built-in date and time formatters.

Specifying a Locale Category
When you call Locale.setDefault() with a locale, several display and formatting
options are internally selected. If you require finer-grained control of the default locale,
Java subdivides the underlying formatting options into distinct categories with the
Locale.Category enum.

The Locale.Category enum is a nested element in Locale that supports distinct
locales for displaying and formatting data. For the exam, you should be familiar with the
two enum values in Table 11.10.

When you call Locale.setDefault() with a locale, the DISPLAY and FORMAT are set
together. Let’s take a look at an example:

10: public static void printCurrency(Locale locale, double money) {
11: System.out.println(
12: NumberFormat.getCurrencyInstance().format(money)
13: + ", " + locale.getDisplayLanguage());
14: }
15: public static void main(String[] args) {
16: var spain = new Locale("es", "ES");
17: var money = 1.23;

TABLE 11.10   Locale.Category values

Value Description

DISPLAY Category used for displaying data about locale

FORMAT Category used for formatting dates, numbers, or currencies

Loading Properties with Resource Bundles  639

18:
19: // Print with default locale
20: Locale.setDefault(new Locale("en", "US"));
21: printCurrency(spain, money); // $1.23, Spanish
22:
23: // Print with selected locale display
24: Locale.setDefault(Category.DISPLAY, spain);
25: printCurrency(spain, money); // $1.23, español
26:
27: // Print with selected locale format
28: Locale.setDefault(Category.FORMAT, spain);
29: printCurrency(spain, money); // 1,23 €, español
30: }

The code prints the same data three times. First it prints the language of the spain and
money variables using the locale en_US. Then it prints it using the DISPLAY category of
es_ES, while the FORMAT category remains en_US. Finally, it prints the data using both cate-
gories set to es_ES.

For the exam, you do not need to memorize the various display and formatting options
for each category. You just need to know that you can set parts of the locale independently.
You should also know that calling Locale.setDefault(us) after the previous code snip-
pet will change both locale categories to en_US.

Loading Properties
with Resource Bundles
Up until now, we’ve kept all of the text strings displayed to our users as part of the program
inside the classes that use them. Localization requires externalizing them to elsewhere.

A resource bundle contains the locale-specific objects to be used by a program. It is like a
map with keys and values. The resource bundle is commonly stored in a properties file.
A properties file is a text file in a specific format with key/value pairs.

Our zoo program has been successful. We are now getting requests to use it at three more
zoos! We already have support for U.S.-based zoos. We now need to add Zoo de La Palmyre
in France, the Greater Vancouver Zoo in English-speaking Canada, and Zoo de Granby in
French-speaking Canada.

We immediately realize that we are going to need to internationalize our program.
Resource bundles will be quite helpful. They will let us easily translate our application to
multiple locales or even support multiple locales at once. It will also be easy to add more
locales later if zoos in even more countries are interested. We thought about which locales
we need to support, and we came up with four:

640  Chapter 11  ■  Exceptions and Localization

Locale us = new Locale("en", "US");
Locale france = new Locale("fr", "FR");
Locale englishCanada = new Locale("en", "CA");
Locale frenchCanada = new Locale("fr", "CA");

In the next sections, we create a resource bundle using properties files. It is conceptually
similar to a Map<String,String>, with each line representing a different key/value. The
key and value are separated by an equal sign (=) or colon (:). To keep things simple, we use
an equal sign throughout this chapter. We also look at how Java determines which resource
bundle to use.

Creating a Resource Bundle
We’re going to update our application to support the four locales listed previously. Luckily,
Java doesn’t require us to create four different resource bundles. If we don’t have a country-
specific resource bundle, Java will use a language-specific one. It’s a bit more involved than
this, but let’s start with a simple example.

For now, we need English and French properties files for our Zoo resource bundle. First,
create two properties files.

Zoo_en.properties
hello=Hello
open=The zoo is open

Zoo_fr.properties
hello=Bonjour
open=Le zoo est ouvert

The filenames match the name of our resource bundle, Zoo. They are then followed by an
underscore (_), target locale, and .properties file extension. We can write our very first
program that uses a resource bundle to print this information.

10: public static void printWelcomeMessage(Locale locale) {
11: var rb = ResourceBundle.getBundle("Zoo", locale);
12: System.out.println(rb.getString("hello")
13: + ", " + rb.getString("open"));
14: }
15: public static void main(String[] args) {
16: var us = new Locale("en", "US");
17: var france = new Locale("fr", "FR");
18: printWelcomeMessage(us); // Hello, The zoo is open
19: printWelcomeMessage(france); // Bonjour, Le zoo est ouvert
20: }

Loading Properties with Resource Bundles  641

Lines 16 and 17 create the two locales that we want to test, but the method on lines
10–14 does the actual work. Line 11 calls a factory method on ResourceBundle to get the
right resource bundle. Lines 12 and 13 retrieve the right string from the resource bundle and
print the results.

Since a resource bundle contains key/value pairs, you can even loop through them to list
all of the pairs. The ResourceBundle class provides a keySet() method to get a set of all keys.

var us = new Locale("en", "US");
ResourceBundle rb = ResourceBundle.getBundle("Zoo", us);
rb.keySet().stream()
 .map(k -> k + ": " + rb.getString(k))
 .forEach(System.out::println);

This example goes through all of the keys. It maps each key to a String with both the
key and the value before printing everything.

hello: Hello
open: The zoo is open

Loading Resource Bundle Files at Runtime

For the exam, you don’t need to know where the properties files for the resource bundles
are stored. If the exam provides a properties file, it is safe to assume that it exists and is
loaded at runtime.

In your own applications, though, the resource bundles can be stored in a variety of places.
While they can be stored inside the JAR that uses them, doing so is not recommended. This
approach forces you to rebuild the application JAR any time some text changes. One of
the benefits of using resource bundles is to decouple the application code from the locale-
specific text data.

Another approach is to have all of the properties files in a separate properties JAR or folder
and load them in the classpath at runtime. In this manner, a new language can be added
without changing the application JAR.

Picking a Resource Bundle
There are two methods for obtaining a resource bundle that you should be familiar with
for the exam.

642  Chapter 11  ■  Exceptions and Localization

ResourceBundle.getBundle("name");
ResourceBundle.getBundle("name", locale);

The first uses the default locale. You are likely to use this one in programs that you
write. Either the exam tells you what to assume as the default locale, or it uses the sec-
ond approach.

Java handles the logic of picking the best available resource bundle for a given key. It tries
to find the most specific value. Table 11.11 shows what Java goes through when asked for
resource bundle Zoo with the locale new Locale("fr", "FR") when the default locale is
U.S. English.

As another way of remembering the order of Table 11.11, learn these steps:

1.	 Look for the resource bundle for the requested locale, followed by the one for the
default locale.

2.	 For each locale, check the language/country, followed by just the language.

3.	 Use the default resource bundle if no matching locale can be found.

As we mentioned earlier, Java supports resource bundles from Java
classes and properties alike. When Java is searching for a matching
resource bundle, it will first check for a resource bundle file with the
matching class name. For the exam, you just need to know how to work
with properties files.

TABLE 11.11   Picking a resource bundle for French/France with default locale English/US

Step Looks for file Reason

1 Zoo_fr_FR.properties Requested locale

2 Zoo_fr.properties Language we requested with no
country

3 Zoo_en_US.properties Default locale

4 Zoo_en.properties Default locale’s language with no
country

5 Zoo.properties No locale at all—default bundle

6 If still not found, throw
MissingResourceException

No locale or default bundle available

Loading Properties with Resource Bundles  643

Let’s see if you understand Table 11.11. What is the maximum number of files that
Java would need to consider in order to find the appropriate resource bundle with the fol-
lowing code?

Locale.setDefault(new Locale("hi"));
ResourceBundle rb = ResourceBundle.getBundle("Zoo", new Locale("en"));

The answer is three. They are listed here:

1.	 Zoo_en.properties

2.	 Zoo_hi.properties

3.	 Zoo.properties

The requested locale is en, so we start with that. Since the en locale does not contain a
country, we move on to the default locale, hi. Again, there’s no country, so we end with the
default bundle.

Selecting Resource Bundle Values
Got all that? Good—because there is a twist. The steps that we’ve discussed so far are
for finding the matching resource bundle to use as a base. Java isn’t required to get all of
the keys from the same resource bundle. It can get them from any parent of the matching
resource bundle. A parent resource bundle in the hierarchy just removes components of the
name until it gets to the top. Table 11.12 shows how to do this.

Once a resource bundle has been selected, only properties along a single hierarchy will be
used. Contrast this behavior with Table 11.11, in which the default en_US resource bundle is
used if no other resource bundles are available.

What does this mean, exactly? Assume the requested locale is fr_FR and the default is
en_US. The JVM will provide data from en_US only if there is no matching fr_FR or fr
resource bundle. If it finds a fr_FR or fr resource bundle, then only those bundles, along
with the default bundle, will be used.

Let’s put all of this together and print some information about our zoos. We have a
number of properties files this time.

TABLE 11.12   Selecting resource bundle properties

Matching resource bundle Properties files keys can come from

Zoo_fr_FR Zoo_fr_FR.properties
Zoo_fr.properties
Zoo.properties

644  Chapter 11  ■  Exceptions and Localization

Zoo.properties
name=Vancouver Zoo

Zoo_en.properties
hello=Hello
open=is open

Zoo_en_US.properties
name=The Zoo

Zoo_en_CA.properties
visitors=Canada visitors

Suppose that we have a visitor from Québec (which has a default locale of French
Canada) who has asked the program to provide information in English. What do you think
this outputs?

11: Locale.setDefault(new Locale("en", "US"));
12: Locale locale = new Locale("en", "CA");
13: ResourceBundle rb = ResourceBundle.getBundle("Zoo", locale);
14: System.out.print(rb.getString("hello"));
15: System.out.print(". ");
16: System.out.print(rb.getString("name"));
17: System.out.print(" ");
18: System.out.print(rb.getString("open"));
19: System.out.print(" ");
20: System.out.print(rb.getString("visitors"));

The program prints the following:

Hello. Vancouver Zoo is open Canada visitors

The default locale is en_US, and the requested locale is en_CA. First, Java goes
through the available resource bundles to find a match. It finds one right away with
Zoo_en_CA.properties. This means the default locale of en_US is irrelevant.

Line 14 doesn’t find a match for the key hello in Zoo_en_CA.properties, so it goes
up the hierarchy to Zoo_en.properties. Line 16 doesn’t find a match for name in either of
the first two properties files, so it has to go all the way to the top of the hierarchy to
Zoo.properties. Line 18 has the same experience as line 14, using Zoo_en.properties.
Finally, line 20 has an easier job of it and finds a matching key in Zoo_en_CA.properties.

In this example, only three properties files were used: Zoo_en_CA.properties,
Zoo_en.properties, and Zoo.properties. Even when the property wasn’t found in
en_CA or en resource bundles, the program preferred using Zoo.properties (the default
resource bundle) rather than Zoo_en_US.properties (the default locale).

Loading Properties with Resource Bundles  645

What if a property is not found in any resource bundle? Then an exception is thrown. For
example, attempting to call rb.getString("close") in the previous program results in a
MissingResourceException at runtime.

Formatting Messages
Often we just want to output the text data from a resource bundle, but sometimes you
want to format that data with parameters. In real programs, it is common to substitute var-
iables in the middle of a resource bundle string. The convention is to use a number inside
braces such as {0}, {1}, etc. The number indicates the order in which the parameters will
be passed. Although resource bundles don’t support this directly, the MessageFormat
class does.

For example, suppose that we had this property defined:

helloByName=Hello, {0} and {1}

In Java, we can read in the value normally. After that, we can run it through the
MessageFormat class to substitute the parameters. The second parameter to format() is a
vararg, allowing you to specify any number of input values.

Suppose we have a resource bundle rb:

String format = rb.getString("helloByName");
System.out.print(MessageFormat.format(format, "Tammy", "Henry"));

This will print the following:

Hello, Tammy and Henry

Using the Properties Class
When working with the ResourceBundle class, you may also come across the Properties
class. It functions like the HashMap class that you learned about in Chapter 9, “Collections
and Generics,” except that it uses String values for the keys and values. Let’s create one
and set some values.

import java.util.Properties;
public class ZooOptions {
 public static void main(String[] args) {
 var props = new Properties();
 props.setProperty("name", "Our zoo");
 props.setProperty("open", "10am");
 }
}

The Properties class is commonly used in handling values that may not exist.

System.out.println(props.getProperty("camel")); // null
System.out.println(props.getProperty("camel", "Bob")); // Bob

646  Chapter 11  ■  Exceptions and Localization

If a key were passed that actually existed, both statements would print it. This is com-
monly referred to as providing a default, or a backup value, for a missing key.

The Properties class also includes a get() method, but only getProperty() allows for a default
value. For example, the following call is invalid since get() takes only a single parameter:

props.get("open"); // 10am

props.get("open", "The zoo will be open soon"); // DOES NOT COMPILE

Summary
This chapter covered a wide variety of topics centered around building applications that
respond well to change. We started our discussion with exception handling. Exceptions can
be divided into two categories: checked and unchecked. In Java, checked exceptions inherit
Exception but not RuntimeException and must be handled or declared. Unchecked
exceptions inherit RuntimeException or Error and do not need to be handled or
declared. It is considered a poor practice to catch an Error.

You can create your own checked or unchecked exceptions by extending Exception or
RuntimeException, respectively. You can also define custom constructors and messages for
your exceptions, which will show up in stack traces.

Automatic resource management can be enabled by using a try-with-resources statement
to ensure that the resources are properly closed. Resources are closed at the conclusion of
the try block, in the reverse of the order in which they are declared. A suppressed exception
occurs when more than one exception is thrown, often as part of a finally block or try-with-
resources close() operation.

Java includes a number of built-in classes to format numbers and dates. We reviewed how
to create custom formatters for each. You should be able to read these custom formats when
you encounter them on the exam.

Localization involves creating programs that adapt to change. You can create a Locale
class with a required lowercase language code and optional uppercase country code. For
example, en and en_US are locales for English and U.S. English, respectively. You need to
know how to format number and date/time values based on locale, including the new
CompactNumberFormat class.

A ResourceBundle allows specifying key/value pairs in a properties file. Java goes through
candidate resource bundles from the most specific to the most general to find a match. If
no matches are found for the requested locale, Java switches to the default locale and then
finally the default resource bundle. Once a matching resource bundle is found, Java looks
only in the hierarchy of that resource bundle to select values.

By applying the principles you learned about in this chapter to your own projects, you
can build applications that last longer, with built-in support for whatever unexpected events
may arise.

Exam Essentials  647

Exam Essentials
Understand the various types of exceptions.  All exceptions are subclasses of
java.lang.Throwable. Subclasses of java.lang.Error should never be caught. Only
subclasses of java.lang.Exception should be handled in application code.

Differentiate between checked and unchecked exceptions.  Unchecked exceptions do not
need to be caught or handled and are subclasses of java.lang.RuntimeException or
java.lang.Error. All other subclasses of java.lang.Exception are checked exceptions
and must be handled or declared.

Understand the flow of a try statement.  A try statement must have a catch or a finally
block. Multiple catch blocks can be chained together, provided no superclass exception type
appears in an earlier catch block than its subclass. A multi-catch expression may be used to
handle multiple exceptions in the same catch block, provided one exception is not a sub-
class of another. The finally block runs last regardless of whether an exception is thrown.

Be able to follow the order of a try-with-resources statement.  A try-with-resources state-
ment is a special type of try block in which one or more resources are declared and auto-
matically closed in the reverse of the order in which they are declared. It can be used with or
without a catch or finally block, with the implicit finally block always executed first.

Be able to write methods that declare exceptions.  Understand the difference between the
throw and throws keywords and how to declare methods with exceptions. Know how to
correctly override a method that declares exceptions.

Identify valid locale strings.  Know that the language code is lowercase and mandatory,
while the country code is uppercase and optional. Be able to select a locale using a built-in
constant, constructor, or builder class.

Format dates, numbers, and messages.  Be able to format dates, numbers, and messages into
various String formats, and know how locale influences these formats. Know how the var-
ious number formatters (currency, percent, compact) differ. Be able to write a custom date or
number formatter using symbols, including how to escape literal values.

Determine which resource bundle Java will use to look up a key.  Be able to create resource
bundles for a set of locales using properties files. Know the search order that Java uses to
select a resource bundle and how the default locale and default resource bundle are consid-
ered. Once a resource bundle is found, recognize the hierarchy used to select values.

648  Chapter 11  ■  Exceptions and Localization

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which of the following can be inserted on line 8 to make this code compile? (Choose all
that apply.)

 7: public void whatHappensNext() throws IOException {
 8: // INSERT CODE HERE
 9: }

A.	 System.out.println("it's ok");
B.	 throw new Exception();
C.	 throw new IllegalArgumentException();
D.	 throw new java.io.IOException();
E.	 throw new RuntimeException();
F.	 None of the above

2.	 Which statement about the following class is correct?

 1: class Problem extends Exception {
 2: public Problem() {}
 3: }
 4: class YesProblem extends Problem {}
 5: public class MyDatabase {
 6: public static void connectToDatabase() throw Problem {
 7: throws new YesProblem();
 8: }
 9: public static void main(String[] c) throw Exception {
 10: connectToDatabase();
 11: }
 12: }

A.	 The code compiles and prints a stack trace for YesProblem at runtime.

B.	 The code compiles and prints a stack trace for Problem at runtime.

C.	 The code does not compile because Problem defines a constructor.

D.	 The code does not compile because YesProblem does not define a constructor.

E.	 The code does not compile but would if Problem and YesProblem were switched on lines
6 and 7.

F.	 None of the above

Review Questions  649

3.	 Which of the following are common types to localize? (Choose all that apply.)

A.	 Dates

B.	 Lambda expressions

C.	 Class names

D.	 Currency

E.	 Numbers

F.	 Variable names

4.	 What is the output of the following snippet, assuming a and b are both 0?

 3: try {
 4: System.out.print(a / b);
 5: } catch (RuntimeException e) {
 6: System.out.print(-1);
 7: } catch (ArithmeticException e) {
 8: System.out.print(0);
 9: } finally {
 10: System.out.print("done");
 11: }

A.	 -1
B.	 0
C.	 done-1
D.	 done0
E.	 The code does not compile.

F.	 An uncaught exception is thrown.

G.	 None of the above

5.	 Assuming the current locale uses dollars ($) and the following method is called with a double
value of 100_102.2, which of the following values are printed? (Choose all that apply.)

 public void print(double t) {
 System.out.print(NumberFormat.getCompactNumberInstance().format(t));

 System.out.print(
 NumberFormat.getCompactNumberInstance(
 Locale.getDefault(), Style.SHORT).format(t));

 System.out.print(NumberFormat.getCurrencyInstance().format(t));
 }

650  Chapter 11  ■  Exceptions and Localization

A.	 100
B.	 $100,000.00
C.	 100K
D.	 100 thousand
E.	 100M
F.	 $100,102.20
G.	 None of the above

6.	 What is the output of the following code?

 LocalDate date = LocalDate.parse("2022-04-30",
 DateTimeFormatter.ISO_LOCAL_DATE_TIME);
 System.out.println(date.getYear() + " "
 + date.getMonth() + " "+ date.getDayOfMonth());

A.	 2022 APRIL 2
B.	 2022 APRIL 30
C.	 2022 MAY 2
D.	 The code does not compile.

E.	 A runtime exception is thrown.

7.	 What does the following method print?

 11: public void tryAgain(String s) {
 12: try (FileReader r = null, p = new FileReader("")) {
 13: System.out.print("X");
 14: throw new IllegalArgumentException();
 15: } catch (Exception s) {
 16: System.out.print("A");
 17: throw new FileNotFoundException();
 18: } finally {
 19: System.out.print("O");
 20: }
 21: }

A.	 XAO
B.	 XOA
C.	 One line of this method contains a compiler error.

D.	 Two lines of this method contain compiler errors.

E.	 Three or more lines of this method contain compiler errors.

F.	 The code compiles, but a NullPointerException is thrown at runtime.

G.	 None of the above

Review Questions  651

8.	 Assume that all of the files mentioned in the answer choices exist and define the same keys.
Which one will be used to find the key in line 8?

 6: Locale.setDefault(new Locale("en", "US"));
 7: var b = ResourceBundle.getBundle("Dolphins");
 8: System.out.println(b.getString("name"));

A.	 Dolphins.properties
B.	 Dolphins_US.properties
C.	 Dolphins_en.properties
D.	 Whales.properties
E.	 Whales_en_US.properties
F.	 The code does not compile.

9.	 For what value of pattern will the following print <005.21> <008.49> <1,234.0>?

 String pattern = " ";
 var message = DoubleStream.of(5.21, 8.49, 1234)
 .mapToObj(v -> new DecimalFormat(pattern).format(v))
 .collect(Collectors.joining("> <"));
 System.out.println("<"+message+">");

A.	 ##.#
B.	 0,000.0#
C.	 #,###.0
D.	 #,###,000.0#
E.	 The code does not compile regardless of what is placed in the blank.

F.	 None of the above

10.	 Which scenario is the best use of an exception?

A.	 An element is not found when searching a list.

B.	 An unexpected parameter is passed into a method.

C.	 The computer caught fire.

D.	 You want to loop through a list.

E.	 You don’t know how to code a method.

11.	 Which of the following exceptions must be handled or declared in the method in which they
are thrown? (Choose all that apply.)

 class Apple extends RuntimeException {}
 class Orange extends Exception {}
 class Banana extends Error {}
 class Pear extends Apple {}
 class Tomato extends Orange {}
 class Peach extends Throwable {}

652  Chapter 11  ■  Exceptions and Localization

A.	 Apple
B.	 Orange
C.	 Banana
D.	 Pear
E.	 Tomato
F.	 Peach

12.	 Which of the following changes, when made independently, would make this code compile?
(Choose all that apply.)

 1: import java.io.*;
 2: public class StuckTurkeyCage implements AutoCloseable {
 3: public void close() throws IOException {
 4: throw new FileNotFoundException("Cage not closed");
 5: }
 6: public static void main(String[] args) {
 7: try (StuckTurkeyCage t = new StuckTurkeyCage()) {
 8: System.out.println("put turkeys in");
 9: }
 10: } }

A.	 Remove throws IOException from the declaration on line 3.

B.	 Add throws Exception to the declaration on line 6.

C.	 Change line 9 to } catch (Exception e) {}.

D.	 Change line 9 to } finally {}.

E.	 The code compiles as is.

F.	 None of the above

13.	 Which of the following are true statements about exception handling in Java? (Choose all
that apply.)

A.	 A traditional try statement without a catch block requires a finally block.

B.	 A traditional try statement without a finally block requires a catch block.

C.	 A traditional try statement with only one statement can omit the {}.

D.	 A try-with-resources statement without a catch block requires a finally block.

E.	 A try-with-resources statement without a finally block requires a catch block.

F.	 A try-with-resources statement with only one statement can omit the {}.

Review Questions  653

14.	 Assuming -g:vars is used when the code is compiled to include debug information, what is
the output of the following code snippet?

 var huey = (String)null;
 Integer dewey = null;
 Object louie = null;
 if(louie == huey.substring(dewey.intValue())) {
 System.out.println("Quack!");
 }

A.	 A NullPointerException that does not include any variable names in the stack
trace

B.	 A NullPointerException naming huey in the stack trace

C.	 A NullPointerException naming dewey in the stack trace

D.	 A NullPointerException naming louie in the stack trace

E.	 A NullPointerException naming huey and louie in the stack trace

F.	 A NullPointerException naming huey and dewey in the stack trace

G.	 None of the above

15.	 Which of the following, when inserted independently in the blank, use locale parameters that
are properly formatted? (Choose all that apply.)

 import java.util.Locale;
 public class ReadMap implements AutoCloseable {
 private Locale locale;
 private boolean closed = false;
 @Override public void close() {
 System.out.println("Folding map");
 locale = null;
 closed = true;
 }
 public void open() {
 this.locale = ;
 }
 public void use() {
 // Implementation omitted
 }
 }

A.	 new Locale("xM")
B.	 new Locale("MQ", "ks")
C.	 new Locale("qw")
D.	 new Locale("wp", "VW")

654  Chapter 11  ■  Exceptions and Localization

E.	 Locale.create("zp")
F.	 new Locale.Builder().setLanguage("yw").setRegion("PM")
G.	 The code does not compile regardless of what is placed in the blank.

16.	 Which of the following can be inserted into the blank to allow the code to compile and run
without throwing an exception? (Choose all that apply.)

 var f = DateTimeFormatter.ofPattern("hh o'clock");
 System.out.println(f.format(.now()));

A.	 ZonedDateTime
B.	 LocalDate
C.	 LocalDateTime
D.	 LocalTime
E.	 The code does not compile regardless of what is placed in the blank.

F.	 None of the above

17.	 Which of the following statements about resource bundles are correct? (Choose all
that apply.)

A.	 All keys must be in the same resource bundle to be used.

B.	 A resource bundle is loaded by calling the new ResourceBundle() constructor.

C.	 Resource bundle values are always read using the Properties class.

D.	 Changing the default locale lasts for only a single run of the program.

E.	 If a resource bundle for a specific locale is requested, then the resource bundle for the
default locale will not be used.

F.	 It is possible to use a resource bundle for a locale without specifying a default locale.

18.	 What is the output of the following code?

 import java.io.*;
 public class FamilyCar {
 static class Door implements AutoCloseable {
 public void close() {
 System.out.print("D");
 } }
 static class Window implements Closeable {
 public void close() {
 System.out.print("W");
 throw new RuntimeException();
 } }
 public static void main(String[] args) {
 var d = new Door();
 try (d; var w = new Window()) {

Review Questions  655

 System.out.print("T");
 } catch (Exception e) {
 System.out.print("E");
 } finally {
 System.out.print("F");
 } } }

A.	 TWF
B.	 TWDF
C.	 TWDEF
D.	 TWF followed by an exception

E.	 TWDF followed by an exception

F.	 TWEF followed by an exception

G.	 The code does not compile.

19.	 Suppose that we have the following three properties files and code. Which bundles are used
on lines 8 and 9, respectively?

 Dolphins.properties
 name=The Dolphin
 age=0

 Dolphins_en.properties
 name=Dolly
 age=4

 Dolphins_fr.properties
 name=Dolly

 5: var fr = new Locale("fr");
 6: Locale.setDefault(new Locale("en", "US"));
 7: var b = ResourceBundle.getBundle("Dolphins", fr);
 8: b.getString("name");
 9: b.getString("age");

A.	 Dolphins.properties and Dolphins.properties
B.	 Dolphins.properties and Dolphins_en.properties
C.	 Dolphins_en.properties and Dolphins_en.properties
D.	 Dolphins_fr.properties and Dolphins.properties
E.	 Dolphins_fr.properties and Dolphins_en.properties
F.	 The code does not compile.

G.	 None of the above

656  Chapter 11  ■  Exceptions and Localization

20.	 What is printed by the following program?

 1: public class DriveBus {
 2: public void go() {
 3: System.out.print("A");
 4: try {
 5: stop();
 6: } catch (ArithmeticException e) {
 7: System.out.print("B");
 8: } finally {
 9: System.out.print("C");
 10: }
 11: System.out.print("D");
 12: }
 13: public void stop() {
 14: System.out.print("E");
 15: Object x = null;
 16: x.toString();
 17: System.out.print("F");
 18: }
 19: public static void main(String n[]) {
 20: new DriveBus().go();
 21: } }

A.	 AE
B.	 AEBCD
C.	 AEC
D.	 AECD
E.	 AE followed by a stack trace

F.	 AEBCD followed by a stack trace

G.	 AEC followed by a stack trace

H.	 A stack trace with no other output

21.	 Which changes, when made independently, allow the following program to compile? (Choose
all that apply.)

 1: public class AhChoo {
 2: static class SneezeException extends Exception {}
 3: static class SniffleException extends SneezeException {}
 4: public static void main(String[] args) {
 5: try {
 6: throw new SneezeException();

Review Questions  657

 7: } catch (SneezeException | SniffleException e) {
 8: } finally {}
 9: } }

A.	 Add throws SneezeException to the declaration on line 4.

B.	 Add throws Throwable to the declaration on line 4.

C.	 Change line 7 to } catch (SneezeException e) {.

D.	 Change line 7 to } catch (SniffleException e) {.

E.	 Remove line 7.

F.	 The code compiles correctly as is.

G.	 None of the above

22.	 What is the output of the following code?

 try {
 LocalDateTime book = LocalDateTime.of(2022, 4, 5, 12, 30, 20);
 System.out.print(book.format(DateTimeFormatter.ofPattern("m")));
 System.out.print(book.format(DateTimeFormatter.ofPattern("z")));
 System.out.print(DateTimeFormatter.ofPattern("y").format(book));
 } catch (Throwable e) {}

A.	 4
B.	 30
C.	 402
D.	 3002
E.	 3002022
F.	 402022
G.	 None of the above

23.	 Fill in the blank: A class that implements _________________ may be in a try-with-resources
statement. (Choose all that apply.)

A.	 AutoCloseable
B.	 Resource
C.	 Exception
D.	 AutomaticResource
E.	 Closeable
F.	 RuntimeException
G.	 Serializable

658  Chapter 11  ■  Exceptions and Localization

24.	 What is the output of the following program?

 public class SnowStorm {
 static class WalkToSchool implements AutoCloseable {
 public void close() {
 throw new RuntimeException("flurry");
 } }
 public static void main(String[] args) {
 WalkToSchool walk1 = new WalkToSchool();
 try (walk1; WalkToSchool walk2 = new WalkToSchool()) {
 throw new RuntimeException("blizzard");
 } catch(Exception e) {
 System.out.println(e.getMessage()
 + " " + e.getSuppressed().length);
 }
 walk1 = null;
 } }

A.	 blizzard 0
B.	 blizzard 1
C.	 blizzard 2
D.	 flurry 0
E.	 flurry 1
F.	 flurry 2
G.	 None of the above

25.	 Assuming U.S. currency is in dollars ($) and German currency is in euros (€), what is the
output of the following program?

 import java.text.NumberFormat;
 import java.util.Locale;
 import java.util.Locale.Category;
 public record Wallet(double money) {
 private String openWallet() {
 Locale.setDefault(Category.DISPLAY,
 new Locale.Builder().setRegion("us").build());
 Locale.setDefault(Category.FORMAT,
 new Locale.Builder().setLanguage("en").build());
 return NumberFormat.getCurrencyInstance(Locale.GERMANY)
 .format(money);
 }
 public void printBalance() {
 System.out.println(openWallet());
 }

Review Questions  659

 public static void main(String... unused) {
 new Wallet(2.4).printBalance();
 } }

A.	 2,40 €
B.	 $2.40
C.	 2.4
D.	 The code does not compile.

E.	 None of the above

26.	 Which lines can fill in the blank to make the following code compile? (Choose all that apply.)

 void rollOut() throws ClassCastException {}

 public void transform(String c) {
 try {
 rollOut();
 } catch (IllegalArgumentException |) {
 }
 }

A.	 IOException a
B.	 Error b
C.	 NullPointerException c
D.	 RuntimeException d
E.	 NumberFormatException e
F.	 ClassCastException f
G.	 None of the above. The code contains a compiler error regardless of what is inserted

into the blank.

Modules

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Packaging and deploying Java code and use the Java
Platform Module System

■■ Define modules and their dependencies, expose module

content including for reflection. Define services, producers,

and consumers

■■ Compile Java code, produce modular and non-modular jars,

runtime images, and implement migration using unnamed

and automatic modules

Chapter

12

Packages can be grouped into modules. In this chapter, we
explain the purpose of modules and how to build your own.
We also show how to run them and how to discover existing

modules. Next, we cover strategies for migrating an application to use modules, running a
partially modularized application, and dealing with dependencies. We then move on to dis-
cuss services and service locators. Finally, we show how to create a runtime image.

We’ve made the code in this chapter available online. Since it can be tedious to create
the directory structure, this will save you some time. Additionally, the commands need to be
exactly right, so we’ve included those online so you can copy and paste them and compare
them with what you typed. Both are available in our GitHub repo, linked to from

www.selikoff.net/ocp-17/

Introducing Modules
When writing code for the exam, you generally see small classes. After all, exam questions
have to fit on a single screen! When you work on real programs, they are much bigger. A
real project will consist of hundreds or thousands of classes grouped into packages. These
packages are grouped into Java archive (JAR) files. A JAR is a ZIP file with some extra
information, and the extension is .jar.

In addition to code written by your team, most applications also use code written by
others. Open source is software with the code supplied and is often free to use. Java has a
vibrant open source software (OSS) community, and those libraries are also supplied as JAR
files. For example, there are libraries to read files, connect to a database, and much more.

Some open source projects even depend on functionality in other open source projects.
For example, Spring is a commonly used framework, and JUnit is a commonly used testing
library. To use either, you need to make sure you have compatible versions of all the rele-
vant JARs available at runtime. This complex chain of dependencies and minimum versions
is often referred to by the community as JAR hell. Hell is an excellent way of describing the
wrong version of a class being loaded or even a ClassNotFoundException at runtime.

The Java Platform Module System (JPMS) groups code at a higher level. The main
purpose of a module is to provide groups of related packages that offer developers a

http://www.selikoff.net/ocp-17/

Introducing Modules  663

particular set of functionality. It’s like a JAR file, except a developer chooses which packages
are accessible outside the module. Let’s look at what modules are and what problems they
are designed to solve.

The Java Platform Module System includes the following:

■■ A format for module JAR files

■■ Partitioning of the JDK into modules

■■ Additional command-line options for Java tools

Exploring a Module
In Chapter 1, “Building Blocks,” we had a small Zoo application. It had only one class and
just printed out one thing. Now imagine that we had a whole staff of programmers and were
automating the operations of the zoo. Many things need to be coded, including the interac-
tions with the animals, visitors, the public website, and outreach.

A module is a group of one or more packages plus a special file called
module-info.java. The contents of this file are the module declaration. Figure 12.1 lists
just a few of the modules a zoo might need. We decided to focus on the animal interactions
in our example. The full zoo could easily have a dozen modules. In Figure 12.1, notice that
there are arrows between many of the modules. These represent dependencies, where one
module relies on code in another. The staff needs to feed the animals to keep their jobs.
The line from zoo.staff to zoo.animal.feeding shows that the former depends on
the latter.

Now let’s drill down into one of these modules. Figure 12.2 shows what is inside the
zoo.animal.talks module. There are three packages with two classes each. (It’s a small
zoo.) There is also a strange file called module-info.java. This file is required to be inside
all modules. We explain this in more detail later in the chapter.

zoo.animal.feeding zoo.animal.care

zoo.animal.talks zoo.staff

F IGURE 12 .1   Design of a modular system

664  Chapter 12  ■  Modules

Benefits of Modules
Modules look like another layer of things you need to know in order to program.
While using modules is optional, it is important to understand the problems they are
designed to solve:

■■ Better access control: In addition to the levels of access control covered in Chapter 5,
“Methods,” you can have packages that are only accessible to other packages in
the module.

■■ Clearer dependency management: Since modules specify what they rely on, Java can
complain about a missing JAR when starting up the program rather than when it is first
accessed at runtime.

■■ Custom Java builds: You can create a Java runtime that has only the parts of the JDK
that your program needs rather than the full one at over 150 MB.

■■ Improved security: Since you can omit parts of the JDK from your custom build, you
don’t have to worry about vulnerabilities discovered in a part you don’t use.

■■ Improved performance: Another benefit of a smaller Java package is improved startup
time and a lower memory requirement.

■■ Unique package enforcement: Since modules specify exposed packages, Java can ensure
that each package comes from only one module and avoid confusion about what is
being run.

Creating and Running
a Modular Program
In this section, we create, build, and run the zoo.animal.feeding module. We chose this
one to start with because all the other modules depend on it. Figure 12.3 shows the design
of this module. In addition to the module-info.java file, it has one package with one
class inside.

zoo.animal.talks.content
ElephantScript.java
SeaLionScript.java

zoo.animal.talks.schedule
Weekday.java
Weekend.java

zoo.animal.talks.media
Signage.java

Announcement.java
module-info.java

zoo.animal.talks

F IGURE 12 .2   Looking inside a module

Creating and Running a Modular Program  665

In the next sections, we create, compile, run, and package the
zoo.animal.feeding module.

Creating the Files
First we have a really simple class that prints one line in a main() method. We know, that’s
not much of an implementation. All those programmers we hired can fill it in with business
logic. In this book, we focus on what you need to know for the exam. So, let’s create a
simple class.

package zoo.animal.feeding;

public class Task {
 public static void main(String... args) {
 System.out.println("All fed!");
 }
}

Next comes the module-info.java file. This is the simplest possible one:

module zoo.animal.feeding {
}

There are a few key differences between a module declaration and a regular Java class
declaration:

■■ The module-info.java file must be in the root directory of your module. Regular
Java classes should be in packages.

■■ The module declaration must use the keyword module instead of class, interface, or enum.

■■ The module name follows the naming rules for package names. It often includes periods
(.) in its name. Regular class and package names are not allowed to have dashes (-).
Module names follow the same rule.

That’s a lot of rules for the simplest possible file. There will be many more rules when we
flesh out this file later in the chapter.

The next step is to make sure the files are in the right directory structure. Figure 12.4
shows the expected directory structure.

zoo.animal.feeding
Task.java module-info.java

zoo.animal.feeding

F IGURE 12 .3   Contents of zoo.animal.feeding

666  Chapter 12  ■  Modules

In particular, feeding is the module directory, and the module-info.java file is
directly under it. Just as with a regular JAR file, we also have the zoo.animal.feeding
package with one subfolder per portion of the name. The Task class is in the appropriate
subfolder for its package.

Also, note that we created a directory called mods at the same level as the module. We
use it to store the module artifacts a little later in the chapter. This directory can be named
anything, but mods is a common name. If you are following along with the online code
example, note that the mods directory is not included, because it is empty.

Compiling Our First Module
Before we can run modular code, we need to compile it. Other than the module-path
option, this code should look familiar from Chapter 1:

javac --module-path mods
 -d feeding
 feeding/zoo/animal/feeding/*.java feeding/module-info.java

When you’re entering commands at the command line, they should be
typed all on one line. We use line breaks in the book to make the com-
mands easier to read and study. If you want to use multiple lines at the
command prompt, the approach varies by operating system. Linux uses a
backslash (\) to escape the line break.

mods

feeding

zoo

animal

feeding

module-info.java

Task.java

F IGURE 12 .4   Module zoo.animal.feeding directory structure

Creating and Running a Modular Program  667

As a review, the -d option specifies the directory to place the class files in. The end of the
command is a list of the .java files to compile. You can list the files individually or use a
wildcard for all .java files in a subdirectory.

The new part is module-path. This option indicates the location of any custom module
files. In this example, module-path could have been omitted since there are no depen-
dencies. You can think of module-path as replacing the classpath option when you are
working on a modular program.

What about the classpath?

The classpath option has three possible forms: -cp, --class-path, and -classpath.
You can still use these options. In fact, it is common to do so when writing nonmodu-
lar programs.

Just like classpath, you can use an abbreviation in the command. The syntax
--module-path and -p are equivalent. That means we could have written many other
commands in place of the previous command. The following four commands show the
-p option:

javac -p mods -d feeding
 feeding/zoo/animal/feeding/*.java feeding/*.java

javac -p mods -d feeding
 feeding/zoo/animal/feeding/*.java feeding/module-info.java

javac -p mods -d feeding
 feeding/zoo/animal/feeding/Task.java feeding/module-info.java

javac -p mods -d feeding
 feeding/zoo/animal/feeding/Task.java feeding/*.java

While you can use whichever you like best, be sure that you can recognize all valid forms
for the exam. Table 12.1 lists the options you need to know well when compiling modules.
There are many more options you can pass to the javac command, but these are the ones
you can expect to be tested on.

TABLE 12 .1   Options you need to know for using modules with javac

Use for Abbreviation Long form

Directory for class files -d <dir> n/a

Module path -p <path> --module-path <path>

668  Chapter 12  ■  Modules

Building Modules

Even without modules, it is rare to run javac and java commands manually on a real
project. They get long and complicated very quickly. Most developers use a build tool such
as Maven or Gradle. These build tools suggest directories in which to place the class files,
like target/classes.

It is likely that the only time you need to know the syntax of these commands is when you
take the exam. The concepts themselves are useful, regardless.

Be sure to memorize the module command syntax. You will be tested on it on the exam. We
give you lots of practice questions on the syntax to reinforce it.

Running Our First Module
Before we package our module, we should make sure it works by running it. To do that,
we need to learn the full syntax. Suppose there is a module named book.module. Inside
that module is a package named com.sybex, which has a class named OCP with a main()
method. Figure 12.5 shows the syntax for running a module. Pay special attention to the
book.module/com.sybex.OCP part. It is important to remember that you specify the
module name followed by a slash (/) followed by the fully qualified class name.

Now that we’ve seen the syntax, we can write the command to run the Task class in the
zoo.animal.feeding package. In the following example, the package name and module
name are the same. It is common for the module name to match either the full package name
or the beginning of it.

java --module-path feeding
 --module zoo.animal.feeding/zoo.animal.feeding.Task

java --module-path mods --module book.module/com.sybex.OCP

Location of modules

Module name Package name

Class name
Module/package

separator

F IGURE 12 .5   Running a module using java

Updating Our Example for Multiple Modules  669

Since you already saw that --module-path uses the short form of -p, we bet you won’t
be surprised to learn there is a short form of --module as well. The short option is -m. That
means the following command is equivalent:

java -p feeding
 -m zoo.animal.feeding/zoo.animal.feeding.Task

In these examples, we used feeding as the module path because that’s where we com-
piled the code. This will change once we package the module and run that.

Table 12.2 lists the options you need to know for the java command.

Packaging Our First Module
A module isn’t much use if we can run it only in the folder it was created in. Our next step is
to package it. Be sure to create a mods directory before running this command:

jar -cvf mods/zoo.animal.feeding.jar -C feeding/ .

There’s nothing module-specific here. We are packaging everything under the feeding
directory and storing it in a JAR file named zoo.animal.feeding.jar under the mods
folder. This represents how the module JAR will look to other code that wants to use it.

Now let’s run the program again, but this time using the mods directory instead of the
loose classes:

java -p mods
 -m zoo.animal.feeding/zoo.animal.feeding.Task

You might notice that this command looks identical to the one in the previous section
except for the directory. In the previous example, it was feeding. In this one, it is the
module path of mods. Since the module path is used, a module JAR is being run.

Updating Our Example
for Multiple Modules
Now that our zoo.animal.feeding module is solid, we can start thinking about our other
modules. As you can see in Figure 12.6, all three of the other modules in our system depend
on the zoo.animal.feeding module.

TABLE 12 .2   Options you need to know for using modules with java

Use for Abbreviation Long form

Module name -m <name> --module <name>

Module path -p <path> --module-path <path>

670  Chapter 12  ■  Modules

Updating the Feeding Module
Since we will be having our other modules call code in the zoo.animal.feeding package,
we need to declare this intent in the module declaration.

The exports directive is used to indicate that a module intends for those packages to be
used by Java code outside the module. As you might expect, without an exports directive,
the module is only available to be run from the command line on its own. In the following
example, we export one package:

module zoo.animal.feeding {
 exports zoo.animal.feeding;
}

Recompiling and repackaging the module will update the module-info.class inside
our zoo.animal.feeding.jar file. These are the same javac and jar commands you ran
previously:

javac -p mods
 -d feeding
 feeding/zoo/animal/feeding/*.java feeding/module-info.java

jar -cvf mods/zoo.animal.feeding.jar -C feeding/ .

Creating a Care Module
Next, let’s create the zoo.animal.care module. This time, we are going to have two pack-
ages. The zoo.animal.care.medical package will have the classes and methods that are
intended for use by other modules. The zoo.animal.care.details package is only going
to be used by this module. It will not be exported from the module. Think of it as healthcare
privacy for the animals.

Figure 12.7 shows the contents of this module. Remember that all modules must have a
module-info.java file.

zoo.animal.feeding zoo.animal.care

zoo.animal.talks zoo.staff

F IGURE 12 .6   Modules depending on zoo.animal.feeding

Updating Our Example for Multiple Modules  671

The module contains two basic packages and classes in addition to the
module-info.java file:

// HippoBirthday.java
package zoo.animal.care.details;
import zoo.animal.feeding.*;
public class HippoBirthday {
 private Task task;
}

// Diet.java
package zoo.animal.care.medical;
public class Diet { }

This time the module-info.java file specifies three things:

1: module zoo.animal.care {
2: exports zoo.animal.care.medical;
3: requires zoo.animal.feeding;
4: }

Line 1 specifies the name of the module. Line 2 lists the package we are exporting so it
can be used by other modules. So far, this is similar to the zoo.animal.feeding module.

On line 3, we see a new directive. The requires statement specifies that a module is
needed. The zoo.animal.care module depends on the zoo.animal.feeding module.

Next, we need to figure out the directory structure. We will create two packages. The
first is zoo.animal.care.details and contains one class named HippoBirthday. The
second is zoo.animal.care.medical, which contains one class named Diet. Try to draw
the directory structure on paper or create it on your computer. If you are trying to run these
examples without using the online code, just create classes without variables or methods for
everything except the module-info.java files.

zoo.animal.care.medical
Diet.java module-info.java

zoo.animal.care.details
HippoBirthday.java

zoo.animal.care

F IGURE 12 .7   Contents of zoo.animal.care

672  Chapter 12  ■  Modules

You might have noticed that the packages begin with the same prefix as the module name.
This is intentional. You can think of it as if the module name “claims” the matching package
and all subpackages.

To review, we now compile and package the module:

javac -p mods
 -d care
 care/zoo/animal/care/details/*.java
 care/zoo/animal/care/medical/*.java
 care/module-info.java

We compile both packages and the module-info.java file. In the real world, you’ll use
a build tool rather than doing this by hand. For the exam, you just list all the packages
and/or files you want to compile.

Now that we have compiled code, it’s time to create the module JAR:

jar -cvf mods/zoo.animal.care.jar -C care/ .

Creating the Talks Module
So far, we’ve used only one exports and requires statement in a module. Now you’ll
learn how to handle exporting multiple packages or requiring multiple modules. In
Figure 12.8, observe that the zoo.animal.talks module depends on two modules:
zoo.animal.feeding and zoo.animal.care. This means that there must be two
requires statements in the module-info.java file.

Figure 12.9 shows the contents of this module. We are going to export all three packages
in this module.

zoo.animal.feeding zoo.animal.care

zoo.animal.talks zoo.staff

F IGURE 12 .8   Dependencies for zoo.animal.talks

Updating Our Example for Multiple Modules  673

First let’s look at the module-info.java file for zoo.animal.talks:

1: module zoo.animal.talks {
2: exports zoo.animal.talks.content;
3: exports zoo.animal.talks.media;
4: exports zoo.animal.talks.schedule;
5:
6: requires zoo.animal.feeding;
7: requires zoo.animal.care;
8: }

Line 1 shows the module name. Lines 2–4 allow other modules to reference all three
packages. Lines 6 and 7 specify the two modules that this module depends on.

Then we have the six classes, as shown here:

// ElephantScript.java
package zoo.animal.talks.content;
public class ElephantScript { }

// SeaLionScript.java
package zoo.animal.talks.content;
public class SeaLionScript { }

// Announcement.java
package zoo.animal.talks.media;
public class Announcement {
 public static void main(String[] args) {
 System.out.println("We will be having talks");
 }
}

zoo.animal.talks.content
ElephantScript.java
SeaLionScript.java

module-info.java
zoo.animal.talks.media

Announcement.java
Signage.java

zoo.animal.talks.schedule
Weekday.java
Weekend.java

zoo.animal.talks

F IGURE 12 .9   Contents of zoo.animal.talks

674  Chapter 12  ■  Modules

// Signage.java
package zoo.animal.talks.media;
public class Signage { }

// Weekday.java
package zoo.animal.talks.schedule;
public class Weekday { }

// Weekend.java
package zoo.animal.talks.schedule;
public class Weekend {}

If you are still following along on your computer, create these classes in the packages. The
following are the commands to compile and build the module:

javac -p mods
 -d talks
 talks/zoo/animal/talks/content/*.java talks/zoo/animal/talks/media/*.java
 talks/zoo/animal/talks/schedule/*.java talks/module-info.java

jar -cvf mods/zoo.animal.talks.jar -C talks/ .

Creating the Staff Module
Our final module is zoo.staff. Figure 12.10 shows that there is only one package inside.
We will not be exposing this package outside the module.

Based on Figure 12.11, do you know what should go in the module-info?

zoo.staff
Jobs.java module-info.java

zoo.staff

F IGURE 12 .10   Contents of zoo.staff

Diving into the Module Declaration  675

There are three arrows in Figure 12.11 pointing from zoo.staff to other modules.
These represent the three modules that are required. Since no packages are to be exposed
from zoo.staff, there are no exports statements. This gives us:

module zoo.staff {
 requires zoo.animal.feeding;
 requires zoo.animal.care;
 requires zoo.animal.talks;
}

In this module, we have a single class in the Jobs.java file:

package zoo.staff;
public class Jobs { }

For those of you following along on your computer, create a class in the package. The fol-
lowing are the commands to compile and build the module:

javac -p mods
 -d staff
 staff/zoo/staff/*.java staff/module-info.java

jar -cvf mods/zoo.staff.jar -C staff/ .

Diving into the Module Declaration
Now that we’ve successfully created modules, we can learn more about the module declara-
tion. In these sections, we look at exports, requires, and opens. In the following section
on services, we explore provides and uses. Now would be a good time to mention that
these directives can appear in any order in the module declaration.

zoo.animal.feeding zoo.animal.care

zoo.animal.talks zoo.staff

F IGURE 12 .11   Dependencies for zoo.staff

676  Chapter 12  ■  Modules

Exporting a Package
We’ve already seen how exports packageName exports a package to other modules. It’s
also possible to export a package to a specific module. Suppose the zoo decides that only
staff members should have access to the talks. We could update the module declaration
as follows:

module zoo.animal.talks {
 exports zoo.animal.talks.content to zoo.staff;
 exports zoo.animal.talks.media;
 exports zoo.animal.talks.schedule;

 requires zoo.animal.feeding;
 requires zoo.animal.care;
}

From the zoo.staff module, nothing has changed. However, no other modules would
be allowed to access that package.

You might have noticed that none of our other modules requires zoo.animal.talks
in the first place. However, we don’t know what other modules will exist in the future. It
is important to consider future use when designing modules. Since we want only the one
module to have access, we only allow access for that module.

Exported Types

We’ve been talking about exporting a package. But what does that mean, exactly? All
public classes, interfaces, enums, and records are exported. Further, any public and
protected fields and methods in those files are visible.

Fields and methods that are private are not visible because they are not accessible
outside the class. Similarly, package fields and methods are not visible because they are not
accessible outside the package.

The exports directive essentially gives us more levels of access control. Table 12.3 lists the
full access control options.

Diving into the Module Declaration  677

Requiring a Module Transitively
As you saw earlier in this chapter, requires moduleName specifies that the current module
depends on moduleName. There’s also a requires transitive moduleName, which
means that any module that requires this module will also depend on moduleName.

Well, that was a mouthful. Let’s look at an example. Figure 12.12 shows the modules
with dashed lines for the redundant relationships and solid lines for relationships specified in
the module-info. This shows how the module relationships would look if we were to only
use transitive dependencies.

For example, zoo.animal.talks depends on zoo.animal.care, which depends
on zoo.animal.feeding. That means the arrow between zoo.animal.talks and
zoo.animal.feeding no longer appears in Figure 12.12.

TABLE 12 .3   Access control with modules

Level Within module code Outside module

private Available only within class No access

Package Available only within package No access

protected Available only within package or to
subclasses

Accessible to subclasses only if
package is exported

public Available to all classes Accessible only if package is exported

zoo.animal.feeding zoo.animal.care

zoo.animal.talks zoo.staff

F IGURE 12 .12   Transitive dependency version of our modules

678  Chapter 12  ■  Modules

Now let’s look at the four module declarations. The first module remains unchanged. We
are exporting one package to any packages that use the module.

module zoo.animal.feeding {
 exports zoo.animal.feeding;
}

The zoo.animal.care module is the first opportunity to improve things. Rather than
forcing all remaining modules to explicitly specify zoo.animal.feeding, the code uses
requires transitive.

module zoo.animal.care {
 exports zoo.animal.care.medical;
 requires transitive zoo.animal.feeding;
}

In the zoo.animal.talks module, we make a similar change and don’t force other
modules to specify zoo.animal.care. We also no longer need to specify
zoo.animal.feeding, so that line is commented out.

module zoo.animal.talks {
 exports zoo.animal.talks.content to zoo.staff;
 exports zoo.animal.talks.media;
 exports zoo.animal.talks.schedule;
 // no longer needed requires zoo.animal.feeding;
 // no longer needed requires zoo.animal.care;
 requires transitive zoo.animal.care;
}

Finally, in the zoo.staff module, we can get rid of two requires statements.

module zoo.staff {
 // no longer needed requires zoo.animal.feeding;
 // no longer needed requires zoo.animal.care;
 requires zoo.animal.talks;
}

The more modules you have, the greater the benefits of the requires transitive
compound. It is also more convenient for the caller. If you were trying to work with this
zoo, you could just require zoo.staff and have the remaining dependencies automati-
cally inferred.

Effects of requires transitive
Given our new module declarations, and using Figure 12.12, what is the effect of applying
the transitive modifier to the requires statement in our zoo.animal.care module?
Applying the transitive modifiers has the following effects:

■■ Module zoo.animal.talks can optionally declare that it requires the
zoo.animal.feeding module, but it is not required.

Diving into the Module Declaration  679

■■ Module zoo.animal.care cannot be compiled or executed without access to the
zoo.animal.feeding module.

■■ Module zoo.animal.talks cannot be compiled or executed without access to the
zoo.animal.feeding module.

These rules hold even if the zoo.animal.care and zoo.animal.talks modules do not
explicitly reference any packages in the zoo.animal.feeding module. On the other hand,
without the transitive modifier in our module declaration of zoo.animal.care, the
other modules would have to explicitly use requires in order to reference any packages in
the zoo.animal.feeding module.

Duplicate requires Statements
One place the exam might try to trick you is mixing requires and requires
transitive. Can you think of a reason this code doesn’t compile?

module bad.module {
 requires zoo.animal.talks;
 requires transitive zoo.animal.talks;
}

Java doesn’t allow you to repeat the same module in a requires clause. It is redun-
dant and most likely an error in coding. Keep in mind that requires transitive is like
requires plus some extra behavior.

Opening a Package
Java allows callers to inspect and call code at runtime with a technique called reflection. This
is a powerful approach that allows calling code that might not be available at compile time.
It can even be used to subvert access control! Don’t worry—you don’t need to know how to
write code using reflection for the exam.

The opens directive is used to enable reflection of a package within a module. You
only need to be aware that the opens directive exists rather than understanding it in detail
for the exam.

Since reflection can be dangerous, the module system requires developers to explicitly
allow reflection in the module declaration if they want calling modules to be allowed to
use it. The following shows how to enable reflection for two packages in the
zoo.animal.talks module:

module zoo.animal.talks {
 opens zoo.animal.talks.schedule;
 opens zoo.animal.talks.media to zoo.staff;
}

The first example allows any module using this one to use reflection. The second example
only gives that privilege to the zoo.staff module. There are two more directives you need
to know for the exam—provides and uses—which are covered in the following section.

680  Chapter 12  ■  Modules

Opening an Entire Module

In the previous example, we opened two packages in the zoo.animal.talks module, but
suppose we instead wanted to open all packages for reflection. No problem. We can use the
open module modifier, rather than the opens directive (notice the s difference):

 open module zoo.animal.talks {
 }

With this module modifier, Java knows we want all the packages in the module to be open.
What happens if you apply both together?

 open module zoo.animal.talks {
 opens zoo.animal.talks.schedule; // DOES NOT COMPILE
 }

This does not compile because a modifier that uses the open modifier is not permitted to
use the opens directive. After all, the packages are already open!

Creating a Service
In this section, you learn how to create a service. A service is composed of an interface, any
classes the interface references, and a way of looking up implementations of the interface.
The implementations are not part of the service.

We will be using a tour application in the services section. It has four modules shown in
Figure 12.13. In this example, the zoo.tours.api and zoo.tours.reservations mod-
ules make up the service since they consist of the interface and lookup functionality.

zoo.tours.api
(service provider interface)

zoo.tours.agency
(service provider)

zoo.visitor
(consumer)

zoo.tours.reservations
(service locator)

Service

F IGURE 12 .13   Modules in the tour application

Creating a Service  681

You aren’t required to have four separate modules. We do so to illustrate
the concepts. For example, the service provider interface and service
locator could be in the same module.

Declaring the Service Provider Interface
First, the zoo.tours.api module defines a Java object called Souvenir. It is considered
part of the service because it will be referenced by the interface.

// Souvenir.java
package zoo.tours.api;

public record Souvenir(String description) { }

Next, the module contains a Java interface type. This interface is called the service
provider interface because it specifies what behavior our service will have. In this case, it is a
simple API with three methods.

// Tour.java
package zoo.tours.api;

public interface Tour {
 String name();
 int length();
 Souvenir getSouvenir();
}

All three methods use the implicit public modifier. Since we are working with mod-
ules, we also need to create a module-info.java file so our module definition exports the
package containing the interface.

// module-info.java
module zoo.tours.api {
 exports zoo.tours.api;
}

Now that we have both files, we can compile and package this module.

javac -d serviceProviderInterfaceModule
 serviceProviderInterfaceModule/zoo/tours/api/*.java
 serviceProviderInterfaceModule/module-info.java

jar -cvf mods/zoo.tours.api.jar -C serviceProviderInterfaceModule/ .

A service provider “interface” can be an abstract class rather than an
actual interface. Since you will only see it as an interface on the
exam, we use that term in the book.

682  Chapter 12  ■  Modules

To review, the service includes the service provider interface and supporting classes it ref-
erences. The service also includes the lookup functionality, which we define next.

Creating a Service Locator
To complete our service, we need a service locator. A service locator can find any classes that
implement a service provider interface.

Luckily, Java provides a ServiceLoader class to help with this task. You pass the service
provider interface type to its load() method, and Java will return any implementation services
it can find. The following class shows it in action:

// TourFinder.java
package zoo.tours.reservations;

import java.util.*;
import zoo.tours.api.*;

public class TourFinder {

 public static Tour findSingleTour() {
 ServiceLoader<Tour> loader = ServiceLoader.load(Tour.class);
 for (Tour tour : loader)
 return tour;
 return null;
 }
 public static List<Tour> findAllTours() {
 List<Tour> tours = new ArrayList<>();
 ServiceLoader<Tour> loader = ServiceLoader.load(Tour.class);
 for (Tour tour : loader)
 tours.add(tour);
 return tours;
 }
}

As you can see, we provided two lookup methods. The first is a convenience method if
you are expecting exactly one Tour to be returned. The other returns a List, which accom-
modates any number of service providers. At runtime, there may be many service providers
(or none) that are found by the service locator.

The ServiceLoader call is relatively expensive. If you are writing a real
application, it is best to cache the result.

Creating a Service  683

Our module definition exports the package with the lookup class TourFinder. It
requires the service provider interface package. It also has the uses directive since it will be
looking up a service.

// module-info.java
module zoo.tours.reservations {
 exports zoo.tours.reservations;
 requires zoo.tours.api;
 uses zoo.tours.api.Tour;
}

Remember that both requires and uses are needed, one for compilation and one for
lookup. Finally, we compile and package the module.

javac -p mods -d serviceLocatorModule
 serviceLocatorModule/zoo/tours/reservations/*.java
 serviceLocatorModule/module-info.java

jar -cvf mods/zoo.tours.reservations.jar -C serviceLocatorModule/ .

Now that we have the interface and lookup logic, we have completed our service.

Using ServiceLoader

There are two methods in ServiceLoader that you need to know for the exam. The decla-
ration is as follows, sans the full implementation:

 public final class ServiceLoader<S> implements Iterable<S> {

 public static <S> ServiceLoader<S> load(Class<S> service) { ... }

 public Stream<Provider<S>> stream() { ... }

 // Additional methods
 }

As we already saw, calling ServiceLoader.load() returns an object that you can loop
through normally. However, requesting a Stream gives you a different type. The reason for
this is that a Stream controls when elements are evaluated. Therefore, a ServiceLoader
returns a Stream of Provider objects. You have to call get() to retrieve the value you
wanted out of each Provider, such as in this example:

684  Chapter 12  ■  Modules

 ServiceLoader.load(Tour.class)
 .stream()
 .map(Provider::get)
 .mapToInt(Tour::length)
 .max()
 .ifPresent(System.out::println);

Invoking from a Consumer
Next up is to call the service locator by a consumer. A consumer (or client) refers to a
module that obtains and uses a service. Once the consumer has acquired a service via the ser-
vice locator, it is able to invoke the methods provided by the service provider interface.

// Tourist.java
package zoo.visitor;

import java.util.*;
import zoo.tours.api.*;
import zoo.tours.reservations.*;

public class Tourist {
 public static void main(String[] args) {
 Tour tour = TourFinder.findSingleTour();
 System.out.println("Single tour: " + tour);

 List<Tour> tours = TourFinder.findAllTours();
 System.out.println("# tours: " + tours.size());
 }
}

Our module definition doesn’t need to know anything about the implementations since
the zoo.tours.reservations module is handling the lookup.

// module-info.java
module zoo.visitor {
 requires zoo.tours.api;
 requires zoo.tours.reservations;
}

This time, we get to run a program after compiling and packaging.

javac -p mods -d consumerModule
 consumerModule/zoo/visitor/*.java consumerModule/module-info.java

Creating a Service  685

jar -cvf mods/zoo.visitor.jar -C consumerModule/ .

java -p mods -m zoo.visitor/zoo.visitor.Tourist

The program outputs the following:

Single tour: null
tours: 0

Well, that makes sense. We haven’t written a class that implements the interface yet.

Adding a Service Provider
A service provider is the implementation of a service provider interface. As we said earlier,
at runtime it is possible to have multiple implementation classes or modules. We will stick to
one here for simplicity.

Our service provider is the zoo.tours.agency package because we’ve outsourced the
running of tours to a third party.

// TourImpl.java
package zoo.tours.agency;

import zoo.tours.api.*;

public class TourImpl implements Tour {
 public String name() {
 return "Behind the Scenes";
 }
 public int length() {
 return 120;
 }
 public Souvenir getSouvenir() {
 return new Souvenir("stuffed animal");
 }
}

Again, we need a module-info.java file to create a module.

// module-info.java
module zoo.tours.agency {
 requires zoo.tours.api;
 provides zoo.tours.api.Tour with zoo.tours.agency.TourImpl;
}

686  Chapter 12  ■  Modules

The module declaration requires the module containing the interface as a dependency.
We don’t export the package that implements the interface since we don’t want callers refer-
ring to it directly. Instead, we use the provides directive. This allows us to specify that we
provide an implementation of the interface with a specific implementation class. The syntax
looks like this:

provides interfaceName with className;

We have not exported the package containing the implementation.
Instead, we have made the implementation available to a service provider
using the interface.

Finally, we compile it and package it up.

javac -p mods -d serviceProviderModule
 serviceProviderModule/zoo/tours/agency/*.java
 serviceProviderModule/module-info.java
jar -cvf mods/zoo.tours.agency.jar -C serviceProviderModule/ .

Now comes the cool part. We can run the Java program again.

java -p mods -m zoo.visitor/zoo.visitor.Tourist

This time, we see the following output:

Single tour: zoo.tours.agency.TourImpl@1936f0f5
tours: 1

Notice how we didn’t recompile the zoo.tours.reservations or zoo.visitor
package. The service locator was able to observe that there was now a service provider
implementation available and find it for us.

This is useful when you have functionality that changes independently of the rest of the
code base. For example, you might have custom reports or logging.

In software development, the concept of separating different com-
ponents into stand-alone pieces is referred to as loose coupling. One
advantage of loosely coupled code is that it can be easily swapped out or
replaced with minimal (or zero) changes to code that uses it. Relying on a
loosely coupled structure allows service modules to be easily extensible
at runtime.

Reviewing Directives and Services
Table 12.4 summarizes what we’ve covered in the section about services. We recommend
learning really well what is needed when each artifact is in a separate module. That is most
likely what you will see on the exam and will ensure that you understand the concepts.
Table 12.5 lists all the directives you need to know for the exam.

Discovering Modules  687

Discovering Modules
So far, we’ve been working with modules that we wrote. Even the classes built into
the JDK are modularized. In this section, we show you how to use commands to learn
about modules.

You do not need to know the output of the commands in this section. You do, however,
need to know the syntax of the commands and what they do. We include the output where it
facilitates remembering what is going on. But you don’t need to memorize that (which frees
up more space in your head to memorize command-line options).

TABLE 12 .5   Reviewing directives

Directive Description

exports package;
exports package to module;

Makes package available outside module

requires module;
requires transitive module;

Specifies another module as dependency

opens package;
opens package to module;

Allows package to be used with reflection

provides serviceInterface with
implName;

Makes service available

uses serviceInterface; References service

TABLE 12 .4   Reviewing services

Artifact Part of the service Directives required

Service provider interface Yes exports

Service provider No requires
provides

Service locator Yes exports
requires
uses

Consumer No requires

688  Chapter 12  ■  Modules

Identifying Built-in Modules
The most important module to know is java.base. It contains most of the packages you
have been learning about for the exam. In fact, it is so important that you don’t even
have to use the requires directive; it is available to all modular applications. Your
module-info.java file will still compile if you explicitly require java.base. However,
it is redundant, so it’s better to omit it. Table 12.6 lists some common modules and what
they contain.

The exam creators feel it is important to recognize the names of modules supplied by the
JDK. While you don’t need to know the names by heart, you do need to be able to pick them
out of a lineup.

For the exam, you need to know that module names begin with java for APIs you are
likely to use and with jdk for APIs that are specific to the JDK. Table 12.7 lists all the mod-
ules that begin with java.

TABLE 12 .6   Common modules

Module name What it contains Coverage in book

java.base Collections, math, IO, NIO.2,
concurrency, etc.

Most of this book

java.desktop Abstract Windows Toolkit (AWT) and
Swing

Not on exam beyond module
name

java.logging Logging Not on exam beyond module
name

java.sql JDBC Chapter 15, “JDBC”

java.xml Extensible Markup Language (XML) Not on exam beyond module
name

TABLE 12 .7   Java modules prefixed with java

java.base java.naming java.smartcardio

java.compiler java.net.http java.sql

java.datatransfer java.prefs java.sql.rowset

java.desktop java.rmi java.transaction.xa

http://java.net

Discovering Modules  689

Table 12.8 lists all the modules that begin with jdk. We recommend reviewing this right
before the exam to increase the chances of them sounding familiar. Remember that you don’t
have to memorize them.

TABLE 12 .8   Java modules prefixed with jdk

jdk.accessiblity jdk.javadoc jdk.management.agent

jdk.attach jdk.jcmd jdk.management.jfr

jdk.charsets jdk.jconsole jdk.naming.dns

jdk.compiler jdk.jdeps jdk.naming.rmi

jdk.crypto.cryptoki jdk.jdi jdk.net

jdk.crypto.ec jdk.jdwp.agent jdk.nio.mapmode

jdk.dynalink jdk.jfr jdk.sctp

jdk.editpad jdk.jlink jdk.security.auth

jdk.hotspot.agent jdk.jshell jdk.security.jgss

jdk.httpserver jdk.jsobject jdk.xml.dom

jdk.incubator.foreign jdk.jstatd jdk.zipfs

jdk.incubator.vector jdk.localedata

jdk.jartool jdk.management

java.instrument java.scripting java.xml

java.logging java.se java.xml.crypto

java.management java.security.jgss

java.management.rmi java.security.sasl

http://jdk.net

690  Chapter 12  ■  Modules

Getting Details with java
The java command has three module-related options. One describes a module, another lists
the available modules, and the third shows the module resolution logic.

It is also possible to add modules, exports, and more at the command
line. But please don’t. It’s confusing and hard to maintain. Note that these
flags are available on java but not all commands.

Describing a Module
Suppose you are given the zoo.animal.feeding module JAR file and want to know about
its module structure. You could “unjar” it and open the module-info.java file. This would
show you that the module exports one package and doesn’t explicitly require any modules.

module zoo.animal.feeding {
 exports zoo.animal.feeding;
}

However, there is an easier way. The java command has an option to describe a module.
The following two commands are equivalent:

java -p mods
 -d zoo.animal.feeding

java -p mods
 --describe-module zoo.animal.feeding

Each prints information about the module. For example, it might print this:

zoo.animal.feeding file:///absolutePath/mods/zoo.animal.feeding.jar
exports zoo.animal.feeding
requires java.base mandated

The first line is the module we asked about: zoo.animal.feeding. The second line
starts with information about the module. In our case, it is the same package exports state-
ment we had in the module declaration file.

On the third line, we see requires java.base mandated. Now, wait a minute. The
module declaration very clearly does not specify any modules that zoo.animal.feeding
has as dependencies.

Remember, the java.base module is special. It is automatically added as a dependency
to all modules. This module has frequently used packages like java.util. That’s what the
mandated is about. You get java.base regardless of whether you asked for it.

In classes, the java.lang package is automatically imported whether you type it or
not. The java.base module works the same way. It is automatically available to all
other modules.

Discovering Modules  691

More about Describing Modules

You only need to know how to run --describe-module for the exam rather than interpret
the output. However, you might encounter some surprises when experimenting with this
feature, so we describe them in a bit more detail here.

Assume the following are the contents of module-info.java in zoo.animal.care:

 module zoo.animal.care {
 exports zoo.animal.care.medical to zoo.staff;
 requires transitive zoo.animal.feeding;
 }

Now we have the command to describe the module and the output.

 java -p mods -d zoo.animal.care

 zoo.animal.care file:///absolutePath/mods/zoo.animal.care.jar
 requires zoo.animal.feeding transitive
 requires java.base mandated
 qualified exports zoo.animal.care.medical to zoo.staff
 contains zoo.animal.care.details

The first line of the output is the absolute path of the module file. The two requires lines
should look familiar as well. The first is in the module-info, and the other is added to all
modules. Next comes something new. The qualified exports is the full name of the
package we are exporting to a specific module.

Finally, the contains means that there is a package in the module that is not exported
at all. This is true. Our module has two packages, and one is available only to code inside
the module.

Listing Available Modules
In addition to describing modules, you can use the java command to list the modules that are
available. The simplest form lists the modules that are part of the JDK.

java --list-modules

When we ran it, the output went on for 70 lines and looked like this:

java.base@17
java.compiler@17
java.datatransfer@17

692  Chapter 12  ■  Modules

This is a listing of all the modules that come with Java and their version numbers. You
can tell that we were using Java 17 when testing this example.

More interestingly, you can use this command with custom code. Let’s try again with the
directory containing our zoo modules.

java -p mods --list-modules

How many lines do you expect to be in the output this time? There are 78 lines now: the
70 built-in modules plus the 8 we’ve created in this chapter. Two of the custom lines look
like this:

zoo.animal.care file:///absolutePath/mods/zoo.animal.care.jar
zoo.animal.feeding file:///absolutePath/mods/zoo.animal.feeding.jar

Since these are custom modules, we get a location on the file system. If the project had a
module version number, it would have both the version number and the file system path.

Note that --list-modules exits as soon as it prints the observable mod-
ules. It does not run the program.

Showing Module Resolution
If listing the modules doesn’t give you enough output, you can also use the
--show-module-resolution option. You can think of it as a way of debugging modules. It spits
out a lot of output when the program starts up. Then it runs the program.

java --show-module-resolution
 -p feeding
 -m zoo.animal.feeding/zoo.animal.feeding.Task

Luckily, you don’t need to understand this output. That said, having seen it will make it
easier to remember. Here’s a snippet of the output:

root zoo.animal.feeding file:///absolutePath/feeding/
java.base binds java.desktop jrt:/java.desktop
java.base binds jdk.jartool jrt:/jdk.jartool
...
jdk.security.auth requires java.naming jrt:/java.naming
jdk.security.auth requires java.security.jgss jrt:/java.security.jgss
...
All fed!

It starts by listing the root module. That’s the one we are running:
zoo.animal.feeding. Then it lists many lines of packages included by the
mandatory java.base module. After a while, it lists modules that have dependencies.
Finally, it outputs the result of the program: All fed!.

Discovering Modules  693

Describing with jar
Like the java command, the jar command can describe a module. These commands are
equivalent:

jar -f mods/zoo.animal.feeding.jar -d
jar --file mods/zoo.animal.feeding.jar --describe-module

The output is slightly different from when we used the java command to describe the
module. With jar, it outputs the following:

zoo.animal.feeding jar:file:///absolutePath/mods/zoo.animal.feeding.jar
/!module-info.class
exports zoo.animal.feeding
requires java.base mandated

The JAR version includes the module-info.class in the filename, which is not a partic-
ularly significant difference in the scheme of things. You don’t need to know this difference.
You do need to know that both commands can describe a module.

Learning about Dependencies with jdeps
The jdeps command gives you information about dependencies within a module. Unlike
describing a module, it looks at the code in addition to the module declaration. This tells
you what dependencies are actually used rather than simply declared. Luckily, you are not
expected to memorize all the options for the exam.

You are expected to understand how to use jdeps with projects that have not yet been
modularized to assist in identifying dependencies and problems. First, we will create a JAR
file from this class. If you are following along, feel free to copy the class from the online
examples referenced at the beginning of the chapter rather than typing it in.

// Animatronic.java
package zoo.dinos;

import java.time.*;
import java.util.*;
import sun.misc.Unsafe;

public class Animatronic {
 private List<String> names;
 private LocalDate visitDate;

 public Animatronic(List<String> names, LocalDate visitDate) {
 this.names = names;
 this.visitDate = visitDate;

694  Chapter 12  ■  Modules

 }
 public void unsafeMethod() {
 Unsafe unsafe = Unsafe.getUnsafe();
 }
}

This example is silly. It uses a number of unrelated classes. The Bronx Zoo really did have
electronic moving dinosaurs for a while, so at least the idea of having dinosaurs in a zoo isn’t
beyond the realm of possibility.

Now we can compile this file. You might have noticed that there is no
module-info.java file. That is because we aren’t creating a module. We are looking into
what dependencies we will need when we do modularize this JAR.

javac zoo/dinos/*.java

Compiling works, but it gives you some warnings about Unsafe being an internal API.
Don’t worry about those for now—we discuss that shortly. (Maybe the dinosaurs went
extinct because they did something unsafe.)

Next, we create a JAR file.

jar -cvf zoo.dino.jar .

We can run the jdeps command against this JAR to learn about its dependencies. First,
let’s run the command without any options. On the first two lines, the command prints the
modules that we would need to add with a requires directive to migrate to the module
system. It also prints a table showing what packages are used and what modules they cor-
respond to.

jdeps zoo.dino.jar

zoo.dino.jar -> java.base
zoo.dino.jar -> jdk.unsupported
 zoo.dinos -> java.lang java.base
 zoo.dinos -> java.time java.base
 zoo.dinos -> java.util java.base
 zoo.dinos -> sun.misc JDK internal API (jdk.unsupported)

Note that java.base is always included. It also says which modules contain classes used
by the JAR. If we run in summary mode, we only see just the first part where jdeps lists the
modules. There are two formats for the summary flag:

jdeps -s zoo.dino.jar
jdeps -summary zoo.dino.jar

zoo.dino.jar -> java.base
zoo.dino.jar -> jdk.unsupported

For a real project, the dependency list could include dozens or even hundreds of packages.
It’s useful to see the summary of just the modules. This approach also makes it easier to see
whether jdk.unsupported is in the list.

Discovering Modules  695

There is also a --module-path option that you can use if you want to look for modules
outside the JDK. Unlike other commands, there is no short form for this option on jdeps.

You might have noticed that jdk.unsupported is not in the list of
modules you saw in Table 12.8. It’s special because it contains internal
libraries that developers in previous versions of Java were discouraged
from using, although many people ignored this warning. You should not
reference it, as it may disappear in future versions of Java.

Using the --jdk-internals Flag
The jdeps command has an option to provide details about these unsupported APIs. The
output looks something like this:

jdeps --jdk-internals zoo.dino.jar

zoo.dino.jar -> jdk.unsupported
 zoo.dinos.Animatronic -> sun.misc.Unsafe
 JDK internal API (jdk.unsupported)

Warning: <omitted warning>

JDK Internal API Suggested Replacement

sun.misc.Unsafe See http://openjdk.java.net/jeps/260

The --jdk-internals option lists any classes you are using that call an internal API
along with which API. At the end, it provides a table suggesting what you should do about
it. If you wrote the code calling the internal API, this message is useful. If not, the mes-
sage would be useful to the team that did write the code. You, on the other hand, might
need to update or replace that JAR file entirely with one that fixes the issue. Note that
-jdkinternals is equivalent to --jdk-internals.

About sun.misc.Unsafe

Prior to the Java Platform Module System, classes had to be public if you wanted them
to be used outside the package. It was reasonable to use the class in JDK code since that
is low-level code that is already tightly coupled to the JDK. Since it was needed in multiple

696  Chapter 12  ■  Modules

packages, the class was made public. Sun even named it Unsafe, figuring that would
prevent anyone from using it outside the JDK.

However, developers are clever and used the class since it was available. A number of
widely used open source libraries started using Unsafe. While it is quite unlikely that you
are using this class in your project directly, you probably use an open source library that
is using it.

The jdeps command allows you to look at these JARs to see whether you will have any
problems when Oracle finally prevents the usage of this class. If you find any uses, you can
look at whether there is a later version of the JAR that you can upgrade to.

Using Module Files with jmod
The final command you need to know for the exam is jmod. You might think a JMOD file is
a Java module file. Not quite. Oracle recommends using JAR files for most modules. JMOD
files are recommended only when you have native libraries or something that can’t go inside
a JAR file. This is unlikely to affect you in the real world.

The most important thing to remember is that jmod is only for working with the JMOD
files. Conveniently, you don’t have to memorize the syntax for jmod. Table 12.9 lists the
common modes.

Creating Java Runtimes with jlink
One of the benefits of modules is being able to supply just the parts of Java you need. Our
zoo example from the beginning of the chapter doesn’t have many dependencies. If the user

TABLE 12 .9   Modes using jmod

Operation Description

create Creates JMOD file.

extract Extracts all files from JMOD. Works like unzipping.

describe Prints module details such as requires.

list Lists all files in JMOD file.

hash Prints or records hashes.

Discovering Modules  697

already doesn’t have Java or is on a device without much memory, downloading a JDK
that is over 150 MB is a big ask. Let’s see how big the package actually needs to be! This
command creates our smaller distribution:

jlink --module-path mods --add-modules zoo.animal.talks --output zooApp

First we specify where to find the custom modules with -p or --module-path. Then
we specify our module names with --add-modules. This will include the dependencies it
requires as long as they can be found. Finally, we specify the folder name of our smaller JDK
with --output.

The output directory contains the bin, conf, include, legal, lib, and man directories
along with a release file. These should look familiar as you find them in the full JDK as well.

When we run this command and zip up the zooApp directory, the file is only 15 MB. This
is an order of magnitude smaller than the full JDK. Where did this space savings come from?
There are many modules in the JDK we don’t need. Additionally, development tools like
javac don’t need to be in a runtime distribution.

There are a lot more items to customize this process that you don’t need to know for
the exam. For example, you can skip generating the help documentation and save even
more space.

Reviewing Command-Line Options
This section presents a number of tables that cover what you need to know about running
command-line options for the exam.

Table 12.10 shows the command-line operations you should expect to encounter on
the exam. There are many more options in the documentation. For example, there is a
--module option on javac that limits compilation to that module. Luckily, you don’t need
to know those for the exam.

TABLE 12 .10   Comparing command-line operations

Description Syntax

Compile
nonmodular code

javac -cp classpath -d directory classesToCompile
javac --class-path classpath -d directory
classesToCompile
javac -classpath classpath -d directory
classesToCompile

Run nonmodular
code

java -cp classpath package.className
java -classpath classpath package.className
java --class-path classpath package.className

698  Chapter 12  ■  Modules

Table 12.11 shows the options for javac, Table 12.12 shows the options for java,
Table 12.13 shows the options for jar, and Table 12.14 shows the options for jdeps.
Finally, Table 12.15 shows the options for jlink.

Description Syntax

Compile module javac -p moduleFolderName -d directory
classesToCompileIncludingModuleInfo
javac --module-path moduleFolderName -d directory
classesToCompileIncludingModuleInfo

Run module java -p moduleFolderName
-m moduleName/package.className
java --module-path moduleFolderName
--module moduleName/package.className

Describe module java -p moduleFolderName -d moduleName
java --module-path moduleFolderName --describe-module
moduleName
jar --file jarName --describe-module
jar -f jarName -d

List available
modules

java --module-path moduleFolderName --list-modules
java -p moduleFolderName --list-modules
java --list-modules

View depen-
dencies

jdeps -summary --module-path moduleFolderName jarName
jdeps -s --module-path moduleFolderName jarName
jdeps --jdk-internals jarName
jdeps -jdkinternals jarName

Show module
resolution

java --show-module-resolution -p moduleFolderName
-m moduleName
java --show-module-resolution --module-path
moduleFolderName --module moduleName

Create runtime
JAR

jlink -p moduleFolderName --add-modules moduleName
--output zooApp
jlink --module-path moduleFolderName --add-modules
moduleName --output zooApp

TABLE 12 .10   Comparing command-line operations

Discovering Modules  699

TABLE 12 .13   Options you need to know for the exam: jar

Option Description

-c
--create

Creates new JAR file

-v
--verbose

Prints details when working with JAR files

-f
--file

JAR filename

TABLE 12 .12   Options you need to know for the exam: java

Option Description

-p <path>
--module-path <path>

Location of JARs in modular program

-m <name>
--module <name>

Module name to run

-d
--describe-module

Describes details of module

--list-modules Lists observable modules without running program

--show-module-resolution Shows modules when running program

TABLE 12 .11   Options you need to know for the exam: javac

Option Description

-cp <classpath>
-classpath <classpath>
--class-path <classpath>

Location of JARs in nonmodular program

-d <dir> Directory in which to place generated class files

-p <path>
--module-path <path>

Location of JARs in modular program

700  Chapter 12  ■  Modules

Comparing Types of Modules
All the modules we’ve used so far in this chapter are called named modules. There are
two other types of modules: automatic modules and unnamed modules. In this sec-
tion, we describe these three types of modules. On the exam, you will need to be able to
compare them.

TABLE 12 .14   Options you need to know for the exam: jdeps

Option Description

--module-path <path> Location of JARs in modular program

-s
-summary

Summarizes output

--jdk-internals
-jdkinternals

Lists uses of internal APIs

TABLE 12 .15   Options you need to know for the exam: jlink

Option Description

-p
--module-path <path>

Location of JARs in modular program

--add-modules List of modules to package

--output Name of output directory

Option Description

-C Directory containing files to be used to create JAR

-d
--describe-module

Describes details of module

TABLE 12 .13   Options you need to know for the exam: jar

Comparing Types of Modules  701

Named Modules
A named module is one containing a module-info.java file. To review, this file appears in
the root of the JAR alongside one or more packages. Unless otherwise specified, a module
is a named module. Named modules appear on the module path rather than the classpath.
Later, you learn what happens if a JAR containing a module-info.java file is on the
classpath. For now, just know it is not considered a named module because it is not on the
module path.

As a way of remembering this, a named module has the name inside the
module-info.java file and is on the module path.

Remember from Chapter 7, “Beyond Classes,” that the only way for sub-
classes of sealed classes to be in a different package is to be within the
same-named module.

Automatic Modules
An automatic module appears on the module path but does not contain a
module-info.java file. It is simply a regular JAR file that is placed on the module path
and gets treated as a module.

As a way of remembering this, Java automatically determines the module name. The code
referencing an automatic module treats it as if there is a module-info.java file present. It
automatically exports all packages. It also determines the module name. How does it deter-
mine the module name, you ask? Excellent question.

To answer this, we need to provide a bit of history on JAR files and module adoption.
Every JAR file contains a special folder called META-INF and, within it, a text file called
MANIFEST.MF. It can be created automatically when the JAR is created or by hand by the
JAR’s author. Getting back to modules, many Java libraries weren’t quite ready to modular-
ize when the feature was introduced. The authors were encouraged to declare the name they
intended to use for the module by adding a property named Automatic-Module-Name into
their MANIFEST.MF file.

About the MANIFEST.MF File

A JAR file contains a special text file called META-INF/MANIFEST.MF that contains
information about the JAR. It’s been around significantly longer than modules—since the
early days of Java and JARs, to be exact. The figure shows how the manifest fits into the
directory structure of a JAR file.

702  Chapter 12  ■  Modules

zoo

sales

holiday

data

MANIFEST.MF

META-INF

The manifest contains extra information about the JAR file. For example, it often contains
the version of Java used to build the JAR file. For command-line programs, the class with
the main() method is commonly specified.

Each line in the manifest is a key/value pair separated by a colon. You can think of the
manifest as a map of property names and values. The default manifest in Java 17 looks
like this:

 Manifest-Version: 1.0
 Created-By: 17 (Oracle Corporation)

Specifying a single property in the manifest allowed library providers to make things
easier for applications that wanted to use their library in a modular application. You can
think of it as a promise that when the library becomes a named module, it will use the speci-
fied module name.

If the JAR file does not specify an automatic module name, Java will still allow you to use
it in the module path. In this case, Java will determine the module name for you. We’d say
that this happens automatically, but the joke is probably wearing thin by now.

Java determines the automatic module name by basing it on the filename of the JAR
file. Let’s go over the rules by starting with an example. Suppose we have a JAR file named
holiday-calendar-1.0.0.jar.

First Java will remove the extension .jar from the name. Then Java will remove the ver-
sion from the end of the JAR filename. This is important because we want module names to
be consistent. Having a different automatic module name every time you upgraded to a new
version would not be good! After all, this would force you to change the module declaration
of your nice, clean, modularized application every time you pulled in a later version of the
holiday calendar JAR.

Comparing Types of Modules  703

Removing the version and extension gives us holiday-calendar. This leaves us with
a problem. Dashes (-) are not allowed in module names. Java solves this problem by
converting any special characters in the name to dots (.). As a result, the module name
is holiday.calendar. Any characters other than letters and numbers are considered
special characters in this replacement. Finally, any adjacent dots or leading/trailing dots
are removed.

Since that’s a number of rules, let’s review the algorithm in a list for determining the name
of an automatic module:

■■ If the MANIFEST.MF specifies an Automatic-Module-Name, use that. Otherwise, pro-
ceed with the remaining rules.

■■ Remove the file extension from the JAR name.

■■ Remove any version information from the end of the name. A version is digits and dots
with possible extra information at the end: for example, -1.0.0 or -1.0-RC.

■■ Replace any remaining characters other than letters and numbers with dots.

■■ Replace any sequences of dots with a single dot.

■■ Remove the dot if it is the first or last character of the result.

Table 12.16 shows how to apply these rules to two examples where there is no automatic
module name specified in the manifest.

While the algorithm for creating automatic module names does its best, it can’t always
come up with a good name. For example, 1.2.0-calendar-1.2.2-good-1.jar isn’t con-
ducive. Luckily, such names are rare and out of scope for the exam.

TABLE 12 .16   Practicing with automatic module names

Description Example 1 Example 2

1 Beginning JAR name commons2-x-1.0.0-SNAPSHOT
.jar

mod_$-1.0.jar

2 Remove file extension commons2-x-1.0.0-SNAPSHOT mod_$-1.0

3 Remove version information commons2-x mod_$

4 Replace special characters commons2.x mod..

5 Replace sequence of dots commons2.x mod.

6 Remove leading/trailing dots
(results in the automatic
module name)

commons2.x mod

704  Chapter 12  ■  Modules

Unnamed Modules
An unnamed module appears on the classpath. Like an automatic module, it is a regular
JAR. Unlike an automatic module, it is on the classpath rather than the module path. This
means an unnamed module is treated like old code and a second-class citizen to modules.

An unnamed module does not usually contain a module-info.java file. If it happens to
contain one, that file will be ignored since it is on the classpath.

Unnamed modules do not export any packages to named or automatic modules. The
unnamed module can read from any JARs on the classpath or module path. You can think of
an unnamed module as code that works the way Java worked before modules. Yes, we know
it is confusing for something that isn’t really a module to have the word module in its name.

Reviewing Module Types
You can expect to get questions on the exam comparing the three types of modules. Please
study Table 12.17 thoroughly and be prepared to answer questions about these items in any
combination. A key point to remember is that code on the classpath can access the module
path. By contrast, code on the module path is unable to read from the classpath.

Migrating an Application
Many applications were not designed to use the Java Platform Module System because they
were written before it was created or chose not to use it. Ideally, they were at least designed
with projects instead of as a big ball of mud. This section gives you an overview of strategies
for migrating an existing application to use modules. We cover ordering modules, bottom-up
migration, top-down migration, and how to split up an existing project.

TABLE 12 .17   Properties of module types

Property Named Automatic Unnamed

Does a ______ module contain a
module-info.java file?

Yes No Ignored if
present

Which packages does a ______
module export to other modules?

Those in
module-info.java file

All
packages

No
packages

Is a ______ module readable by
other modules on the module
path?

Yes Yes No

Is a ______ module readable by
other JARs on the classpath?

Yes Yes Yes

Migrating an Application  705

Migrating Your Applications at Work

The exam exists in a pretend universe where there are no open source dependencies and
applications are very small. These scenarios make learning and discussing migration far
easier. In the real world, applications have libraries that haven’t been updated in 10 or more
years, complex dependency graphs, and all sorts of surprises.

Note that you can use all the features of Java 17 without converting your application to
modules (except the features in this module chapter, of course!). Please make sure you
have a reason for migration and don’t think it is required.

This chapter does a great job teaching you what you need to know for the exam. However,
it does not adequately prepare you to convert real applications to use modules. If you find
yourself in that situation, consider reading The Java Module System by Nicolai Parlog
(Manning Publications, 2019).

Determining the Order
Before we can migrate our application to use modules, we need to know how the packages
and libraries in the existing application are structured. Suppose we have a simple appli-
cation with three JAR files, as shown in Figure 12.14. The dependencies between projects
form a graph. Both of the representations in Figure 12.14 are equivalent. The arrows show
the dependencies by pointing from the project that will require the dependency to the one
that makes it available. In the language of modules, the arrow will go from requires
to exports.

chicken

nest

egg

chicken

nest

egg

F IGURE 12 .14   Determining the order

706  Chapter 12  ■  Modules

The right side of the diagram makes it easier to identify the top and bottom that top-
down and bottom-up migration refer to. Projects that do not have any dependencies are at
the bottom. Projects that do have dependencies are at the top.

In this example, there is only one order from top to bottom that honors all the depen-
dencies. Figure 12.15 shows that the order is not always unique. Since two of the projects do
not have an arrow between them, either order is allowed when deciding migration order.

Exploring a Bottom-Up Migration Strategy
The easiest approach to migration is a bottom-up migration. This approach works best when
you have the power to convert any JAR files that aren’t already modules. For a bottom-up
migration, you follow these steps:

1.	 Pick the lowest-level project that has not yet been migrated. (Remember the way we
ordered them by dependencies in the previous section?)

2.	 Add a module-info.java file to that project. Be sure to add any exports to expose
any package used by higher-level JAR files. Also, add a requires directive for any
modules this module depends on.

3.	 Move this newly migrated named module from the classpath to the module path.

4.	 Ensure that any projects that have not yet been migrated stay as unnamed modules on
the classpath.

5.	 Repeat with the next-lowest-level project until you are done.

You can see this procedure applied to migrate three projects in Figure 12.16. Notice that
each project is converted to a module in turn.

With a bottom-up migration, you are getting the lower-level projects in good shape. This
makes it easier to migrate the top-level projects at the end. It also encourages care in what
is exposed.

During migration, you have a mix of named modules and unnamed modules. The named
modules are the lower-level ones that have been migrated. They are on the module path and
not allowed to access any unnamed modules.

chicken

egg

chicken

penguin

egg

chicken

egg

penguin

penguin

F IGURE 12 .15   Determining the order when not unique

Migrating an Application  707

The unnamed modules are on the classpath. They can access JAR files on both the class-
path and the module path.

Exploring a Top-Down Migration Strategy
A top-down migration strategy is most useful when you don’t have control of every JAR file
used by your application. For example, suppose another team owns one project. They are
just too busy to migrate. You wouldn’t want this situation to hold up your entire migration.

For a top-down migration, you follow these steps:

1.	 Place all projects on the module path.

2.	 Pick the highest-level project that has not yet been migrated.

3.	 Add a module-info.java file to that project to convert the automatic module into a
named module. Again, remember to add any exports or requires directives. You can
use the automatic module name of other modules when writing the requires directive
since most of the projects on the module path do not have names yet.

4.	 Repeat with the next-highest-level project until you are done.

chicken
(unnamed)

nest
(unnamed)

egg
(named)

chicken
(unnamed)

nest
(named)

egg
(named)

chicken
(named)

nest
(named)

egg
(named)

Classpath

ClasspathClasspath

Classpath Module path

Module path

Module path

Module path

1

3 4

2

chicken

nest

egg

F IGURE 12 .16   Bottom-up migration

708  Chapter 12  ■  Modules

You can see this procedure applied in order to migrate three projects in Figure 12.17.
Notice that each project is converted to a module in turn.

With a top-down migration, you are conceding that all of the lower-level dependencies
are not ready but that you want to make the application itself a module.

During migration, you have a mix of named modules and automatic modules. The named
modules are the higher-level ones that have been migrated. They are on the module path and
have access to the automatic modules. The automatic modules are also on the module path.

Table 12.18 reviews what you need to know about the two main migration strategies.
Make sure you know it well.

chicken
(named)

nest
(named)

egg
(named)

Classpath

ClasspathClasspath

Classpath Module path

Module path

Module path

Module path

1

3 4

2

chicken
(named)

nest
(automatic)

egg
(automatic)

chicken
(named)

nest
(named)

egg
(automatic)

chicken

nest

egg

F IGURE 12 .17   Top-down migration

TABLE 12 .18   Comparing migration strategies

Category Bottom-Up Top-Down

Project that depends on all
others

Unnamed module on
classpath

Named module on module
path

Project that has no
dependencies

Named module on module
path

Automatic module on module
path

Migrating an Application  709

Splitting a Big Project into Modules
For the exam, you need to understand the basic process of splitting a big project into mod-
ules. You won’t be given a big project, of course. After all, there is only so much space to ask
a question. Luckily, the process is the same for a small project.

Suppose you start with an application that has a number of packages. The first step is to
break them into logical groupings and draw the dependencies between them. Figure 12.18
shows an imaginary system’s decomposition. Notice that there are seven packages on both
the left and right sides. There are fewer modules because some packages share a module.

There’s a problem with this decomposition. Do you see it? The Java Platform
Module System does not allow for cyclic dependencies. A cyclic dependency, or circular
dependency, is when two things directly or indirectly depend on each other. If the
zoo.tickets.delivery module requires the zoo.tickets.discount module,
zoo.tickets.discount is not allowed to require the zoo.tickets.delivery module.

Now that we know that the decomposition in Figure 12.18 won’t work, what can we do
about it? A common technique is to introduce another module. That module contains the
code that the other two modules share. Figure 12.19 shows the new modules without any
cyclic dependencies. Notice the new module zoo.tickets.etech. We created new pack-
ages to put in that module. This allows the developers to put the common code in there and
break the dependency. No more cyclic dependencies!

Failing to Compile with a Cyclic Dependency
It is extremely important to understand that Java will not allow you to compile modules
that have circular dependencies. In this section, we look at an example leading to that com-
piler error.

Before

zoo.tickets.cash

zoo.tickets.coupons

zoo.tickets.credit

zoo.tickets.etickets

zoo.tickets.promos

zoo.tickets.printer

zoo.tickets.type

After

zoo.tickets.etickets
zoo.tickets.printer

zoo.tickets.coupons
zoo.tickets.promos

zoo.tickets.type

zoo.tickets.cash
zoo.tickets.credit

zoo.tickets.delivery zoo.tickets.model

zoo.tickets.discount zoo.tickets.payment

F IGURE 12 .18   First attempt at decomposition

710  Chapter 12  ■  Modules

Consider the zoo.butterfly module described here:

// Butterfly.java
package zoo.butterfly;
public class Butterfly {
 private Caterpillar caterpillar;
}

// module-info.java
module zoo.butterfly {
 exports zoo.butterfly;
 requires zoo.caterpillar;
}

We can’t compile this yet as we need to build zoo.caterpillar first. After all, our
butterfly requires it. Now we look at zoo.caterpillar:

// Caterpillar.java
package zoo.caterpillar;
public class Caterpillar {
 Butterfly emergeCocoon() {
 // logic omitted
 }
}

Before After

zoo.tickets.etickets
zoo.tickets.printer

zoo.tickets.coupons
zoo.tickets.promos

zoo.tickets.type

zoo.tickets.cash
zoo.tickets.credit

zoo.tickets.delivery

zoo.tickets.model

zoo.tickets.discount

zoo.tickets.payment

zoo.tickets.electronic
zoo.tickets.email

zoo.tickets.etech

zoo.tickets.etickets
zoo.tickets.printer

zoo.tickets.coupons
zoo.tickets.promos

zoo.tickets.type

zoo.tickets.cash
zoo.tickets.credit

zoo.tickets.delivery zoo.tickets.model

zoo.tickets.discount zoo.tickets.payment

F IGURE 12 .19   Removing the cyclic dependencies

Summary  711

// module-info.java
module zoo.caterpillar {
 exports zoo.caterpillar;
 requires zoo.butterfly;
}

We can’t compile this yet as we need to build zoo.butterfly first. Uh oh! Now
we have a stalemate. Neither module can be compiled. This is our circular dependency
problem at work.

This is one of the advantages of the module system. It prevents you from writing code
that has a cyclic dependency. Such code won’t even compile!

You might be wondering what happens if three modules are involved. Suppose module
ballA requires module ballB and ballB requires module ballC. Can module ballC
require module ballA? No. This would create a cyclic dependency. Don’t believe us? Try
drawing it. You can follow your pencil around the circle from ballA to ballB to ballC
to ballA to . . . well, you get the idea. There are just too many balls in the air!

Java will still allow you to have a cyclic dependency between packages
within a module. It enforces that you do not have a cyclic dependency
between modules.

Summary
The Java Platform Module System organizes code at a higher level than packages. Each
module contains one or more packages and a module-info.java file. The java.base
module is most common and is automatically supplied to all modules as a dependency.

The process of compiling and running modules uses the --module-path, also known
as -p. Running a module uses the --module option, also known as -m. The class to run is
specified in the format moduleName/className.

The module declaration file supports a number of directives. The exports directive spec-
ifies that a package should be accessible outside the module. It can optionally restrict that
export to a specific package. The requires directive is used when a module depends on
code in another module. Additionally, requires transitive can be used when all mod-
ules that require one module should always require another. The provides and uses direc-
tives are used when sharing and consuming a service. Finally, the opens directive is used to
allow access via reflection.

Both the java and jar commands can be used to describe the contents of a module. The
java command can additionally list available modules and show module resolution. The jdeps
command prints information about packages used in addition to module-level information.
The jmod command is used when dealing with files that don’t meet the requirements for a
JAR. The jlink command creates a smaller Java runtime image.

712  Chapter 12  ■  Modules

There are three types of modules. Named modules contain a module-info.java file and
are on the module path. They can read only from the module path. Automatic modules are
also on the module path but have not yet been modularized. They might have an automatic
module name set in the manifest. Unnamed modules are on the classpath.

The two most common migration strategies are top-down and bottom-up migration.
Top-down migration starts migrating the module with the most dependencies and places all
other modules on the module path. Bottom-up migration starts migrating a module with
no dependencies and moves one module to the module path at a time. Both of these strat-
egies require ensuring that you do not have any cyclic dependencies since the Java Platform
Module System will not allow cyclic dependencies to compile.

Exam Essentials
Create module-info.java files.  Place the module-info.java file in the root directory of
the module. Know how to code exports, requires, provides, and uses directives. Addi-
tionally, be familiar with the opens directive.

Use command-line operations with modules.  The java command can describe a module,
list available modules, or show the module resolution. The jar command can describe a
module similar to how the java command does. The jdeps command prints details about a
module and packages. The jmod command provides various modes for working with JMOD
files rather than JAR files. The jlink command creates custom Java images.

Identify the three types of modules.  Named modules are JARs that have been modularized.
Unnamed modules have not been modularized. Automatic modules are in between. They are
on the module path but do not have a module-info.java file.

List built-in JDK modules.  The java.base module is available to all modules. There are
about 20 other modules provided by the JDK that begin with java.* and about 30 that
begin with jdk.*.

Explain top-down and bottom-up migration.  A top-down migration places all JARs on
the module path, making them automatic modules while migrating from top to bottom. A
bottom-up migration leaves all JARs on the classpath, making them unnamed modules while
migrating from bottom to top.

Differentiate the four main parts of a service.  A service provider interface declares the
interface that a service must implement. The service locator looks up the service, and a
consumer calls the service. Finally, a service provider implements the service.

Review Questions  713

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which statement is true of the following module?

 |---zoo
 |-- staff
 |-- Vet.java

A.	 The directory structure shown is a valid module.

B.	 The directory structure would be a valid module if module.java were added directly
underneath zoo/staff.

C.	 The directory structure would be a valid module if module.java were added directly
underneath zoo.

D.	 The directory structure would be a valid module if module-info.java were added
directly underneath zoo/staff.

E.	 The directory structure would be a valid module if module-info.java were added
directly underneath zoo.

F.	 None of these changes would make this directory structure a valid module.

2.	 Suppose module puppy depends on module dog and module dog depends on module
animal. Fill in the blank so that code in module dog can access the animal.behavior
package in module animal.

 module animal {
 animal.behavior;
 }

A.	 export
B.	 exports
C.	 require
D.	 requires
E.	 require transitive
F.	 requires transitive
G.	 None of the above

3.	 Fill in the blanks so this command to run the program is correct:

 java
 zoo.animal.talks/zoo/animal/talks/Peacocks
 modules

714  Chapter 12  ■  Modules

A.	 -d and -m
B.	 -d and –p
C.	 -m and -d
D.	 -m and -p
E.	 -p and -d
F.	 -p and -m
G.	 None of the above

4.	 Which of the following pairs make up a service?

A.	 Consumer and service locator

B.	 Consumer and service provider interface

C.	 Service locator and service provider

D.	 Service locator and service provider interface

E.	 Service provider and service provider interface

5.	 A(n) _______________ module is on the classpath while a(n) ____________ module is on the
module path. (Choose all that apply.)

A.	 automatic, named

B.	 automatic, unnamed

C.	 named, automatic

D.	 named, unnamed

E.	 unnamed, automatic

F.	 unnamed, named

G.	 None of the above

6.	 Which of the following statements are true in a module-info.java file? (Choose all
that apply.)

A.	 The opens directive allows the use of reflection.

B.	 The opens directive declares that an API is called.

C.	 The use directive allows the use of reflection.

D.	 The use directive declares that an API is called.

E.	 The uses directive allows the use of reflection.

F.	 The uses directive declares that an API is called.

7.	 An automatic module name is generated if one is not supplied. Which of the following JAR
filenames and generated automatic module name pairs are correct? (Choose all that apply.)

A.	 emily-1.0.0.jar and emily
B.	 emily-1.0.0-SNAPSHOT.jar and emily
C.	 emily_the_cat-1.0.0.jar and emily_the_cat

Review Questions  715

D.	 emily_the_cat-1.0.0.jar and emily-the-cat
E.	 emily.$.jar and emily
F.	 emily.$.jar and emily.
G.	 emily.$.jar and emily..

8.	 Which of the following statements are true? (Choose all that apply.)

A.	 Modules with cyclic dependencies will not compile.

B.	 Packages with a cyclic dependency will not compile.

C.	 A cyclic dependency always involves exactly two modules.

D.	 A cyclic dependency always involves at least two requires statements.

E.	 An unnamed module can be involved in a cyclic dependency with an automatic module.

9.	 Suppose you are creating a service provider that contains the following class. Which line of
code needs to be in your module-info.java?

 package dragon;
 import magic.*;
  public class Dragon implements Magic {
 public String getPower() {
 return "breathe fire";
 }
 }

A.	 provides dragon.Dragon by magic.Magic;
B.	 provides dragon.Dragon using magic.Magic;
C.	 provides dragon.Dragon with magic.Magic;
D.	 provides magic.Magic by dragon.Dragon;
E.	 provides magic.Magic using dragon.Dragon;
F.	 provides magic.Magic with dragon.Dragon;

10.	 What is true of a module containing a file named module-info.java with the following
contents? (Choose all that apply.)

 module com.food.supplier {}

A.	 All packages inside the module are automatically exported.

B.	 No packages inside the module are automatically exported.

C.	 A main method inside the module can be run.

D.	 A main method inside the module cannot be run since the class is not exposed.

E.	 The module-info.java file contains a compiler error.

F.	 The module-info.java filename is incorrect.

716  Chapter 12  ■  Modules

11.	 Suppose module puppy depends on module dog and module dog depends on module
animal. Which lines allow module puppy to access the animal.behavior package in
module animal? (Choose all that apply.)

 module animal {
 exports animal.behavior;
 }
 module dog {
 animal; // line S
 }
 module puppy {
 dog; // line T
 }

A.	 require on line S

B.	 require on line T

C.	 requires on line S

D.	 requires on line T

E.	 require transitive on line S

F.	 require transitive on line T

G.	 requires transitive on line S

H.	 requires transitive on line T

12.	 Which of the following modules are provided by the JDK? (Choose all that apply.)

A.	 java.base
B.	 java.desktop
C.	 java.logging
D.	 java.util
E.	 jdk.base
F.	 jdk.compiler
G.	 jdk.xerces

13.	 Which of the following compiles and is equivalent to this loop?

 List<Unicorn> all = new ArrayList<>();
 for (Unicorn current : ServiceLoader.load(Unicorn.class))
 all.add(current);

A.	

 List<Unicorn> all = ServiceLoader.load(Unicorn.class)
 .getStream()
 .collect(Collectors.toList());

Review Questions  717

B.	

 List<Unicorn> all = ServiceLoader.load(Unicorn.class)
 .stream()
 .collect(Collectors.toList());

C.	

 List<Unicorn> all = ServiceLoader.load(Unicorn.class)
 .getStream()
 .map(Provider::get)
 .collect(Collectors.toList());

D.	

 List<Unicorn> all = ServiceLoader.load(Unicorn.class)
 .stream()
 .map(Provider::get)
 .collect(Collectors.toList());

E.	 None of the above

14.	 Which of the following are legal commands to run a modular program where n is the module
name and c is the fully qualified class name? (Choose all that apply.)

A.	 java --module-path x -m n.c
B.	 java --module-path x -p n.c
C.	 java --module-path x-x -m n/c
D.	 java --module-path x -p n/c
E.	 java --module-path x-x -m n-c
F.	 java --module-path x -p n-c
G.	 None of the above

15.	 For a top-down migration, all modules other than named modules are _____________
modules and are on the ____________.

A.	 automatic, classpath

B.	 automatic, module path

C.	 unnamed, classpath

D.	 unnamed, module path

E.	 None of the above

718  Chapter 12  ■  Modules

16.	 Suppose you have separate modules for a service provider interface, service provider, service
locator, and consumer. If you add a second service provider module, how many of these mod-
ules do you need to recompile?

A.	 Zero

B.	 One

C.	 Two

D.	 Three

E.	 Four

17.	 Suppose we have a JAR file named cat-1.2.3-RC1.jar, and
Automatic-Module-Name in the MANIFEST.MF is set to dog. What should an unnamed
module referencing this automatic module include in module-info.java?

A.	 requires cat;
B.	 requires cat.RC;
C.	 requires cat-RC;
D.	 requires dog;
E.	 None of the above

18.	 Which commands are used to create a smaller Java image and work with native code,
respectively?

A.	 jimage and jlink
B.	 jimage and jmod
C.	 jlink and jimage
D.	 jlink and jmod
E.	 jmod and jimage
F.	 jmod and jmod

19.	 Which are true statements about the following module? (Choose all that apply.)

 class dragon {
 exports com.dragon.fire;
 exports com.dragon.scales to castle;
 }

A.	 All modules can reference the com.dragon.fire package.

B.	 All modules can reference the com.dragon.scales package.

C.	 Only the castle module can reference the com.dragon.fire package.

D.	 Only the castle module can reference the com.dragon.scales package.

E.	 None of the above

Review Questions  719

20.	 Which would you expect to see when describing any module?

A.	 requires java.base mandated
B.	 requires java.core mandated
C.	 requires java.lang mandated
D.	 requires mandated java.base
E.	 requires mandated java.core
F.	 requires mandated java.lang
G.	 None of the above

21.	 Suppose you have separate modules for a service provider interface, service provider, ser-
vice locator, and consumer. Which module(s) need to specify a requires directive on the ser-
vice provider?

A.	 Service locator

B.	 Service provider interface

C.	 Consumer

D.	 Consumer and service locator

E.	 Consumer and service provider

F.	 Service locator and service provider interface

G.	 Consumer, service locator, and service provider interface

H.	 None of the above

22.	 Which are true statements? (Choose all that apply.)

A.	 An automatic module exports all packages to named modules.

B.	 An automatic module exports only the specified packages to named modules.

C.	 An automatic module exports no packages to named modules.

D.	 An unnamed module exports only the named packages to named modules.

E.	 An unnamed module exports all packages to named modules.

F.	 An unnamed module exports no packages to named modules.

23.	 Which is the first line to contain a compiler error?

 1: module snake {
 2: exports com.snake.tail;
 3: exports com.snake.fangs to bird;
 4: requires skin;
 5: requires transitive skin;
 6: }

A.	 Line 1

B.	 Line 2

C.	 Line 3

720  Chapter 12  ■  Modules

D.	 Line 4

E.	 Line 5

F.	 The code does not contain any compiler errors.

24.	 Which are true statements about a package in a JAR on the classpath containing a
module-info.java file? (Choose all that apply.)

A.	 It is possible to make the package available to all other modules on the classpath.

B.	 It is possible to make the package available to all other modules on the module path.

C.	 It is possible to make the package available to exactly one other specific module on the
classpath.

D.	 It is possible to make the package available to exactly one other specific module on the
module path.

E.	 It is possible to make sure the package is not available to any other modules on the
classpath.

25.	 Suppose you have separate modules for a service provider interface, service provider, service
locator, and consumer. Which statements are true about the directives you need to specify?
(Choose all that apply.)

A.	 The consumer must use the requires directive.

B.	 The consumer must use the uses directive.

C.	 The service locator must use the requires directive.

D.	 The service locator must use the uses directive.

E.	 None of the above

Concurrency

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Managing concurrent code execution

■■ Create worker threads using Runnable and Callable, manage

the thread lifecycle, including automations provided by differ-

ent Executor services and concurrent API

■■ Develop thread-safe code, using different locking mechanisms

and concurrent API

■■ Process Java collections concurrently including the use of

parallel streams.

✓✓ Working with Streams and Lambda expressions

■■ Perform decomposition, concatenation and reduction, and

grouping and partitioning on sequential and parallel streams

Chapter

13

As you will learn in Chapter 14, “I/O,” and Chapter 15,
“JDBC,” computers are capable of reading and writing data to
external resources. Unfortunately, as compared to CPU opera-

tions, these disk/network operations tend to be extremely slow—so slow, in fact, that if your
computer’s operating system were to stop and wait for every disk or network operation to
finish, your computer would appear to freeze constantly.

Luckily, all operating systems support what is known as multithreaded processing. The
idea behind multithreaded processing is to allow an application or group of applications to
execute multiple tasks at the same time. This allows tasks waiting for other resources to give
way to other processing requests.

In this chapter, we introduce you to the concept of threads and provide numerous ways
to manage threads using the Concurrency API. Threads and concurrency are challenging
topics for many programmers to grasp, as problems with threads can be frustrating even for
veteran developers. In practice, concurrency issues are among the most difficult problems to
diagnose and resolve.

Introducing Threads
We begin this chapter by reviewing common terminology associated with threads. A thread
is the smallest unit of execution that can be scheduled by the operating system. A process
is a group of associated threads that execute in the same shared environment. It follows,
then, that a single-threaded process is one that contains exactly one thread, whereas a multi-
threaded process supports more than one thread.

By shared environment, we mean that the threads in the same process share the same
memory space and can communicate directly with one another. Refer to Figure 13.1 for an
overview of threads and their shared environment within a process.

This figure shows a single process with three threads. It also shows how they are mapped
to an arbitrary number of n CPUs available within the system. Keep this diagram in mind
when we discuss task schedulers later in this section.

In this chapter, we talk a lot about tasks and their relationships to threads. A task is a
single unit of work performed by a thread. Throughout this chapter, a task will commonly
be implemented as a lambda expression. A thread can complete multiple independent tasks
but only one task at a time.

Introducing Threads  723

By shared memory in Figure 13.1, we are generally referring to static variables as well
as instance and local variables passed to a thread. Yes, you finally see how static variables
can be useful for performing complex, multithreaded tasks! Remember from Chapter 5,
“Methods,” that static methods and variables are defined on a single class object that
all instances share. For example, if one thread updates the value of a static object, this
information is immediately available for other threads within the process to read.

Understanding Thread Concurrency
The property of executing multiple threads and processes at the same time is referred to
as concurrency. How does the system decide what to execute when there are more threads
available than CPUs? Operating systems use a thread scheduler to determine which threads
should be currently executing, as shown in Figure 13.1. For example, a thread scheduler may
employ a round-robin schedule in which each available thread receives an equal number of
CPU cycles with which to execute, with threads visited in a circular order.

When a thread’s allotted time is complete but the thread has not finished processing, a
context switch occurs. A context switch is the process of storing a thread’s current state and
later restoring the state of the thread to continue execution. Be aware that a cost is often
associated with a context switch due to lost time and having to reload a thread’s state. Intel-
ligent thread schedulers do their best to minimize the number of context switches while
keeping an application running smoothly.

Finally, a thread can interrupt or supersede another thread if it has a higher thread pri-
ority than the other thread. A thread priority is a numeric value associated with a thread that
is taken into consideration by the thread scheduler when determining which threads should
currently be executing. In Java, thread priorities are specified as integer values.

Process (Java program)

CPU1 CPUn. . .

Thread Thread Thread

Shared memory

OS thread scheduler

F IGURE 13 .1   Process model

724  Chapter 13  ■  Concurrency

Creating a Thread
One of the most common ways to define a task for a thread is by using the Runnable in-
stance. Runnable is a functional interface that takes no arguments and returns no data.

@FunctionalInterface public interface Runnable {
 void run();
}

With this, it’s easy to create and start a thread. In fact, you can do so in one line of code
using the Thread class:

new Thread(() -> System.out.print("Hello")).start();
System.out.print("World");

The first line creates a new Thread object and then starts it with the start() method.
Does this code print HelloWorld or WorldHello? The answer is that we don’t know.
Depending on the thread priority/scheduler, either is possible. Remember that order of
thread execution is not often guaranteed. The exam commonly presents questions in which
multiple tasks are started at the same time, and you must determine the result.

Let’s take a look at a more complex example:

Runnable printInventory = () -> System.out.println("Printing zoo inventory");
Runnable printRecords = () -> {
 for (int i = 0; i < 3; i++)
 System.out.println("Printing record: " + i);
};

Given these instances, what is the output of the following?

3: System.out.println("begin");
4: new Thread(printInventory).start();
5: new Thread(printRecords).start();
6: new Thread(printInventory).start();
7: System.out.println("end");

The answer is that it is unknown until runtime. The following is just one possible output:

begin
Printing record: 0
Printing zoo inventory
end
Printing record: 1
Printing zoo inventory
Printing record: 2

This sample uses a total of four threads: the main() user thread and three addi-
tional threads created on lines 4–6. Each thread created on these lines is executed as an

Introducing Threads  725

asynchronous task. By asynchronous, we mean that the thread executing the main() method
does not wait for the results of each newly created thread before continuing. For example,
lines 5 and 6 may be executed before the thread created on line 4 finishes. The opposite of
this behavior is a synchronous task in which the program waits (or blocks) on line 4 for the
thread to finish executing before moving on to the next line. The vast majority of method
calls used in this book have been synchronous up until this chapter.

While the order of thread execution is indeterminate once the threads have been started,
the order within a single thread is still linear. In particular, the for() loop is still ordered. Also,
begin always appears before end.

Calling run() Instead of start()

On the exam, be mindful of code that attempts to start a thread by calling run() instead of
start(). Calling run() on a Thread or a Runnable does not start a new thread. While
the following code snippets will compile, none will execute a task on a separate thread:

System.out.println("begin");
new Thread(printInventory).run();
new Thread(printRecords).run();
new Thread(printInventory).run();
System.out.println("end");

Unlike the previous example, each line of this code will wait until the run() method is
complete before moving on to the next line. Also unlike the previous program, the output
for this code sample will be the same every time it is executed.

More generally, we can create a Thread and its associated task one of two ways in Java:

■■ Provide a Runnable object or lambda expression to the Thread constructor.

■■ Create a class that extends Thread and overrides the run() method.

Throughout this book, we prefer creating tasks with lambda expressions. After all, it’s
a lot easier, especially when we get to the Concurrency API! Creating a class that extends
Thread is relatively uncommon and should only be done under certain circumstances, such as
if you need to overwrite other thread methods.

Distinguishing Thread Types
It might surprise you that all Java applications, including all of the ones that we have pre-
sented in this book, are multithreaded because they include system threads. A system thread
is created by the Java Virtual Machine (JVM) and runs in the background of the application.
For example, garbage collection is managed by a system thread created by the JVM.

726  Chapter 13  ■  Concurrency

Alternatively, a user-defined thread is one created by the application developer to accom-
plish a specific task. The majority of the programs we’ve presented so far have contained
only one user-defined thread, which calls the main() method. For simplicity, we com-
monly refer to programs that contain only a single user-defined thread as single-threaded
applications.

System and user-defined threads can both be created as daemon threads. A daemon thread
is one that will not prevent the JVM from exiting when the program finishes. A Java applica-
tion terminates when the only threads that are running are daemon threads. For example, if
garbage collection is the only thread left running, the JVM will automatically shut down.

Let’s take a look at an example. What do you think this outputs?

1: public class Zoo {
2: public static void pause() { // Defines the thread task
3: try {
4: Thread.sleep(10_000); // Wait for 10 seconds
5: } catch (InterruptedException e) {}
6: System.out.println("Thread finished!");
7: }
8:
9: public static void main(String[] unused) {
10: var job = new Thread(() -> pause()); // Create thread
11:
12: job.start(); // Start thread
13: System.out.println("Main method finished!");
14: } }

The program will output two statements roughly 10 seconds apart:

Main method finished!
--- 10 second wait ---
Thread finished!

That’s right. Even though the main() method is done, the JVM will wait for the user
thread to be done before ending the program. What if we change job to be a daemon thread
by adding this to line 11?

11: job.setDaemon(true);

The program will print the first statement and terminate without ever printing the
second line.

Main method finished!

For the exam, just remember that by default, user-defined threads are not daemons, and
the program will wait for them to finish.

Introducing Threads  727

Managing a Thread’s Life Cycle
After a thread has been created, it is in one of six states, shown in Figure 13.2. You can
query a thread’s state by calling getState() on the thread object.

Every thread is initialized with a NEW state. As soon as start() is called, the thread is
moved to a RUNNABLE state. Does that mean it is actually running? Not exactly: it may be
running, or it may not be. The RUNNABLE state just means the thread is able to be run. Once
the work for the thread is completed or an uncaught exception is thrown, the thread state
becomes TERMINATED, and no more work is performed.

While in a RUNNABLE state, the thread may transition to one of three states where it
pauses its work: BLOCKED, WAITING, or TIMED_WAITING. This figure includes common
transitions between thread states, but there are other possibilities. For example, a thread in a
WAITING state might be triggered by notifyAll(). Likewise, a thread that is interrupted by
another thread will exit TIMED_WAITING and go straight back into RUNNABLE.

We cover some (but not all) of these transitions in this chapter. Some thread-related
methods—such as wait(), notify(), and join()—are beyond the scope of the exam and,
frankly, difficult to use well. You should avoid them and use the Concurrency API as much
as possible. It takes a large amount of skill (and some luck!) to use these methods correctly.

Polling with Sleep
Even though multithreaded programming allows you to execute multiple tasks at the same
time, one thread often needs to wait for the results of another thread to proceed. One
solution is to use polling. Polling is the process of intermittently checking data at some
fixed interval.

Create thread

Created but not
started

NEW TERMINATED
Task complete

RUNNABLE
Running or able
to be run

BLOCKED
Waiting to enter
synchronized block WAITING

Waiting indefinitely
to be notified

TIMED_WAITING
Waiting a specified
time

start() run() completes

sleep()

notify()

Resource
requested Resource

granted
wait() Time elapsed

F IGURE 13 .2   Thread states

728  Chapter 13  ■  Concurrency

Let’s say you have a thread that modifies a shared static counter value, and your
main() thread is waiting for the thread to reach 1 million:

public class CheckResults {
 private static int counter = 0;
 public static void main(String[] args) {
 new Thread(() -> {
 for(int i = 0; i < 1_000_000; i++) counter++;
 }).start();
 while(counter < 1_000_000) {
 System.out.println("Not reached yet");
 }
 System.out.println("Reached: "+counter);
 } }

How many times does this program print Not reached yet? The answer is, we don’t
know! It could output 0, 10, or a million times. Using a while() loop to check for data
without some kind of delay is considered a bad coding practice as it ties up CPU resources
for no reason.

We can improve this result by using the Thread.sleep() method to implement polling
and sleep for 1,000 milliseconds, aka 1 second:

public class CheckResultsWithSleep {
 private static int counter = 0;
 public static void main(String[] a) {
 new Thread(() -> {
 for(int i = 0; i < 1_000_000; i++) counter++;
 }).start();
 while(counter < 1_000_000) {
 System.out.println("Not reached yet");
 try {
 Thread.sleep(1_000); // 1 SECOND
 } catch (InterruptedException e) {
 System.out.println("Interrupted!");
 }
 }
 System.out.println("Reached: "+counter);
 } }

While one second may seem like a small amount, we have now freed the CPU to do
other work instead of checking the counter variable infinitely within a loop. Notice that
the main() thread alternates between TIMED_WAITING and RUNNABLE when sleep() is
entered and exited, respectively.

Introducing Threads  729

How many times does the while() loop execute in this revised class? Still unknown! While
polling does prevent the CPU from being overwhelmed with a potentially infinite loop, it
does not guarantee when the loop will terminate. For example, the separate thread could be
losing CPU time to a higher-priority process, resulting in multiple executions of the while()
loop before it finishes.

Another issue to be concerned about is the shared counter variable. What if one thread is
reading the counter variable while another thread is writing it? The thread reading the shared
variable may end up with an invalid or unexpected value. We discuss these issues in detail in
the upcoming section on writing thread-safe code.

Interrupting a Thread
While our previous solution prevented the CPU from waiting endlessly on a while() loop, it
did come at the cost of inserting one-second delays into our program. If the task takes 2.1
seconds to run, the program will use the full 3 seconds, wasting 0.9 seconds.

One way to improve this program is to allow the thread to interrupt the main() thread
when it’s done:

public class CheckResultsWithSleepAndInterrupt {
 private static int counter = 0;
 public static void main(String[] a) {
 final var mainThread = Thread.currentThread();
 new Thread(() -> {
 for(int i = 0; i < 1_000_000; i++) counter++;
 mainThread.interrupt();
 }).start();
 while(counter < 1_000_000) {
 System.out.println("Not reached yet");
 try {
 Thread.sleep(1_000); // 1 SECOND
 } catch (InterruptedException e) {
 System.out.println("Interrupted!");
 }
 }
 System.out.println("Reached: "+counter);
 } }

This improved version includes both sleep(), to avoid tying up the CPU, and
interrupt(), so the thread’s work ends without delaying the program. As before, our
main() thread’s state alternates between TIMED_WAITING and RUNNABLE. Calling
interrupt() on a thread in the TIMED_WAITING or WAITING state causes the main()
thread to become RUNNABLE again, triggering an InterruptedException. The thread
may also move to a BLOCKED state if it needs to reacquire resources when it wakes up.

730  Chapter 13  ■  Concurrency

Calling interrupt() on a thread already in a RUNNABLE state doesn’t
change the state. In fact, it only changes the behavior if the thread is peri-
odically checking the Thread.isInterrupted() value state.

Creating Threads with the
Concurrency API
Java includes the java.util.concurrent package, which we refer to as the Concur-
rency API, to handle the complicated work of managing threads for you. The Concurrency
API includes the ExecutorService interface, which defines services that create and man-
age threads.

You first obtain an instance of an ExecutorService interface, and then you send the service
tasks to be processed. The framework includes numerous useful features, such as thread
pooling and scheduling. It is recommended that you use this framework any time you need
to create and execute a separate task, even if you need only a single thread.

When writing multithreaded programs in practice, it is often better to use
the Concurrency API (or some other multithreaded SDK) rather than work
with Thread objects directly. The libraries are much more robust, and it
is easier to handle complex interactions.

Introducing the Single-Thread Executor
Since ExecutorService is an interface, how do you obtain an instance of it? The
Concurrency API includes the Executors factory class that can be used to create instances
of the ExecutorService object. Let’s rewrite our earlier example with the two Runnable
instances to using an ExecutorService.

ExecutorService service = Executors.newSingleThreadExecutor();
try {
 System.out.println("begin");
 service.execute(printInventory);
 service.execute(printRecords);
 service.execute(printInventory);
 System.out.println("end");
} finally {
 service.shutdown();
}

Creating Threads with the Concurrency API  731

In this example, we use the newSingleThreadExecutor() method to create the ser-
vice. Unlike our earlier example, in which we had four threads (one main() and three new
threads), we have only two threads (one main() and one new thread). This means that the
output, while still unpredictable, will have less variation than before. For example, the fol-
lowing is one possible output:

begin
Printing zoo inventory
Printing record: 0
Printing record: 1
end
Printing record: 2
Printing zoo inventory

Notice that the printRecords loop is no longer interrupted by other Runnable tasks
sent to the thread executor. With a single-thread executor, tasks are guaranteed to be executed
sequentially. Notice that the end text is output while our thread executor tasks are still running.
This is because the main() method is still an independent thread from the ExecutorService.

Shutting Down a Thread Executor
Once you have finished using a thread executor, it is important that you call the shutdown()
method. A thread executor creates a non-daemon thread on the first task that is executed, so
failing to call shutdown() will result in your application never terminating.

The shutdown process for a thread executor involves first rejecting any new tasks sub-
mitted to the thread executor while continuing to execute any previously submitted tasks.
During this time, calling isShutdown() will return true, while isTerminated() will
return false. If a new task is submitted to the thread executor while it is shutting down,
a RejectedExecutionException will be thrown. Once all active tasks have been com-
pleted, isShutdown() and isTerminated() will both return true. Figure 13.3 shows the
life cycle of an ExecutorService object.

shutdown() All Tasks Finished

New executor service

Accepts new tasks
Executes tasks

Active

isTerminated()

isShutdown()

Shutdown
Rejects new tasks
No tasks running

isTerminated()

isShutdown()

Shutting down
Rejects new tasks
Executes tasks

isShutdown()

isTerminated()

false
true

F IGURE 13 .3   ExecutorService life cycle

732  Chapter 13  ■  Concurrency

For the exam, you should be aware that shutdown() does not stop any tasks that have
already been submitted to the thread executor.

What if you want to cancel all running and upcoming tasks? The ExecutorService
provides a method called shutdownNow(), which attempts to stop all running tasks and
discards any that have not been started yet. It is not guaranteed to succeed because it is
possible to create a thread that will never terminate, so any attempt to interrupt it may
be ignored.

As you learned in Chapter 11, “Exceptions and Localization,” resources
such as thread executors should be properly closed to prevent memory
leaks. Unfortunately, the ExecutorService interface does not extend
the AutoCloseable interface, so you cannot use a try-with-resources
statement. You can still use a finally block, as we do throughout this
chapter. While you are not required to use a finally block, it is consid-
ered a good practice to do so.

Submitting Tasks
You can submit tasks to an ExecutorService instance multiple ways. The first
method we presented, execute(), is inherited from the Executor interface, which the
ExecutorService interface extends. The execute() method takes a Runnable instance
and completes the task asynchronously. Because the return type of the method is void, it
does not tell us anything about the result of the task. It is considered a “fire-and-forget”
method, as once it is submitted, the results are not directly available to the calling thread.

Fortunately, the writers of Java added submit() methods to the ExecutorService
interface, which, like execute(), can be used to complete tasks asynchronously. Unlike
execute(), though, submit() returns a Future instance that can be used to determine
whether the task is complete. It can also be used to return a generic result object after the
task has been completed.

Table 13.1 shows the five methods, including execute() and two submit() methods,
that you should know for the exam. Don’t worry if you haven’t seen Future or Callable
before; we discuss them in detail in the next section.

In practice, using the submit() method is quite similar to using the execute() method,
except that the submit() method returns a Future instance that can be used to determine
whether the task has completed execution.

Creating Threads with the Concurrency API  733

Submitting Tasks: execute() vs. submit()

As you might have noticed, the execute() and submit() methods are nearly identical
when applied to Runnable expressions. The submit() method has the obvious advantage
of doing the same thing execute() does, but with a return object that can be used to
track the result. Because of this advantage and the fact that execute() does not support
Callable expressions, we tend to prefer submit() over execute(), even if we don’t
store the Future reference.

For the exam, you need to be familiar with both execute() and submit(), but in your
own code we recommend submit() over execute() whenever possible.

Waiting for Results
How do we know when a task submitted to an ExecutorService is complete? As men-
tioned in the previous section, the submit() method returns a Future<V> instance that can
be used to determine this result.

Future<?> future = service.submit(() -> System.out.println("Hello"));

The Future type is actually an interface. For the exam, you don’t need to know any of
the classes that implement Future, just that a Future instance is returned by various API
methods. Table 13.2 includes useful methods for determining the state of a task.

TABLE 13 .1   ExecutorService methods

Method name Description

void execute(Runnable command) Executes Runnable task at some point in future.

Future<?> submit(Runnable task) Executes Runnable task at some point in future
and returns Future representing task.

<T> Future<T> submit(
Callable<T> task)

Executes Callable task at some point in future
and returns Future representing pending
results of task.

<T> List<Future<T>> invokeAll(
Collection<? extends
Callable<T>> tasks)

Executes given tasks and waits for all tasks to
complete. Returns List of Future instances
in same order in which they were in original
collection.

<T> T invokeAny(
Collection<? extends
Callable<T>> tasks)

Executes given tasks and waits for at least one to
complete.

734  Chapter 13  ■  Concurrency

The following is an updated version of our earlier polling example CheckResults class,
which uses a Future instance to wait for the results:

import java.util.concurrent.*;
public class CheckResults {
 private static int counter = 0;
 public static void main(String[] unused) throws Exception {
 ExecutorService service = Executors.newSingleThreadExecutor();
 try {
 Future<?> result = service.submit(() -> {
 for(int i = 0; i < 1_000_000; i++) counter++;
 });
 result.get(10, TimeUnit.SECONDS); // Returns null for Runnable
 System.out.println("Reached!");
 } catch (TimeoutException e) {
 System.out.println("Not reached in time");
 } finally {
 service.shutdown();
 } } }

This example is similar to our earlier polling implementation, but it does not use the
Thread class directly. In part, this is the essence of the Concurrency API: to do complex
things with threads without having to manage threads directly. It also waits at most 10 sec-
onds, throwing a TimeoutException on the call to result.get() if the task is not done.

TABLE 13 .2   Future methods

Method name Description

boolean isDone() Returns true if task was completed, threw exception, or was
cancelled.

boolean isCancelled() Returns true if task was cancelled before it completed normally.

boolean cancel(boolean
mayInterruptIfRunning)

Attempts to cancel execution of task and returns true if it
was successfully cancelled or false if it could not be can-
celled or is complete.

V get() Retrieves result of task, waiting endlessly if it is not yet available.

V get(long timeout,
TimeUnit unit)

Retrieves result of task, waiting specified amount of time.
If result is not ready by time timeout is reached, checked
TimeoutException will be thrown.

Creating Threads with the Concurrency API  735

What is the return value of this task? As Future<V> is a generic interface, the type V
is determined by the return type of the Runnable method. Since the return type of
Runnable.run() is void, the get() method always returns null when working with
Runnable expressions.

The Future.get() method can take an optional value and enum type
java.util.concurrent.TimeUnit. Table 13.3 presents the full list of TimeUnit
values since numerous methods in the Concurrency API use this enum.

Introducing Callable
The java.util.concurrent.Callable functional interface is similar to Runnable
except that its call() method returns a value and can throw a checked exception. The fol-
lowing is the definition of the Callable interface:

@FunctionalInterface public interface Callable<V> {
 V call() throws Exception;
}

The Callable interface is often preferable over Runnable, since it allows more details
to be retrieved easily from the task after it is completed. That said, we use both interfaces
throughout this chapter, as they are interchangeable in situations where the lambda does not
throw an exception, and there is no return type. Luckily, the ExecutorService includes
an overloaded version of the submit() method that takes a Callable object and returns a
generic Future<T> instance.

Unlike Runnable, in which the get() methods always return null, the get() methods
on a Future instance return the matching generic type (which could also be a null value).

TABLE 13 .3   TimeUnit values

Enum name Description

TimeUnit.NANOSECONDS Time in one-billionths of a second (1/1,000,000,000)

TimeUnit.MICROSECONDS Time in one-millionths of a second (1/1,000,000)

TimeUnit.MILLISECONDS Time in one-thousandths of a second (1/1,000)

TimeUnit.SECONDS Time in seconds

TimeUnit.MINUTES Time in minutes

TimeUnit.HOURS Time in hours

TimeUnit.DAYS Time in days

736  Chapter 13  ■  Concurrency

Let’s take a look at an example using Callable:

var service = Executors.newSingleThreadExecutor();
try {
 Future<Integer> result = service.submit(() -> 30 + 11);
 System.out.println(result.get()); // 41
} finally {
 service.shutdown();
}

We could rewrite this example using Runnable, some shared object, and an interrupt()
or timed wait, but this implementation is a lot easier to code and understand. In essence,
that’s the spirit of the Concurrency API, giving you the tools to write multithreaded code
that is thread-safe, performant, and easy to follow.

Waiting for All Tasks to Finish
After submitting a set of tasks to a thread executor, it is common to wait for the results. As
you saw in the previous sections, one solution is to call get() on each Future object returned
by the submit() method. If we don’t need the results of the tasks and are finished using our
thread executor, there is a simpler approach.

First, we shut down the thread executor using the shutdown() method. Next, we use the
awaitTermination() method available for all thread executors. The method waits the specified
time to complete all tasks, returning sooner if all tasks finish or an InterruptedException is
detected. You can see an example of this in the following code snippet:

ExecutorService service = Executors.newSingleThreadExecutor();
try {
 // Add tasks to the thread executor
 ...
} finally {
 service.shutdown();
}
service.awaitTermination(1, TimeUnit.MINUTES);

// Check whether all tasks are finished
if(service.isTerminated()) System.out.println("Finished!");
else System.out.println("At least one task is still running");

In this example, we submit a number of tasks to the thread executor and then shut
down the thread executor and wait up to one minute for the results. Notice that we can call
isTerminated() after the awaitTermination() method finishes to confirm that all tasks
are finished.

Creating Threads with the Concurrency API  737

Scheduling Tasks
Often in Java, we need to schedule a task to happen at some future time. We might even
need to schedule the task to happen repeatedly, at some set interval. For example, imagine
that we want to check the supply of food for zoo animals once an hour and fill it as needed.
ScheduledExecutorService, which is a subinterface of ExecutorService, can be used
for just such a task.

Like ExecutorService, we obtain an instance of ScheduledExecutorService using
a factory method in the Executors class, as shown in the following snippet:

ScheduledExecutorService service
 = Executors.newSingleThreadScheduledExecutor();

We could store an instance of ScheduledExecutorService in an ExecutorService
variable, although doing so would mean we’d have to cast the object to call any sched-
uling methods.

Refer to Table 13.4 for our summary of ScheduledExecutorService methods. Each of
these methods returns a ScheduledFuture object.

In practice, these methods are among the most convenient in the Concurrency API, as
they perform relatively complex tasks with a single line of code. The delay and period
parameters rely on the TimeUnit argument to determine the format of the value, such as
seconds or milliseconds.

The first two schedule() methods in Table 13.4 take a Callable or Runnable, respec-
tively; perform the task after some delay; and return a ScheduledFuture instance. The
ScheduledFuture interface is identical to the Future interface, except that it includes a

TABLE 13 .4   ScheduledExecutorService methods

Method name Description

schedule(Callable<V> callable,
long delay, TimeUnit unit)

Creates and executes Callable task after given
delay

schedule(Runnable command,
long delay, TimeUnit unit)

Creates and executes Runnable task after given
delay

scheduleAtFixedRate(Runnable
command, long initialDelay,
long period, TimeUnit unit)

Creates and executes Runnable task after given
initial delay, creating new task every period value
that passes

scheduleWithFixedDelay(Runnable
command, long initialDelay,
long delay, TimeUnit unit)

Creates and executes Runnable task after given
initial delay and subsequently with given delay
between termination of one execution and com-
mencement of next

738  Chapter 13  ■  Concurrency

getDelay() method that returns the remaining delay. The following uses the schedule()
method with Callable and Runnable tasks:

ScheduledExecutorService service
 = Executors.newSingleThreadScheduledExecutor();
Runnable task1 = () -> System.out.println("Hello Zoo");
Callable<String> task2 = () -> "Monkey";
ScheduledFuture<?> r1 = service.schedule(task1, 10, TimeUnit.SECONDS);
ScheduledFuture<?> r2 = service.schedule(task2, 8, TimeUnit.MINUTES);

The first task is scheduled 10 seconds in the future, whereas the second task is scheduled
8 minutes in the future.

While these tasks are scheduled in the future, the actual execution may
be delayed. For example, there may be no threads available to perform
the tasks, at which point they will just wait in the queue. Also, if the
ScheduledExecutorService is shut down by the time the scheduled
task execution time is reached, then these tasks will be discarded.

Each of the ScheduledExecutorService methods is important and has real-world
applications. For example, you can use the schedule() command to check on the state
of cleaning a lion’s cage. It can then send out notifications if it is not finished or even call
schedule() to check again later.

The last two methods in Table 13.4 might be a little confusing if you have not seen them
before. Conceptually, they are similar as they both perform the same task repeatedly after
an initial delay. The difference is related to the timing of the process and when the next
task starts.

The scheduleAtFixedRate() method creates a new task and submits it to the executor
every period, regardless of whether the previous task finished. The following example exe-
cutes a Runnable task every minute, following an initial five-minute delay:
service.scheduleAtFixedRate(command, 5, 1, TimeUnit.MINUTES);

The scheduleAtFixedRate() method is useful for tasks that need to be run at specific
intervals, such as checking the health of the animals once a day. Even if it takes two hours to
examine an animal on Monday, this doesn’t mean that Tuesday’s exam should start any later
in the day.

Bad things can happen with scheduleAtFixedRate() if each task
consistently takes longer to run than the execution interval. Imagine
if your boss came by your desk every minute and dropped off a piece
of paper. Now imagine that it took you five minutes to read each piece
of paper. Before long, you would be drowning in piles of paper. This is
how an executor feels. Given enough time, the program would submit
more tasks to the executor service than could fit in memory, causing the
program to crash.

Creating Threads with the Concurrency API  739

On the other hand, the scheduleWithFixedDelay() method creates a new task
only after the previous task has finished. For example, if a task runs at 12:00 and takes
five minutes to finish, with a period between executions of two minutes, the next task will
start at 12:07.

service.scheduleWithFixedDelay(task1, 0, 2, TimeUnit.MINUTES);

The scheduleWithFixedDelay() method is useful for processes that you want to hap-
pen repeatedly but whose specific time is unimportant. For example, imagine that we have a
zoo cafeteria worker who periodically restocks the salad bar throughout the day. The process
can take 20 minutes or more, since it requires the worker to haul a large number of items
from the back room. Once the worker has filled the salad bar with fresh food, they don’t
need to check at some specific time, just after enough time has passed for it to become low
on stock again.

Increasing Concurrency with Pools
All of our examples up until now have been with a single-thread executor, which, while
interesting, weren’t particularly useful. After all, the name of this chapter is “Concurrency,”
and you can’t do a lot of that with a single-thread executor!

We now present three additional factory methods in the Executors class that act on a
pool of threads rather than on a single thread. A thread pool is a group of pre-instantiated
reusable threads that are available to perform a set of arbitrary tasks. Table 13.5 includes
our two previous single-thread executor methods, along with the new ones that you should
know for the exam.

TABLE 13 .5   Executors factory methods

Method name Description

ExecutorService
newSingleThreadExecutor()

Creates single-threaded executor that uses single
worker thread operating off unbounded queue.
Results are processed sequentially in order in
which they are submitted.

ScheduledExecutorService
newSingleThreadScheduledExecutor()

Creates single-threaded executor that can schedule
commands to run after given delay or to execute
periodically.

ExecutorService
newCachedThreadPool()

Creates thread pool that creates new threads as
needed but reuses previously constructed threads
when they are available.

ExecutorService
newFixedThreadPool(int)

Creates thread pool that reuses fixed number of
threads operating off shared unbounded queue.

ScheduledExecutorService
newScheduledThreadPool(int)

Creates thread pool that can schedule commands
to run after given delay or execute periodically.

740  Chapter 13  ■  Concurrency

As shown in Table 13.5, these methods return the same instance types, ExecutorService
and ScheduledExecutorService, that we used earlier in this chapter. In other words, all of
our previous examples are compatible with these new pooled-thread executors!

The difference between a single-thread and a pooled-thread executor is what happens
when a task is already running. While a single-thread executor will wait for the thread to
become available before running the next task, a pooled-thread executor can execute the
next task concurrently. If the pool runs out of available threads, the task will be queued by
the thread executor and wait to be completed.

Writing Thread-Safe Code
Thread-safety is the property of an object that guarantees safe execution by multiple threads
at the same time. Since threads run in a shared environment and memory space, how do we
prevent two threads from interfering with each other? We must organize access to data so
that we don’t end up with invalid or unexpected results.

In this part of the chapter, we show how to use a variety of techniques to protect data,
including atomic classes, synchronized blocks, the Lock framework, and cyclic barriers.

Understanding Thread-Safety
Imagine that our zoo has a program to count sheep, preferably one that won’t put the zoo
workers to sleep! Each zoo worker runs out to a field, adds a new sheep to the flock, counts
the total number of sheep, and runs back to us to report the results. We present the following
code to represent this conceptually, choosing a thread pool size so that all tasks can be run
concurrently:

1: import java.util.concurrent.*;
2: public class SheepManager {
3: private int sheepCount = 0;
4: private void incrementAndReport() {
5: System.out.print((++sheepCount)+" ");
6: }
7: public static void main(String[] args) {
8: ExecutorService service = Executors.newFixedThreadPool(20);
9: try {
10: SheepManager manager = new SheepManager();
11: for(int i = 0; i < 10; i++)
12: service.submit(() -> manager.incrementAndReport());
13: } finally {
14: service.shutdown();
15: } } }

Writing Thread-Safe Code  741

What does this program output? You might think it will output numbers from 1 to 10, in
order, but that is far from guaranteed. It may output in a different order. Worse yet, it may
print some numbers twice and not print some numbers at all! The following are possible
outputs of this program:

1 2 3 4 5 6 7 8 9 10
1 9 8 7 3 6 6 2 4 5
1 8 7 3 2 6 5 4 2 9

So, what went wrong? In this example, we use the pre-increment (++) operator to update
the sheepCount variable. A problem occurs when two threads both execute the right side
of the expression, reading the “old” value before either thread writes the “new” value of the
variable. The two assignments become redundant; they both assign the same new value, with
one thread overwriting the results of the other. Figure 13.4 demonstrates this problem with
two threads, assuming that sheepCount has a starting value of 1.

You can see in Figure 13.4 that both threads read and write the same values, causing one
of the two ++sheepCount operations to be lost. Therefore, the increment operator ++ is not
thread-safe. As you will see later in this chapter, the unexpected result of two tasks executing
at the same time is referred to as a race condition.

Conceptually, the idea here is that some zoo workers may run faster on their way to the
field but more slowly on their way back and report late. Other workers may get to the field
last but somehow be the first ones back to report the results.

Accessing Data with volatile
The volatile keyword is used to guarantee that access to data within memory is consis-
tent. For example, it is possible (albeit unlikely) that our SheepManager example using

Reads sheepCount as 1

Reads sheepCount as 1

Writes sheepCount as 2

Writes sheepCount as 2

Time

Thread 2

Thread 1

Shared memory

F IGURE 13 .4   Lack of thread synchronization

742  Chapter 13  ■  Concurrency

++sheepCount returns an unexpected value due to invalid memory access while the code is
executing a critical section. Conceptually, this corresponds to one of our zoo employees trip-
ping on the way back from the field and someone asking them the current number of sheep
while they are still trying to get up!

The volatile attribute ensures that only one thread is modifying a variable at one time
and that data read among multiple threads is consistent. In this manner, we don’t interrupt
one of our zoo workers in the middle of running. So, does volatile provide thread-safety?
Not exactly. Consider this replacement to our previous application:

3: private volatile int sheepCount = 0;
4: private void incrementAndReport() {
5: System.out.print((++sheepCount)+" ");
6: }

Unfortunately, this code is not thread-safe and could still result in numbers being missed:
2 6 1 7 5 3 2 9 4 8

The reason this code is not thread-safe is that ++sheepCount is still two distinct
operations. Put another way, if the increment operator represents the expression
sheepCount = sheepCount + 1, then each read and write operation is thread-safe,
but the combined operation is not. Referring back to our sheep example, we don’t inter-
rupt the employee while running, but we could still have multiple people in the field at the
same time.

In practice, volatile is rarely used. We only cover it because it has been
known to show up on the exam from time to time.

Protecting Data with Atomic Classes
In our previous SheepManager applications, the same values were printed twice, with
the highest counter being 9 instead of 10. As we saw, the increment operator ++ is
not thread-safe, even when volatile is used. It is not thread-safe because the opera-
tion is not atomic, carrying out two tasks, read and write, that can be interrupted by
other threads.

Atomic is the property of an operation to be carried out as a single unit of execution
without any interference from another thread. A thread-safe atomic version of the increment
operator would perform the read and write of the variable as a single operation, not allow-
ing any other threads to access the variable during the operation. Figure 13.5 shows the
result of making the sheepCount variable atomic.

In this case, any thread trying to access the sheepCount variable while an atomic oper-
ation is in process will have to wait until the atomic operation on the variable is complete.
Conceptually, this is like setting a rule for our zoo workers that there can be only one
employee in the field at a time, although they may not each report their results in order.

Writing Thread-Safe Code  743

Since accessing primitives and references is common in Java, the Concurrency API
includes numerous useful classes in the java.util.concurrent.atomic package.
Table 13.6 lists the atomic classes with which you should be familiar for the exam. As with
many of the classes in the Concurrency API, these classes exist to make your life easier.

How do we use an atomic class? Each class includes numerous methods that are
equivalent to many of the primitive built-in operators that we use on primitives, such as the
assignment operator (=) and the increment operators (++). We describe the common atomic
methods that you should know for the exam in Table 13.7. The type is determined by
the class.

In the following example, assume we import the atomic package and then update our
SheepManager class with an AtomicInteger:

3: private AtomicInteger sheepCount = new AtomicInteger(0);
4: private void incrementAndReport() {
5: System.out.print(sheepCount.incrementAndGet()+" ");
6: }

Reads sheepCount as 1 Writes sheepCount as 2

Atomic operations

Reads sheepCount as 2 Writes sheepCount as 3

Time

Thread 1

Thread 2

Shared memory

F IGURE 13 .5   Thread synchronization using atomic operations

TABLE 13 .6   Atomic classes

Class name Description

AtomicBoolean A boolean value that may be updated atomically

AtomicInteger An int value that may be updated atomically

AtomicLong A long value that may be updated atomically

744  Chapter 13  ■  Concurrency

How does this implementation differ from our previous examples? When we run this
modification, we get varying output, such as the following:

2 3 1 4 5 6 7 8 9 10
1 4 3 2 5 6 7 8 9 10
1 4 3 5 6 2 7 8 10 9

Unlike our previous sample output, the numbers 1 through 10 will always be printed,
although the order is still not guaranteed. Don’t worry; we address that issue shortly. The
key in this section is that using the atomic classes ensures that the data is consistent between
workers and that no values are lost due to concurrent modifications.

Improving Access with synchronized Blocks
While atomic classes are great at protecting a single variable, they aren’t particularly useful if
you need to execute a series of commands or call a method. For example, we can’t use them
to update two atomic variables at the same time. How do we improve the results so that
each worker is able to increment and report the results in order?

The most common technique is to use a monitor to synchronize access. A monitor, also
called a lock, is a structure that supports mutual exclusion, which is the property that at
most one thread is executing a particular segment of code at a given time.

TABLE 13 .7   Common atomic methods

Method Description

get() Retrieves current value

set(type
newValue)

Sets given value, equivalent to assignment = operator

getAndSet(type
newValue)

Atomically sets new value and returns old value

incrementAndGet() For numeric classes, atomic pre-increment operation equivalent to
++value

getAndIncrement() For numeric classes, atomic post-increment operation equivalent to
value++

decrementAndGet() For numeric classes, atomic pre-decrement operation equivalent to
--value

getAndDecrement() For numeric classes, atomic post-decrement operation equivalent
to value--

Writing Thread-Safe Code  745

In Java, any Object can be used as a monitor, along with the synchronized keyword,
as shown in the following example:

var manager = new SheepManager();
synchronized(manager) {
 // Work to be completed by one thread at a time
}

This example is referred to as a synchronized block. Each thread that arrives will first
check if any threads are already running the block. If the lock is not available, the thread
will transition to a BLOCKED state until it can “acquire the lock.” If the lock is available (or
the thread already holds the lock), the single thread will enter the block, preventing all other
threads from entering. Once the thread finishes executing the block, it will release the lock,
allowing one of the waiting threads to proceed.

To synchronize access across multiple threads, each thread must have
access to the same Object. If each thread synchronizes on different
objects, the code is not thread-safe.

Let’s revisit our SheepManager example that used ++sheepCount and see whether we
can improve the results so that each worker increments and outputs the counter in order.
Let’s say that we replaced our for() loop with the following implementation:

11: for(int i = 0; i < 10; i++) {
12: synchronized(manager) {
13: service.submit(() -> manager.incrementAndReport());
14: }
15: }

Does this solution fix the problem? No, it does not! Can you spot the problem? We’ve
synchronized the creation of the threads but not the execution of the threads. In this
example, the threads would be created one at a time, but they might all still execute and per-
form their work simultaneously, resulting in the same type of output that you saw earlier. We
did say diagnosing and resolving thread problems is difficult in practice!

We now present a corrected version of the SheepManager class that orders the workers:

1: import java.util.concurrent.*;
2: public class SheepManager {
3: private int sheepCount = 0;
4: private void incrementAndReport() {
5: synchronized(this) {
6: System.out.print((++sheepCount)+" ");
7: }
8: }
9: public static void main(String[] args) {
10: ExecutorService service = Executors.newFixedThreadPool(20);

746  Chapter 13  ■  Concurrency

11: try {
12: var manager = new SheepManager();
13: for(int i = 0; i < 10; i++)
14: service.submit(() -> manager.incrementAndReport());
15: } finally {
16: service.shutdown();
17: } } }

When this code executes, it will consistently output the following:

1 2 3 4 5 6 7 8 9 10

Although all threads are still created and executed at the same time, they each wait at
the synchronized block for the worker to increment and report the result before entering.
In this manner, each zoo worker waits for the previous zoo worker to come back before
running out on the field. While it’s random which zoo worker will run out next, it is guaran-
teed that there will be at most one on the field and that the results will be reported in order.

We could have synchronized on any object, as long as it was the same object. For
example, the following code snippet would also work:

4: private final Object herd = new Object();
5: private void incrementAndReport() {
6: synchronized(herd) {
7: System.out.print((++sheepCount)+" ");
8: }
9: }

Although we didn’t need to make the herd variable final, doing so ensures that it is not
reassigned after threads start using it.

Synchronizing on Methods
In the previous example, we established our monitor using synchronized(this) around the
body of the method. Java provides a more convenient compiler enhancement for doing so.
We can add the synchronized modifier to any instance method to synchronize automatically
on the object itself. For example, the following two method definitions are equivalent:

void sing() {
 synchronized(this) {
 System.out.print("La la la!");
 }
}
synchronized void sing() {
 System.out.print("La la la!");
}

Writing Thread-Safe Code  747

The first uses a synchronized block, whereas the second uses the synchronized
method modifier. Which you use is completely up to you.

We can also apply the synchronized modifier to static methods. What object is used
as the monitor when we synchronize on a static method? The class object, of course! For
example, the following two methods are equivalent for static synchronization inside our
SheepManager class:

static void dance() {
 synchronized(SheepManager.class) {
 System.out.print("Time to dance!");
 }
}
static synchronized void dance() {
 System.out.print("Time to dance!");
}

As before, the first uses a synchronized block, with the second example using the
synchronized modifier. You can use static synchronization if you need to order thread
access across all instances rather than a single instance.

Understanding the Lock Framework
A synchronized block supports only a limited set of functionality. For example, what if we
want to check whether a lock is available and, if it is not, perform some other task? Further-
more, if the lock is never available and we synchronize on it, we might wait forever.

The Concurrency API includes the Lock interface, which is conceptually similar to using
the synchronized keyword but with a lot more bells and whistles. Instead of synchronizing on
any Object, though, we can “lock” only on an object that implements the Lock interface.

Applying a ReentrantLock
The Lock interface is pretty easy to use. When you need to protect a piece of code from mul-
tithreaded processing, create an instance of Lock that all threads have access to. Each thread
then calls lock() before it enters the protected code and calls unlock() before it exits the
protected code.

For contrast, the following shows two implementations, one with a synchronized block
and one with a Lock instance. While longer, the Lock solution has a number of features not
available to the synchronized block.

// Implementation #1 with a synchronized block
Object object = new Object();
synchronized(object) {
 // Protected code
}

748  Chapter 13  ■  Concurrency

// Implementation #2 with a Lock
Lock lock = new ReentrantLock();
try {
 lock.lock();
 // Protected code
} finally {
 lock.unlock();
}

These two implementations are conceptually equivalent. The ReentrantLock class is a
simple monitor that implements the Lock interface and supports mutual exclusion. In other
words, at most one thread is allowed to hold a lock at any given time.

While certainly not required, it is a good practice to use a try/finally
block with Lock instances. Doing so ensures that any acquired locks are
properly released.

The ReentrantLock class ensures that once a thread has called lock() and
obtained the lock, all other threads that call lock() will wait until the first thread calls
unlock(). Which thread gets the lock next depends on the parameters used to create the
Lock object.

The ReentrantLock class includes a constructor that takes a single boolean and sets
a “fairness” parameter. If the parameter is set to true, the lock will usually be granted to
each thread in the order in which it was requested. It is false by default when using the
no-argument constructor. In practice, you should enable fairness only when ordering is abso-
lutely required, as it could lead to a significant slowdown.

Besides always making sure to release a lock, you also need to be sure that you only
release a lock that you have. If you attempt to release a lock that you do not have, you will
get an exception at runtime.

Lock lock = new ReentrantLock();
lock.unlock(); // IllegalMonitorStateException

The Lock interface includes four methods you should know for the exam, as listed in
Table 13.8.

Attempting to Acquire a Lock
While the ReentrantLock class allows you to wait for a lock, it so far suffers from the
same problem as a synchronized block. A thread could end up waiting forever to obtain a
lock. Luckily, Table 13.8 includes two additional methods that make the Lock interface a lot
safer to use than a synchronized block.

Writing Thread-Safe Code  749

For convenience, we use the following printHello() method for the code in
this section:

public static void printHello(Lock lock) {
 try {
 lock.lock();
 System.out.println("Hello");
 } finally {
 lock.unlock();
 } }

tryLock()
The tryLock() method will attempt to acquire a lock and immediately return a boolean
result indicating whether the lock was obtained. Unlike the lock() method, it does not wait
if another thread already holds the lock. It returns immediately, regardless of whether a lock
is available.

The following is a sample implementation using the tryLock() method:

Lock lock = new ReentrantLock();
new Thread(() -> printHello(lock)).start();
if(lock.tryLock()) {
 try {
 System.out.println("Lock obtained, entering protected code");
 } finally {
 lock.unlock();
 }
} else {
 System.out.println("Unable to acquire lock, doing something else");
}

TABLE 13 .8   Lock methods

Method Description

void lock() Requests lock and blocks until lock is acquired.

void unlock() Releases lock.

boolean tryLock() Requests lock and returns immediately. Returns boolean indi-
cating whether lock was successfully acquired.

boolean tryLock(long
timeout, TimeUnit
unit)

Requests lock and blocks for specified time or until lock is
acquired. Returns boolean indicating whether lock was success-
fully acquired.

750  Chapter 13  ■  Concurrency

When you run this code, it could produce either the if or else message, depending
on the order of execution. It will always print Hello, though, as the call to lock() in
printHello() will wait indefinitely for the lock to become available. A fun exercise is to
insert some Thread.sleep() delays into this snippet to encourage a particular message
to be displayed.

Like lock(), the tryLock() method should be used with a try/finally block. For-
tunately, you need to release the lock only if it was successfully acquired. For this reason, it
is common to use the output of tryLock() in an if statement, so that unlock() is called
only when the lock is obtained.

It is imperative that your program always check the return value of the
tryLock() method. It tells your program whether it is safe to proceed
with the operation and whether the lock needs to be released later.

tryLock(long,TimeUnit)
The Lock interface includes an overloaded version of tryLock(long,TimeUnit) that acts
like a hybrid of lock() and tryLock(). Like the other two methods, if a lock is available,
it will immediately return with it. If a lock is unavailable, though, it will wait up to the speci-
fied time limit for the lock.

The following code snippet uses the overloaded version of tryLock(long,TimeUnit):

Lock lock = new ReentrantLock();
new Thread(() -> printHello(lock)).start();
if(lock.tryLock(10,TimeUnit.SECONDS)) {
 try {
 System.out.println("Lock obtained, entering protected code");
 } finally {
 lock.unlock();
 }
} else {
 System.out.println("Unable to acquire lock, doing something else");
}

The code is the same as before, except this time, one of the threads waits up to 10 seconds
to acquire the lock.

Acquiring the Same Lock Twice
The ReentrantLock class maintains a counter of the number of times a lock has been success-
fully granted to a thread. To release the lock for other threads to use, unlock() must be called
the same number of times the lock was granted. The following code snippet contains an
error. Can you spot it?

Writing Thread-Safe Code  751

Lock lock = new ReentrantLock();
if(lock.tryLock()) {
 try {
 lock.lock();
 System.out.println("Lock obtained, entering protected code");
 } finally {
 lock.unlock();
 } }

The thread obtains the lock twice but releases it only once. You can verify this by
spawning a new thread after this code runs that attempts to obtain a lock. The following
prints false:

new Thread(() -> System.out.print(lock.tryLock())).start(); // false

It is critical that you release a lock the same number of times it is acquired! For calls with
tryLock(), you need to call unlock() only if the method returned true.

Reviewing the Lock Framework
To review, the ReentrantLock class supports the same features as a synchronized block while
adding a number of improvements:

■■ Ability to request a lock without blocking.

■■ Ability to request a lock while blocking for a specified amount of time.

■■ A lock can be created with a fairness property, in which the lock is granted to threads in
the order in which it was requested.

While not on the exam, ReentrantReadWriteLock is a really useful
class. It includes separate locks for reading and writing data and is use-
ful on data structures where reads are far more common than writes. For
example, if you have a thousand threads reading data but only one thread
writing data, this class can help you maximize concurrent access.

Orchestrating Tasks with a CyclicBarrier
We started the thread-safety topic by discussing protecting individual variables and then
moved on to blocks of code and locks. We complete our discussion of thread-safety by show-
ing how to orchestrate complex tasks with many steps.

Our zoo workers are back, and this time they are cleaning pens. Imagine a lion pen that
needs to be emptied, cleaned, and then refilled with the lions. To complete the task, we have
assigned four zoo workers. Obviously, we don’t want to start cleaning the cage while a lion
is roaming in it, lest we end up losing a zoo worker! Furthermore, we don’t want to let the
lions back into the pen while it is still being cleaned.

752  Chapter 13  ■  Concurrency

We could have all of the work completed by a single worker, but this would be slow and
ignore the fact that we have three zoo workers standing by to help. A better solution would
be to have all four zoo employees work concurrently, pausing between the end of one set of
tasks and the start of the next.

To coordinate these tasks, we can use the CyclicBarrier class:

import java.util.concurrent.*;
public class LionPenManager {
 private void removeLions() { System.out.println("Removing lions"); }
 private void cleanPen() { System.out.println("Cleaning the pen"); }
 private void addLions() { System.out.println("Adding lions"); }
 public void performTask() {
 removeLions();
 cleanPen();
 addLions();
 }
 public static void main(String[] args) {
 var service = Executors.newFixedThreadPool(4);
 try {
 var manager = new LionPenManager();
 for (int i = 0; i < 4; i++)
 service.submit(() -> manager.performTask());
 } finally {
 service.shutdown();
 } } }

The following is sample output based on this implementation:

Removing lions
Removing lions
Cleaning the pen
Adding lions
Removing lions
Cleaning the pen
Adding lions
Removing lions
Cleaning the pen
Adding lions
Cleaning the pen
Adding lions

Although the results are ordered within a single thread, the output is entirely random
among multiple workers. We see that some lions are still being removed while the cage is
being cleaned, and other lions are added before the cleaning process is finished. Let’s hope
none of the zoo workers get eaten!

Writing Thread-Safe Code  753

We can improve these results by using the CyclicBarrier class. The CyclicBarrier takes in
its constructors a limit value, indicating the number of threads to wait for. As each thread
finishes, it calls the await() method on the cyclic barrier. Once the specified number of threads
have each called await(), the barrier is released, and all threads can continue.

import java.util.concurrent.*;
public class LionPenManager {
 private void removeLions() { System.out.println("Removing lions"); }
 private void cleanPen() { System.out.println("Cleaning the pen"); }
 private void addLions() { System.out.println("Adding lions"); }
 public void performTask(CyclicBarrier c1, CyclicBarrier c2) {
 try {
 removeLions();
 c1.await();
 cleanPen();
 c2.await();
 addLions();
 } catch (InterruptedException | BrokenBarrierException e) {
 // Handle checked exceptions here
 }
 }
 public static void main(String[] args) {
 var service = Executors.newFixedThreadPool(4);
 try {
 var manager = new LionPenManager();
 var c1 = new CyclicBarrier(4);
 var c2 = new CyclicBarrier(4,
 () -> System.out.println("*** Pen Cleaned!"));
 for (int i = 0; i < 4; i++)
 service.submit(() -> manager.performTask(c1, c2));
 } finally {
 service.shutdown();
 } } }

The following is sample output based on this revised implementation of our
LionPenManager class:

Removing lions
Removing lions
Removing lions
Removing lions
Cleaning the pen
Cleaning the pen

754  Chapter 13  ■  Concurrency

Cleaning the pen
Cleaning the pen
*** Pen Cleaned!
Adding lions
Adding lions
Adding lions
Adding lions

As you can see, all of the results are now organized. Removing the lions happens in one
step, as does cleaning the pen and adding the lions back in. In this example, we used two
different constructors for our CyclicBarrier objects, the latter of which executes a
Runnable instance upon completion.

The CyclicBarrier class allows us to perform complex, multithreaded tasks while all
threads stop and wait at logical barriers. This solution is superior to a single-threaded solu-
tion, as the individual tasks, such as removing the lions, can be completed in parallel by all
four zoo workers.

Reusing CyclicBarrier

After a CyclicBarrier limit is reached (aka the barrier is broken), all threads are released,
and the number of threads waiting on the CyclicBarrier goes back to zero. At this point,
the CyclicBarrier may be used again for a new set of waiting threads. For example, if our
CyclicBarrier limit is 5 and we have 15 threads that call await(), the CyclicBarrier
will be activated a total of three times.

Using Concurrent Collections
Besides managing threads, the Concurrency API includes interfaces and classes that help you
coordinate access to collections shared by multiple tasks. By collections, we are of course
referring to the Java Collections Framework that we introduced in Chapter 9, “Collections
and Generics.” In this section, we demonstrate many of the concurrent classes available to
you when using the Concurrency API.

Understanding Memory Consistency Errors
The purpose of the concurrent collection classes is to solve common memory consistency
errors. A memory consistency error occurs when two threads have inconsistent views of
what should be the same data. Conceptually, we want writes on one thread to be available to
another thread if it accesses the concurrent collection after the write has occurred.

Using Concurrent Collections  755

When two threads try to modify the same nonconcurrent collection, the JVM may throw
a ConcurrentModificationException at runtime. In fact, it can happen with a single
thread. Take a look at the following code snippet:

11: var foodData = new HashMap<String, Integer>();
12: foodData.put("penguin", 1);
13: foodData.put("flamingo", 2);
14: for(String key: foodData.keySet())
15: foodData.remove(key);

This snippet will throw a ConcurrentModificationException during the second
iteration of the loop, since the iterator on keySet() is not properly updated after the first
element is removed. Changing the first line to use a ConcurrentHashMap will prevent the
code from throwing an exception at runtime.

11: var foodData = new ConcurrentHashMap<String, Integer>();

Although we don’t usually modify a loop variable, this example highlights the fact that
the ConcurrentHashMap is ordering read/write access such that all access to the class is
consistent. In this code snippet, the iterator created by keySet() is updated as soon as an
object is removed from the Map.

The concurrent classes were created to help avoid common issues in which multiple
threads are adding and removing objects from the same collections. At any given instance, all
threads should have the same consistent view of the structure of the collection.

Working with Concurrent Classes
You should use a concurrent collection class any time you have multiple threads modify a
collection outside a synchronized block or method, even if you don’t expect a concurrency
problem. Without the concurrent collections, multiple threads accessing a collection could
result in an exception being thrown or, worse, corrupt data!

If the collection is immutable (and contains immutable objects), the
concurrent collections are not necessary. Immutable objects can be
accessed by any number of threads and do not require synchronization.
By definition, they do not change, so there is no chance of a memory con-
sistency error.

When passing around a concurrent collection, a caller may need to know the particular
implementation class. That said, it is considered a good practice to pass around a noncon-
current interface reference when possible, similar to how we instantiate a HashMap but often
pass around a Map reference:

Map<String,Integer> map = new ConcurrentHashMap<>();

Table 13.9 lists the common concurrent classes with which you should be familiar
for the exam.

756  Chapter 13  ■  Concurrency

Most of the classes in Table 13.9 are just concurrent versions of their nonconcurrent
counterpart classes, such as ConcurrentHashMap vs. Map, or ConcurrentLinkedQueue
vs. Queue. For the exam, you don’t need to know any class-specific concurrent methods. You
just need to know the inherited methods, such as get() and set() for List instances.

The Skip classes might sound strange, but they are just “sorted” versions of the associ-
ated concurrent collections. When you see a class with Skip in the name, just think “sorted
concurrent” collections, and the rest should follow naturally.

The CopyOnWrite classes behave a little differently than the other concurrent examples you
have seen. These classes create a copy of the collection any time a reference is added, removed, or
changed in the collection and then update the original collection reference to point to the copy.
These classes are commonly used to ensure an iterator doesn’t see modifications to the collection.

Let’s take a look at how this works with an example:

List<Integer> favNumbers = new CopyOnWriteArrayList<>(List.of(4, 3, 42));
for (var n : favNumbers) {
 System.out.print(n + " "); // 4 3 42
 favNumbers.add(n+1);
}

TABLE 13 .9   Concurrent collection classes

Class name Java Collections interfaces Sorted? Blocking?

ConcurrentHashMap Map
ConcurrentMap

No No

ConcurrentLinkedQueue Queue No No

ConcurrentSkipListMap Map
SortedMap
NavigableMap
ConcurrentMap
ConcurrentNavigableMap

Yes No

ConcurrentSkipListSet Set
SortedSet
NavigableSet

Yes No

CopyOnWriteArrayList List No No

CopyOnWriteArraySet Set No No

LinkedBlockingQueue Queue
BlockingQueue

No Yes

Using Concurrent Collections  757

System.out.println();
System.out.println("Size: " + favNumbers.size()); // Size: 6

Despite adding elements, the iterator is not modified, and the loop executes
exactly three times. Alternatively, if we had used a regular ArrayList object, a
ConcurrentModificationException would have been thrown at runtime. The
CopyOnWrite classes can use a lot of memory, since a new collection structure is created
any time the collection is modified. Therefore, they are commonly used in multithreaded
environment situations where reads are far more common than writes.

A CopyOnWrite instance is similar to an immutable object, as a new
underlying structure is created every time the collection is modified.
Unlike a true immutable object, though, the reference to the object stays
the same even while the underlying data is changed.

Finally, Table 13.9 includes LinkedBlockingQueue, which implements the concurrent
BlockingQueue interface. This class is just like a regular Queue, except that it includes
overloaded versions of offer() and poll() that take a timeout. These methods wait (or
block) up to a specific amount of time to complete an operation.

Obtaining Synchronized Collections
Besides the concurrent collection classes that we have covered, the Concurrency API also
includes methods for obtaining synchronized versions of existing nonconcurrent collection
objects. These synchronized methods are defined in the Collections class. They operate on
the inputted collection and return a reference that is the same type as the underlying collec-
tion. We list these static methods in Table 13.10.

TABLE 13 .10   Synchronized Collections methods

synchronizedCollection(Collection<T> c)

synchronizedList(List<T> list)

synchronizedMap(Map<K,V> m)

synchronizedNavigableMap(NavigableMap<K,V> m)

synchronizedNavigableSet(NavigableSet<T> s)

synchronizedSet(Set<T> s)

synchronizedSortedMap(SortedMap<K,V> m)

synchronizedSortedSet(SortedSet<T> s)

758  Chapter 13  ■  Concurrency

If you’re writing code to create a collection and it requires synchronization, you should
use the classes defined in Table 13.9. On the other hand, if you are passed a nonconcurrent
collection and need synchronization, use the methods in Table 13.10.

Identifying Threading Problems
Now that you know how to write thread-safe code, let’s talk about what qualifies as a
threading problem. A threading problem can occur in multithreaded applications when two
or more threads interact in an unexpected and undesirable way. For example, two threads
may block each other from accessing a particular segment of code.

The Concurrency API was created to help eliminate potential threading issues common to
all developers. As you have seen, the Concurrency API creates threads and manages complex
thread interactions for you, often in just a few lines of code.

Although the Concurrency API reduces the potential for threading issues, it does not elim-
inate them. In practice, finding and identifying threading issues within an application is often
one of the most difficult tasks a developer can undertake.

Understanding Liveness
As you have seen in this chapter, many thread operations can be performed independently,
but some require coordination. For example, synchronizing on a method requires all threads
that call the method to wait for other threads to finish before continuing. You also saw
earlier in the chapter that threads in a CyclicBarrier will each wait for the barrier limit to be
reached before continuing.

What happens to the application while all of these threads are waiting? In many cases, the
waiting is ephemeral, and the user has very little idea that any delay has occurred. In other
cases, though, the waiting may be extremely long, perhaps infinite.

Liveness is the ability of an application to be able to execute in a timely manner. Liveness
problems, then, are those in which the application becomes unresponsive or is in some kind
of “stuck” state. More precisely, liveness problems are often the result of a thread entering
a BLOCKING or WAITING state forever, or repeatedly entering/exiting these states. For the
exam, there are three types of liveness issues with which you should be familiar: deadlock,
starvation, and livelock.

Deadlock
Deadlock occurs when two or more threads are blocked forever, each waiting on the other.
We can illustrate this principle with the following example. Imagine that our zoo has two
foxes: Foxy and Tails. Foxy likes to eat first and then drink water, while Tails likes to drink
water first and then eat. Furthermore, neither animal likes to share, and they will finish their
meal only if they have exclusive access to both food and water.

Identifying Threading Problems  759

The zookeeper places the food on one side of the environment and the water on the other
side. Although our foxes are fast, it still takes them 100 milliseconds to run from one side of
the environment to the other.

What happens if Foxy gets the food first and Tails gets the water first? The following
application models this behavior:

import java.util.concurrent.*;
class Food {}
class Water {}
public record Fox(String name) {
 public void eatAndDrink(Food food, Water water) {
 synchronized(food) {
 System.out.println(name() + " Got Food!");
 move();
 synchronized(water) {
 System.out.println(name() + " Got Water!");
 } } }
 public void drinkAndEat(Food food, Water water) {
 synchronized(water) {
 System.out.println(name() + " Got Water!");
 move();
 synchronized(food) {
 System.out.println(name() + " Got Food!");
 } } }
 public void move() {
 try { Thread.sleep(100); } catch (InterruptedException e) {}
 }
 public static void main(String[] args) {
 // Create participants and resources
 var foxy = new Fox("Foxy");
 var tails = new Fox("Tails");
 var food = new Food();
 var water = new Water();
 // Process data
 var service = Executors.newScheduledThreadPool(10);
 try {
 service.submit(() -> foxy.eatAndDrink(food,water));
 service.submit(() -> tails.drinkAndEat(food,water));
 } finally {
 service.shutdown();
 } } }

760  Chapter 13  ■  Concurrency

In this example, Foxy obtains the food and then moves to the other side of the environ-
ment to obtain the water. Unfortunately, Tails already drank the water and is waiting for the
food to become available. The result is that our program outputs the following, and it hangs
indefinitely:

Foxy Got Food!
Tails Got Water!

This example is considered a deadlock because both participants are permanently
blocked, waiting on resources that will never become available.

Starvation
Starvation occurs when a single thread is perpetually denied access to a shared resource
or lock. The thread is still active, but it is unable to complete its work as a result of other
threads constantly taking the resource that it is trying to access.

In our fox example, imagine that we have a pack of very hungry, very competitive foxes
in our environment. Every time Foxy stands up to go get food, one of the other foxes sees
her and rushes to eat before her. Foxy is free to roam around the enclosure, take a nap, and
howl for a zookeeper but is never able to obtain access to the food. In this example, Foxy
literally and figuratively experiences starvation. It’s a good thing that this is just a theoret-
ical example!

Livelock
Livelock occurs when two or more threads are conceptually blocked forever, although they
are each still active and trying to complete their task. Livelock is a special case of resource
starvation in which two or more threads actively try to acquire a set of locks, are unable to
do so, and restart part of the process.

Livelock is often a result of two threads trying to resolve a deadlock. Returning to our
fox example, imagine that Foxy and Tails are both holding their food and water resources,
respectively. They each realize that they cannot finish their meal in this state, so they both
let go of their food and water, run to the opposite side of the environment, and pick up the
other resource. Now Foxy has the water, Tails has the food, and neither is able to finish
their meal!

If Foxy and Tails continue this process forever, it is referred to as livelock. Both Foxy and
Tails are active, running back and forth across their area, but neither can finish their meal.
Foxy and Tails are executing a form of failed deadlock recovery. Each fox notices that they
are potentially entering a deadlock state and responds by releasing all of its locked resources.
Unfortunately, the lock and unlock process is cyclical, and the two foxes are conceptually
deadlocked.

In practice, livelock is often a difficult issue to detect. Threads in a livelock state appear
active and able to respond to requests, even when they are stuck in an endless cycle.

Working with Parallel Streams  761

Managing Race Conditions
A race condition is an undesirable result that occurs when two tasks that should be com-
pleted sequentially are completed at the same time. We encountered examples of race condi-
tions earlier in the chapter when we introduced synchronization.

While Figure 13.4 shows a classical thread-based example of a race condition, we now provide
a more illustrative example. Imagine that two zoo patrons, Olivia and Sophia, are signing up
for an account on the zoo’s new visitor website. Both of them want to use the same username,
ZooFan, and each sends a request to create the account at the same time, as shown in Figure 13.6.

What result does the web server return when both users attempt to create an account
with the same username in Figure 13.6?

Possible Outcomes for This Race Condition
■■ Both users are able to create accounts with the username ZooFan.

■■ Neither user is able to create an account with the username ZooFan, and an error mes-
sage is returned to both users.

■■ One user is able to create an account with the username ZooFan, while the other user
receives an error message.

The first outcome is really bad, as it leads to users trying to log in with the same user-
name. Whose data do they see when they log in? The second outcome causes both users to
have to try again, which is frustrating but at least doesn’t lead to corrupt or bad data.

The third outcome is often considered the best solution. Like the second situation, we pre-
serve data integrity; but unlike the second situation, at least one user is able to move forward
on the first request, avoiding additional race condition scenarios.

For the exam, you should understand that race conditions lead to invalid data if they are
not properly handled. Even the solution where both participants fail to proceed is preferable
to one in which invalid data is permitted to enter the system.

Working with Parallel Streams
We conclude this chapter by combining what you learned in Chapter 10, “Streams,” with the
concepts you learned about in this chapter. One of the most powerful features of the Stream

Create ZooFan
Zoo

web server
Create ZooFan

Olivia

Sophia

F IGURE 13 .6   Race condition on user creation

762  Chapter 13  ■  Concurrency

API is built-in concurrency support. Up until now, all of the streams you have worked with
have been serial streams. A serial stream is a stream in which the results are ordered, with
only one entry being processed at a time.

A parallel stream is capable of processing results concurrently, using multiple threads. For
example, you can use a parallel stream and the map() operation to operate concurrently on
the elements in the stream, vastly improving performance over processing a single element
at a time.

Using a parallel stream can change not only the performance of your application but also
the expected results. As you shall see, some operations also require special handling to be
able to be processed in a parallel manner.

The number of threads available in a parallel stream is proportional to the
number of available CPUs in your environment.

Creating Parallel Streams
The Stream API was designed to make creating parallel streams quite easy. For the exam,
you should be familiar with two ways of creating a parallel stream.

Collection<Integer> collection = List.of(1,2);

Stream<Integer> p1 = collection.stream().parallel();
Stream<Integer> p2 = collection.parallelStream();

The first way to create a parallel stream is from an existing stream. Isn’t this cool? Any
stream can be made parallel! The second way to create a parallel stream is from a Java
Collection class. We use both of these methods throughout this section.

The Stream interface includes a method isParallel() that can be used
to test whether the instance of a stream supports parallel processing.
Some operations on streams preserve the parallel attribute, while others
do not.

Performing a Parallel Decomposition
A parallel decomposition is the process of taking a task, breaking it into smaller pieces that
can be performed concurrently, and then reassembling the results. The more concurrent a
decomposition, the greater the performance improvement of using parallel streams.

Let’s try it out. First, let’s define a reusable function that “does work” just by waiting for
five seconds.

Working with Parallel Streams  763

private static int doWork(int input) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException e) {}
 return input;
}

We can pretend that in a real application, this work might involve calling a database or
reading a file. Now let’s use this method with a serial stream.

10: long start = System.currentTimeMillis();
11: List.of(1,2,3,4,5)
12: .stream()
13: .map(w -> doWork(w))
14: .forEach(s -> System.out.print(s + " "));
15:
16: System.out.println();
17: var timeTaken = (System.currentTimeMillis()-start)/1000;
18: System.out.println("Time: "+timeTaken+" seconds");

What do you think this code will output when executed as part of a main() method?
Let’s take a look:

1 2 3 4 5
Time: 25 seconds

As you might expect, the results are ordered and predictable because we are using a serial
stream. It also took around 25 seconds to process all five results, one at a time. What hap-
pens if we replace line 12 with one that uses a parallelStream()? The following is some
sample output:

3 2 1 5 4
Time: 5 seconds

As you can see, the results are no longer ordered or predictable. The map() and
forEach() operations on a parallel stream are equivalent to submitting multiple Runnable
lambda expressions to a pooled thread executor and then waiting for the results.

What about the time required? In this case, our system had enough CPUs for all of the
tasks to be run concurrently. If you ran this same code on a computer with fewer pro-
cessors, it might output 10 seconds, 15 seconds, or some other value. The key is that
we’ve written our code to take advantage of parallel processing when available, so our
job is done.

764  Chapter 13  ■  Concurrency

Ordering Results

If your stream operation needs to guarantee ordering and you’re not sure if it is serial or
parallel, you can replace line 14 with one that uses forEachOrdered():

14: .forEachOrdered(s -> System.out.print(s + " "));

This outputs the results in the order in which they are defined in the stream:

1 2 3 4 5
Time: 5 seconds

While we’ve lost some of the performance gains of using a parallel stream, our map() oper-
ation can still take advantage of the parallel stream.

Processing Parallel Reductions
Besides potentially improving performance and modifying the order of operations, using
parallel streams can impact how you write your application. A parallel reduction is a
reduction operation applied to a parallel stream. The results for parallel reductions can differ
from what you expect when working with serial streams.

Performing Order-Based Tasks
Since order is not guaranteed with parallel streams, methods such as findAny() on parallel
streams may result in unexpected behavior. Consider the following example:

System.out.print(List.of(1,2,3,4,5,6)
 .parallelStream()
 .findAny()
 .get());

The JVM allocates a number of threads and returns the value of the first one to return
a result, which could be 4, 2, and so on. While neither the serial nor the parallel stream is
guaranteed to return the first value, the serial stream often does. With a parallel stream, the
results are likely to be more random.

What about operations that consider order, such as findFirst(), limit(), and skip()? Order
is still preserved, but performance may suffer on a parallel stream as a result of a parallel
processing task being forced to coordinate all of its threads in a synchronized-like fashion.

On the plus side, the results of ordered operations on a parallel stream will be consistent
with a serial stream. For example, calling skip(5).limit(2).findFirst() will return
the same result on ordered serial and parallel streams.

Working with Parallel Streams  765

Creating Unordered Streams

All of the streams you have been working with are considered ordered by default. It is pos-
sible to create an unordered stream from an ordered stream, similar to how you create a
parallel stream from a serial stream.

 List.of(1,2,3,4,5,6).stream().unordered();

This method does not reorder the elements; it just tells the JVM that if an order-based stream
operation is applied, the order can be ignored. For example, calling skip(5) on an unordered
stream will skip any 5 elements, not necessarily the first 5 required on an ordered stream.

For serial streams, using an unordered version has no effect. But on parallel streams, the
results can greatly improve performance.

 List.of(1,2,3,4,5,6).stream().unordered().parallel();

Even though unordered streams will not be on the exam, if you are developing applications
with parallel streams, you should know when to apply an unordered stream to improve
performance.

Combining Results with reduce()
As you learned in Chapter 10, the stream operation reduce() combines a stream into a
single object. Recall that the first parameter to the reduce() method is called the identity,
the second parameter is called the accumulator, and the third parameter is called the
combiner. The following is the signature for the method:

<U> U reduce(U identity,
 BiFunction<U,? super T,U> accumulator,
 BinaryOperator<U> combiner)

We can concatenate a list of char values using the reduce() method, as shown in the
following example:

System.out.println(List.of('w', 'o', 'l', 'f')
 .parallelStream()
 .reduce("",
 (s1,c) -> s1 + c,
 (s2,s3) -> s2 + s3)); // wolf

The naming of the variables in this stream example is not accidental. We
used c for char, whereas s1, s2, and s3 are String values.

766  Chapter 13  ■  Concurrency

On parallel streams, the reduce() method works by applying the reduction to pairs
of elements within the stream to create intermediate values and then combining those
intermediate values to produce a final result. Put another way, in a serial stream, wolf is
built one character at a time. In a parallel stream, the intermediate values wo and lf are cre-
ated and then combined.

With parallel streams, we now have to be concerned about order. What if the elements of
a string are combined in the wrong order to produce wlfo or flwo? The Stream API prevents
this problem while still allowing streams to be processed in parallel, as long as you follow
one simple rule: make sure that the accumulator and combiner produce the same result
regardless of the order they are called in.

While this is not in scope for the exam, the accumulator and combiner
must be associative, non-interfering, and stateless. Don’t panic; you don’t
need to know advanced math terms for the exam!

While the requirements for the input arguments to the reduce() method hold true for
both serial and parallel streams, you may not have noticed any problems in serial streams
because the result was always ordered. With parallel streams, though, order is no longer
guaranteed, and any argument that violates these rules is much more likely to produce side
effects or unpredictable results.

Let’s take a look at an example using a problematic accumulator. In particular, order mat-
ters when subtracting numbers; therefore, the following code can output different values
depending on whether you use a serial or parallel stream. We can omit a combiner param-
eter in these examples, as the accumulator can be used when the intermediate data types
are the same.

System.out.println(List.of(1,2,3,4,5,6)
 .parallelStream()
 .reduce(0, (a, b) -> (a - b))); // PROBLEMATIC ACCUMULATOR

It may output -21, 3, or some other value.
You can see other problems if we use an identity parameter that is not truly an identity

value. For example, what do you expect the following code to output?

System.out.println(List.of("w","o","l","f")
 .parallelStream()
 .reduce("X", String::concat)); // XwXoXlXf

On a serial stream, it prints Xwolf, but on a parallel stream, the result is XwXoXlXf. As
part of the parallel process, the identity is applied to multiple elements in the stream, result-
ing in very unexpected data.

Working with Parallel Streams  767

Selecting a reduce() Method

Although the one- and two-argument versions of reduce() support parallel processing, it
is recommended that you use the three-argument version of reduce() when working with
parallel streams. Providing an explicit combiner method allows the JVM to partition the
operations in the stream more efficiently.

Combining Results with collect()
Like reduce(), the Stream API includes a three-argument version of collect() that takes
accumulator and combiner operators along with a supplier operator instead of an identity.

<R> R collect(Supplier<R> supplier,
 BiConsumer<R, ? super T> accumulator,
 BiConsumer<R, R> combiner)

Also, like reduce(), the accumulator and combiner operations must be able to process
results in any order. In this manner, the three-argument version of collect() can be per-
formed as a parallel reduction, as shown in the following example:

Stream<String> stream = Stream.of("w", "o", "l", "f").parallel();
SortedSet<String> set = stream.collect(ConcurrentSkipListSet::new,
 Set::add,
 Set::addAll);
System.out.println(set); // [f, l, o, w]

Recall that elements in a ConcurrentSkipListSet are sorted according to their natural
ordering. You should use a concurrent collection to combine the results, ensuring that the
results of concurrent threads do not cause a ConcurrentModificationException.

Performing parallel reductions with a collector requires additional considerations. For
example, if the collection into which you are inserting is an ordered data set, such as a List,
the elements in the resulting collection must be in the same order, regardless of whether you
use a serial or parallel stream. This may reduce performance, though, as some operations
cannot be completed in parallel.

Performing a Parallel Reduction on a Collector
While we covered the Collector interface in Chapter 10, we didn’t go into detail about its
properties. Every Collector instance defines a characteristics() method that returns
a set of Collector.Characteristics attributes. When using a Collector to perform a
parallel reduction, a number of properties must hold true. Otherwise, the collect() opera-
tion will execute in a single-threaded fashion.

768  Chapter 13  ■  Concurrency

Requirements for Parallel Reduction with collect()
■■ The stream is parallel.

■■ The parameter of the collect() operation has the Characteristics.CONCURRENT
characteristic.

■■ Either the stream is unordered or the collector has the characteristic
Characteristics.UNORDERED.

For example, while Collectors.toSet() does have the UNORDERED characteristic,
it does not have the CONCURRENT characteristic. Therefore, the following is not a parallel
reduction even with a parallel stream:

parallelStream.collect(Collectors.toSet()); // Not a parallel reduction

The Collectors class includes two sets of static methods for retrieving collectors,
toConcurrentMap() and groupingByConcurrent(), both of which are UNORDERED and
CONCURRENT. These methods produce Collector instances capable of performing parallel
reductions efficiently. Like their nonconcurrent counterparts, there are overloaded versions
that take additional arguments.

Here is a rewrite of an example from Chapter 10 to use a parallel stream and parallel
reduction:

Stream<String> ohMy = Stream.of("lions", "tigers", "bears").parallel();
ConcurrentMap<Integer, String> map = ohMy
 .collect(Collectors.toConcurrentMap(String::length,
 k -> k,
 (s1, s2) -> s1 + "," + s2));
System.out.println(map); // {5=lions,bears, 6=tigers}
System.out.println(map.getClass()); // java.util.concurrent.ConcurrentHashMap

We use a ConcurrentMap reference, although the actual class returned is likely
ConcurrentHashMap. The particular class is not guaranteed; it will just be a class that
implements the interface ConcurrentMap.

Finally, we can rewrite our groupingBy() example from Chapter 10 to use a parallel stream
and parallel reduction.

var ohMy = Stream.of("lions", "tigers", "bears").parallel();
ConcurrentMap<Integer, List<String>> map = ohMy.collect(
 Collectors.groupingByConcurrent(String::length));
System.out.println(map); // {5=[lions, bears], 6=[tigers]}

As before, the returned object can be assigned to a ConcurrentMap reference.

Working with Parallel Streams  769

Avoiding Stateful Streams

Side effects can appear in parallel streams if your lambda expressions are stateful. A state-
ful lambda expression is one whose result depends on any state that might change during
the execution of a pipeline. For example, the following method that filters out even num-
bers is stateful:

public List<Integer> addValues(IntStream source) {
 var data = Collections.synchronizedList(new ArrayList<Integer>());
 source.filter(s -> s % 2 == 0)
 .forEach(i -> { data.add(i); }); // STATEFUL: DON'T DO THIS!
 return data;
}

Let’s say this method is executed with a serial stream:

var list = addValues(IntStream.range(1, 11));
System.out.print(list); // [2, 4, 6, 8, 10]

Great, the results are in the same order that they were entered. But what if someone else
passes in a parallel stream?

var list = addValues(IntStream.range(1, 11).parallel());
System.out.print(list); // [6, 8, 10, 2, 4]

Oh, no: our results no longer match our input order! The problem is that our lambda
expression is stateful and modifies a list that is outside our stream. We can fix this solution
by rewriting our stream operation to be stateless:

public List<Integer> addValuesBetter(IntStream source) {
 return source.filter(s -> s % 2 == 0)
 .boxed()
 .collect(Collectors.toList());
}

This method processes the stream and then collects all the results into a new list. It pro-
duces the same ordered result on both serial and parallel streams. It is strongly recom-
mended that you avoid stateful operations when using parallel streams, to remove any
potential data side effects. In fact, they should be avoided in serial streams since doing so
limits the code’s ability to someday take advantage of parallelization.

770  Chapter 13  ■  Concurrency

Summary
This chapter introduced you to threads and outlined some of the key concurrency concepts
you need to know for the exam (and to be a better software developer!). You should know
how to create and define the thread’s work using a Runnable instance, as well as how to
pause and interrupt the thread. When working with the Concurrency API, you should also
know how to create threads using Callable lambda expressions.

At this point, you should know how to concurrently execute tasks using ExecutorService
like a pro. You should also know which ExecutorService instances are available, including
scheduled and pooled services.

Thread-safety is about protecting data from being corrupted by multiple threads modi-
fying it at the same time. Java offers many tools to keep data safe, including atomic classes,
synchronized methods/blocks, the Lock framework, and CyclicBarrier. The Concur-
rency API also includes numerous collection classes that handle multithreaded access for you.
You should be familiar with the concurrent collections, including the CopyOnWrite classes,
which create a new underlying structure any time the underlying collection is modified.

When processing tasks concurrently, a variety of potential threading issues can arise.
Deadlock, starvation, and livelock can result in programs that appear stuck, while race con-
ditions can result in unpredictable data. For the exam, you need to know only the basic
theory behind these concepts. In professional software development, however, finding and
resolving such problems is a valuable skill.

Finally, we discussed parallel streams and showed you how to use them to per-
form parallel decompositions and reductions. Parallel streams can greatly improve the
performance of your application. They can also cause unexpected results since the processing
is no longer ordered. Remember to avoid stateful lambda expressions, especially when
working with parallel streams.

Exam Essentials
Be able to write thread-safe code.  Thread-safety is about protecting shared data from
concurrent access. A monitor can be used to ensure that only one thread processes
a particular section of code at a time. In Java, monitors can be implemented with a
synchronized block or method or using an instance of Lock. ReentrantLock has a
number of advantages over using a synchronized block, including the ability to check
whether a lock is available without blocking it, as well as supporting the fair acquisition
of locks. To achieve synchronization, two or more threads must coordinate on the same
shared object.

Be able to apply the atomic classes.  An atomic operation is one that occurs without inter-
ference from another thread. The Concurrency API includes a set of atomic classes that
are similar to the primitive classes, except that they ensure that operations on them are

Exam Essentials  771

performed atomically. Know the difference between an atomic variable and one marked with
the volatile modifier.

Create concurrent tasks with a thread executor service using Runnable and Callable.  An
ExecutorService creates and manages a single thread or a pool of threads. Instances of
Runnable and Callable can both be submitted to a thread executor and will be com-
pleted using the available threads in the service. Callable differs from Runnable in
that Callable returns a generic data type and can throw a checked exception. A
ScheduledExecutorService can be used to schedule tasks at a fixed rate or with a
fixed interval between executions.

Be able to use the concurrent collection classes.  The Concurrency API includes numerous
collection classes that include built-in support for multithreaded processing, such as
ConcurrentHashMap. It also includes a class CopyOnWriteArrayList that creates a
copy of its underlying list structure every time it is modified and is useful in highly
concurrent environments.

Identify potential threading problems.  Deadlock, starvation, and livelock are three thread-
ing problems that can occur and result in threads never completing their task. Deadlock
occurs when two or more threads are blocked forever. Starvation occurs when a single
thread is perpetually denied access to a shared resource. Livelock is a form of starvation
where two or more threads are active but conceptually blocked forever. Finally, race condi-
tions occur when two threads execute at the same time, resulting in an unexpected outcome.

Understand the impact of using parallel streams.  The Stream API allows for the easy
creation of parallel streams. Using a parallel stream can cause unexpected results, since the
order of operations may no longer be predictable. Some operations, such as reduce() and
collect(), require special consideration to achieve optimal performance when applied to a
parallel stream.

772  Chapter 13  ■  Concurrency

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Given the following code snippet, which options correctly create a parallel stream? (Choose
all that apply.)

var c = new ArrayList<Thread>();
var s = c.stream();
var p = ;

A.	 new ParallelStream(s)
B.	 c.parallel()
C.	 s.parallelStream()
D.	 c.parallelStream()
E.	 new ParallelStream(c)
F.	 s.parallel()

2.	 Given that the sum of the numbers from 1 (inclusive) to 10 (exclusive) is 45, what are the
possible results of executing the following program? (Choose all that apply.)

1: import java.util.concurrent.locks.*;
2: import java.util.stream.*;
3: public class Bank {
4: private Lock vault = new ReentrantLock();
5: private int total = 0;
6: public void deposit(int value) {
7: try {
8: vault.tryLock();
9: total += value;
10: } finally { vault.unlock(); }
11: }
12: public static void main(String[] unused) {
13: var bank = new Bank();
14: IntStream.range(1, 10).parallel()
15: .forEach(s -> bank.deposit(s));
16: System.out.println(bank.total);
17: } }

A.	 45 is printed.

B.	 A number less than 45 is printed.

C.	 A number greater than 45 is printed.

D.	 An exception is thrown.

E.	 None of the above, as the code does not compile.

Review Questions  773

3.	 Which of the following statements about the Callable call() and Runnable run()
methods are correct? (Choose all that apply.)

A.	 Both methods return void.

B.	 Both can throw unchecked exceptions.

C.	 Both can be implemented with lambda expressions.

D.	 Runnable returns a generic type.

E.	 Both can throw checked exceptions.

F.	 Callable returns a generic type.

4.	 Which lines need to be changed to make the code compile? (Choose all that apply.)

ExecutorService service = // w1
 Executors.newSingleThreadScheduledExecutor();
service.scheduleWithFixedDelay(() -> {
 System.out.println("Open Zoo");
 return null; // w2
}, 0, 1, TimeUnit.MINUTES);
var result = service.submit(() -> // w3
 System.out.println("Wake Staff"));
System.out.println(result.get()); // w4

A.	 It compiles and runs without issue.

B.	 Line w1
C.	 Line w2
D.	 Line w3
E.	 Line w4
F.	 It compiles but throws an exception at runtime.

5.	 What statement about the following code is true?

var value1 = new AtomicLong(0);
final long[] value2 = {0};
IntStream.iterate(1, i -> 1).limit(100).parallel()
 .forEach(i -> value1.incrementAndGet());
IntStream.iterate(1, i -> 1).limit(100).parallel()
 .forEach(i -> ++value2[0]);
System.out.println(value1+" "+value2[0]);

A.	 It outputs 100 100.

B.	 It outputs 100 99.

C.	 The output cannot be determined ahead of time.

D.	 The code does not compile.

E.	 It compiles but throws an exception at runtime.

774  Chapter 13  ■  Concurrency

F.	 It compiles but enters an infinite loop at runtime.

G.	 None of the above

6.	 Which statements about the following code are correct? (Choose all that apply.)

var data = List.of(2,5,1,9,8);
data.stream().parallel()
 .mapToInt(s -> s)
 .peek(System.out::print)
 .forEachOrdered(System.out::print);

A.	 The peek() method will print the entries in the sorted order: 12589.

B.	 The peek() method will print the entries in the original order: 25198.

C.	 The peek() method will print the entries in an order that cannot be determined ahead
of time.

D.	 The forEachOrdered() method will print the entries in the sorted order: 12589.

E.	 The forEachOrdered() method will print the entries in the original order: 25198.

F.	 The forEachOrdered() method will print the entries in an order that cannot be
determined ahead of time.

G.	 The code does not compile.

7.	 Fill in the blanks: __________ occur(s) when two or more threads are blocked forever but
both appear active. _______ occur(s) when two or more threads try to complete a related task
at the same time, resulting in invalid or unexpected data.

A.	 Livelock, Deadlock

B.	 Deadlock, Starvation

C.	 Race conditions, Deadlock

D.	 Livelock, Race conditions

E.	 Starvation, Race conditions

F.	 Deadlock, Livelock

8.	 Assuming this class is accessed by only a single thread at a time, what is the result of calling
the countIceCreamFlavors() method?

import java.util.stream.LongStream;
public class Flavors {
 private static int counter;
 public static void countIceCreamFlavors() {
 counter = 0;
 Runnable task = () -> counter++;
 LongStream.range(0, 500)
 .forEach(m -> new Thread(task).run());

 System.out.println(counter);
 } }

Review Questions  775

A.	 The method consistently prints a number less than 500.

B.	 The method consistently prints 500.

C.	 The method compiles and prints a value, but that value cannot be determined ahead of
time.

D.	 The method does not compile.

E.	 The method compiles but throws an exception at runtime.

F.	 None of the above

9.	 Which happens when a new task is submitted to an ExecutorService in which no threads are
available?

A.	 The executor throws an exception when the task is submitted.

B.	 The executor discards the task without completing it.

C.	 The executor adds the task to an internal queue and completes when there is an avail-
able thread.

D.	 The thread submitting the task waits on the submit call until a thread is available before
continuing.

E.	 The executor stops an existing task and starts the newly submitted one.

10.	 What is the result of executing the following code snippet?

List<Integer> lions = new ArrayList<>(List.of(1,2,3));
List<Integer> tigers = new CopyOnWriteArrayList<>(lions);
Set<Integer> bears = new ConcurrentSkipListSet<>();
bears.addAll(lions);
for(Integer item: tigers) tigers.add(4); // x1
for(Integer item: bears) bears.add(5); // x2
System.out.println(lions.size() + " " + tigers.size()
 + " " + bears.size());

A.	 It outputs 3 6 4.

B.	 It outputs 6 6 6.

C.	 It outputs 6 3 4.

D.	 The code does not compile.

E.	 It compiles but throws an exception at runtime on line x1.

F.	 It compiles but throws an exception at runtime on line x2.

G.	 It compiles but enters an infinite loop at runtime.

11.	 What statements about the following code are true? (Choose all that apply.)

Integer i1 = List.of(1, 2, 3, 4, 5).stream().findAny().get();
synchronized(i1) { // y1
 Integer i2 = List.of(6, 7, 8, 9, 10)
 .parallelStream()

776  Chapter 13  ■  Concurrency

 .sorted()
 .findAny().get(); // y2
 System.out.println(i1 + " " + i2);
}

A.	 The first value printed is always 1.

B.	 The second value printed is always 6.

C.	 The code will not compile because of line y1.

D.	 The code will not compile because of line y2.

E.	 The code compiles but throws an exception at runtime.

F.	 The output cannot be determined ahead of time.

G.	 It compiles but waits forever at runtime.

12.	 Assuming each call to takeNap() takes five seconds to execute without throwing an exception,
what is the expected result of executing the following code snippet?

ExecutorService service = Executors.newFixedThreadPool(4);
try {
 service.execute(() -> takeNap());
 service.execute(() -> takeNap());
 service.execute(() -> takeNap());
} finally {
 service.shutdown();
}
service.awaitTermination(2, TimeUnit.SECONDS);
System.out.println("DONE!");

A.	 It will immediately print DONE!.

B.	 It will pause for 2 seconds and then print DONE!.

C.	 It will pause for 5 seconds and then print DONE!.

D.	 It will pause for 15 seconds and then print DONE!.

E.	 It will throw an exception at runtime.

F.	 None of the above, as the code does not compile.

13.	 What statements about the following code are true? (Choose all that apply.)

System.out.print(List.of("duck","flamingo","pelican")
 .parallelStream().parallel() // q1
 .reduce(0,
 (c1, c2) -> c1.length() + c2.length(), // q2
 (s1, s2) -> s1 + s2)); // q3

Review Questions  777

A.	 It compiles and runs without issue, outputting the total length of all strings in the stream.

B.	 The code will not compile because of line q1.

C.	 The code will not compile because of line q2.

D.	 The code will not compile because of line q3.

E.	 It compiles but throws an exception at runtime.

F.	 None of the above

14.	 What statements about the following code snippet are true? (Choose all that apply.)

Object o1 = new Object();
Object o2 = new Object();
var service = Executors.newFixedThreadPool(2);
var f1 = service.submit(() -> {
 synchronized (o1) {
 synchronized (o2) { System.out.print("Tortoise"); }
 }
});
var f2 = service.submit(() -> {
 synchronized (o2) {
 synchronized (o1) { System.out.print("Hare"); }
 }
});
f1.get();
f2.get();

A.	 The code will always output Tortoise followed by Hare.

B.	 The code will always output Hare followed by Tortoise.

C.	 If the code does output anything, the order cannot be determined.

D.	 The code does not compile.

E.	 The code compiles but may produce a deadlock at runtime.

F.	 The code compiles but may produce a livelock at runtime.

G.	 It compiles but throws an exception at runtime.

15.	 Which statement about the following code snippet is correct?

2: var cats = Stream.of("leopard", "lynx", "ocelot", "puma")
3: .parallel();
4: var bears = Stream.of("panda","grizzly","polar").parallel();
5: var data = Stream.of(cats,bears).flatMap(s -> s)
6: .collect(Collectors.groupingByConcurrent(
7: s -> !s.startsWith("p")));
8: System.out.println(data.get(false).size()
9: + " " + data.get(true).size());

778  Chapter 13  ■  Concurrency

A.	 It outputs 3 4.

B.	 It outputs 4 3.

C.	 The code will not compile because of line 6.

D.	 The code will not compile because of line 7.

E.	 The code will not compile because of line 8.

F.	 It compiles but throws an exception at runtime.

16.	 Assuming one minute is enough time for all the threads within this program to complete,
what are the possible results of executing the following program? (Choose all that apply.)

public class RocketShip {
 private volatile int fuel;
 private void launch(int checks) {
 var p = new ArrayList<Thread>();
 for (int i = 0; i < checks; i++)
 p.add(new Thread(() -> fuel++));
 p.forEach(Thread::interrupt);
 p.forEach(Thread::start);
 p.forEach(Thread::interrupt);
 }
 public static void main(String[] args) throws Exception {
 var ship = new RocketShip();
 ship.launch(100);
 Thread.sleep(60*1000);
 System.out.print(ship.fuel);
 } }

A.	 It prints a number less than 100.

B.	 It prints 100.

C.	 It prints a number greater than 100.

D.	 It does not compile.

E.	 It compiles but throws an InterruptedException at runtime.

17.	 Which statements about methods in ReentrantLock are correct? (Choose all that apply.)

A.	 The lock() method will attempt to acquire a lock without waiting indefinitely for it.

B.	 The testLock() method will attempt to acquire a lock without waiting indefinitely for it.

C.	 The attemptLock() method will attempt to acquire a lock without waiting indefi-
nitely for it.

D.	 By default, a ReentrantLock fairly releases to each thread in the order in which it was
requested.

Review Questions  779

E.	 Calling the unlock() method once will release a resource so that other threads can
obtain the lock.

F.	 None of the above

18.	 Which of the following are valid Callable expressions? (Choose all that apply.)

A.	 a -> {return 10;}
B.	 () -> {String s = "";}
C.	 () -> 5
D.	 () -> {return null}
E.	 () -> "The" + "Zoo"
F.	 (int count) -> count+1
G.	 () -> {System.out.println("Giraffe"); return 10;}

19.	 What is the result of executing the following application? (Choose all that apply.)

import java.util.concurrent.*;
import java.util.stream.*;
public class PrintConstants {
 public static void main(String[] args) {
 var s = Executors.newScheduledThreadPool(10);
 DoubleStream.of(3.14159,2.71828) // b1
 .forEach(c -> s.submit(// b2
 () -> System.out.println(10*c))); // b3
 s.execute(() -> System.out.println("Printed"));

 } }

A.	 It compiles and outputs the two numbers followed by Printed.

B.	 The code will not compile because of line b1.

C.	 The code will not compile because of line b2.

D.	 The code will not compile because of line b3.

E.	 It compiles, but the output cannot be determined ahead of time.

F.	 It compiles but throws an exception at runtime.

G.	 It compiles but waits forever at runtime.

20.	 What is the result of executing the following program? (Choose all that apply.)

import java.util.*;
import java.util.concurrent.*;
import java.util.stream.*;
public class PrintCounter {
 static int count = 0;
 public static void main(String[] args) throws

780  Chapter 13  ■  Concurrency

 InterruptedException, ExecutionException {
 var service = Executors.newSingleThreadExecutor();
 try {
 var r = new ArrayList<Future<?>>();
 IntStream.iterate(0,i -> i+1).limit(5).forEach(
 i -> r.add(service.execute(() -> {count++;})) // n1
);
 for(Future<?> result : r) {
 System.out.print(result.get()+" "); // n2
 }
 } finally { service.shutdown(); }
 } }

A.	 It prints 0 1 2 3 4
B.	 It prints 1 2 3 4 5
C.	 It prints null null null null null
D.	 It hangs indefinitely at runtime.

E.	 The output cannot be determined.

F.	 The code will not compile because of line n1.

G.	 The code will not compile because of line n2.

21.	 Given the following code snippet and blank lines on p1 and p2, which values guarantee that
1 is printed at runtime? (Choose all that apply.)

var data = List.of(List.of(1,2),
 List.of(3,4),
 List.of(5,6));
data. // p1
 .flatMap(s -> s.stream())
 . // p2
 .ifPresent(System.out::print);

A.	 stream() on line p1, findFirst() on line p2
B.	 stream() on line p1, findAny() on line p2
C.	 parallelStream() on line p1, findAny() on line p2
D.	 parallelStream() on line p1, findFirst() on line p2
E.	 The code does not compile regardless of what is inserted into the blanks.

F.	 None of the above

Review Questions  781

22.	 Assuming one minute is enough time for the tasks submitted to the service executor to
complete, what is the result of executing countSheep()? (Choose all that apply.)

import java.util.concurrent.*;
import java.util.concurrent.atomic.*;
public class BedTime {
 private AtomicInteger s1 = new AtomicInteger(0); // w1
 private int s2 = 0;

 private void countSheep() throws InterruptedException {
 var service = Executors.newSingleThreadExecutor(); // w2
 try {
 for (int i = 0; i < 100; i++)
 service.execute(() -> {
 s1.getAndIncrement(); s2++; }); // w3
 Thread.sleep(60*1000);
 System.out.println(s1 + " " + s2);
 } finally { service.shutdown(); }
 }
 public static void main(String... nap) throws InterruptedException {
 new BedTime().countSheep();
 } }

A.	 The method consistently prints 100 99.

B.	 The method consistently prints 100 100.

C.	 The output cannot be determined ahead of time.

D.	 The code will not compile because of line w1.

E.	 The code will not compile because of line w2.

F.	 The code will not compile because of line w3.

G.	 It compiles but throws an exception at runtime.

23.	 What is the result of executing the following application? (Choose all that apply.)

import java.util.concurrent.*;
import java.util.stream.*;
public class StockRoomTracker {
 public static void await(CyclicBarrier cb) { // j1
 try { cb.await(); } catch (Exception e) {}
 }
 public static void main(String[] args) {
 var cb = new CyclicBarrier(10,
 () -> System.out.println("Stock Room Full!")); // j2

782  Chapter 13  ■  Concurrency

 IntStream.iterate(1, i -> 1).limit(9).parallel()
 .forEach(i -> await(cb)); // j3
 } }

A.	 It outputs Stock Room Full!
B.	 The code will not compile because of line j1.

C.	 The code will not compile because of line j2.

D.	 The code will not compile because of line j3.

E.	 It compiles but throws an exception at runtime.

F.	 It compiles but waits forever at runtime.

24.	 What statements about the following class definition are true? (Choose all that apply.)

public final class TicketManager {
 private int tickets;
 private static TicketManager instance;
 private TicketManager() {}
 static synchronized TicketManager getInstance() { // k1
 if (instance==null) instance = new TicketManager(); // k2
 return instance;
 }

 public int getTicketCount() { return tickets; }
 public void addTickets(int value) {tickets += value;} // k3
 public void sellTickets(int value) {
 synchronized (this) { // k4
 tickets -= value;
 } } }

A.	 It compiles without issue.

B.	 The code will not compile because of line k2.

C.	 The code will not compile because of line k3.

D.	 The locks acquired on k1 and k4 are on the same object.

E.	 The class correctly protects the tickets data from race conditions.

F.	 At most one instance of TicketManager will be created in an application that uses this
class.

25.	 Assuming an implementation of the performCount() method is provided prior to runtime,
which of the following are possible results of executing the following application? (Choose
all that apply.)

import java.util.*;
import java.util.concurrent.*;

Review Questions  783

public class CountZooAnimals {
 public static void performCount(int animal) {
 // IMPLEMENTATION OMITTED
 }
 public static void printResults(Future<?> f) {
 try {
 System.out.println(f.get(1, TimeUnit.DAYS)); // o1
 } catch (Exception e) {
 System.out.println("Exception!");
 }
 }
 public static void main(String[] args) throws Exception {
 final var r = new ArrayList<Future<?>>();
 ExecutorService s = Executors.newSingleThreadExecutor();
 try {
 for(int i = 0; i < 10; i++) {
 final int animal = i;
 r.add(s.submit(() -> performCount(animal))); // o2
 }
 r.forEach(f -> printResults(f));
 } finally { s.shutdown(); }
 } }

A.	 It outputs a number 10 times.

B.	 It outputs a Boolean value 10 times.

C.	 It outputs a null value 10 times.

D.	 It outputs Exception! 10 times.

E.	 It hangs indefinitely at runtime.

F.	 The code will not compile because of line o1.

G.	 The code will not compile because of line o2.

I/O

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Using Java I/O API

■■ Read and write console and file data using I/O Stream

■■ Serialize and de-serialize Java objects

■■ Create, traverse, read, and write Path objects and their prop-

erties using java.nio.file API

Chapter

14

What can Java applications do outside the scope of managing
objects and attributes in memory? How can they save data
so that information is not lost every time the program is ter-

minated? They use files, of course! You can design code that writes the current state of an
application to a file every time the application is closed and then reloads the data when
the application is executed the next time. In this manner, information is preserved between
program executions.

This chapter focuses on using I/O (input/output) and NIO.2 (non-blocking I/O) APIs to
interact with files and I/O streams. The preferred approach for working with files and direc-
tories with newer software applications is to use NIO.2 rather than I/O where possible.
However, you’ll see that the two relate, and both are in wide use.

We start by describing how files and directories are organized within a file system and
show how to access them with the File class and Path interface. Then we show how to
work with files and directories. We conclude this chapter with advanced topics like serial-
izing data, discussing ways of reading user input at runtime using the Console class, and
interacting with file attributes.

NIO stands for non-blocking input/output API and is sometimes referred
to as new I/O. The exam covers NIO version 2. There was a version 1 that
covered channels, but it is not on the exam.

Referencing Files and Directories
We begin this chapter by reviewing what files and directories are within a file system. We
also present the File class and Path interface along with how to create them.

Conceptualizing the File System
We start with the basics. Data is stored on persistent storage devices, such as hard disk drives
and memory cards. A file within the storage device holds data. Files are organized into hier-
archies using directories. A directory is a location that can contain files as well as other direc-
tories. When working with directories in Java, we often treat them like files. In fact, we use
many of the same classes and interfaces to operate on files and directories. For example, a
file and directory both can be renamed with the same Java method. Note that we often say
file to mean file or directory in this chapter.

Referencing Files and Directories  787

To interact with files, we need to connect to the file system. The file system is in charge
of reading and writing data within a computer. Different operating systems use different
file systems to manage their data. For example, Windows-based systems use a different file
system than Unix-based ones. For the exam, you just need to know how to issue commands
using the Java APIs. The JVM will automatically connect to the local file system, allowing
you to perform the same operations across multiple platforms.

Next, the root directory is the topmost directory in the file system, from which all files
and directories inherit. In Windows, it is denoted with a drive letter such as C:\, while on
Linux, it is denoted with a single forward slash, /.

A path is a representation of a file or directory within a file system. Each file system
defines its own path separator character that is used between directory entries. The value to
the left of a separator is the parent of the value to the right of the separator. For example, the
path value /user/home/zoo.txt means that the file zoo.txt is inside the home directory,
with the home directory inside the user directory.

Operating System File Separators

Different operating systems vary in their format of pathnames. For example, Unix-based
systems use the forward slash, /, for paths, whereas Windows-based systems use the back-
slash, \, character. That said, many programming languages and file systems support both
types of slashes when writing path statements. Java offers a system property to retrieve the
local separator character for the current environment:

 System.out.print(System.getProperty("file.separator"));

We show how a directory and file system is organized in a hierarchical manner in
Figure 14.1.

c:

app

animals

employees

zoo

Bear.java

Bear.class

java.exe

info.txt

F IGURE 14 .1   Directory and file hierarchy

788  Chapter 14  ■  I/O

This diagram shows the root directory, c:, as containing two directories, app and zoo,
along with the file info.txt. Within the app directory, there are two more folders,
animals and employees, along with the file java.exe. Finally, the animals directory
contains two files, Bear.java and Bear.class.

We use both absolute and relative paths to the file or directory within the file system.
The absolute path of a file or directory is the full path from the root directory to the file
or directory, including all subdirectories that contain the file or directory. Alternatively, the
relative path of a file or directory is the path from the current working directory to the file or
directory. For example, the following is an absolute path to the Bear.java file:

C:\app\animals\Bear.java

The following is a relative path to the same file, assuming the user’s current directory is
set to C:\app:

animals\Bear.java

Determining whether a path is relative or absolute is file-system dependent. To match the
exam, we adopt the following conventions:

■■ If a path starts with a forward slash (/), it is absolute, with / as the root directory, such
as /bird/parrot.png.

■■ If a path starts with a drive letter (c:), it is absolute, with the drive letter as the root
directory, such as C:/bird/info.

■■ Otherwise, it is a relative path, such as bird/parrot.png.

Absolute and relative paths can contain path symbols. A path symbol is one of a reserved
series of characters with special meaning in some file systems. For the exam, there are two
path symbols you need to know, as listed in Table 14.1.

Looking at Figure 14.2, suppose the current directory is /fish/shark/hammerhead.
In this case, ../swim.txt is a valid relative path equivalent to /fish/shark/swim.txt.
Likewise, ./play.png refers to play.png in the current directory. These symbols can also
be combined for greater effect. For example, ../../clownfish is a relative path equivalent
to /fish/clownfish within the file system.

Sometimes you’ll see path symbols that are redundant or unnecessary. For example,
the absolute path /fish/clownfish/../shark/./swim.txt can be simplified to
/fish/shark/swim.txt. We see how to handle these redundancies later in the chapter
when we cover normalize().

TABLE 14 .1   File-system symbols

Symbol Description

. A reference to the current directory

.. A reference to the parent of the current directory

Referencing Files and Directories  789

A symbolic link is a special file within a file system that serves as a reference or pointer
to another file or directory. Suppose we have a symbolic link from /zoo/user/favorite to
/fish/shark. The shark folder and its elements can be accessed directly or via the
symbolic link. For example, the following paths reference the same file:

/fish/shark/swim.txt
/zoo/user/favorite/swim.txt

In general, symbolic links are transparent to the user, as the operating system takes care
of resolving the reference to the actual file. While the I/O APIs do not support symbolic links,
NIO.2 includes full support for creating, detecting, and navigating symbolic links within the
file system.

Creating a File or Path
In order to do anything useful, you first need an object that represents the path to a
particular file or directory on the file system. Using legacy I/O, this is the java.io.File
class, whereas with NIO.2, it is the java.nio.file.Path interface. The File class and
Path interface cannot read or write data within a file, although they are passed as a refer-
ence to other classes, as you see in this chapter.

Remember, a File or Path can represent a file or a directory.

Creating a File
The File class is created by calling its constructor. This code shows three different
constructors:

File zooFile1 = new File("/home/tiger/data/stripes.txt");
File zooFile2 = new File("/home/tiger", "data/stripes.txt");

fish

shark

hammerhead

play.png

clownfish

.

..

../..

../../clownfish

./play.png

(Current directory)

swim.txt ../swim.txt

Relative paths

F IGURE 14 .2   Relative paths using path symbols

790  Chapter 14  ■  I/O

File parent = new File("/home/tiger");
File zooFile3 = new File(parent, "data/stripes.txt");

System.out.println(zooFile1.exists());

All three create a File object that points to the same location on disk. If we passed null
as the parent to the final constructor, it would be ignored, and the method would behave
the same way as the single String constructor. For fun, we also show how to tell if the file
exists on the file system.

Creating a Path
Since Path is an interface, we can’t create an instance directly. After all, interfaces don’t have
constructors! Java provides a number of classes and methods that you can use to obtain
Path objects.

The simplest and most straightforward way to obtain a Path object is to use a static
factory method defined on Path or Paths. All four of these examples point to the same refer-
ence on disk:

Path zooPath1 = Path.of("/home/tiger/data/stripes.txt");
Path zooPath2 = Path.of("/home", "tiger", "data", "stripes.txt");

Path zooPath3 = Paths.get("/home/tiger/data/stripes.txt");
Path zooPath4 = Paths.get("/home", "tiger", "data", "stripes.txt");

System.out.println(Files.exists(zooPath1));

Both methods allow passing a varargs parameter to pass additional path elements. The
values are combined and automatically separated by the operating system–dependent file
separator. We also show the Files helper class, which can check if the file exists on the
file system.

As you can see, there are two ways of doing the same thing here. The Path.of() method
was introduced in Java 11 as a static method on the interface. The Paths factory class
also provides a get() method to do the same thing. Note the s at the end of the Paths
class to distinguish it from the Path interface. We use Path.of() and Paths.get() inter-
changeably in this chapter.

You might notice that both the I/O and NIO.2 classes can interact with
a URI. A uniform resource identifier (URI) is a string of characters that
identifies a resource. It begins with a schema that indicates the resource
type, followed by a path value such as file:// for local file systems and
http://, https://, and ftp:// for remote file systems.

Referencing Files and Directories  791

Switching between File and Path
Since File and Path both reference locations on disk, it is helpful to be able to convert
between them. Luckily, Java makes this easy by providing methods to do just that:

File file = new File("rabbit");
Path nowPath = file.toPath();
File backToFile = nowPath.toFile();

Many older libraries use File, making it convenient to be able to get a File from a
Path and vice versa. When working with newer applications, you should rely on NIO.2’s
Path interface, as it contains a lot more features. For example, only NIO.2 provides
FileSystem support, as we are about to discuss.

Obtaining a Path from the FileSystems Class
NIO.2 makes extensive use of creating objects with factory classes. The FileSystems class
creates instances of the abstract FileSystem class. The latter includes methods for working
with the file system directly. Both Paths.get() and Path.of() are shortcuts for this
FileSystem method. Let’s rewrite our earlier examples one more time to see how to obtain
a Path instance the long way:

Path zooPath1 = FileSystems.getDefault()
 .getPath("/home/tiger/data/stripes.txt");
Path zooPath2 = FileSystems.getDefault()
 .getPath("/home", "tiger", "data", "stripes.txt");

Reviewing I/O and NIO.2 Relationships
The model for I/O is smaller, and you only need to understand the File class. In contrast,
NIO.2 has more features and makes extensive use of the factory pattern. You should become
comfortable with this approach. Many of your interactions with NIO.2 will require two
types: an abstract class or interface and a factory or helper class. Figure 14.3 shows the rela-
tionships among the classes and interface we have used in this chapter so far.

FileSystems FileSystem

Files

java.io.File

Paths

Path

java.net.URI

Creates

Creates Converts

Uses

F IGURE 14 .3   I/O and NIO.2 class and interface relationships

792  Chapter 14  ■  I/O

Review Figure 14.3 carefully. In particular, keep an eye on whether the class name is
singular or plural. Classes with plural names include methods to create or operate on
class/interface instances with singular names. Remember, as a convenience (and source of
confusion), a Path can also be created from the Path interface using the static factory
of() method.

The java.io.File is the I/O class, while Files is an NIO.2 helper class.
Files operates on Path instances, not java.io.File instances. We
know this is confusing, but they are from completely different APIs!

Table 14.2 reviews the APIs we have covered for creating java.io.File and
java.nio.file.Path objects. When reading the table, remember that static methods
operate on the class/interface, while instance methods require an instance of an object. Be
sure you know this well before proceeding with the rest of the chapter.

TABLE 14 .2   Options for creating File and Path

Creates Declared in Method or Constructor

File File public File(String pathname)
public File(File parent, String child)
public File(String parent,
String child)

File Path public default File toFile()

Path File public Path toPath()

Path Path public static Path of(String first,
String... more)
public static Path of(URI uri)

Path Paths public static Path get(String first,
String... more)
public static Path get(URI uri)

Path FileSystem public Path getPath(String first,
String... more)

FileSystem FileSystems public static FileSystem getDefault()

Operating on File and Path  793

Operating on File and Path
Now that we know how to create File and Path objects, we can start using them to do
useful things. In this section, we explore the functionality available to us that involves
directories.

Using Shared Functionality
Many operations can be done using both the I/O and NIO.2 libraries. We present many
common APIs in Table 14.3 and Table 14.4. Although these tables may seem like a lot of
methods to learn, many of them are self-explanatory. You can ignore the vararg parameters
for now. We explain those later in the chapter.

TABLE 14 .3   Common File and Path operations

Description
I/O file
instance method

NIO.2 path
instance method

Gets name of file/directory getName() getFileName()

Retrieves parent directory or null if
there is none

getParent() getParent()

Checks if file/directory is absolute path isAbsolute() isAbsolute()

TABLE 14 .4   Common File and Files operations

Description I/O file instance method NIO.2 files static method

Deletes file/
directory

delete() deleteIfExists(Path p)
throws IOException

Checks if file/
directory exists

exists() exists(Path p,
LinkOption... o)

Retrieves abso-
lute path of file/
directory

getAbsolutePath() toAbsolutePath()

Checks if resource
is directory

isDirectory() isDirectory(Path p,
LinkOption... o)

Checks if resource
is file

isFile() isRegularFile(Path p,
LinkOption... o)

794  Chapter 14  ■  I/O

Now let’s try to use some of these APIs. The following is a sample program using only
legacy I/O APIs. Given a file path, it outputs information about the file or directory, such as
whether it exists, what files are contained within it, and so forth:

10: public static void io() {
11: var file = new File("C:\\data\\zoo.txt");
12: if (file.exists()) {
13: System.out.println("Absolute Path: " + file.getAbsolutePath());
14: System.out.println("Is Directory: " + file.isDirectory());
15: System.out.println("Parent Path: " + file.getParent());
16: if (file.isFile()) {
17: System.out.println("Size: " + file.length());
18: System.out.println("Last Modified: " + file.lastModified());
19: } else {

Description I/O file instance method NIO.2 files static method

Returns the time
the file was last
modified

lastModified() getLastModifiedTime(Path p,
LinkOption... o) throws
IOException

Retrieves number
of bytes in file

length() size(Path p) throws IOException

Lists contents of
directory

listFiles() list(Path p) throws IOException

Creates directory mkdir() createDirectory(Path p,
FileAttribute... a) throws
IOException

Creates directory
including any non-
existent parent
directories

mkdirs() createDirectories(Path p,
FileAttribute... a) throws
IOException

Renames file/
directory denoted

renameTo(
File dest)

move(Path src, Path dest,
CopyOption... o) throws
IOException

TABLE 14 .4   Common File and Files operations  (continued)

20: for (File subfile : file.listFiles()) {
21: System.out.println(" " + subfile.getName());
22: } } } }

If the path provided points to a valid file, the program outputs something similar to the
following due to the if statement on line 16:

Absolute Path: C:\data\zoo.txt
Is Directory: false
Parent Path: C:\data
Size: 12382
Last Modified: 1650610000000

Finally, if the path provided points to a valid directory, such as C:\data, the program
outputs something similar to the following, thanks to the else block:

Absolute Path: C:\data
Is Directory: true
Parent Path: C:\
 employees.txt
 zoo.txt
 zoo-backup.txt

In these examples, you see that the output of an I/O-based program is completely
dependent on the directories and files available at runtime in the underlying file system.

On the exam, you might see paths that look like files but are directories or vice versa. For
example, /data/zoo.txt could be a file or a directory, even though it has a file extension.
Don’t assume it is either unless the question tells you it is!

In the previous example, we used two backslashes (\\) in the path
String, such as C:\\data\\zoo.txt. When the compiler sees a \\ inside
a String expression, it interprets it as a single \ value.

Now, let’s write that same program using only NIO.2 and see how it differs:

25: public static void nio() throws IOException {
26: var path = Path.of("C:\\data\\zoo.txt");
27: if (Files.exists(path)) {
28: System.out.println("Absolute Path: " + path.toAbsolutePath());
29: System.out.println("Is Directory: " + Files.isDirectory(path));
30: System.out.println("Parent Path: " + path.getParent());
31: if (Files.isRegularFile(path)) {
32: System.out.println("Size: " + Files.size(path));

Operating on File and Path  795

796  Chapter 14  ■  I/O

33: System.out.println("Last Modified: "
34: + Files.getLastModifiedTime(path));
35: } else {
36: try (Stream<Path> stream = Files.list(path)) {
37: stream.forEach(p ->
38: System.out.println(" " + p.getName()));
39: } } } }

Most of this example is equivalent and replaces the I/O method calls in the previous ta-
bles with the NIO.2 versions. However, there are key differences. First, line 25 declares a
checked exception. More APIs in NIO.2 throw IOException than the I/O APIs did. In this
case, Files.size(), Files.getLastModifiedTime(), and Files.list() throw an
IOException.

Second, lines 36–39 use a Stream and a lambda instead of a loop. Since streams use lazy
evaluation, this means the method will load each path element as needed, rather than the
entire directory at once.

Closing the Stream

Did you notice that in the last code sample, we put our Stream object inside a try-with-
resources? The NIO.2 stream-based methods open a connection to the file system that must
be properly closed; otherwise, a resource leak could ensue. A resource leak within the file
system means the path may be locked from modification long after the process that used it
is completed.

If you assumed that a stream’s terminal operation would automatically close the underlying
file resources, you’d be wrong. There was a lot of debate about this behavior when it was
first presented; in short, requiring developers to close the stream won out.

On the plus side, not all streams need to be closed: only those that open resources, like the
ones found in NIO.2. For instance, you didn’t need to close any of the streams you worked
with in Chapter 10, “Streams.”

Finally, the exam doesn’t always properly close NIO.2 resources. To match the exam, we
sometimes skip closing NIO.2 resources in review and practice questions. Always use try-
with-resources statements with these NIO.2 methods in your own code.

For the remainder of this section, we only discuss the NIO.2 methods, because they are
more important. There is also more to know about them, and they are more likely to come
up on the exam.

Handling Methods That Declare IOException
Many of the methods presented in this chapter declare IOException. Common causes of a
method throwing this exception include the following:

■■ Loss of communication to the underlying file system.

■■ File or directory exists but cannot be accessed or modified.

■■ File exists but cannot be overwritten.

■■ File or directory is required but does not exist.

Methods that access or change files and directories, such as those in the Files class,
often declare IOException. There are exceptions to this rule, as we will see. For example,
the method Files.exists() does not declare IOException. If it did throw an exception
when the file did not exist, it would never be able to return false! As a rule of thumb,
if a NIO.2 method declares an IOException, it usually requires the paths it operates
on to exist.

Providing NIO.2 Optional Parameters
Many of the NIO.2 methods in this chapter include a varargs that takes an optional list of
values. Table 14.5 presents the arguments you should be familiar with for the exam.

TABLE 14 .5   Common NIO.2 method arguments

Enum type Interface inherited Enum value Details

LinkOption CopyOption
OpenOption

NOFOLLOW_LINKS Do not follow
symbolic links.

StandardCopyOption CopyOption ATOMIC_MOVE Move file as atomic
file system operation.

COPY_ATTRIBUTES Copy existing attrib-
utes to new file.

REPLACE_EXISTING Overwrite file if it
already exists.

Operating on File and Path  797

798  Chapter 14  ■  I/O

With the exceptions of Files.copy() and Files.move(), we won’t discuss these
varargs parameters each time we present a method. Their behavior should be straightfor-
ward, though. For example, can you figure out what the following call to Files.exists()
with the LinkOption does in the following code snippet?

Path path = Paths.get("schedule.xml");
boolean exists = Files.exists(path, LinkOption.NOFOLLOW_LINKS);

The Files.exists() simply checks whether a file exists. But if the parameter is a
symbolic link, the method checks whether the target of the symbolic link exists, instead.
Providing LinkOption.NOFOLLOW_LINKS means the default behavior will be overridden,
and the method will check whether the symbolic link itself exists.

Note that some of the enums in Table 14.5 inherit an interface. That means some
methods accept a variety of enum types. For example, the Files.move() method takes a
CopyOption vararg so it can take enums of different types, and more options can be added
over time.

void copy(Path source, Path target) throws IOException {
 Files.move(source, target,
 LinkOption.NOFOLLOW_LINKS,
 StandardCopyOption.ATOMIC_MOVE);
}

Enum type Interface inherited Enum value Details

StandardOpenOption OpenOption APPEND If file is already open
for write, append to
the end.

CREATE Create new file if it
does not exist.

CREATE_NEW Create new file only if
it does not exist; fail
otherwise.

READ Open for read access.

TRUNCATE_EXISTING If file is already
open for write, erase
file and append to
beginning.

WRITE Open for write access.

FileVisitOption N/A FOLLOW_LINKS Follow symbolic links.

TABLE 14 .5   Common NIO.2 method arguments

Interacting with NIO.2 Paths
Just like String values, Path instances are immutable. In the following example, the Path
operation on the second line is lost since p is immutable:

Path p = Path.of("whale");
p.resolve("krill");
System.out.println(p); // whale

Many of the methods available in the Path interface transform the path value in some
way and return a new Path object, allowing the methods to be chained. We demon-
strate chaining in the following example, the details of which we discuss in this section of
the chapter:

Path.of("/zoo/../home").getParent().normalize().toAbsolutePath();

Viewing the Path
The Path interface contains three methods to retrieve basic information about the path rep-
resentation. The toString() method returns a String representation of the entire path.
In fact, it is the only method in the Path interface to return a String. Many of the other
methods in the Path interface return Path instances.

The getNameCount() and getName() methods are often used together to retrieve the
number of elements in the path and a reference to each element, respectively. These two
methods do not include the root directory as part of the path.

Path path = Paths.get("/land/hippo/harry.happy");
System.out.println("The Path Name is: " + path);
for(int i=0; i<path.getNameCount(); i++)
 System.out.println(" Element " + i + " is: " + path.getName(i));

Notice that we didn’t call toString() explicitly on the second line. Remember, Java calls
toString() on any Object as part of string concatenation. We use this feature throughout
the examples in this chapter.

The code prints the following:

The Path Name is: /land/hippo/harry.happy
 Element 0 is: land
 Element 1 is: hippo
 Element 2 is: harry.happy

Even though this is an absolute path, the root element is not included in the list of names.
As we said, these methods do not consider the root part of the path.

var p = Path.of("/");
System.out.print(p.getNameCount()); // 0
System.out.print(p.getName(0)); // IllegalArgumentException

Operating on File and Path  799

800  Chapter 14  ■  I/O

Notice that if you try to call getName() with an invalid index, it will throw an exception
at runtime.

Our examples print / as the file separator character because of the
system we are using. Your actual output may vary throughout this
chapter.

Creating Part of the Path
The Path interface includes the subpath() method to select portions of a path. It takes two
parameters: an inclusive beginIndex and an exclusive endIndex. This should sound familiar as
it is how String’s substring() method works, as you saw in Chapter 4, “Core APIs.”

The following code snippet shows how subpath() works. We also print the elements of the
Path using getName() so that you can see how the indices are used.

var p = Paths.get("/mammal/omnivore/raccoon.image");
System.out.println("Path is: " + p);
for (int i = 0; i < p.getNameCount(); i++) {
 System.out.println(" Element " + i + " is: " + p.getName(i));
}
System.out.println();
System.out.println("subpath(0,3): " + p.subpath(0, 3));
System.out.println("subpath(1,2): " + p.subpath(1, 2));
System.out.println("subpath(1,3): " + p.subpath(1, 3));

The output of this code snippet is the following:

Path is: /mammal/omnivore/raccoon.image
 Element 0 is: mammal
 Element 1 is: omnivore
 Element 2 is: raccoon.image

subpath(0,3): mammal/omnivore/raccoon.image
subpath(1,2): omnivore
subpath(1,3): omnivore/raccoon.image

Like getNameCount() and getName(), subpath() is zero-indexed and does not
include the root. Also like getName(), subpath() throws an exception if invalid indices
are provided.

var q = p.subpath(0, 4); // IllegalArgumentException
var x = p.subpath(1, 1); // IllegalArgumentException

The first example throws an exception at runtime, since the maximum index value
allowed is 3. The second example throws an exception since the start and end indexes are
the same, leading to an empty path value.

Accessing Path Elements
The Path interface contains numerous methods for retrieving particular elements of a Path,
returned as Path objects themselves. The getFileName() method returns the Path element of
the current file or directory, while getParent() returns the full path of the containing directory.
The getParent() method returns null if operated on the root path or at the top of a relative
path. The getRoot() method returns the root element of the file within the file system, or null
if the path is a relative path.

Consider the following method, which prints various Path elements:

public void printPathInformation(Path path) {
 System.out.println("Filename is: " + path.getFileName());
 System.out.println(" Root is: " + path.getRoot());
 Path currentParent = path;
 while((currentParent = currentParent.getParent()) != null)
 System.out.println(" Current parent is: " + currentParent);
 System.out.println();
}

The while loop in the printPathInformation() method continues until
getParent() returns null. We apply this method to the following three paths:

printPathInformation(Path.of("zoo"));
printPathInformation(Path.of("/zoo/armadillo/shells.txt"));
printPathInformation(Path.of("./armadillo/../shells.txt"));

This sample application produces the following output:

Filename is: zoo
 Root is: null

Filename is: shells.txt
 Root is: /
 Current parent is: /zoo/armadillo
 Current parent is: /zoo
 Current parent is: /

Filename is: shells.txt
 Root is: null
 Current parent is: ./armadillo/..
 Current parent is: ./armadillo
 Current parent is: .

Reviewing the sample output, you can see the difference in the behavior of getRoot() on
absolute and relative paths. As you can see in the first and last examples, the getParent()
method does not traverse relative paths outside the current working directory.

Operating on File and Path  801

802  Chapter 14  ■  I/O

You also see that these methods do not resolve the path symbols and treat them as a dis-
tinct part of the path. While most of the methods in this part of the chapter treat path sym-
bols as part of the path, we present one shortly that cleans up path symbols.

Resolving Paths
Suppose you want to concatenate paths in a manner similar to how we concatenate strings.
The resolve() method provides overloaded versions that let you pass either a Path or String
parameter. The object on which the resolve() method is invoked becomes the basis of the new
Path object, with the input argument being appended onto the Path. Let’s see what happens if
we apply resolve() to an absolute path and a relative path:

Path path1 = Path.of("/cats/../panther");
Path path2 = Path.of("food");
System.out.println(path1.resolve(path2));

The code snippet generates the following output:

/cats/../panther/food

Like the other methods we’ve seen, resolve() does not clean up path symbols. In this
example, the input argument to the resolve() method was a relative path, but what if it
had been an absolute path?

Path path3 = Path.of("/turkey/food");
System.out.println(path3.resolve("/tiger/cage"));

Since the input parameter is an absolute path, the output would be the following:

/tiger/cage

For the exam, you should be cognizant of mixing absolute and relative paths with the
resolve() method. If an absolute path is provided as input to the method, that is the value
returned. Simply put, you cannot combine two absolute paths using resolve().

On the exam, when you see resolve(), think concatenation.

Relativizing a Path
The Path interface includes a relativize() method for constructing the relative path from
one Path to another, often using path symbols. What do you think the following examples
will print?

var path1 = Path.of("fish.txt");
var path2 = Path.of("friendly/birds.txt");
System.out.println(path1.relativize(path2));
System.out.println(path2.relativize(path1));

The examples print the following:

../friendly/birds.txt

../../fish.txt

The idea is this: if you are pointed at a path in the file system, what steps would
you need to take to reach the other path? For example, to get to fish.txt from
friendly/birds.txt, you need to go up two levels (the file itself counts as one level)
and then select fish.txt.

If both path values are relative, the relativize() method computes the paths as if they
are in the same current working directory. Alternatively, if both path values are absolute, the
method computes the relative path from one absolute location to another, regardless of the
current working directory. The following example demonstrates this property when run on a
Windows computer:

Path path3 = Paths.get("E:\\habitat");
Path path4 = Paths.get("E:\\sanctuary\\raven\\poe.txt");
System.out.println(path3.relativize(path4));
System.out.println(path4.relativize(path3));

This code snippet produces the following output:

..\sanctuary\raven\poe.txt

..\..\..\habitat

The relativize() method requires both paths to be absolute or relative and throws an
exception if the types are mixed.

Path path1 = Paths.get("/primate/chimpanzee");
Path path2 = Paths.get("bananas.txt");
path1.relativize(path2); // IllegalArgumentException

On Windows-based systems, it also requires that if absolute paths are used, both paths
must have the same root directory or drive letter. For example, the following would also
throw an IllegalArgumentException on a Windows-based system:

Path path3 = Paths.get("C:\\primate\\chimpanzee");
Path path4 = Paths.get("D:\\storage\\bananas.txt");
path3.relativize(path4); // IllegalArgumentException

Normalizing a Path
So far, we’ve presented a number of examples that included path symbols that were unnec-
essary. Luckily, Java provides the normalize() method to eliminate unnecessary redun-
dancies in a path.

Remember, the path symbol .. refers to the parent directory, while the path symbol . refers
to the current directory. We can apply normalize() to some of our previous paths.

var p1 = Path.of("./armadillo/../shells.txt");
System.out.println(p1.normalize()); // shells.txt

Operating on File and Path  803

804  Chapter 14  ■  I/O

var p2 = Path.of("/cats/../panther/food");
System.out.println(p2.normalize()); // /panther/food

var p3 = Path.of("../../fish.txt");
System.out.println(p3.normalize()); // ../../fish.txt

The first two examples apply the path symbols to remove the redundancies, but what
about the last one? That is as simplified as it can be. The normalize() method does not
remove all of the path symbols, only the ones that can be reduced.

The normalize() method also allows us to compare equivalent paths. Consider the fol-
lowing example:

var p1 = Paths.get("/pony/../weather.txt");
var p2 = Paths.get("/weather.txt");
System.out.println(p1.equals(p2)); // false
System.out.println(p1.normalize().equals(p2.normalize())); // true

The equals() method returns true if two paths represent the same value. In the first
comparison, the path values are different. In the second comparison, the path values have
both been reduced to the same normalized value, /weather.txt. This is the primary
function of the normalize() method: to allow us to better compare different paths.

Retrieving the Real File System Path
While working with theoretical paths is useful, sometimes you want to verify that the path
exists within the file system using toRealPath(). This method is similar to normalize() in that
it eliminates any redundant path symbols. It is also similar to toAbsolutePath(), in that it will
join the path with the current working directory if the path is relative.

Unlike those two methods, though, toRealPath() will throw an exception if the path does
not exist. In addition, it will follow symbolic links, with an optional LinkOption varargs
parameter to ignore them.

Let’s say that we have a file system in which we have a symbolic link from /zebra to
/horse. What do you think the following will print, given a current working directory of
/horse/schedule?

System.out.println(Paths.get("/zebra/food.txt").toRealPath());
System.out.println(Paths.get(".././food.txt").toRealPath());

The output of both lines is the following:

/horse/food.txt

In this example, the absolute and relative paths both resolve to the same absolute
file, as the symbolic link points to a real file within the file system. We can also use the
toRealPath() method to gain access to the current working directory as a Path object.

System.out.println(Paths.get(".").toRealPath());

Reviewing NIO.2 Path APIs
We’ve covered a lot of instance methods on Path in this section. Table 14.6 lists them
for review.

Creating, Moving, and Deleting Files and Directories
Since creating, moving, and deleting have some nuance, we flesh them out in this section.

Making Directories
To create a directory, we use these Files methods:

public static Path createDirectory(Path dir,
 FileAttribute<?>... attrs) throws IOException

public static Path createDirectories(Path dir,
 FileAttribute<?>... attrs) throws IOException

TABLE 14 .6   Path APIs

Description Method or constructor

File path as string public String toString()

Single segment public Path getName(int index)

Number of segments public int getNameCount()

Segments in range public Path subpath(int beginIndex,
int endIndex)

Final segment public Path getFileName()

Immediate parent public Path getParent()

Top-level segment public Path getRoot()

Concatenate paths public Path resolve(String p)
public Path resolve(Path p)

Construct path to one provided public Path relativize(Path p)

Remove redundant parts of path public Path normalize()

Follow symbolic links to find path on file
system

public Path toRealPath()

Operating on File and Path  805

806  Chapter 14  ■  I/O

The createDirectory() method will create a directory and throw an
exception if it already exists or if the paths leading up to the directory do not exist. The
createDirectories() method creates the target directory along with any nonexistent
parent directories leading up to the path. If all of the directories already exist,
createDirectories() will simply complete without doing anything. This is useful in situ-
ations where you want to ensure a directory exists and create it if it does not.

Both of these methods also accept an optional list of FileAttribute<?> values to apply
to the newly created directory or directories. We discuss file attributes toward the end of
the chapter.

The following shows how to create directories:

Files.createDirectory(Path.of("/bison/field"));
Files.createDirectories(Path.of("/bison/field/pasture/green"));

The first example creates a new directory, field, in the directory /bison, assuming
/bison exists; otherwise, an exception is thrown. Contrast this with the second example,
which creates the directory green along with any of the following parent directories if they
do not already exist, including bison, field, and pasture.

Copying Files
The Files class provides a method for copying files and directories within the file system.

public static Path copy(Path source, Path target,
 CopyOption... options) throws IOException

The method copies a file or directory from one location to another using Path objects.
The following shows an example of copying a file and a directory:

Files.copy(Paths.get("/panda/bamboo.txt"),
 Paths.get("/panda-save/bamboo.txt"));

Files.copy(Paths.get("/turtle"), Paths.get("/turtleCopy"));

When directories are copied, the copy is shallow. A shallow copy means that the files and
subdirectories within the directory are not copied. A deep copy means that the entire tree
is copied, including all of its content and subdirectories. A deep copy typically requires
recursion, where a method calls itself.

public void copyPath(Path source, Path target) {
 try {
 Files.copy(source, target);
 if(Files.isDirectory(source))
 try (Stream<Path> s = Files.list(source)) {
 s.forEach(p -> copyPath(p,
 target.resolve(p.getFileName())));
 }

 } catch(IOException e) {
 // Handle exception
 }
}

The method first copies the path, whether a file or a directory. If it is a directory, only a
shallow copy is performed. Next, it checks whether the path is a directory and, if it is, per-
forms a recursive copy of each of its elements. What if the method comes across a symbolic
link? Don’t worry: the JVM will not follow symbolic links when using the list() method.

Copying and Replacing Files

By default, if the target already exists, the copy() method will throw an exception.
You can change this behavior by providing the StandardCopyOption enum value
REPLACE_EXISTING to the method. The following method call will overwrite the
movie.txt file if it already exists:

Files.copy(Paths.get("book.txt"), Paths.get("movie.txt"),
 StandardCopyOption.REPLACE_EXISTING);

For the exam, you need to know that without the REPLACE_EXISTING option, this
method will throw an exception if the file already exists.

Copying Files with I/O Streams

The Files class includes two copy() methods that operate with I/O streams.

public static long copy(InputStream in, Path target,
 CopyOption... options) throws IOException

public static long copy(Path source, OutputStream out)
 throws IOException

The first method reads the contents of an I/O stream and writes the output to a file. The
second method reads the contents of a file and writes the output to an I/O stream. These
methods are quite convenient if you need to quickly read/write data from/to disk.

The following are examples of each copy() method:

try (var is = new FileInputStream("source-data.txt")) {
 // Write I/O stream data to a file
 Files.copy(is, Paths.get("/mammals/wolf.txt"));
}

Files.copy(Paths.get("/fish/clown.xsl"), System.out);

While we used FileInputStream in the first example, the I/O stream could have been
any valid I/O stream including website connections, in-memory stream resources, and so
forth. The second example prints the contents of a file directly to the System.out stream.

Operating on File and Path  807

808  Chapter 14  ■  I/O

Copying Files into a Directory

For the exam, it is important that you understand how the copy() method operates on
both files and directories. For example, let’s say we have a file, food.txt, and a directory,
/enclosure. Both the file and directory exist. What do you think is the result of executing
the following process?

var file = Paths.get("food.txt");
var directory = Paths.get("/enclosure");
Files.copy(file, directory);

If you said it would create a new file at /enclosure/food.txt, you’re way off. It
throws an exception. The command tries to create a new file named /enclosure. Since the
path /enclosure already exists, an exception is thrown at runtime.

On the other hand, if the directory did not exist, the process would create a new file with
the contents of food.txt, but the file would be called /enclosure. Remember, we said files
may not need to have extensions, and in this example, it matters.

This behavior applies to both the copy() and move() methods, the latter of which we cover
next. In case you’re curious, the correct way to copy the file into the directory is to do the
following:

var file = Paths.get("food.txt");
var directory = Paths.get("/enclosure/food.txt");
Files.copy(file, directory);

Moving or Renaming Paths with move()
The Files class provides a useful method for moving or renaming files and directories.

public static Path move(Path source, Path target,
 CopyOption... options) throws IOException

The following sample code uses the move() method:

Files.move(Path.of("C:\\zoo"), Path.of("C:\\zoo-new"));

Files.move(Path.of("C:\\user\\addresses.txt"),
 Path.of("C:\\zoo-new\\addresses2.txt"));

The first example renames the zoo directory to a zoo-new directory, keeping all of the
original contents from the source directory. The second example moves the addresses.txt
file from the directory user to the directory zoo-new and renames it addresses2.txt.

Similarities between move() and copy()
Like copy(), move() requires REPLACE_EXISTING to overwrite the target if it exists; oth-
erwise, it will throw an exception. Also like copy(), move() will not put a file in a directory
if the source is a file and the target is a directory. Instead, it will create a new file with the
name of the directory.

Performing an Atomic Move

Another enum value that you need to know for the exam when working with the move()
method is the StandardCopyOption value ATOMIC_MOVE.

Files.move(Path.of("mouse.txt"), Path.of("gerbil.txt"),
 StandardCopyOption.ATOMIC_MOVE);

You may remember the atomic property from Chapter 13, “Concurrency,” and the prin-
ciple of an atomic move is similar. An atomic move is one in which a file is moved within the
file system as a single indivisible operation. Put another way, any process monitoring the file
system never sees an incomplete or partially written file. If the file system does not support
this feature, an AtomicMoveNotSupportedException will be thrown.

Note that while ATOMIC_MOVE is available as a member of the StandardCopyOption
type, it will likely throw an exception if passed to a copy() method.

Deleting a File with delete() and deleteIfExists()
The Files class includes two methods that delete a file or empty directory within the
file system.

public static void delete(Path path) throws IOException

public static boolean deleteIfExists(Path path) throws IOException

To delete a directory, it must be empty. Both of these methods throw an exception if oper-
ated on a nonempty directory. In addition, if the path is a symbolic link, the symbolic link
will be deleted, not the path that the symbolic link points to.

The methods differ on how they handle a path that does not exist. The
delete() method throws an exception if the path does not exist, while the
deleteIfExists() method returns true if the delete was successful or false otherwise.
Similar to createDirectories(), deleteIfExists() is useful in situations where you
want to ensure that a path does not exist and delete it if it does.

Here we provide sample code that performs delete() operations:

Files.delete(Paths.get("/vulture/feathers.txt"));
Files.deleteIfExists(Paths.get("/pigeon"));

The first example deletes the feathers.txt file in the vulture directory, and it throws
a NoSuchFileException if the file or directory does not exist. The second example deletes
the pigeon directory, assuming it is empty. If the pigeon directory does not exist, the sec-
ond line will not throw an exception.

Comparing Files with isSameFile() and mismatch()
Since a path may include path symbols and symbolic links within a file system, the
equals() method can’t be relied on to know if two Path instances refer to the same file.
Luckily, there is the isSameFile() method. This method takes two Path objects as input,

Operating on File and Path  809

810  Chapter 14  ■  I/O

resolves all path symbols, and follows symbolic links. Despite the name, the method can also
be used to determine whether two Path objects refer to the same directory.

While most uses of isSameFile() will trigger an exception if the paths do not exist, there is
a special case in which it does not. If the two path objects are equal in terms of equals(), the
method will just return true without checking whether the file exists.

Assume that the file system exists, as shown in Figure 14.4, with a symbolic link from
/animals/snake to /animals/cobra.

Given the structure defined in Figure 14.4, what does the following output?

System.out.println(Files.isSameFile(
 Path.of("/animals/cobra"),
 Path.of("/animals/snake")));

System.out.println(Files.isSameFile(
 Path.of("/animals/monkey/ears.png"),
 Path.of("/animals/wolf/ears.png")));

Since snake is a symbolic link to cobra, the first example outputs true. In the second
example, the paths refer to different files, so false is printed.

Sometimes you want to compare the contents of the file rather than whether it is physi-
cally the same file. For example, we could have two files with text hello. The mismatch()
method was introduced in Java 12 to help us out here. It takes two Path objects as input.
The method returns -1 if the files are the same; otherwise, it returns the index of the first
position in the file that differs.

System.out.println(Files.mismatch(
 Path.of("/animals/monkey.txt"),
 Path.of("/animals/wolf.txt")));

animals

cobra

monkey

wolf

snake

tail.gif

ears.png

ears.png

F IGURE 14 .4   Comparing file uniqueness

Introducing I/O Streams  811

Suppose monkey.txt contains the name Harold and wolf.txt contains the name
Howler. The previous code prints 1 in that case because the second position is different, and
we use zero-based indexing in Java. Given those values, what do you think this code prints?

System.out.println(Files.mismatch(
 Path.of("/animals/wolf.txt"),
 Path.of("/animals/monkey.txt")));

The answer is the same as the previous example. The code prints 1 again. The
mismatch() method is symmetric and returns the same result regardless of the order of the
parameters.

Introducing I/O Streams
Now that we have the basics out of the way, let’s move on to I/O streams, which are far
more interesting. In this section, we show you how to use I/O streams to read and write data.
The “I/O” refers to the nature of how data is accessed, either by reading the data from a
resource (input) or by writing the data to a resource (output).

When we refer to I/O streams in this chapter, we are referring to the ones
found in the java.io API. If we just say streams, it means the ones from
Chapter 10. We agree that the naming can be a bit confusing!

Understanding I/O Stream Fundamentals
The contents of a file may be accessed or written via an I/O stream, which is a list of data
elements presented sequentially. An I/O stream can be conceptually thought of as a long,
nearly never-ending stream of water with data presented one wave at a time.

We demonstrate this principle in Figure 14.5. The I/O stream is so large that once we start
reading it, we have no idea where the beginning or the end is. We just have a pointer to our
current position in the I/O stream and read data one block at a time.

...01001010011000010111011001100001001000000011110100100000010001100111010101101110...

Reading a byte into a block

Toward the head of the stream Toward the tail of the stream
Next block

F IGURE 14 .5   Visual representation of an I/O stream

812  Chapter 14  ■  I/O

Each type of I/O stream segments data into a wave or block in a particular way. For
example, some I/O stream classes read or write data as individual bytes. Other I/O stream
classes read or write individual characters or strings of characters. On top of that, some I/O
stream classes read or write larger groups of bytes or characters at a time, specifically those
with the word Buffered in their name.

Although the java.io API is full of I/O streams that handle characters,
strings, groups of bytes, and so on, nearly all are built on top of reading
or writing an individual byte or an array of bytes at a time. Higher-level
I/O streams exist for convenience as well as performance.

Although I/O streams are commonly used with file I/O, they are more generally used to
handle the reading/writing of any sequential data source. For example, you might construct
a Java application that submits data to a website using an output stream and reads the result
via an input stream.

I/O Streams Can Be Big

When writing code where you don’t know what the I/O stream size will be at runtime, it
may be helpful to visualize an I/O stream as being so large that all of the data contained in
it could not possibly fit into memory. For example, a 1 TB file could not be stored entirely in
memory by most computer systems (at the time this book is being written). The file can still
be read and written by a program with very little memory, since the I/O stream allows the
application to focus on only a small portion of the overall I/O stream at any given time.

Learning I/O Stream Nomenclature
The java.io API provides numerous classes for creating, accessing, and manipulating I/O
streams—so many that it tends to overwhelm many new Java developers. Stay calm! We
review the major differences between each I/O stream class and show you how to distinguish
between them.

Even if you come across a particular I/O stream on the exam that you do not recog-
nize, the name of the I/O stream often gives you enough information to understand exactly
what it does.

The goal of this section is to familiarize you with common terminology and naming con-
ventions used with I/O streams. Don’t worry if you don’t recognize the particular stream
class names used in this section or their function; we cover how to use them in detail in
this chapter.

Introducing I/O Streams  813

Storing Data as Bytes
Data is stored in a file system (and memory) as a 0 or 1, called a bit. Since it’s really hard
for humans to read/write data that is just 0s and 1s, they are grouped into a set of 8 bits,
called a byte.

What about the Java byte primitive type? As you learn later, when we use I/O streams,
values are often read or written using byte values and arrays.

Byte Streams vs. Character Streams
The java.io API defines two sets of I/O stream classes for reading and writing I/O streams:
byte I/O streams and character I/O streams. We use both types of I/O streams throughout
this chapter.

Differences between Byte and Character I/O Streams
■■ Byte I/O streams read/write binary data (0s and 1s) and have class names that end in

InputStream or OutputStream.
■■ Character I/O streams read/write text data and have class names that end in Reader

or Writer.

The API frequently includes similar classes for both byte and character I/O streams, such
as FileInputStream and FileReader. The difference between the two classes is based on
how the bytes are read or written.

It is important to remember that even though character I/O streams do not contain the
word Stream in their class name, they are still I/O streams. The use of Reader/Writer in the
name is just to distinguish them from byte streams.

Throughout the chapter, we refer to both InputStream and Reader
as input streams, and we refer to both OutputStream and Writer as
output streams.

The byte I/O streams are primarily used to work with binary data, such as an image or
executable file, while character I/O streams are used to work with text files. For example,
you can use a Writer class to output a String value to a file without necessarily having to
worry about the underlying character encoding of the file.

The character encoding determines how characters are encoded and stored in bytes in an
I/O stream and later read back or decoded as characters. Although this may sound simple,
Java supports a wide variety of character encodings, ranging from ones that may use one
byte for Latin characters, UTF-8 and ASCII for example, to using two or more bytes per
character, such as UTF-16. For the exam, you don’t need to memorize the character encodings,
but you should be familiar with the names.

814  Chapter 14  ■  I/O

Character Encoding in Java

In Java, the character encoding can be specified using the Charset class by passing a
name value to the static Charset.forName() method, such as in the following examples:

 Charset usAsciiCharset = Charset.forName("US-ASCII");
 Charset utf8Charset = Charset.forName("UTF-8");
 Charset utf16Charset = Charset.forName("UTF-16");

Java supports numerous character encodings, each specified by a different standard
name value.

Input vs. Output Streams
Most InputStream classes have a corresponding OutputStream class, and vice versa. For
example, the FileOutputStream class writes data that can be read by a FileInputStream. If you
understand the features of a particular Input or Output stream class, you should naturally
know what its complementary class does.

It follows, then, that most Reader classes have a corresponding Writer class. For example,
the FileWriter class writes data that can be read by a FileReader.

There are exceptions to this rule. For the exam, you should know that PrintWriter has no
accompanying PrintReader class. Likewise, the PrintStream is an OutputStream that has no
corresponding InputStream class. It also does not have Output in its name. We discuss these
classes later in this chapter.

Low-Level vs. High-Level Streams
Another way that you can familiarize yourself with the java.io API is by segmenting I/O
streams into low-level and high-level streams.

A low-level stream connects directly with the source of the data, such as a file, an array, or
a String. Low-level I/O streams process the raw data or resource and are accessed in a direct
and unfiltered manner. For example, a FileInputStream is a class that reads file data one byte
at a time.

Alternatively, a high-level stream is built on top of another I/O stream using wrapping.
Wrapping is the process by which an instance is passed to the constructor of another class,
and operations on the resulting instance are filtered and applied to the original instance.
For example, take a look at the FileReader and BufferedReader objects in the following
sample code:

try (var br = new BufferedReader(new FileReader("zoo-data.txt"))) {
 System.out.println(br.readLine());
}

Introducing I/O Streams  815

In this example, FileReader is the low-level I/O stream, whereas BufferedReader is
the high-level I/O stream that takes a FileReader as input. Many operations on the high-
level I/O stream pass through as operations to the underlying low-level I/O stream, such as
read() or close(). Other operations override or add new functionality to the low-level
I/O stream methods. The high-level I/O stream may add new methods, such as readLine(),
as well as performance enhancements for reading and filtering the low-level data.

High-level I/O streams can also take other high-level I/O streams as input. For example,
although the following code might seem a little odd at first, the style of wrapping an I/O
stream is quite common in practice:

try (var ois = new ObjectInputStream(
 new BufferedInputStream(
 new FileInputStream("zoo-data.txt")))) {
 System.out.print(ois.readObject());
}

In this example, the low-level FileInputStream interacts directly with the file, which is
wrapped by a high-level BufferedInputStream to improve performance. Finally, the entire
object is wrapped by another high-level ObjectInputStream, which allows us to interpret
the data as a Java object.

For the exam, the only low-level stream classes you need to be familiar with are the ones
that operate on files. The rest of the nonabstract stream classes are all high-level streams.

Stream Base Classes
The java.io library defines four abstract classes that are the parents of all I/O stream
classes defined within the API: InputStream, OutputStream, Reader, and Writer.

The constructors of high-level I/O streams often take a reference to the abstract class. For
example, BufferedWriter takes a Writer object as input, which allows it to take any subclass
of Writer.

One common area where the exam likes to play tricks on you is mixing and matching I/O
stream classes that are not compatible with each other. For example, take a look at each of
the following examples and see whether you can determine why they do not compile:

new BufferedInputStream(new FileReader("z.txt")); // DOES NOT COMPILE
new BufferedWriter(new FileOutputStream("z.txt")); // DOES NOT COMPILE
new ObjectInputStream(
 new FileOutputStream("z.txt")); // DOES NOT COMPILE
new BufferedInputStream(new InputStream()); // DOES NOT COMPILE

The first two examples do not compile because they mix Reader/Writer classes with
InputStream/OutputStream classes, respectively. The third example does not compile
because we are mixing an OutputStream with an InputStream. Although it is possible
to read data from an InputStream and write it to an OutputStream, wrapping the I/O

816  Chapter 14  ■  I/O

stream is not the way to do so. As you see later in this chapter, the data must be copied over.
Finally, the last example does not compile because InputStream is an abstract class, and
therefore you cannot create an instance of it.

Decoding I/O Class Names
Pay close attention to the name of the I/O class on the exam, as decoding it often gives
you context clues as to what the class does. For example, without needing to look it up,
it should be clear that FileReader is a class that reads data from a file as characters or
strings. Furthermore, ObjectOutputStream sounds like a class that writes object data to a
byte stream.

Table 14.7 lists the abstract base classes that all I/O streams inherit from.

Table 14.8 lists the concrete I/O streams that you should be familiar with for the exam.
Note that most of the information about each I/O stream, such as whether it is an input or
output stream or whether it accesses data using bytes or characters, can be decoded by the
name alone.

TABLE 14 .7   The java.io abstract stream base classes

Class name Description

InputStream Abstract class for all input byte streams

OutputStream Abstract class for all output byte streams

Reader Abstract class for all input character streams

Writer Abstract class for all output character streams

TABLE 14 .8   The java.io concrete I/O stream classes

Class name
Low/
High level Description

FileInputStream Low Reads file data as bytes

FileOutputStream Low Writes file data as bytes

FileReader Low Reads file data as characters

FileWriter Low Writes file data as characters

BufferedInputStream High Reads byte data from existing InputStream
in buffered manner, which improves efficiency
and performance

Reading and Writing Files  817

Keep Table 14.7 and Table 14.8 handy as you learn more about I/O streams in this
chapter. We discuss these in more detail, including examples of each.

Reading and Writing Files
There are a number of ways to read and write from a file. We show them in this section by
copying one file to another.

Using I/O Streams
I/O streams are all about reading/writing data, so it shouldn’t be a surprise that the most
important methods are read() and write(). Both InputStream and Reader declare
a read() method to read byte data from an I/O stream. Likewise, OutputStream and
Writer both define a write() method to write a byte to the stream:

Class name
Low/
High level Description

BufferedOutputStream High Writes byte data to existing OutputStream
in buffered manner, which improves efficiency
and performance

BufferedReader High Reads character data from existing Reader in
buffered manner, which improves efficiency
and performance

BufferedWriter High Writes character data to existing Writer in
buffered manner, which improves efficiency
and performance

ObjectInputStream High Deserializes primitive Java data types and
graphs of Java objects from existing
InputStream

ObjectOutputStream High Serializes primitive Java data types
and graphs of Java objects to existing
OutputStream

PrintStream High Writes formatted representations of Java
objects to binary stream

PrintWriter High Writes formatted representations of Java
objects to character stream

818  Chapter 14  ■  I/O

The following copyStream() methods show an example of reading all of the values of
an InputStream and Reader and writing them to an OutputStream and Writer, respec-
tively. In both examples, -1 is used to indicate the end of the stream.

void copyStream(InputStream in, OutputStream out) throws IOException {
 int b;
 while ((b = in.read()) != -1) {
 out.write(b);
 }
}

void copyStream(Reader in, Writer out) throws IOException {
 int b;
 while ((b = in.read()) != -1) {
 out.write(b);
 }
}

Hold on. We said we are reading and writing bytes, so why do the methods use int
instead of byte? Remember, the byte data type has a range of 256 characters. They needed
an extra value to indicate the end of an I/O stream. The authors of Java decided to use a
larger data type, int, so that special values like -1 would indicate the end of an I/O stream.
The output stream classes use int as well, to be consistent with the input stream classes.

Reading and writing one byte at a time isn’t a particularly efficient way of doing this.
Luckily, there are overloaded methods for reading and writing multiple bytes at a time. The
offset and length values are applied to the array itself. For example, an offset of 3 and
length of 5 indicates that the stream should read up to five bytes/characters of data and put
them into the array starting with position 3. Let’s look at an example:

10: void copyStream(InputStream in, OutputStream out) throws IOException {
11: int batchSize = 1024;
12: var buffer = new byte[batchSize];
13: int lengthRead;
14: while ((lengthRead = in.read(buffer, 0, batchSize)) > 0) {
15: out.write(buffer, 0, lengthRead);
16: out.flush();
17: }

Instead of reading the data one byte at a time, we read and write up to 1024 bytes at a
time on line 14. The return value lengthRead is critical for determining whether we are at
the end of the stream and knowing how many bytes we should write into our output stream.

Unless our file happens to be a multiple of 1024 bytes, the last iteration of the while
loop will write some value less than 1024 bytes. For example, if the buffer size is 1,024 bytes

Reading and Writing Files  819

and the file size is 1,054 bytes, the last read will be only 30 bytes. If we ignored this return
value and instead wrote 1,024 bytes, 994 bytes from the previous loop would be written to
the end of the file.

We also added a flush() method on line 16 to reduce the amount of data lost if the
application terminates unexpectedly. When data is written to an output stream, the under-
lying operating system does not guarantee that the data will make it to the file system imme-
diately. The flush() method requests that all accumulated data be written immediately to
disk. It is not without cost, though. Each time it is used, it may cause a noticeable delay in
the application, especially for large files. Unless the data that you are writing is extremely
critical, the flush() method should be used only intermittently. For example, it should not
necessarily be called after every write, as it is in this example.

Equivalent methods exist on Reader and Writer, but they use char rather than byte, making
the equivalent copyStream() method very similar.

The previous example makes reading and writing a file look like a lot to think about.
That’s because it only uses low-level I/O streams. Let’s try again using high-level streams.

26: void copyTextFile(File src, File dest) throws IOException {
27: try (var reader = new BufferedReader(new FileReader(src));
28: var writer = new BufferedWriter(new FileWriter(dest))) {
29: String line = null;
30: while ((line = reader.readLine()) != null) {
31: writer.write(line);
32: writer.newLine();
33: } } }

The key is to choose the most useful high-level classes. In this case, we are dealing with
a File, so we want to use a FileReader and FileWriter. Both classes have constructors
that can take either a String representing the location or a File directly.

If the source file does not exist, a FileNotFoundException, which inherits IOException, will
be thrown. If the destination file already exists, this implementation will overwrite it. We
can pass an optional boolean second parameter to FileWriter for an append flag if we want to
change this behavior.

We also chose to use a BufferedReader and BufferedWriter so we can read a whole
line at a time. This gives us the benefits of reading batches of characters on line 30 without
having to write custom logic. Line 31 writes out the whole line of data at once. Since reading
a line strips the line breaks, we add those back on line 32. Lines 27 and 28 demonstrate
chaining constructors. The try-with-resources constructor takes care of closing all the objects
in the chain.

Now imagine that we wanted byte data instead of characters. We would need to
choose different high-level classes: BufferedInputStream, BufferedOutputStream,
FileInputStream, and FileOuputStream. We would call readAllBytes() instead of
readLine() and store the result in a byte[] instead of a String. Finally, we wouldn’t
need to handle new lines since the data is binary.

820  Chapter 14  ■  I/O

We can do a little better than BufferedOutputStream and BufferedWriter by using
a PrintStream and PrintWriter. These classes contain four key methods. The print()
and println() methods print data with and without a new line, respectively. There are
also the format() and printf() methods, which we describe in the section on user
interactions.

void copyTextFile(File src, File dest) throws IOException {
 try (var reader = new BufferedReader(new FileReader(src));
 var writer = new PrintWriter(new FileWriter(dest))) {
 String line = null;
 while ((line = reader.readLine()) != null)
 writer.println(line);
 }
}

While we used a String, there are numerous overloaded versions of println(), which
take everything from primitives and String values to objects. Under the covers, these
methods often just perform String.valueOf().

The print stream classes have the distinction of being the only I/O stream classes we
cover that do not have corresponding input stream classes. And unlike other OutputStream
classes, PrintStream does not have Output in its name.

It may surprise you that you’ve been regularly using a PrintStream
throughout this book. Both System.out and System.err are
PrintStream objects. Likewise, System.in, often useful for reading user
input, is an InputStream.

Unlike the majority of the other I/O streams we’ve covered, the methods in the print
stream classes do not throw any checked exceptions. If they did, you would be required to
catch a checked exception any time you called System.out.print()!

The line separator is \n or \r\n, depending on your operating system. The println()
method takes care of this for you. If you need to get the character directly, either of the fol-
lowing will return it for you:

System.getProperty("line.separator");
System.lineSeparator();

Enhancing with Files
The NIO.2 APIs provide even easier ways to read and write a file using the Files class. Let’s
start by looking at three ways of copying a file by reading in the data and writing it back:

private void copyPathAsString(Path input, Path output) throws IOException {
 String string = Files.readString(input);

Reading and Writing Files  821

 Files.writeString(output, string);
}
private void copyPathAsBytes(Path input, Path output) throws IOException {
 byte[] bytes = Files.readAllBytes(input);
 Files.write(output, bytes);
}
private void copyPathAsLines(Path input, Path output) throws IOException {
 List<String> lines = Files.readAllLines(input);
 Files.write(output, lines);
}

That’s pretty concise! You can read a Path as a String, a byte array, or a List. Be
aware that the entire file is read at once for all three of these, thereby storing all of the con-
tents of the file in memory at the same time. If the file is significantly large, you may trigger
an OutOfMemoryError when trying to load all of it into memory. Luckily, there is an
alternative. This time, we print out the file as we read it.

private void readLazily(Path path) throws IOException {
 try (Stream<String> s = Files.lines(path)) {
 s.forEach(System.out::println);
 }
}

Now the contents of the file are read and processed lazily, which means that only a small
portion of the file is stored in memory at any given time. Taking things one step further, we
can leverage other stream methods for a more powerful example.

try (var s = Files.lines(path)) {
 s.filter(f -> f.startsWith("WARN:"))
 .map(f -> f.substring(5))
 .forEach(System.out::println);
}

This sample code searches a log for lines that start with WARN:, outputting the text that
follows. Assuming that the input file sharks.log is as follows:

INFO:Server starting
DEBUG:Processes available = 10
WARN:No database could be detected
DEBUG:Processes available reset to 0
WARN:Performing manual recovery
INFO:Server successfully started

822  Chapter 14  ■  I/O

Then the sample output would be the following:

No database could be detected
Performing manual recovery

As you can see, we have the ability to manipulate files in complex ways, often with only a
few short expressions.

Files.readAllLines() vs. Files.lines()

For the exam, you need to know the difference between readAllLines() and lines().
Both of these examples compile and run:

 Files.readAllLines(Paths.get("birds.txt")).forEach(System.out::println);
 Files.lines(Paths.get("birds.txt")).forEach(System.out::println);

The first line reads the entire file into memory and performs a print operation on the result,
while the second line lazily processes each line and prints it as it is read. The advantage of
the second code snippet is that it does not require the entire file to be stored in memory
at any time.

You should also be aware of when they are mixing incompatible types on the exam. Do you
see why the following does not compile?

 Files.readAllLines(Paths.get("birds.txt"))
 .filter(s -> s.length()> 2)
 .forEach(System.out::println);

The readAllLines() method returns a List, not a Stream, so the filter() method is
not available.

Combining with newBufferedReader() and
newBufferedWriter()
Sometimes you need to mix I/O streams and NIO.2. Conveniently, Files includes two
convenience methods for getting I/O streams.

private void copyPath(Path input, Path output) throws IOException {
 try (var reader = Files.newBufferedReader(input);
 var writer = Files.newBufferedWriter(output)) {

 String line = null;

Reading and Writing Files  823

 while ((line = reader.readLine()) != null)
 writer.write(line);
 writer.newLine();
 } } }

You can wrap I/O stream constructors to produce the same effect, although it’s a lot
easier to use the factory method. The first method, newBufferedReader(), reads the file
specified at the Path location using a BufferedReader object.

Reviewing Common Read and Write Methods
Table 14.9 reviews the public common I/O stream methods you should know for
reading and writing. We also include close() and flush() since they are used when
performing these actions. Table 14.10 does the same for common public NIO.2 read and
write methods.

TABLE 14 .9   Common I/O read and write methods

Class Method name Description

All input streams public int read() Reads single byte or
returns -1 if no bytes
available.

InputStream public int read(byte[] b) Reads values into buffer.
Returns number of bytes
or characters read.Reader public int read(char[] c)

InputStream public int read(byte[] b,
int offset, int length)

Reads up to length
values into buffer starting
from position offset.
Returns number of bytes
or characters read.

Reader public int read(char[] c,
int offset, int length)

All output streams public void write(int b) Writes single byte.

OutputStream public void write(byte[] b) Writes array of values into
stream.

Writer public void write(char[] c)

OutputStream public void write(byte[] b,
int offset, int length)

Writes length values
from array into stream,
starting with offset
index.Writer public void write(char[] c,

int offset, int length)

BufferedInputStream public byte[] readAllBytes() Reads data in bytes.

824  Chapter 14  ■  I/O

Serializing Data
Throughout this book, we have been managing our data model using classes, so it makes
sense that we would want to save these objects between program executions. Data about
our zoo animals’ health wouldn’t be particularly useful if it had to be entered every time the
program runs!

TABLE 14 .10   Common Files NIO.2 read and write methods

Method Name Description

public static byte[] readAllBytes() Reads all data as bytes

public static String readString() Reads all data into String

public static List<String> readAllLines() Read all data into List

public static Stream<String> lines() Lazily reads data

public static void write(Path path,
byte[] bytes)

Writes array of bytes

public static void writeString(
Path path, String string)

Writes String

public static void write(Path path,
List<String> list)

Writes list of lines (technically, any
Iterable of CharSequence, but
you don’t need to know that for the
exam)

Class Method name Description

BufferedReader public String readLine() Reads line of data.

BufferedWriter public void write(
String line)

Writes line of data.

BufferedWriter public void newLine() Writes new line.

All output streams public void flush() Flushes buffered data
through stream.

All streams public void close() Closes stream and
releases resources.

TABLE 14 .9   Common I/O read and write methods

Serializing Data  825

You can certainly use the I/O stream classes you’ve learned about so far to store text and
binary data, but you still have to figure out how to put the data in the I/O stream and then
decode it later. There are various file formats like XML and CSV you can standardize to, but
you often have to build the translation yourself.

Alternatively, we can use serialization to solve the problem of how to convert objects
to/from an I/O stream. Serialization is the process of converting an in-memory object to a
byte stream. Likewise, deserialization is the process of converting from a byte stream into
an object. Serialization often involves writing an object to a stored or transmittable format,
while deserialization is the reciprocal process.

Figure 14.6 shows a visual representation of serializing and deserializing a Giraffe
object to and from a giraffe.txt file.

In this section, we show you how Java provides built-in mechanisms for serializing and
deserializing I/O streams of objects directly to and from disk, respectively.

Applying the Serializable Interface
To serialize an object using the I/O API, the object must implement the
java.io.Serializable interface. The Serializable interface is a marker interface,
which means it does not have any methods. Any class can implement the Serializable
interface since there are no required methods to implement.

Since Serializable is a marker interface with no abstract members,
why not just apply it to every class? Generally speaking, you should only
mark data-oriented classes serializable. Process-oriented classes, such
as the I/O streams discussed in this chapter or the Thread instances you
learned about in Chapter 13, are often poor candidates for serialization,
as the internal state of those classes tends to be ephemeral or short-lived.

File system

giraffe.txt
Serialization

Deserialization

Giraffe object

Java Virtual Machine

var g = new Giraffe();

F IGURE 14 .6   Serialization process

826  Chapter 14  ■  I/O

The purpose of using the Serializable interface is to inform any process attempting to
serialize the object that you have taken the proper steps to make the object serializable. All
Java primitives and many of the built-in Java classes that you have worked with throughout
this book are Serializable. For example, this class can be serialized:

import java.io.Serializable;
public class Gorilla implements Serializable {
 private static final long serialVersionUID = 1L;
 private String name;
 private int age;
 private Boolean friendly;
 private transient String favoriteFood;

 // Constructors/Getters/Setters/toString() omitted
}

In this example, the Gorilla class contains three instance members (name, age,
friendly) that will be saved to an I/O stream if the class is serialized. Note that since
Serializable is not part of the java.lang package, it must be imported or referenced
with the package name.

What about the favoriteFood field that is marked transient? Any field that is
marked transient will not be saved to an I/O stream when the class is serialized. We dis-
cuss that in more detail next.

Maintaining a serialVersionUID

It’s a good practice to declare a static serialVersionUID variable in every class that
implements Serializable. The version is stored with each object as part of serialization.
Then, every time the class structure changes, this value is updated or incremented.

Perhaps our Gorilla class receives a new instance member Double banana, or maybe
the age field is renamed. The idea is a class could have been serialized with an older ver-
sion of the class and deserialized with a newer version of the class.

The serialVersionUID helps inform the JVM that the stored data may not match the
new class definition. If an older version of the class is encountered during deserialization,
a java.io.InvalidClassException may be thrown. Alternatively, some APIs support
converting data between versions.

Serializing Data  827

Marking Data transient
The transient modifier can be used for sensitive data of the class, like a password. There
are other objects it does not make sense to serialize, like the state of an in-memory Thread.
If the object is part of a serializable object, we just mark it transient to ignore these select
instance members.

What happens to data marked transient on deserialization? It reverts to its default Java
values, such as 0.0 for double, or null for an object. You see examples of this shortly when we
present the object stream classes.

Marking static fields transient has little effect on serialization. Other
than the serialVersionUID, only the instance members of a class are
serialized.

Ensuring That a Class Is Serializable
Since Serializable is a marker interface, you might think there are no rules to using it. Not
quite! Any process attempting to serialize an object will throw a NotSerializableException if
the class does not implement the Serializable interface properly.

How to Make a Class Serializable
■■ The class must be marked Serializable.

■■ Every instance member of the class must be serializable, marked transient, or have a
null value at the time of serialization.

Be careful with the second rule. For a class to be serializable, we must apply the second
rule recursively. Do you see why the following Cat class is not serializable?

public class Cat implements Serializable {
 private Tail tail = new Tail();
}

public class Tail implements Serializable {
 private Fur fur = new Fur();
}

public class Fur {}

Cat contains an instance of Tail, and both of those classes are marked Serializable,
so no problems there. Unfortunately, Tail contains an instance of Fur that is not marked
Serializable.

828  Chapter 14  ■  I/O

Either of the following changes fixes the problem and allows Cat to be serialized:

public class Tail implements Serializable {
 private transient Fur fur = new Fur();
}

public class Fur implements Serializable {}

We could also make our tail or fur instance members null, although this would make
Cat serializable only for particular instances, rather than all instances.

Serializing Records

Do you think this record is serializable?

 record Record(String name) {}

It is not serializable because it does not implement Serializable. A record follows the
same rules as other types of classes with respect to whether it can be serialized. Therefore,
this one can be:

 record Record(String name) implements Serializable {}

Storing Data with ObjectOutputStream and
ObjectInputStream
The ObjectInputStream class is used to deserialize an object, while the
ObjectOutputStream is used to serialize an object. They are high-level streams that
operate on existing I/O streams. While both of these classes contain a number of methods for
built-in data types like primitives, the two methods you need to know for the exam are the
ones related to working with objects.

// ObjectInputStream
public Object readObject() throws IOException, ClassNotFoundException

// ObjectOutputStream
public void writeObject(Object obj) throws IOException

Note the parameters, return types, and exceptions thrown. We now provide a sample
method that serializes a List of Gorilla objects to a file:

void saveToFile(List<Gorilla> gorillas, File dataFile)
 throws IOException {

Serializing Data  829

 try (var out = new ObjectOutputStream(
 new BufferedOutputStream(
 new FileOutputStream(dataFile)))) {
 for (Gorilla gorilla : gorillas)
 out.writeObject(gorilla);
 }
}

Pretty easy, right? Notice that we start with a file stream, wrap it in a buffered I/O stream
to improve performance, and then wrap that with an object stream. Serializing the data is as
simple as passing it to writeObject().

Once the data is stored in a file, we can deserialize it by using the following method:

List<Gorilla> readFromFile(File dataFile) throws IOException,
 ClassNotFoundException {
 var gorillas = new ArrayList<Gorilla>();
 try (var in = new ObjectInputStream(
 new BufferedInputStream(
 new FileInputStream(dataFile)))) {
 while (true) {
 var object = in.readObject();
 if (object instanceof Gorilla g)
 gorillas.add(g);
 }
 } catch (EOFException e) {
 // File end reached
 }
 return gorillas;
}

Ah, not as simple as our save method, was it? When calling readObject(), null and -1
do not have any special meaning, as someone might have serialized objects with those values.
Unlike our earlier techniques for reading methods from an input stream, we need to use an
infinite loop to process the data, which throws an EOFException when the end of the I/O
stream is reached.

If your program happens to know the number of objects in the I/O stream,
you can call readObject() a fixed number of times, rather than using an
infinite loop.

Since the return type of readObject() is Object, we need to check the type before
obtaining access to our Gorilla properties. Notice that readObject() declares a checked
ClassNotFoundException since the class might not be available on deserialization.

830  Chapter 14  ■  I/O

The following code snippet shows how to call the serialization methods:

var gorillas = new ArrayList<Gorilla>();
gorillas.add(new Gorilla("Grodd", 5, false));
gorillas.add(new Gorilla("Ishmael", 8, true));
File dataFile = new File("gorilla.data");

saveToFile(gorillas, dataFile);
var gorillasFromDisk = readFromFile(dataFile);
System.out.print(gorillasFromDisk);

Assuming that the toString() method was properly overridden in the Gorilla class,
this prints the following at runtime:

[[name=Grodd, age=5, friendly=false],
 [name=Ishmael, age=8, friendly=true]]

ObjectInputStream inherits an available() method from
InputStream that you might think can be used to check for the end of
the I/O stream rather than throwing an EOFException. Unfortunately,
this only tells you the number of blocks that can be read without block-
ing another thread. In other words, it can return 0 even if there are more
bytes to be read.

Understanding the Deserialization Creation Process
For the exam, you need to understand how a deserialized object is created. When you dese-
rialize an object, the constructor of the serialized class, along with any instance initializers,
is not called when the object is created. Java will call the no-arg constructor of the first non-
serializable parent class it can find in the class hierarchy. In our Gorilla example, this would
just be the no-arg constructor of Object.

As we stated earlier, any static or transient fields are ignored. Values that are not provided
will be given their default Java value, such as null for String, or 0 for int values.

Let’s take a look at a new Chimpanzee class. This time we do list the constructors to illus-
trate that none of them is used on deserialization.

import java.io.Serializable;
public class Chimpanzee implements Serializable {
 private static final long serialVersionUID = 2L;
 private transient String name;
 private transient int age = 10;
 private static char type = 'C';
 { this.age = 14; }

Serializing Data  831

 public Chimpanzee() {
 this.name = "Unknown";
 this.age = 12;
 this.type = 'Q';
 }

 public Chimpanzee(String name, int age, char type) {
 this.name = name;
 this.age = age;
 this.type = type;
 }

 // Getters/Setters/toString() omitted
}

Assuming we rewrite our previous serialization and deserialization methods to process a
Chimpanzee object instead of a Gorilla object, what do you think the following prints?

var chimpanzees = new ArrayList<Chimpanzee>();
chimpanzees.add(new Chimpanzee("Ham", 2, 'A'));
chimpanzees.add(new Chimpanzee("Enos", 4, 'B'));
File dataFile = new File("chimpanzee.data");

saveToFile(chimpanzees, dataFile);
var chimpanzeesFromDisk = readFromFile(dataFile);
System.out.println(chimpanzeesFromDisk);

Think about it. Go on, we’ll wait.
Ready for the answer? Well, for starters, none of the instance members are serialized to

a file. The name and age variables are both marked transient, while the type variable is static.
We purposely accessed the type variable using this to see whether you were paying attention.

Upon deserialization, none of the constructors in Chimpanzee is called. Even the no-arg
constructor that sets the values [name=Unknown,age=12,type=Q] is ignored. The instance ini-
tializer that sets age to 14 is also not executed.

In this case, the name variable is initialized to null since that’s the default value for String
in Java. Likewise, the age variable is initialized to 0. The program prints the following,
assuming the toString() method is implemented:

[[name=null,age=0,type=B],
 [name=null,age=0,type=B]]

What about the type variable? Since it’s static, it will display whatever value was set
last. If the data is serialized and deserialized within the same execution, it will display B,
since that was the last Chimpanzee we created. On the other hand, if the program performs
the deserialization and print on startup, it will print C, since that is the value the class is
initialized with.

832  Chapter 14  ■  I/O

For the exam, make sure you understand that the constructor and any instance initializa-
tions defined in the serialized class are ignored during the deserialization process. Java only
calls the constructor of the first non-serializable parent class in the class hierarchy.

Finally, let’s add a subclass:

public class BabyChimpanzee extends Chimpanzee {
 private static final long serialVersionUID = 3L;

 private String mother = "Mom";

 public BabyChimpanzee() { super(); }

 public BabyChimpanzee(String name, char type) {
 super(name, 0, type);
 }
 // Getters/Setters/toString() omitted
}

Notice that this subclass is serializable because the superclass has implemented
Serializable. We now have an additional instance variable. The code to serialize and
deserialize remains the same. We can even still cast to Chimpanzee because this is a subclass.

Interacting with Users
Java includes numerous classes for interacting with the user. For example, you might want to
write an application that asks a user to log in and then prints a success message. This section
contains numerous techniques for handling and responding to user input.

Printing Data to the User
Java includes two PrintStream instances for providing information to the user:
System.out and System.err. While System.out should be old hat to you,
System.err might be new to you. The syntax for calling and using System.err is the
same as System.out but is used to report errors to the user in a separate I/O stream from
the regular output information.

try (var in = new FileInputStream("zoo.txt")) {
 System.out.println("Found file!");
} catch (FileNotFoundException e) {
 System.err.println("File not found!");
}

Interacting with Users  833

How do they differ in practice? In part, that depends on what is executing the program.
For example, if you are running from a command prompt, they will likely print text in the
same format. On the other hand, if you are working in an integrated development environ-
ment (IDE), they might print the System.err text in a different color. Finally, if the code is
being run on a server, the System.err stream might write to a different log file.

Using Logging APIs

While System.out and System.err are incredibly useful for debugging stand-alone or
simple applications, they are rarely used in professional software development. Most appli-
cations rely on a logging service or API.

While many logging APIs are available, they tend to share a number of similar attributes.
First you create a static logging object in each class. Then you log a message with an
appropriate logging level: debug(), info(), warn(), or error(). The debug() and
info() methods are useful as they allow developers to log things that aren’t errors but
may be useful.

Reading Input as an I/O Stream
The System.in returns an InputStream and is used to retrieve text input from the user.
It is commonly wrapped with a BufferedReader via an InputStreamReader to use the
readLine() method.

var reader = new BufferedReader(new InputStreamReader(System.in));
String userInput = reader.readLine();
System.out.println("You entered: " + userInput);

When executed, this application first fetches text from the user until the user presses the
Enter key. It then outputs the text the user entered to the screen.

Closing System Streams
You might have noticed that we never created or closed System.out, System.err, and
System.in when we used them. In fact, these are the only I/O streams in the entire chapter
that we did not use a try-with-resources block on!

Because these are static objects, the System streams are shared by the entire application.
The JVM creates and opens them for us. They can be used in a try-with-resources statement

834  Chapter 14  ■  I/O

or by calling close(), although closing them is not recommended. Closing the System streams
makes them permanently unavailable for all threads in the remainder of the program.

What do you think the following code snippet prints?

try (var out = System.out) {}
System.out.println("Hello");

Nothing. It prints nothing. The methods of PrintStream do not throw any checked
exceptions and rely on the checkError() to report errors, so they fail silently.

What about this example?

try (var err = System.err) {}
System.err.println("Hello");

This one also prints nothing. Like System.out, System.err is a PrintStream. Even if
it did throw an exception, we’d have a hard time seeing it since our I/O stream for reporting
errors is closed! Closing System.err is a particularly bad idea, since the stack traces from
all exceptions will be hidden.

Finally, what do you think this code snippet does?

var reader = new BufferedReader(new InputStreamReader(System.in));
try (reader) {}
String data = reader.readLine(); // IOException

It prints an exception at runtime. Unlike the PrintStream class, most InputStream
implementations will throw an exception if you try to operate on a closed I/O stream.

Acquiring Input with Console
The java.io.Console class is specifically designed to handle user interactions. After
all, System.in and System.out are just raw streams, whereas Console is a class with
numerous methods centered around user input.

The Console class is a singleton because it is accessible only from a factory method and
only one instance of it is created by the JVM. For example, if you come across code on the
exam such as the following, it does not compile, since the constructors are all private:

Console c = new Console(); // DOES NOT COMPILE

The following snippet shows how to obtain a Console and use it to retrieve user input:

Console console = System.console();
if (console != null) {
 String userInput = console.readLine();
 console.writer().println("You entered: " + userInput);
} else {
 System.err.println("Console not available");
}

Interacting with Users  835

The Console object may not be available, depending on where the code
is being called. If it is not available, System.console() returns null. It
is imperative that you check for a null value before attempting to use a
Console object!

This program first retrieves an instance of the Console and verifies that it is available,
outputting a message to System.err if it is not. If it is available, the program retrieves a
line of input from the user and prints the result. As you might have noticed, this example is
equivalent to our earlier example of reading user input with System.in and System.out.

Obtaining Underlying I/O Streams
The Console class includes access to two streams for reading and writing data.

public Reader reader()
public PrintWriter writer()

Accessing these classes is analogous to calling System.in and System.out directly,
although they use character streams rather than byte streams. In this manner, they are more
appropriate for handling text data.

Formatting Console Data
In Chapter 4, you learned about the format() method on String; and in Chapter 11, “Excep-
tions and Localization,” you worked with formatting using locales. Conveniently, each print
stream class includes a format() method, which includes an overloaded version that takes a
Locale to combine both of these:

// PrintStream
public PrintStream format(String format, Object... args)
public PrintStream format(Locale loc, String format, Object... args)

// PrintWriter
public PrintWriter format(String format, Object... args)
public PrintWriter format(Locale loc, String format, Object... args)

For convenience (as well as to make C developers feel more at home),
Java includes printf() methods, which function identically to the
format() methods. The only thing you need to know about these
methods is that they are interchangeable with format().

Let’s take a look at using multiple methods to print information for the user:

Console console = System.console();
if (console == null) {
 throw new RuntimeException("Console not available");
} else {

836  Chapter 14  ■  I/O

 console.writer().println("Welcome to Our Zoo!");
 console.format("It has %d animals and employs %d people", 391, 25);
 console.writer().println();
 console.printf("The zoo spans %5.1f acres", 128.91);
}

Assuming the Console is available at runtime, it prints the following:

Welcome to Our Zoo!
It has 391 animals and employs 25 people
The zoo spans 128.9 acres.

Using Console with a Locale

Unlike the print stream classes, Console does not include an overloaded format()
method that takes a Locale instance. Instead, Console relies on the system locale. Of
course, you could always use a specific Locale by retrieving the Writer object and
passing your own Locale instance, such as in the following example:

 Console console = System.console();
 console.writer().format(new Locale("fr", "CA"), "Hello World");

Reading Console Data
The Console class includes four methods for retrieving regular text data from the user.

public String readLine()
public String readLine(String fmt, Object... args)

public char[] readPassword()
public char[] readPassword(String fmt, Object... args)

Like using System.in with a BufferedReader, the Console readLine() method
reads input until the user presses the Enter key. The overloaded version of readLine() dis-
plays a formatted message prompt prior to requesting input.

The readPassword() methods are similar to the readLine() method, with two important
differences:

■■ The text the user types is not echoed back and displayed on the screen as they
are typing.

■■ The data is returned as a char[] instead of a String.

Working with Advanced APIs  837

The first feature improves security by not showing the password on the screen if someone
happens to be sitting next to you. The second feature involves preventing passwords from
entering the String pool.

Reviewing Console Methods
The last code sample we present asks the user a series of questions and prints results based
on this information using many of various methods we learned in this section:

Console console = System.console();
if (console == null) {
 throw new RuntimeException("Console not available");
} else {
 String name = console.readLine("Please enter your name: ");
 console.writer().format("Hi %s", name);
 console.writer().println();

 console.format("What is your address? ");
 String address = console.readLine();

 char[] password = console.readPassword("Enter a password "
 + "between %d and %d characters: ", 5, 10);
 char[] verify = console.readPassword("Enter the password again: ");
 console.printf("Passwords "
 + (Arrays.equals(password, verify) ? "match" : "do not match"));
}

Assuming the Console is available, the output should resemble the following:

Please enter your name: Max
Hi Max
What is your address? Spoonerville
Enter a password between 5 and 10 characters:
Enter the password again:
Passwords match

Working with Advanced APIs
Files, paths, I/O streams: you’ve worked with a lot this chapter! In this final section,
we cover some advanced features of I/O streams and NIO.2 that can be quite useful in
practice—and have been known to appear on the exam from time to time!

838  Chapter 14  ■  I/O

Manipulating Input Streams
All input stream classes include the following methods to manipulate the order in which data
is read from an I/O stream:

// InputStream and Reader
public boolean markSupported()
public void mark(int readLimit)
public void reset() throws IOException
public long skip(long n) throws IOException

The mark() and reset() methods return an I/O stream to an earlier position. Before
calling either of these methods, you should call the markSupported() method, which
returns true only if mark() is supported. The skip() method is pretty simple; it basically
reads data from the I/O stream and discards the contents.

Not all input stream classes support mark() and reset(). Make sure to
call markSupported() on the I/O stream before calling these methods,
or an exception will be thrown at runtime.

Marking Data
Assume that we have an InputStream instance whose next values are LION. Consider the
following code snippet:

public void readData(InputStream is) throws IOException {
 System.out.print((char) is.read()); // L
 if (is.markSupported()) {
 is.mark(100); // Marks up to 100 bytes
 System.out.print((char) is.read()); // I
 System.out.print((char) is.read()); // O
 is.reset(); // Resets stream to position before I
 }
 System.out.print((char) is.read()); // I
 System.out.print((char) is.read()); // O
 System.out.print((char) is.read()); // N
}

The code snippet will output LIOION if mark() is supported and LION otherwise. It’s
a good practice to organize your read() operations so that the I/O stream ends up at the
same position regardless of whether mark() is supported.

What about the value of 100 that we passed to the mark() method? This value is called
the readLimit. It instructs the I/O stream that we expect to call reset() after at most
100 bytes. If our program calls reset() after reading more than 100 bytes from calling
mark(100), it may throw an exception, depending on the I/O stream class.

Working with Advanced APIs  839

In actuality, mark() and reset() are not putting the data back into the
I/O stream but are storing the data in a temporary buffer in memory to be
read again. Therefore, you should not call the mark() operation with too
large a value, as this could take up a lot of memory.

Skipping Data
Assume that we have an InputStream instance whose next values are TIGERS. Consider
the following code snippet:

System.out.print ((char)is.read()); // T
is.skip(2); // Skips I and G
is.read(); // Reads E but doesn't output it
System.out.print((char)is.read()); // R
System.out.print((char)is.read()); // S

This code prints TRS at runtime. We skipped two characters, I and G. We also read E but
didn’t use it anywhere, so it behaved like calling skip(1).

The return parameter of skip() tells us how many values were skipped. For example, if we
are near the end of the I/O stream and call skip(1000), the return value might be 20, indicating
that the end of the I/O stream was reached after 20 values were skipped. Using the return
value of skip() is important if you need to keep track of where you are in an I/O stream and
how many bytes have been processed.

Reviewing Manipulation APIs
Table 14.11 reviews these APIs related to manipulating I/O input streams. While you may
not have used these in practice, you need to know them for the exam.

TABLE 14 .11   Common I/O stream methods

Method name Description

public boolean markSupported() Returns true if stream class supports mark()

public mark(int readLimit) Marks current position in stream

public void reset() Attempts to reset stream to mark() position

public long skip(long n) Reads and discards specified number of characters

840  Chapter 14  ■  I/O

Discovering File Attributes
We begin our discussion by presenting the basic methods for reading file attributes. These
methods are usable within any file system, although they may have limited meaning in some
file systems.

Checking for Symbolic Links
Earlier, we saw that the Files class has methods called isDirectory() and
isRegularFile(), which are similar to the isDirectory() and isFile() methods on
File. While the File object can’t tell you if a reference is a symbolic link, the
isSymbolicLink() method on Files can.

It is possible for isDirectory() or isRegularFile() to return true for a symbolic
link, as long as the link resolves to a directory or regular file, respectively. Let’s take a look at
some sample code:

System.out.print(Files.isDirectory(Paths.get("/canine/fur.jpg")));
System.out.print(Files.isSymbolicLink(Paths.get("/canine/coyote")));
System.out.print(Files.isRegularFile(Paths.get("/canine/types.txt")));

The first example prints true if fur.jpg is a directory or a symbolic link to a directory
and false otherwise. The second example prints true if /canine/coyote is a symbolic
link, regardless of whether the file or directory it points to exists. The third example prints
true if types.txt points to a regular file or a symbolic link that points to a regular file.

Checking File Accessibility
In many file systems, it is possible to set a boolean attribute to a file that marks it hidden,
readable, or executable. The Files class includes methods that expose this information:
isHidden(), isReadable(), isWriteable(), and isExecutable().

A hidden file can’t normally be viewed when listing the contents of a directory. The read-
able, writable, and executable flags are important in file systems where the filename can be
viewed, but the user may not have permission to open the file’s contents, modify the file, or
run the file as a program, respectively.

Here we present an example of each method:

System.out.print(Files.isHidden(Paths.get("/walrus.txt")));
System.out.print(Files.isReadable(Paths.get("/seal/baby.png")));
System.out.print(Files.isWritable(Paths.get("dolphin.txt")));
System.out.print(Files.isExecutable(Paths.get("whale.png")));

If the walrus.txt file exists and is hidden within the file system, the first example prints
true. The second example prints true if the baby.png file exists and its contents are read-
able. The third example prints true if the dolphin.txt file can be modified. Finally, the
last example prints true if the file can be executed within the operating system. Note that
the file extension does not necessarily determine whether a file is executable. For example, an
image file that ends in .png could be marked executable in some file systems.

Working with Advanced APIs  841

With the exception of the isHidden() method, these methods do not declare any checked
exceptions and return false if the file does not exist.

Improving Attribute Access
Up until now, we have been accessing individual file attributes with multiple method calls.
While this is functionally correct, there is often a cost each time one of these methods is
called. Put simply, it is far more efficient to ask the file system for all of the attributes at once
rather than performing multiple round trips to the file system. Furthermore, some attributes
are file system–specific and cannot be easily generalized for all file systems.

NIO.2 addresses both of these concerns by allowing you to construct views for various
file systems with a single method call. A view is a group of related attributes for a particular
file system type. That’s not to say that the earlier attribute methods that we just finished dis-
cussing do not have their uses. If you need to read only one attribute of a file or directory,
requesting a view is unnecessary.

Understanding Attribute and View Types
NIO.2 includes two methods for working with attributes in a single method call: a read-only
attributes method and an updatable view method. For each method, you need to provide a
file system type object, which tells the NIO.2 method which type of view you are requesting.
By updatable view, we mean that we can both read and write attributes with the same object.

Table 14.12 lists the commonly used attributes and view types. For the exam, you
only need to know about the basic file attribute types. The other views are for managing
operating system–specific information.

TABLE 14 .12   The attributes and view types

Attributes interface View interface Description

BasicFileAttributes BasicFileAttributeView Basic set of attributes supported
by all file systems

DosFileAttributes DosFileAttributeView Basic set of attributes along
with those supported by
DOS/Windows-based systems

PosixFileAttributes PosixFileAttributeView Basic set of attributes along
with those supported by POSIX
systems, such as Unix, Linux,
Mac, etc.

842  Chapter 14  ■  I/O

Retrieving Attributes
The Files class includes the following method to read attributes of a class in a read-
only capacity:

public static <A extends BasicFileAttributes> A readAttributes(
 Path path,
 Class<A> type,
 LinkOption... options) throws IOException

Applying it requires specifying the Path and BasicFileAttributes.class
parameters.

var path = Paths.get("/turtles/sea.txt");
BasicFileAttributes data = Files.readAttributes(path,
 BasicFileAttributes.class);

System.out.println("Is a directory? " + data.isDirectory());
System.out.println("Is a regular file? " + data.isRegularFile());
System.out.println("Is a symbolic link? " + data.isSymbolicLink());
System.out.println("Size (in bytes): " + data.size());
System.out.println("Last modified: " + data.lastModifiedTime());

The BasicFileAttributes class includes many values with the same name as the attri-
bute methods in the Files class. The advantage of using this method, though, is that all of
the attributes are retrieved at once for some operating systems.

Modifying Attributes
The following Files method returns an updatable view:

public static <V extends FileAttributeView> V getFileAttributeView(
 Path path,
 Class<V> type,
 LinkOption... options)

We can use the updatable view to increment a file’s last modified date/time value by
10,000 milliseconds, or 10 seconds.

// Read file attributes
var path = Paths.get("/turtles/sea.txt");
BasicFileAttributeView view = Files.getFileAttributeView(path,
 BasicFileAttributeView.class);
BasicFileAttributes attributes = view.readAttributes();

// Modify file last modified time
FileTime lastModifiedTime = FileTime.fromMillis(

Working with Advanced APIs  843

 attributes.lastModifiedTime().toMillis() + 10_000);
view.setTimes(lastModifiedTime, null, null);

After the updatable view is retrieved, we need to call readAttributes() on the view to
obtain the file metadata. From there, we create a new FileTime value and set it using the
setTimes() method:

// BasicFileAttributeView instance method
public void setTimes(FileTime lastModifiedTime,
 FileTime lastAccessTime, FileTime createTime)

This method allows us to pass null for any date/time value that we do not want to
modify. In our sample code, only the last modified date/time is changed.

Not all file attributes can be modified with a view. For example, you
cannot set a property that changes a file into a directory. Likewise, you
cannot change the size of the object without modifying its contents.

Traversing a Directory Tree
While the Files.list() method is useful, it traverses the contents of only a single
directory. What if we want to visit all of the paths within a directory tree? Before we pro-
ceed, we need to review some basic concepts about file systems. Remember that a directory
is organized in a hierarchical manner. For example, a directory can contain files and other
directories, which can in turn contain other files and directories. Every record in a file system
has exactly one parent, with the exception of the root directory, which sits atop everything.

A file system is commonly visualized as a tree with a single root node and many branches
and leaves. In this model, a directory is a branch or internal node, and a file is a leaf node.

A common task in a file system is to iterate over the descendants of a path, either
recording information about them or, more commonly, filtering them for a specific set of
files. For example, you may want to search a folder and print a list of all of the .java files.
Furthermore, file systems store file records in a hierarchical manner. Generally speaking, if
you want to search for a file, you have to start with a parent directory, read its child ele-
ments, then read their children, and so on.

Traversing a directory, also referred to as walking a directory tree, is the process by which
you start with a parent directory and iterate over all of its descendants until some condition
is met or there are no more elements over which to iterate. For example, if we’re searching
for a single file, we can end the search when the file is found or we’ve checked all files and
come up empty. The starting path is usually a specific directory; after all, it would be time-
consuming to search the entire file system on every request!

844  Chapter 14  ■  I/O

Don’t Use DirectoryStream and FileVisitor

While browsing the NIO.2 Javadocs, you may come across methods that use the
DirectoryStream and FileVisitor classes to traverse a directory. These methods
predate the existence of the Stream API and were even required knowledge for older Java
certification exams.

The best advice we can give you is to not use them. The newer Stream API–based methods
are superior and accomplish the same thing, often with much less code.

Selecting a Search Strategy
Two common strategies are associated with walking a directory tree: a depth-first search and
a breadth-first search. A depth-first search traverses the structure from the root to an arbi-
trary leaf and then navigates back up toward the root, traversing fully any paths it skipped
along the way. The search depth is the distance from the root to current node. To prevent
endless searching, Java includes a search depth that is used to limit how many levels (or
hops) from the root the search is allowed to go.

Alternatively, a breadth-first search starts at the root and processes all elements of each
particular depth before proceeding to the next depth level. The results are ordered by depth,
with all nodes at depth 1 read before all nodes at depth 2, and so on. While a breadth-first
search tends to be balanced and predictable, it also requires more memory since a list of vis-
ited nodes must be maintained.

For the exam, you don’t have to understand the details of each search strategy that Java
employs; you just need to be aware that the NIO.2 Stream API methods use depth-first
searching with a depth limit, which can be optionally changed.

Walking a Directory
That’s enough background information; let’s get to more Stream API methods. The Files class
includes two methods for walking the directory tree using a depth-first search.

public static Stream<Path> walk(Path start,
 FileVisitOption... options) throws IOException

public static Stream<Path> walk(Path start, int maxDepth,
 FileVisitOption... options) throws IOException

Like our other stream methods, walk() uses lazy evaluation and evaluates a Path only
as it gets to it. This means that even if the directory tree includes hundreds or thousands of
files, the memory required to process a directory tree is low. The first walk() method relies
on a default maximum depth of Integer.MAX_VALUE, while the overloaded version allows
the user to set a maximum depth. This is useful in cases where the file system might be large
and we know the information we are looking for is near the root.

Working with Advanced APIs  845

Rather than just printing the contents of a directory tree, we can again do something
more interesting. The following getPathSize() method walks a directory tree and returns
the total size of all the files in the directory:

private long getSize(Path p) {
 try {
 return Files.size(p);
 } catch (IOException e) {
 throw new UncheckedIOException(e);
 }
}

public long getPathSize(Path source) throws IOException {
 try (var s = Files.walk(source)) {
 return s.parallel()
 .filter(p -> !Files.isDirectory(p))
 .mapToLong(this::getSize)
 .sum();
 }
}

The getSize() helper method is needed because Files.size() declares
IOException, and we’d rather not put a try/catch block inside a lambda expression.
Instead, we wrap it in the unchecked exception class UncheckedIOException. We can
print the data using the format() method:

var size = getPathSize(Path.of("/fox/data"));
System.out.format("Total Size: %.2f megabytes", (size/1000000.0));

Depending on the directory you run this on, it will print something like this:

Total Size: 15.30 megabytes

Applying a Depth Limit
Let’s say our directory tree is quite deep, so we apply a depth limit by changing one line of
code in our getPathSize() method.

 try (var s = Files.walk(source, 5)) {

This new version checks for files only within 5 steps of the starting node. A depth value
of 0 indicates the current path itself. Since the method calculates values only on files, you’d
have to set a depth limit of at least 1 to get a nonzero result when this method is applied to a
directory tree.

Avoiding Circular Paths
Many of our earlier NIO.2 methods traverse symbolic links by default, with a
NOFOLLOW_LINKS used to disable this behavior. The walk() method is different in that
it does not follow symbolic links by default and requires the FOLLOW_LINKS option to be

846  Chapter 14  ■  I/O

enabled. We can alter our getPathSize() method to enable following symbolic links by
adding the FileVisitOption:

 try (var s = Files.walk(source,
 FileVisitOption.FOLLOW_LINKS)) {

When traversing a directory tree, your program needs to be careful of symbolic links, if
enabled. For example, if our process comes across a symbolic link that points to the root
directory of the file system, every file in the system will be searched!

Worse yet, a symbolic link could lead to a cycle in which a path is visited repeatedly. A
cycle is an infinite circular dependency in which an entry in a directory tree points to one of
its ancestor directories. Let’s say we had a directory tree as shown in Figure 14.7 with the
symbolic link /birds/robin/allBirds that points to /birds.

What happens if we try to traverse this tree and follow all symbolic links, starting with
/birds/robin? Table 14.13 shows the paths visited after walking a depth of 3. For sim-
plicity, we walk the tree in a breadth-first ordering, although a cycle occurs regardless of the
search strategy used.

birds

robin

pictures

allBirds

nest.png

wings.gif

Start

F IGURE 14 .7   File system with cycle

TABLE 14 .13   Walking a directory with a cycle using breadth-first search

Depth Path reached

0 /birds/robin

1 /birds/robin/pictures

1 /birds/robin/allBirds
➢ /birds

2 /birds/robin/pictures/nest.png

2 /birds/robin/pictures/wings.gif

Working with Advanced APIs  847

After walking a distance of 1 from the start, we hit the symbolic link
/birds/robin/allBirds and go back to the top of the directory tree /birds. That’s okay
because we haven’t visited /birds yet, so there’s no cycle yet!

Unfortunately, at depth 2, we encounter a cycle. We’ve already visited the /birds/robin
directory on our first step, and now we’re encountering it again. If the process continues,
we’ll be doomed to visit the directory over and over again.

Be aware that when the FOLLOW_LINKS option is used, the walk() method will track all
of the paths it has visited, throwing a FileSystemLoopException if a path is visited twice.

Searching a Directory
In the previous example, we applied a filter to the Stream<Path> object to filter the results,
although there is a more convenient method.

public static Stream<Path> find(Path start,
 int maxDepth,
 BiPredicate<Path, BasicFileAttributes> matcher,
 FileVisitOption... options) throws IOException

The find() method behaves in a similar manner as the walk() method, except that it
takes a BiPredicate to filter the data. It also requires a depth limit to be set. Like walk(),
find() also supports the FOLLOW_LINK option.

The two parameters of the BiPredicate are a Path object and a
BasicFileAttributes object, which you saw earlier in the chapter. In this manner, Java
automatically retrieves the basic file information for you, allowing you to write complex
lambda expressions that have direct access to this object. We illustrate this with the follow-
ing example:

Path path = Paths.get("/bigcats");
long minSize = 1_000;
try (var s = Files.find(path, 10,
 (p, a) -> a.isRegularFile()

Depth Path reached

2 /birds/robin/allBirds/robin
➢ /birds/robin

3 /birds/robin/allBirds/robin/pictures
➢ /birds/robin/pictures

3 /birds/robin/allBirds/robin/pictures/allBirds
/birds/robin/allBirds
➢ /birds

848  Chapter 14  ■  I/O

 && p.toString().endsWith(".java")
 && a.size() > minSize)) {
 s.forEach(System.out::println);
}

This example searches a directory tree and prints all .java files with a size of at least
1,000 bytes, using a depth limit of 10. While we could have accomplished this using the
walk() method along with a call to readAttributes(), this implementation is a lot
shorter and more convenient than those would have been. We also don’t have to worry
about any methods within the lambda expression declaring a checked exception, as we saw
in the getPathSize() example.

Review of Key APIs
The key APIs that you need to know for the exam are listed in Table 14.14. We know some
of the classes look similar. You need to know this table really well before taking the exam.

TABLE 14 .14   Key APIs

Class Purpose

File I/O representation of location in file system

Files Helper methods for working with Path

Path NIO.2 representation of location in file system

Paths Contains factory methods to get Path

URI Uniform resource identifier for files, URLs, etc.

FileSystem NIO.2 representation of file system

FileSystems Contains factory methods to get FileSystem

InputStream Superclass for reading files based on bytes

OuputStream Superclass for writing files based on bytes

Reader Superclass for reading files based on characters

Writer Superclass for writing files based on characters

Review of Key APIs  849

Additionally, Figure 14.8 shows all of the I/O stream classes that you should be familiar
with for the exam, with the exception of the filter streams. FilterInputStream and
FilterOutputStream are high-level superclasses that filter or transform data. They are
rarely used directly.

FileInputStream

FilterInputStreamInputStream BufferedInputStream

ObjectInputStream

BufferedReader

FileReader

Reader

InputStreamReader

FileOutputStream

FilterOutputStream

BufferedOutputStream

PrintStream

FileWriter

OutputStream

ObjectOutputStream

BufferedWriter

OutputStreamWriter

PrintWriter

Writer

Abstract class

High-level class

Low-level class

F IGURE 14 .8   Diagram of I/O stream classes

850  Chapter 14  ■  I/O

The InputStreamReader and OutputStreamWriter are incredibly convenient
and are also unique in that they are the only I/O stream classes to have both
InputStream/OutputStream and Reader/Writer in their name.

Summary
This chapter is all about reading and writing data. We started by showing you how to cre-
ate File from I/O and Path from NIO.2. We then covered the functionality that works
with both I/O and NIO.2 before getting into NIO.2-specific APIs. You should be familiar
with how to combine or resolve Path objects with other Path objects. Additionally,
NIO.2 includes Stream API methods that can be used to process files and directories. We
discussed methods for listing a directory, walking a directory tree, searching a directory tree,
and reading the lines of a file.

We spent time reviewing various methods available in the Files helper class. As dis-
cussed, the name of the function often tells you exactly what it does. We explained that most
of these methods are capable of throwing an IOException, and many take optional varargs
enum values.

We then introduced I/O streams and explained how they are used to read or write large
quantities of data. While there are a lot of I/O streams, they differ on some key points:

■■ Byte vs. character streams

■■ Input vs. output streams

■■ Low-level vs. high-level streams

Often, the name of the I/O stream can tell you a lot about what it does. We visited many
of the I/O stream classes that you will need to know for the exam in increasing order of
complexity. A common practice is to start with a low-level resource or file stream and wrap
it in a buffered I/O stream to improve performance. You can also apply a high-level stream
to manipulate the data, such as an object or print stream. We described what it means to
be serializable in Java, and we showed you how to use the object stream classes to persist
objects directly to and from disk.

We explained how to read input data from the user using both the system stream objects
and the Console class. The Console class has many useful features, such as built-in support
for passwords and formatting.

We also discussed how NIO.2 provides methods for reading and writing file metadata.
NIO.2 includes two methods for retrieving all of the file system attributes for a path in a
single call without numerous round trips to the operating system. One method requires a
read-only attribute type, while the second method requires an updatable view type. It also
allows NIO.2 to support operating system–specific file attributes.

Exam Essentials  851

Exam Essentials

Understand files and directories.   Files are records that store data within a persistent
storage device, such as a hard disk drive, that is available after the application has finished
executing. Files are organized within a file system in directories, which in turn may contain
other directories. The root directory is the topmost directory in a file system.

Be able to use File and Path.   An I/O File instance is created by calling the constructor.
It contains a number of instance methods for creating and manipulating a file or directory.
An NIO.2 Path instance is an immutable object that is commonly created from the factory
method Paths.get() or Path.of(). It can also be created from FileSystem,
java.net.URI, or java.io.File instances. The Path interface includes many instance
methods for reading and manipulating the abstract path value.

Distinguish between types of I/O streams.   I/O streams are categorized by byte/character,
input/output, and low-level/high-level. Byte streams operate on binary data and have names
that end with Stream, while character streams operate on text data and have names that
end in Reader or Writer. The InputStream and Reader classes are the topmost abstract
classes that receive data, while the OutputStream and Writer classes are the topmost
abstract classes that send data. A low-level stream is one that operates directly on the under-
lying resource, such as a file or network connection. A high-level stream operates on a low-
level or other high-level stream to filter data, convert data, or improve performance.

Understand how to use Java serialization.   A class is considered serializable if it implements
the java.io.Serializable interface and contains instance members that are either serial-
izable or marked transient. All Java primitives and the String class are serializable. The
ObjectInputStream and ObjectOutputStream classes can be used to read and write a
Serializable object from and to an I/O stream, respectively.

Be able to interact with the user.   Be able to interact with the user using the system streams
(System.out, System.err, and System.in) as well as the Console class. The Console
class includes special methods for formatting data and retrieving complex input such as
passwords.

Manage file attributes.   The NIO.2 Files class includes many methods for reading single
file attributes, such as its size or whether it is a directory, a symbolic link, hidden, etc. NIO.2
also supports reading all of the attributes in a single call. An attribute type is used to support
operating system–specific views. Finally, NIO.2 supports updatable views for modifying
selected attributes.

http://java.net

852  Chapter 14  ■  I/O

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which class would be best to use to read a binary file into a Java object?

A.	 BufferedStream
B.	 FileReader
C.	 ObjectInputStream
D.	 ObjectReader
E.	 ObjectOutputStream
F.	 ObjectWriter
G.	 None of the above

2.	 Assuming that / is the root directory within the file system, which of the following are true
statements? (Choose all that apply.)

A.	 /home/parrot is an absolute path.

B.	 /home/parrot is a directory.

C.	 /home/parrot is a relative path.

D.	 new File("/home") will throw an exception if /home does not exist.

E.	 new File("/home").delete() will throw an exception if /home does not exist.

F.	 A Reader offers character encoding, making it more useful when working with String
data than an InputStream.

G.	 A Reader offers multithreading support, making it more useful than an InputStream.

3.	 What are possible results of executing the following code? (Choose all that apply.)

public static void main(String[] args) throws IOException {
 String line;
 var c = System.console();
 Writer w = c.writer();
 try (w) {
 if ((line = c.readLine("Enter your name: ")) != null)
 w.append(line);
 w.flush();
 }
}

A.	 The code runs, but nothing is printed.

B.	 The code prints what was entered by the user.

C.	 The code behaves the same if throws IOException is removed.

D.	 A NullPointerException may be thrown.

Review Questions  853

E.	 A NullPointerException will always be thrown.

F.	 A NullPointerException will never be thrown.

G.	 The code does not compile.

4.	 For which values of path sent to this method would it be possible for the following code to
output Success? (Choose all that apply.)

public void removeBadFile(Path path) {
 if(Files.isDirectory(path))
 System.out.println(Files.deleteIfExists(path)
 ? "Success": "Try Again");
}

A.	 path refers to a regular file in the file system.

B.	 path refers to a symbolic link in the file system.

C.	 path refers to an empty directory in the file system.

D.	 path refers to a directory with content in the file system.

E.	 path does not refer to a record that exists within the file system.

F.	 The code does not compile.

5.	 Assume that the directory /animals exists and is empty. What is the result of executing the
following code?

Path path = Path.of("/animals");
try (var z = Files.walk(path)) {
 boolean b = z
 .filter((p,a) -> a.isDirectory() && !path.equals(p)) // x
 .findFirst().isPresent(); // y
 System.out.print(b ? "No Sub": "Has Sub");
}

A.	 It prints No Sub.

B.	 It prints Has Sub.

C.	 The code will not compile because of line x.

D.	 The code will not compile because of line y.

E.	 The output cannot be determined.

F.	 It produces an infinite loop at runtime.

6.	 What would be the value of name if the instance of Eagle created in the main() method were
serialized and then deserialized?

import java.io.Serializable;
class Bird {
 protected transient String name;

854  Chapter 14  ■  I/O

 public void setName(String name) { this.name = name; }
 public String getName() { return name; }
 public Bird() {
 this.name = "Matt";
 }
}
public class Eagle extends Bird implements Serializable {
 { this.name = "Olivia"; }
 public Eagle() {
 this.name = "Bridget";
 }
 public static void main(String[] args) {
 var e = new Eagle();
 e.name = "Adeline";
 }
}

A.	 Adeline
B.	 Bridget
C.	 Matt
D.	 Olivia
E.	 null
F.	 The code does not compile.

G.	 The code compiles but throws an exception at runtime.

7.	 Assume that /kang exists as a symbolic link to the directory /mammal/kangaroo within
the file system. Which of the following statements are correct about this code snippet?
(Choose all that apply.)

var path = Paths.get("/kang");
if(Files.isDirectory(path) && Files.isSymbolicLink(path))
 Files.createDirectory(path.resolve("joey"));

A.	 A new directory will always be created.

B.	 A new directory may be created.

C.	 If the code creates a directory, it will be reachable at /kang/joey.

D.	 If the code creates a directory, it will be reachable at /mammal/joey.

E.	 The code does not compile.

F.	 The code will compile but will always throw an exception at runtime.

Review Questions  855

8.	 Assuming that the /fox/food-schedule.csv file exists with the specified contents, what
is the expected output of calling printData() on it?

/fox/food-schedule.csv
6am,Breakfast
9am,SecondBreakfast
12pm,Lunch
6pm,Dinner

void printData(Path path) throws IOException {
 Files.readAllLines(path) // r1
 .flatMap(p -> Stream.of(p.split(","))) // r2
 .map(q -> q.toUpperCase()) // r3
 .forEach(System.out::println);
}

A.	 The code will not compile because of line r1.

B.	 The code will not compile because of line r2.

C.	 The code will not compile because of line r3.

D.	 It throws an exception at runtime.

E.	 It does not print anything at runtime.

F.	 None of the above

9.	 Given the following method, which statements are correct? (Choose all that apply.)

public void copyFile(File file1, File file2) throws Exception {
 var reader = new InputStreamReader(new FileInputStream(file1));
 try (var writer = new FileWriter(file2)) {
 char[] buffer = new char[10];
 while(reader.read(buffer) != -1) {
 writer.write(buffer);
 // n1
 }
 }
}

A.	 The code does not compile because reader is not a buffered stream.

B.	 The code does not compile because writer is not a buffered stream.

C.	 The code compiles and correctly copies the data between some files.

D.	 The code compiles and correctly copies the data between all files.

E.	 If we check file2 on line n1 within the file system after five iterations of the while
loop, it may be empty.

F.	 If we check file2 on line n1 within the file system after five iterations, it will contain
exactly 50 characters.

G.	 This method contains a resource leak.

856  Chapter 14  ■  I/O

10.	 Which of the following correctly create Path instances? (Choose all that apply.)

A.	 new Path("jaguar.txt")
B.	 FileSystems.getDefault().getPath("puma.txt")
C.	 Path.get("cats","lynx.txt")
D.	 new java.io.File("tiger.txt").toPath()
E.	 new FileSystem().getPath("lion")
F.	 Paths.getPath("ocelot.txt")
G.	 Path.of(Path.of(".").toUri())

11.	 Which classes will allow the following to compile? (Choose all that apply.)

var is = new BufferedInputStream(new FileInputStream("z.txt"));
InputStream wrapper = new (is);
try (wrapper) {}

A.	 BufferedInputStream
B.	 BufferedReader
C.	 BufferedWriter
D.	 FileInputStream
E.	 ObjectInputStream
F.	 ObjectOutputStream
G.	 None of the above, as the first line does not compile

12.	 What is the result of executing the following code? (Choose all that apply.)

4: var p = Paths.get("sloth.schedule");
5: var a = Files.readAttributes(p, BasicFileAttributes.class);
6: Files.mkdir(p.resolve(".backup"));
7: if(a.size()>0 && a.isDirectory()) {
8: a.setTimes(null,null,null);
9: }

A.	 It compiles and runs without issue.

B.	 The code will not compile because of line 5.

C.	 The code will not compile because of line 6.

D.	 The code will not compile because of line 7.

E.	 The code will not compile because of line 8.

F.	 None of the above

Review Questions  857

13.	 Which of the following are true statements about serialization in Java? (Choose all
that apply.)

A.	 All non-null instance members of the class must be serializable or marked transient.

B.	 Records are automatically serializable.

C.	 Serialization involves converting data into Java objects.

D.	 Serializable is a functional interface.

E.	 The class must declare a static serialVersionUID variable.

F.	 The class must extend the Serializable class.

G.	 The class must implement the Serializable interface.

14.	 What is the output of the following code? (Choose three.)

22: var p1 = Path.of("/zoo/./bear","../food.txt");
23: p1.normalize().relativize(Path.of("/lion"));
24: System.out.println(p1);
25:
26: var p2 = Paths.get("/zoo/animals/bear/koala/food.txt");
27: System.out.println(p2.subpath(1,3).getName(1));
28:
29: var p3 = Path.of("/pets/../cat.txt");
30: var p4 = Paths.get("./dog.txt");
31: System.out.println(p4.resolve(p3));

A.	 ../../lion
B.	 /zoo/./bear/../food.txt
C.	 animal
D.	 bear
E.	 /pets/../cat.txt
F.	 /pets/../cat.txt/./dog.txt

15.	 Suppose that the working directory is /weather and the absolute path
/weather/winter/snow.dat represents a file that exists within the file system. Which of
the following lines of code create an object that represents the file? (Choose all that apply.)

A.	 new File("/weather", "winter", "snow.dat")
B.	 new File("/weather/winter/snow.dat")
C.	 new File("/weather/winter", new File("snow.dat"))
D.	 new File("weather", "/winter/snow.dat")
E.	 new File(new File("/weather/winter"), "snow.dat")
F.	 Path.of("/weather/winer/snow.dat").toFile();
G.	 None of the above

858  Chapter 14  ■  I/O

16.	 Assuming zoo-data.txt exists and is not empty, what statements about the following
method are correct? (Choose all that apply.)

private void echo() throws IOException {
 var o = new FileWriter("new-zoo.txt");
 try (var f = new FileReader("zoo-data.txt");
 var b = new BufferedReader(f); o) {

 o.write(b.readLine());
 }
 o.write("");
}

A.	 When run, the method creates a new file with one line of text in it.

B.	 When run, the method creates a new file with two lines of text in it.

C.	 When run, the method creates a new file with the same number of lines as the original
file.

D.	 The method compiles but will produce an exception at runtime.

E.	 The method does not compile.

F.	 The method uses byte stream classes.

17.	 Which are true statements? (Choose all that apply.)

A.	 NIO.2 includes a method to delete an entire directory tree.

B.	 NIO.2 includes a method to traverse a directory tree.

C.	 NIO.2 includes methods that are aware of symbolic links.

D.	 Files.readAttributes() cannot access file-system dependent attributes.

E.	 Files.readAttributes() is often more performant since it reads multiple attrib-
utes rather than accessing individual attributes.

F.	 Files.readAttributes() works with the File object.

18.	 Assume that reader is a valid stream whose next characters are PEACOCKS. What is true
about the output of the following code snippet? (Choose all that apply.)

var sb = new StringBuilder();
sb.append((char)reader.read());
reader.mark(10);
for(int i=0; i<2; i++) {
 sb.append((char)reader.read());
 reader.skip(2);
}
reader.reset();
reader.skip(0);

Review Questions  859

sb.append((char)reader.read());
System.out.println(sb.toString());

A.	 The code may print PEAE.

B.	 The code may print PEOA.

C.	 The code may print PEOE.

D.	 The code may print PEOS.

E.	 The code will always print PEAE.

F.	 The code will always print PEOA.

G.	 The code will always print PEOE.

H.	 The code will always print PEOS.

19.	 Assuming that the directories and files referenced exist and are not symbolic links, what is
the result of executing the following code?

var p1 = Path.of("/lizard",".").resolve(Path.of("walking.txt"));
var p2 = new File("/lizard/././actions/../walking.txt").toPath();
System.out.print(Files.isSameFile(p1,p2));
System.out.print(" ");
System.out.print(p1.equals(p2));
System.out.print(" ");
System.out.print(Files.mismatch(p1,p2));

A.	 true true -1
B.	 true true 0
C.	 true false -1
D.	 true false 0
E.	 false true -1
F.	 false true 0
G.	 The code does not compile.

H.	 The result cannot be determined.

20.	 Assume that monkey.txt is a file that exists in the current working directory. Which state-
ments about the following code snippet are correct? (Choose all that apply.)

Files.move(Path.of("monkey.txt"), Paths.get("/animals"),
 StandardCopyOption.ATOMIC_MOVE,
 LinkOption.NOFOLLOW_LINKS);

A.	 If /animals/monkey.txt exists, it will be overwritten at runtime.

B.	 If /animals exists as an empty directory, /animals/monkey.txt will be the new
location of the file.

C.	 If monkey.txt is a symbolic link, the file it points to will be moved at runtime.

860  Chapter 14  ■  I/O

D.	 If the move is successful and another process is monitoring the file system, it will not see
an incomplete file at runtime.

E.	 None of the above

21.	 Assume that /monkeys exists as a directory containing multiple files, symbolic links, and
subdirectories. Which statement about the following code is correct?

var f = Path.of("/monkeys");
try (var m =
 Files.find(f, 0, (p,a) -> a.isSymbolicLink())) { // y1
 m.map(s -> s.toString())
 .collect(Collectors.toList())
 .stream()
 .filter(s -> s.toString().endsWith(".txt")) // y2
 .forEach(System.out::println);
}

A.	 It will print all symbolic links in the directory tree ending in .txt.

B.	 It will print the target of all symbolic links in the directory ending in .txt.

C.	 It will print nothing.

D.	 It does not compile because of line y1.

E.	 It does not compile because of line y2.

F.	 It compiles but throws an exception at runtime.

22.	 Which of the following fields will be null after an instance of the class created
on line 17 is serialized and then deserialized using ObjectOutputStream and
ObjectInputStream? (Choose all that apply.)

1: import java.io.Serializable;
2: import java.util.List;
3: public class Zebra implements Serializable {
4: private transient String name = "George";
5: private static String birthPlace = "Africa";
6: private transient Integer age;
7: List<Zebra> friends = new java.util.ArrayList<>();
8: private Object stripes = new Object();
9: { age = 10;}
10: public Zebra() {
11: this.name = "Sophia";
12: }
13: static Zebra writeAndRead(Zebra z) {

Review Questions  861

14: // Implementation omitted
15: }
16: public static void main(String[] args) {
17: var zebra = new Zebra();
18: zebra = writeAndRead(zebra);
19: }

A.	 age
B.	 birthplace
C.	 friends
D.	 name
E.	 stripes
F.	 The code does not compile.

G.	 The code compiles but throws an exception at runtime.

23.	 What are some possible results of executing the following code? (Choose all that apply.)

var x = Path.of("/animals/fluffy/..");
Files.walk(x.toRealPath().getParent()) // u1
 .map(p -> p.toAbsolutePath().toString()) // u2
 .filter(s -> s.endsWith(".java"))
 .forEach(System.out::println);

A.	 It prints some files in the root directory.

B.	 It prints all files in the root directory.

C.	 FileSystemLoopException is thrown at runtime.

D.	 Another exception is thrown at runtime.

E.	 The code will not compile because of line u1.

F.	 The code will not compile because of line u2.

24.	 Assume that the source instance passed to the following method represents a file that exists.
Also assume that /flip/sounds.txt exists as a file prior to executing this method. When
this method is executed, which statement correctly copies the file to the path specified by
/flip/sounds.txt?

void copyIntoFlipDirectory(Path source) throws IOException {
 var dolphinDir = Path.of("/flip");
 dolphinDir = Files.createDirectories(dolphinDir);
 var n = Paths.get("sounds.txt");
 ;
}

862  Chapter 14  ■  I/O

A.	 Files.copy(source, dolphinDir)
B.	 Files.copy(source, dolphinDir.resolve(n),

StandardCopyOption.REPLACE_EXISTING)
C.	 Files.copy(source, dolphinDir,

StandardCopyOption.REPLACE_EXISTING)

D.	 Files.copy(source, dolphinDir.resolve(n))
E.	 The method does not compile, regardless of what is placed in the blank.

F.	 The method compiles but throws an exception at runtime, regardless of what is placed
in the blank.

25.	 Suppose that you need to read text data from a file and want the data to be performant on
large files. Which two java.io stream classes can be chained together to best achieve this
result? (Choose two.)

A.	 BufferedInputStream
B.	 BufferedReader
C.	 FileInputStream
D.	 FileReader
E.	 PrintInputStream
F.	 ObjectInputStream
G.	 PrintReader

JDBC

OCP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

✓✓ Accessing Databases using JDBC

■■ Create connections, create and execute basic, prepared and

callable statements, process query results and control

transactions using JDBC API

Chapter

15

JDBC stands for Java Database Connectivity. This chapter
introduces you to the basics of accessing databases from Java.
We cover the key interfaces for how to connect, perform

queries, process the results, and work with transactions.
If you are new to JDBC, note that this chapter covers only the basics of JDBC and

working with databases. What we cover is enough for the exam. To be ready to use JDBC
on the job, we recommend that you read books on SQL along with Java and databases. For
example, you might try SQL for Dummies, 9th edition, by Allen G. Taylor (Wiley, 2018) and
Practical Database Programming with Java by Ying Bai (Wiley-IEEE Press, 2011).

For Experienced Developers

If you are an experienced developer and know JDBC well, you can skip the “Introducing
Relational Databases and SQL” section. Read the rest of this chapter carefully, though.
We found that the exam covers some topics that developers don’t use in practice, in
particular, these:

■■ You probably set up the URL once for a project for a specific database. Often, devel-
opers just copy and paste it from somewhere else. For the exam, you have to under-
stand this rather than rely on looking it up.

■■ You are likely using a DataSource. For the exam, you have to remember or relearn
how DriverManager works.

Introducing Relational
Databases and SQL
Data is information. A piece of data is one fact, such as your first name. A database is an
organized collection of data. In the real world, a file cabinet is a type of database. It has
file folders, each of which contains pieces of paper. The file folders are organized in some
way, often alphabetically. Each piece of paper is like a piece of data. Similarly, the folders
on your computer are like a database. The folders provide organization, and each file is a
piece of data.

Introducing Relational Databases and SQL  865

A relational database is a database that is organized into tables, which consist of rows
and columns. You can think of a table as a spreadsheet. There are two main ways to access a
relational database from Java:

■■ Java Database Connectivity (JDBC): Accesses data as rows and columns. JDBC is the
API covered in this chapter.

■■ Java Persistence API (JPA): Accesses data through Java objects using a concept called
object-relational mapping (ORM). The idea is that you don’t have to write as much
code, and you get your data in Java objects. JPA is not on the exam, and therefore it is
not covered in this chapter.

A relational database is accessed through Structured Query Language (SQL). SQL is a
programming language used to interact with database records. JDBC works by sending a
SQL command to the database and then processing the response.

In addition to relational databases, there is another type of database called a NoSQL
database. These databases store their data in a format other than tables, such as key/value,
document stores, and graph-based databases. NoSQL is out of scope for the exam as well.

In the following sections, we introduce a small relational database that we will be using
for the examples in this chapter and present the SQL to access it. We also cover some vocab-
ulary that you need to know.

Running the Examples in the Chapter

In most chapters of this book, you need to write code and try lots of examples. This chapter
is different. It’s still nice to try the examples, but you can probably get the JDBC questions
correct on the exam from just reading this chapter and mastering the review questions.

While the exam is database agnostic, we had to use a database for the examples, and we
chose the HyperSQL database. It is a small, in-memory database. In fact, you need only one
JAR file to run it. For real projects, we like MySQL and PostgreSQL.

Instructions to download and set up the database for the examples in the chapter are in:

www.selikoff.net/ocp17

For now, you don’t need to understand any of the code on the website. It is just to get you
set up. In a nutshell, it connects to the database and creates two tables. By the end of this
chapter, you should understand how to create a Connection and PreparedStatement
in this manner.

There are plenty of tutorials for installing and getting started with any of these. It’s beyond
the scope of the book and the exam to set up a database, but feel free to ask questions in
the database/JDBC section of CodeRanch. You might even get an answer from the authors.

http://www.selikoff.net/ocp17

866  Chapter 15  ■  JDBC

Identifying the Structure of a Relational Database
Our sample database has two tables. One has a row for each species that is in our zoo. The
other has a row for each animal. These two relate to each other because an animal belongs
to a species. These relationships are why this type of database is called a relational database.
Figure 15.1 shows the structure of our database.

As you can see in Figure 15.1, we have two tables. One is named exhibits, and the
other is named names. Each table has a primary key, which gives us a unique way to ref-
erence each row. After all, two animals might have the same name, but they can’t have the
same ID. You don’t need to know about keys for the exam. We mention them to give you
a bit of context. In our example, it so happens that the primary key is only one column. In
some situations, it is a combination of columns called a compound key. For example, a stu-
dent identifier and year might be a compound key.

There are two rows and three columns in the exhibits table and five rows and three
columns in the names table. You do need to know about rows and columns for the exam.

1

2

African Elephant

Zebra

7.5

1.2

id
integer

name
varchar(255)

num_acres
numeric

Primary key

1

5

4

3

2

1

2

1

1

2

Elsa

Zoe

Eddie

Ester

Zelda

id
integer

species_id
integer

name
varchar(255)

Column

Row

Table: names

Table: exhibits

Database: Zoo

F IGURE 15 .1   Tables in our relational database

Introducing Relational Databases and SQL  867

Writing Basic SQL Statements
The most important thing that you need to know about SQL for the exam is that there
are four types of statements for working with the data in tables. They are referred to as
CRUD (Create, Read, Update, Delete). The SQL keywords don’t match the acronym, so pay
attention to the SQL keyword for each in Table 15.1.

That’s it. You are not expected to determine whether SQL statements are correct. You are
not expected to spot syntax errors in SQL statements. You are not expected to write SQL
statements. Notice a theme?

Unlike Java, SQL keywords are case insensitive. This means select, SELECT, and
Select are all equivalent. Like Java primitive types, SQL has a number of data types.
Most are self-explanatory, like INTEGER. There’s also DECIMAL, which functions a lot like
a double in Java. The strangest one is VARCHAR, standing for “variable character,” which is
like a String in Java. The variable part means that the database should use only as much
space as it needs to store the value.

While you don’t have to know how to write them, we present the basic four SQL state-
ments in Table 15.2 since they appear in many questions.

TABLE 15 .1   CRUD operations

Operation SQL keyword Description

Create INSERT Adds new row to table

Read SELECT Retrieves data from table

Update UPDATE Changes zero or more rows in table

Delete DELETE Removes zero or more rows from table

TABLE 15 .2   SQL

SQL keyword Explanation

INSERT INTO exhibits
VALUES (3, 'Asian Elephant', 7.5);

Adds new row with provided values.
Defaults to order in which columns were
defined in table.

SELECT * FROM exhibits
WHERE ID = 3;

Reads data from table with optional WHERE
clause to limit data returned. In SELECT,
can use * to return all columns, list specific
ones to return, or even call functions like
COUNT(*) to return number of matching
rows.

868  Chapter 15  ■  JDBC

Introducing the Interfaces of JDBC
For the exam, you need to know five key interfaces of JDBC. The interfaces are declared
in the JDK. They are just like all of the other interfaces and classes that you’ve seen in this
book. For example, in Chapter 9, “Collections and Generics,” you worked with the interface
List and the concrete class ArrayList.

With JDBC, the concrete classes come from the JDBC driver. Each database has a
different JAR file with these classes. For example, PostgreSQL’s JAR is called something
like postgresql-9.4–1201.jdbc4.jar. MySQL’s JAR is called something like
mysql-connector-java-5.1.36.jar. The exact name depends on the vendor and ver-
sion of the driver JAR.

This driver JAR contains an implementation of these key interfaces along with a number
of other interfaces. The key is that the provided implementations know how to communicate
with a database. There are also different types of drivers; luckily, you don’t need to know
about this for the exam.

Figure 15.2 shows the five key interfaces that you need to know. It also shows that the
implementation is provided by an imaginary Foo driver JAR. They cleverly stick the name
Foo in all classes.

You’ve probably noticed that we didn’t tell you what the implementing classes are called
in any real database. The main point is that you shouldn’t know. With JDBC, you use only
the interfaces in your code and never the implementation classes directly. In fact, they might
not even be public classes.

What do these five interfaces do? On a very high level, we have the following:

■■ Driver: Establishes a connection to the database

■■ Connection: Sends commands to a database

■■ PreparedStatement: Executes a SQL query

■■ CallableStatement: Executes commands stored in the database

■■ ResultSet: Reads the results of a query

SQL keyword Explanation

UPDATE exhibits
SET num_acres = num_acres + .5
WHERE name = 'Asian Elephant';

Sets column’s value with optional WHERE
clause to limit rows updated.

DELETE FROM exhibits
WHERE name = 'Asian Elephant';

Deletes rows with optional WHERE clause
to limit rows deleted.

TABLE 15 .2   SQL

Introducing the Interfaces of JDBC  869

All database interfaces are in the package java.sql, so we often omit the imports
throughout this chapter.

In this next example, we show you what JDBC code looks like, end to end. If you are
new to JDBC, just notice that three of the five interfaces are in the code. If you are experi-
enced, remember that the exam uses the DriverManager class instead of the DataSource
interface.

public class MyFirstDatabaseConnection {
 public static void main(String[] args) throws SQLException {
 String url = "jdbc:hsqldb:file:zoo";
 try (Connection conn = DriverManager.getConnection(url);
 PreparedStatement ps = conn.prepareStatement(
 "SELECT name FROM exhibits");
 ResultSet rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getString(1));
 } } }

If the URL were using our imaginary Foo driver, DriverManager would return an in-
stance of FooConnection. Calling prepareStatement() would then return an instance
of FooPreparedStatement, and calling executeQuery() would return an instance of
FooResultSet. Since the URL uses hsqldb instead, it returns the implementations that
HyperSQL has provided for these interfaces. You don’t need to know their names. In the rest
of the chapter, we explain how to use all five of the interfaces and go into more detail about
what they do. By the end of the chapter, you’ll be writing code like this yourself.

Interfaces in the JDK

Driver

Connection

CallableStatement

ResultSet

Implementation in the driver

FooDriver

FooConnection

FooPreparedStatement

FooResultSet

PreparedStatement FooCallableStatement

F IGURE 15 .2   Key JDBC interfaces

870  Chapter 15  ■  JDBC

Compiling with Modules

Almost all the packages on the exam are in the java.base module. As you may recall
from Chapter 12, “Modules,” this module is included automatically when you run your
application as a module.

In contrast, the JDBC classes are all in the module java.sql. They are also in the package
java.sql. The names are the same, so they should be easy to remember. When working
with SQL, you need the java.sql module and import java.sql.*.

We recommend separating your studies for JDBC and modules. You can use the classpath
when working with JDBC and reserve your practice with the module path for when you are
studying modules.

That said, if you do want to use JDBC code with modules, remember to update your
module-info file to include the following:

 requires java.sql;

Connecting to a Database
The first step in doing anything with a database is connecting to it. First we show you
how to build the JDBC URL. Then we show you how to use it to get a Connection to
the database.

Building a JDBC URL
To access a website, you need to know its URL. To access your email, you need to know
your username and password. JDBC is no different. To access a database, you need to know
this information about it.

Unlike web URLs, JDBC URLs have a variety of formats. They have three parts in
common, as shown in Figure 15.3. The first piece is always the same. It is the protocol jdbc.
The second part is the subprotocol, which is the name of the database, such as hsqldb, mysql,
or postgres. The third part is the subname, which is a database-specific format. Colons (:)
separate the three parts.

The subname typically contains information about the database such as its location
and/or name. The syntax varies. You need to know about the three main parts. You don’t
need to memorize the subname formats. Phew! You’ve already seen one such URL:

jdbc:hsqldb:file:zoo

Connecting to a Database  871

Notice the three parts. It starts with jdbc, and then comes the subprotocol hsqldb. It
ends with the subname, which tells us we are using the file system. The location is then the
database name.

Other examples of subnames are shown here:

jdbc:postgresql://localhost/zoo
jdbc:oracle:thin:@123.123.123.123:1521:zoo
jdbc:mysql://localhost:3306
jdbc:mysql://localhost:3306/zoo?profileSQL=true

You can see that each of these JDBC URLs begins with jdbc, followed by a colon,
followed by the vendor/product name. After that, the URLs vary. Notice how all of them
include the location of the database: localhost, 123.123.123.123:1521, and
localhost:3306. Also, notice that the port is optional when using the default location.

Getting a Database Connection
There are two main ways to get a Connection: DriverManager and DataSource.
DriverManager is the one covered on the exam. Do not use a DriverManager in code
someone is paying you to write. A DataSource has more features than DriverManager.
For example, it can pool connections or store the database connection information outside
the application.

The DriverManager class is in the JDK, as it is an API that comes with Java. It uses the
factory pattern, which means that you call a static method to get a Connection rather
than calling a constructor. As you saw in Chapter 11, “Exceptions and Localization,” the
factory pattern means that you can get any implementation of the interface when calling
the method. The good news is that the method has an easy-to-remember name:
getConnection().

To get a Connection from the HyperSQL database, you write the following:

import java.sql.*;
public class TestConnect {
 public static void main(String[] args) throws SQLException {
 try (Connection conn =

Subprotocol
(product/vendor name)

jdbc:hsqldb://localhost:5432/zoo

Protocol
Subname

(database-specific connection details)

Colon separators

F IGURE 15 .3   The JDBC URL format

872  Chapter 15  ■  JDBC

 DriverManager.getConnection("jdbc:hsqldb:file:zoo")) {
 System.out.println(conn);
 } } }

As in Chapter 11, we use a try-with-resources statement to ensure that database resources
are closed. We cover closing database resources in more detail later in the chapter. We also
throw the checked SQLException, which means something went wrong. For example, you
might have forgotten to set the location of the database driver in your classpath.

Assuming the program runs successfully, it prints something like this:

org.hsqldb.jdbc.JDBCConnection@3dfc5fb8

The details of the output aren’t important. Just notice that the class is not Connection. It
is a vendor implementation of Connection.

There is also a signature that takes a username and password.

import java.sql.*;
public class TestExternal {
 public static void main(String[] args) throws SQLException {
 try (Connection conn = DriverManager.getConnection(
 "jdbc:postgresql://localhost:5432/ocp-book",
 "username",
 "Password20182")) {
 System.out.println(conn);
 } } }

Notice the three parameters that are passed to getConnection(). The first is the JDBC
URL that you learned about in the previous section. The second is the username for access-
ing the database, and the third is the password for accessing the database. It should go
without saying that our password is not Password20182. Also, don’t put your password in
real code. It’s a horrible practice. Always load it from some kind of configuration, ideally one
that keeps the stored value encrypted.

If you were to run this with the Postgres driver JAR, it would print something like this:

org.postgresql.jdbc4.Jdbc4Connection@eed1f14

Again, notice that it is a driver-specific implementation class. You can tell from
the package name. Since the package is org.postgresql.jdbc4, it is part of the
PostgreSQL driver.

Unless the exam specifies a command line, you can assume that the correct JDBC driver
JAR is in the classpath. The exam creators explicitly ask about the driver JAR if they want
you to think about it.

The nice thing about the factory pattern is that it takes care of the logic of creating a class
for you. You don’t need to know the name of the class that implements Connection, and you
don’t need to know how it is created. You are probably a bit curious, though.

Working with a PreparedStatement  873

DriverManager looks through any drivers it can find to see whether they can handle the
JDBC URL. If so, it creates a Connection using that Driver. If not, it gives up and throws a
SQLException.

You might see Class.forName() in code. It was required with older
drivers (that were designed for older versions of JDBC) before getting a
Connection.

Working with a PreparedStatement
In Java, you have a choice of working with a Statement, PreparedStatement, or
CallableStatement. The latter two are subinterfaces of Statement, as shown in
Figure 15.4.

Later in the chapter, you learn about using CallableStatement for queries that are
inside the database. In this section, we look at PreparedStatement.

What about Statement, you ask? It is an interface that both PreparedStatement and
CallableStatement extend. A Statement and a PreparedStatement are similar to
each other, except that a PreparedStatement takes parameters, while a Statement does
not. A Statement just executes whatever SQL query you give it.

While it is possible to run SQL directly with Statement, you shouldn’t.
PreparedStatement is far superior for the following reasons:

■■ Performance: In most programs, you run similar queries multiple times. When you use
PreparedStatement, the database software often devises a plan to run the query well
and remembers it.

■■ Security: You are protected against an attack called SQL injection when using a
PreparedStatement correctly.

PreparedStatement

Statement

CallableStatement

F IGURE 15 .4   Types of statements

874  Chapter 15  ■  JDBC

■ Readability: It’s nice not to have to deal with string concatenation in building a query
string with lots of parameters.

■ Future use: Even if your query is being run only once or doesn’t have any parameters,
you should still use a PreparedStatement. That way, future editors of the code won’t
add a variable and have to remember to change to PreparedStatement then.

Little Bobby Tables

SQL injection is often caused by a lack of properly sanitized user input. The author of the
popular xkcd.com, web-comic once asked the question, what would happen if someone’s
name contained a SQL statement?

“Exploits of a Mom” reproduced with permission from xkcd.com/327/

Oops! Guess the school should have used a PreparedStatement and bound each stu-
dent’s name to a variable. If it had, the entire String would have been properly escaped
and stored in the database.

Using the Statement interface directly is not in scope for the JDBC exam, so we do not
cover it in this book. In the following sections, we cover obtaining a PreparedStatement,
executing one, working with parameters, and running multiple updates.

Obtaining a PreparedStatement
To run SQL, you need to tell a PreparedStatement about it. Getting a PreparedStatement from
a Connection is easy.

try (PreparedStatement ps = conn.prepareStatement(
 "SELECT * FROM exhibits")) {
 // work with ps
}

http://xkcd.com
http://xkcd.com/327

An instance of a PreparedStatement represents a SQL statement that you want to run
using the Connection. It does not execute the query yet! We get to that shortly.

Passing a SQL statement when creating the object is mandatory. You might see a trick
on the exam.

try (var ps = conn.prepareStatement()) { // DOES NOT COMPILE
}

The previous example does not compile, because SQL is not supplied at the time a
PreparedStatement is requested. We also used var in this example. We write JDBC code
both using var and the actual class names to get you used to both approaches.

There are overloaded signatures that allow you to specify a ResultSet type and concur-
rency mode. On the exam, you only need to know how to use the default options, which
process the results in order.

Executing a PreparedStatement
Now that we have a PreparedStatement, we can run the SQL statement. The method for
running SQL varies depending on what kind of SQL statement it is. Remember that
you aren’t expected to be able to read SQL, but you do need to know what the first
keyword means.

Modifying Data with executeUpdate()
Let’s start with statements that change the data in a table. Those are SQL statements that
begin with DELETE, INSERT, or UPDATE. They typically use a method called executeUpdate().
The name is a little tricky because the SQL UPDATE statement is not the only statement that
uses this method.

The method takes the SQL statement to run as a parameter. It returns the number of rows
that were inserted, deleted, or changed. Here’s an example of all three update types:

10: var insertSql = "INSERT INTO exhibits VALUES(10, 'Deer', 3)";
11: var updateSql = "UPDATE exhibits SET name = '' " +
12: "WHERE name = 'None'";
13: var deleteSql = "DELETE FROM exhibits WHERE id = 10";
14:
15: try (var ps = conn.prepareStatement(insertSql)) {
16: int result = ps.executeUpdate();
17: System.out.println(result); // 1
18: }
19:
20: try (var ps = conn.prepareStatement(updateSql)) {
21: int result = ps.executeUpdate();
22: System.out.println(result); // 0
23: }

Working with a PreparedStatement  875

876  Chapter 15  ■  JDBC

24:
25: try (var ps = conn.prepareStatement(deleteSql)) {
26: int result = ps.executeUpdate();
27: System.out.println(result); // 1
28: }

For the exam, you don’t need to read SQL. The question will tell you how many rows
are affected if you need to know. Notice how each distinct SQL statement needs its own
prepareStatement() call.

Line 15 creates the insert statement, and line 16 runs that statement to insert one row.
The result is 1 because one row was affected. Line 20 creates the update statement, and line
21 checks the whole table for matching records to update. Since no records match, the result
is 0. Line 25 creates the delete statement, and line 26 deletes the row created on line 16.
Again, one row is affected, so the result is 1.

Reading Data with executeQuery()
Next, let’s look at a SQL statement that begins with SELECT. This time, we use the
executeQuery() method.

30: var sql = "SELECT * FROM exhibits";
31: try (var ps = conn.prepareStatement(sql);
32: ResultSet rs = ps.executeQuery()) {
33:
34: // work with rs
35: }

On line 31, we create a PreparedStatement for our SELECT query. On line 32, we run
it. Since we are running a query to get a result, the return type is ResultSet. In the next
section, we show you how to process the ResultSet.

Processing Data with execute()
There’s a third method called execute() that can run either a query or an update. It returns
a boolean so that we know whether there is a ResultSet. That way, we can call the proper
method to get more detail. The pattern looks like this:

boolean isResultSet = ps.execute();
if (isResultSet) {
 try (ResultSet rs = ps.getResultSet()) {
 System.out.println("ran a query");
 }
} else {
 int result = ps.getUpdateCount();
 System.out.println("ran an update");
}

If the PreparedStatement refers to sql that is a SELECT, the boolean is true, and we
can get the ResultSet. If it is not a SELECT, we can get the number of rows updated.

Using the Correct Method
What do you think happens if we use the wrong method for a SQL statement? Let’s
take a look:

var sql = "SELECT * FROM names";
try (var ps = conn.prepareStatement(sql)) {

 var result = ps.executeUpdate();
}

This throws a SQLException similar to the following:

Exception in thread "main" java.sql.SQLException:
statement does not generate a row count

We can’t get a compiler error since the SQL is a String. We can get an exception,
though, and we do. We also get a SQLException when using executeQuery() with SQL
that changes the database.

Exception in thread "main" java.sql.SQLException:
statement does not generate a result set

Again, we get an exception because the driver can’t translate the query into the expected
return type.

Reviewing PreparedStatement Methods
To review, make sure that you know Table 15.3 and Table 15.4 well. Table 15.3
shows which SQL statements can be run by each of the three key methods on
PreparedStatement. Table 15.4 shows what is returned by each method.

TABLE 15 .3   SQL runnable by the execute method

Method DELETE INSERT SELECT UPDATE

ps.execute() Yes Yes Yes Yes

ps.executeQuery() No No Yes No

ps.executeUpdate() Yes Yes No Yes

Working with a PreparedStatement  877

878  Chapter 15  ■  JDBC

Working with Parameters
Suppose our zoo acquires a new elephant and we want to register it in our names table.
We’ve already learned enough to do this.

public static void register(Connection conn) throws SQLException {
 var sql = "INSERT INTO names VALUES(6, 1, 'Edith')";

 try (var ps = conn.prepareStatement(sql)) {
 ps.executeUpdate();
 }
}

However, everything is hard-coded. We want to be able to pass in the values as parame-
ters. Luckily, a PreparedStatement allows us to set parameters. Instead of specifying the
three values in the SQL, we can use a question mark (?). A bind variable is a placeholder
that lets you specify the actual values at runtime. A bind variable is like a parameter, and you
will see bind variables referenced as both variables and parameters. We can rewrite our SQL
statement using bind variables.

 String sql = "INSERT INTO names VALUES(?, ?, ?)";

Bind variables make the SQL easier to read since you no longer need to use quotes
around String values in the SQL. Now we can pass the parameters to the method itself.

14: public static void register(Connection conn, int key,
15: int type, String name) throws SQLException {
16:
17: String sql = "INSERT INTO names VALUES(?, ?, ?)";
18:
19: try (PreparedStatement ps = conn.prepareStatement(sql)) {
20: ps.setInt(1, key);

TABLE 15 .4   Return types of execute methods

Method Return type
What is returned
for SELECT

What is returned for
DELETE/INSERT/UPDATE

ps.execute() boolean true false

ps.executeQuery() ResultSet Rows and columns
returned

n/a

ps.executeUpdate() int n/a Number of rows
added/changed/removed

21: ps.setString(3, name);
22: ps.setInt(2, type);
23: ps.executeUpdate();
24: }
25: }

Line 19 creates a PreparedStatement using our SQL that contains three bind variables.
Lines 20–22 set those variables. You can think of the bind variables as a list of parameters,
where each is set in turn. Notice how the bind variables can be set in any order. Line 23 exe-
cutes the query and runs the update.

Notice how the bind variables are counted starting with 1 rather than 0. This is really
important, so we will repeat it.

Remember that JDBC starts counting columns with 1 rather than 0.
A common exam question tests that you know this!

In the previous example, we set the parameters out of order. That’s perfectly fine. The
rule is only that they are each set before the query is executed. Let’s see what happens if you
don’t set all the bind variables.

var sql = "INSERT INTO names VALUES(?, ?, ?)";
try (var ps = conn.prepareStatement(sql)) {
 ps.setInt(1, key);
 ps.setInt(2, type);
 // missing the set for parameter number 3
 ps.executeUpdate();
}

The code compiles, and you get a SQLException. The message may vary based on your
database driver.

Exception in thread "main" java.sql.SQLException: Parameter not set

What about if you try to set more values than you have as bind variables?

var sql = "INSERT INTO names VALUES(?, ?)";
try (var ps = conn.prepareStatement(sql)) {
 ps.setInt(1, key);
 ps.setInt(2, type);
 ps.setString(3, name);
 ps.executeUpdate();
}

Again, you get a SQLException, this time with a different message. On HyperSQL, that
message was as follows:

Exception in thread "main" java.sql.SQLException:
row column count mismatch in statement [INSERT INTO names VALUES(?, ?)]

Working with a PreparedStatement  879

880  Chapter 15  ■  JDBC

Table 15.5 shows the methods you need to know for the exam to set bind variables. The
ones that you need to know for the exam are easy to remember since they are called set fol-
lowed by the name of the type you are setting. There are many others, like dates, that are out
of scope for the exam.

The first column shows the method name, and the second column shows the type that
Java uses. The third column shows the type name that could be in the database. There is
some variation by databases, so check your specific database documentation. You need to
know only the first two columns for the exam.

The setNull() method takes an int parameter representing the column type in the
database. You do not need to know these types. Notice that the setObject() method
works with any Java type. If you pass a primitive, it will be autoboxed into a wrapper type.
That means we can rewrite our example as follows:

String sql = "INSERT INTO names VALUES(?, ?, ?)";
try (PreparedStatement ps = conn.prepareStatement(sql)) {
 ps.setObject(1, key);
 ps.setObject(2, type);
 ps.setObject(3, name);
 ps.executeUpdate();
}

Java will handle the type conversion for you. It is still better to call the more specific setter
methods since that will give you a compile-time error if you pass the wrong type instead of a
runtime error.

TABLE 15 .5   PreparedStatement methods

Method Parameter type Example database type

setBoolean boolean BOOLEAN

setDouble double DOUBLE

setInt int INTEGER

setLong long BIGINT

setNull int Any type

setObject Object Any type

setString String CHAR, VARCHAR

Updating Multiple Records
Suppose we get two new elephants and want to add both. We can use the same
PreparedStatement object.

var sql = "INSERT INTO names VALUES(?, ?, ?)";

try (var ps = conn.prepareStatement(sql)) {

 ps.setInt(1, 20);
 ps.setInt(2, 1);
 ps.setString(3, "Ester");
 ps.executeUpdate();

 ps.setInt(1, 21);
 ps.setString(3, "Elias");
 ps.executeUpdate();
}

Note that we set all three parameters when adding Ester but only two for Elias. The
PreparedStatement is smart enough to remember the parameters that were already set
and retain them. You only have to set the ones that are different.

Batching Statements

JDBC supports batching so you can run multiple statements in fewer trips to the database.
Often the database is located on a different machine than the Java code runs on. Saving
trips to the database saves time because network calls can be expensive. For example, if
you need to insert 1,000 records into the database, inserting them as a single network call
(as opposed to 1,000 network calls) is usually a lot faster.

You don’t need to know the addBatch() and executeBatch() methods for the exam,
but they are useful in practice.

 public static void register(Connection conn, int firstKey,
 int type, String... names) throws SQLException {

 var sql = "INSERT INTO names VALUES(?, ?, ?)";
 var nextIndex = firstKey;

Working with a PreparedStatement  881

882  Chapter 15  ■  JDBC

 try (var ps = conn.prepareStatement(sql)) {
 ps.setInt(2, type);

 for(var name: names) {
 ps.setInt(1, nextIndex);
 ps.setString(3, name);
 ps.addBatch();

 nextIndex++;
 }
 int[] result = ps.executeBatch();
 System.out.println(Arrays.toString(result));
 }
 }
Now we call this method with two names:

 register(conn, 100, 1, "Elias", "Ester");

The output shows that the array has two elements since there are two different items in the
batch. Each added one row in the database.

 [1, 1]

You can use batching to break up large operations, such as inserting 10 million records in
groups of 100. In practice, it takes a bit of work to determine an appropriate batch size, but
the performance of using batch is normally far better than inserting one row at a time (or all
ten million at once).

Getting Data from a ResultSet
A database isn’t useful if you can’t get your data. We start by showing you how to go
through a ResultSet. Then we go through the different methods to get columns by type.

Reading a ResultSet
When working with a ResultSet, most of the time, you will write a loop to look at each row.
The code looks like this:

20: String sql = "SELECT id, name FROM exhibits";
21: var idToNameMap = new HashMap<Integer, String>();
22:

Getting Data from a ResultSet  883

23: try (var ps = conn.prepareStatement(sql);
24: ResultSet rs = ps.executeQuery()) {
25:
26: while (rs.next()) {
27: int id = rs.getInt("id");
28: String name = rs.getString("name");
29: idToNameMap.put(id, name);
30: }
31: System.out.println(idToNameMap);
32: }

It outputs this:

{1=African Elephant, 2=Zebra}

There are a few things to notice here. First, we use the executeQuery() method on line
24, since we want to have a ResultSet returned. On line 26, we loop through the results.
Each time through the loop represents one row in the ResultSet. Lines 27 and 28 show
you the best way to get the columns for a given row.

A ResultSet has a cursor, which points to the current location in the data. Figure 15.5
shows the position as we loop through.

At line 24, the cursor starts by pointing to the location before the first row in the
ResultSet. On the first loop iteration, rs.next() returns true, and the cursor moves
to point to the first row of data. On the second loop iteration, rs.next() returns true
again, and the cursor moves to point to the second row of data. The next call to rs.next()
returns false. The cursor advances past the end of the data. The false signifies that there
is no more data available to get.

We did say the “best way” to get data was with column names. There is another way to
access the columns. You can use an index, counting from 1 instead of a column name.

27: int id = rs.getInt(1);
28: String name = rs.getString(2);

Initial position

rs.next() true

rs.next() true

rs.next() false

1

2

African Elephant

Zebra

7.5

1.2

id
integer

name
varchar(255)

num_acres
numeric

Table: exhibits

F IGURE 15 .5   The ResultSet cursor

884  Chapter 15  ■  JDBC

Now you can see the column positions. Notice how the columns are counted starting
with 1 rather than 0. Just like with a PreparedStatement, JDBC starts counting at 1 in a
ResultSet.

The column name is better because it is clearer what is going on when reading the code. It
also allows you to change the SQL to reorder the columns.

On the exam, either you will be told the names of the columns in a table,
or you can assume that they are correct. Similarly, you can assume that
all SQL is correct.

Sometimes you want to get only one row from the table. Maybe you need only one piece
of data. Or maybe the SQL is just returning the number of rows in the table. When you want
only one row, you use an if statement rather than a while loop.

var sql = "SELECT count(*) FROM exhibits";

try (var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery()) {

 if (rs.next()) {
 int count = rs.getInt(1);
 System.out.println(count);
 }
}

It is important to check that rs.next() returns true before trying to call a getter on the
ResultSet. If a query didn’t return any rows, it would throw a SQLException, so the if
statement checks that it is safe to call. Alternatively, you can use the column name.

var count = rs.getInt("count");

Let’s try to read a column that does not exist.

var sql = "SELECT count(*) AS count FROM exhibits";

try (var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery()) {

 if (rs.next()) {
 var count = rs.getInt("total");
 System.out.println(count);
 }
}

This throws a SQLException with a message like this:

Exception in thread "main" java.sql.SQLException: Column not found: total

Attempting to access a column name or index that does not exist throws a
SQLException, as does getting data from a ResultSet when it isn’t pointing at a valid
row. You need to be able to recognize such code. Here are a few examples to watch out for.
Do you see what is wrong when no rows match?

var sql = "SELECT * FROM exhibits where name='Not in table'";

try (var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery()) {

 rs.next();
 rs.getInt(1); // SQLException
}

Calling rs.next() works. It returns false. However, calling a getter afterward throws
a SQLException because the result set cursor does not point to a valid position. If a match
were returned, this code would have worked. Do you see what is wrong with the following?

var sql = "SELECT count(*) FROM exhibits";

try (var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery()) {

 rs.getInt(1); // SQLException
}

Not calling rs.next() at all is a problem. The result set cursor is still pointing to a loca-
tion before the first row, so the getter has nothing to point to.

To sum up this section, it is important to remember the following:

■■ Always use an if statement or while loop when calling rs.next().

■■ Column indexes begin with 1.

Getting Data for a Column
There are lots of get methods on the ResultSet interface. Table 15.6 shows the get methods
that you need to know. These are the getter equivalents of the setters in Table 15.5.

Getting Data from a ResultSet  885

886  Chapter 15  ■  JDBC

You might notice that not all of the primitive types are in Table 15.6. There are
getByte() and getFloat() methods, but you don’t need to know about them for the
exam. There is no getChar() method. Luckily, you don’t need to remember this. The exam
will not try to trick you by using a get method name that doesn’t exist for JDBC. Isn’t that
nice of the exam creators?

The getObject() method can return any type. For a primitive, it uses the wrapper class.
Let’s look at the following example:

16: var sql = "SELECT id, name FROM exhibits";
17: try (var ps = conn.prepareStatement(sql);
18: var rs = ps.executeQuery()) {
19:
20: while (rs.next()) {
21: Object idField = rs.getObject("id");
22: Object nameField = rs.getObject("name");
23: if (idField instanceof Integer id)
24: System.out.println(id);
25: if (nameField instanceof String name)
26: System.out.println(name);
27: }
28: }

Lines 21 and 22 get the column as whatever type of Object is most appropriate. Lines
23–26 use pattern matching to get the actual types. You probably won’t use getObject()
when writing code for a job, but it is good to know about it for the exam.

TABLE 15 .6   ResultSet get methods

Method Return type

getBoolean boolean

getDouble double

getInt int

getLong long

getObject Object

getString String

Calling a CallableStatement  887

Using Bind Variables
We’ve been creating the PreparedStatement and ResultSet in the same try-with-
resources statement. This doesn’t work if you have bind variables because they need to be set
in between. Luckily, we can nest try-with-resources to handle this. This code prints out the
ID for any exhibits matching a given name:

30: var sql = "SELECT id FROM exhibits WHERE name = ?";
31:
32: try (var ps = conn.prepareStatement(sql)) {
33: ps.setString(1, "Zebra");
34:
35: try (var rs = ps.executeQuery()) {
36: while (rs.next()) {
37: int id = rs.getInt("id");
38: System.out.println(id);
39: }
40: }
41: }

Pay attention to the flow here. First we create the PreparedStatement on line 32. Then
we set the bind variable on line 33. It is only after these are both done that we have a nested
try-with-resources on line 35 to create the ResultSet.

Calling a CallableStatement
In some situations, it is useful to store SQL queries in the database instead of packaging
them with the Java code. This is particularly useful when there are many complex queries.
A stored procedure is code that is compiled in advance and stored in the database. Stored
procedures are commonly written in a database-specific variant of SQL, which varies among
database software providers.

Using a stored procedure reduces network round trips. It also allows database experts to
own that part of the code. However, stored procedures are database-specific and introduce
complexity into maintaining your application. On the exam, you need to know how to call a
stored procedure but not decide when to use one.

You don’t need to know how to read or write a stored procedure for the exam. Therefore,
we have not included any in the book. They are in the code from setting up the sample data-
base if you are curious.

888  Chapter 15  ■  JDBC

You do not need to learn anything database-specific for the exam. Since
studying stored procedures can be quite complicated, we recommend
limiting your studying on CallableStatement to what is in this book.

We will be using four stored procedures in this section. Table 15.7 summarizes what you
need to know about them. In the real world, none of these would be good implementations
since they aren’t complex enough to warrant being stored procedures. As you can see in the
table, stored procedures allow parameters to be for input only, output only, or both.

In the next four sections, we look at how to call each of these stored procedures.

Calling a Procedure without Parameters
Our read_e_names() stored procedure doesn’t take any parameters. It does return a
ResultSet. Since we worked with a ResultSet in the PreparedStatement section, here
we can focus on how the stored procedure is called.

12: String sql = "{call read_e_names()}";
13: try (CallableStatement cs = conn.prepareCall(sql);
14: ResultSet rs = cs.executeQuery()) {
15:
16: while (rs.next()) {
17: System.out.println(rs.getString(3));
18: }
19: }

TABLE 15 .7   Sample stored procedures

Name Parameter name Parameter type Description

read_e_
names()

n/a n/a Returns all rows in names table that have
name beginning with e or E

read_
names_by_
letter()

prefix IN Returns all rows in names table that have
name beginning with specified parameter
(case insensitive)

magic_
number()

num OUT Returns number 42

double_
number()

num INOUT Multiplies parameter by two and returns
that number

Line 12 introduces a new bit of syntax. A stored procedure is called by putting the word
call and the procedure name in braces ({}). Line 13 creates a CallableStatement object.
When we created a PreparedStatement, we used the prepareStatement() method.
Here, we use the prepareCall() method instead.

Lines 14–18 should look familiar. They are the standard logic we have been using to get a
ResultSet and loop through it. This stored procedure returns the underlying table, so the col-
umns are the same.

Passing an IN Parameter
A stored procedure that always returns the same thing is only somewhat useful.
We’ve created a new version of that stored procedure that is more generic. The
read_names_by_letter() stored procedure takes a parameter for the prefix or first letter
of the stored procedure. An IN parameter is used for input.

There are two differences in calling it compared to our previous stored procedure.

25: var sql = "{call read_names_by_letter(?)}";
26: try (var cs = conn.prepareCall(sql)) {
27: cs.setString("prefix", "Z");
28:
29: try (var rs = cs.executeQuery()) {
30: while (rs.next()) {
31: System.out.println(rs.getString(3));
32: }
33: }
34: }

On line 25, we have to pass a ? to show we have a parameter. This should be familiar
from bind variables with a PreparedStatement.

On line 27, we set the value of that parameter. Unlike with PreparedStatement, we can use
either the parameter number (starting with 1) or the parameter name. That means these two
statements are equivalent:

cs.setString(1, "Z");
cs.setString("prefix", "Z");

Returning an OUT Parameter
In our previous examples, we returned a ResultSet. Some stored procedures return
other information. Luckily, stored procedures can have OUT parameters for output. The
magic_number() stored procedure sets its OUT parameter to 42. There are a few differ-
ences here:

40: var sql = "{?= call magic_number(?) }";
41: try (var cs = conn.prepareCall(sql)) {

Calling a CallableStatement  889

890  Chapter 15  ■  JDBC

42: cs.registerOutParameter(1, Types.INTEGER);
43: cs.execute();
44: System.out.println(cs.getInt("num"));
45: }

On line 40, we include two special characters (?=) to specify that the stored procedure
has an output value. This is optional since we have the OUT parameter, but it does aid in
readability.

On line 42, we register the OUT parameter. This is important. It allows JDBC to retrieve
the value on line 44. Remember to always call registerOutParameter() for each OUT or INOUT
parameter (which we cover next).

On line 43, we call execute() instead of executeQuery() since we are not returning a
ResultSet from our stored procedure.

Database-Specific Behavior

Some databases are lenient about certain things this chapter says are required. For
example, some databases allow you to omit the following:

■■ Braces ({})

■■ Bind variable (?) if it is an OUT parameter

■■ Call to registerOutParameter()

For the exam, you need to answer according to the full requirements, which are described
in this book. For example, you should answer exam questions as if braces are required.

Working with an INOUT Parameter
Finally, it is possible to use the same parameter for both input and output. As you read
this code, see whether you can spot which lines are required for the IN part and which are
required for the OUT part:

50: var sql = "{call double_number(?)}";
51: try (var cs = conn.prepareCall(sql)) {
52: cs.setInt(1, 8);
53: cs.registerOutParameter(1, Types.INTEGER);
54: cs.execute();
55: System.out.println(cs.getInt("num"));
56: }

For an IN parameter, line 52 is required since it sets the value. For an OUT parameter, line
53 is required to register it. Line 54 uses execute() again because we are not returning a
ResultSet.

Remember that an INOUT parameter acts as both an IN parameter and an OUT parameter,
so it has all the requirements of both.

Comparing Callable Statement Parameters
Table 15.8 reviews the different types of parameters. You need to know this well
for the exam.

Using Additional Options
So far, we’ve been creating PreparedStatement and CallableStatement with the
default options. Both support ResultSet type and concurrency options. Not all options
are available on all databases. Luckily, you just have to be able to recognize them as valid
on the exam.

There are three ResultSet integer type values:

■■ ResultSet.TYPE_FORWARD_ONLY: Can go through the ResultSet only one
row at a time

■■ ResultSet.TYPE_SCROLL_INSENSITIVE: Can go through the ResultSet in any
order but will not see changes made to the underlying database table

■■ ResultSet.TYPE_SCROLL_SENSITIVE: Can go through the ResultSet in any order
and will see changes made to the underlying database table

There are two ResultSet integer concurrency mode values:

■■ ResultSet.CONCUR_READ_ONLY: The ResultSet cannot be updated.

■■ ResultSet.CONCUR_UPDATABLE: The ResultSet can be updated.

TABLE 15 .8   Stored procedure parameter types

Parameter type IN OUT INOUT

Used for input Yes No Yes

Used for output No Yes Yes

Must set parameter value Yes No Yes

Must call registerOutParameter() No Yes Yes

Can include ?= No Yes Yes

Calling a CallableStatement  891

892  Chapter 15  ■  JDBC

These options are integer values, not enum values, which means you pass both as addi-
tional parameters after the SQL.

conn.prepareCall(sql, ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_READ_ONLY);

conn.prepareStatement(sql, ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

If you see these options on the exam, pay attention to how they are used.
Remember that type always comes first. Also, the methods that take type
also take concurrency mode, so be wary of any question that only passes
one option.

Controlling Data with Transactions
Until now, any changes we made to the database took effect right away. A commit is like
saving a file. On the exam, changes commit automatically unless otherwise specified. How-
ever, you can change this behavior to control commits yourself. A transaction is when one or
more statements are grouped with the final results committed or rolled back. Rollback is like
closing a file without saving. All the changes from the start of the transaction are discarded.
First, we look at writing code to commit and roll back. Then we look at how to control your
rollback points.

Committing and Rolling Back
Our zoo is renovating and has decided to give more space to the elephants. However, we
only have so much space, so the zebra exhibit will need to be made smaller. Since we can’t
invent space out of thin air, we want to ensure that the total amount of space remains the
same. If either adding space for the elephants or removing space for the zebras fails, we want
our transaction to roll back. In the interest of simplicity, we assume that the database table is
in a valid state before we run this code. Now, let’s examine the code for this scenario:

5: public static void main(String[] args) throws SQLException {
6: try (Connection conn =
7: DriverManager.getConnection("jdbc:hsqldb:file:zoo")) {
8:
9: conn.setAutoCommit(false);
10:
11: var elephantRowsUpdated = updateRow(conn, 5, "African Elephant");

Controlling Data with Transactions  893

12: var zebraRowsUpdated = updateRow(conn, -5, "Zebra");
13:
14: if (! elephantRowsUpdated || ! zebraRowsUpdated)
15: conn.rollback();
16: else {
17: String selectSql = """
18: SELECT COUNT(*)
19: FROM exhibits
20: WHERE num_acres <= 0""";
21: try (PreparedStatement ps = conn.prepareStatement(selectSql);
22: ResultSet rs = ps.executeQuery()) {
23:
24: rs.next();
25: int count = rs.getInt(1);
26: if (count == 0)
27: conn.commit();
28: else
29: conn.rollback();
30: } } } }
31:
32: private static boolean updateRow(Connection conn,
33: int numToAdd, String name)
34:
35: throws SQLException {
36:
37: String updateSql = """
38: UPDATE exhibits
39: SET num_acres = num_acres + ?
40: WHERE name = ?""";
41:
42: try (PreparedStatement ps = conn.prepareStatement(updateSql)) {
43: ps.setInt(1, numToAdd);
44: ps.setString(2, name);
45: return ps.executeUpdate() > 0;
46: } }

The first interesting thing in this example is on line 9, where we turn off autocommit
mode and declare that we will handle transactions ourselves. Most databases support dis-
abling autocommit mode. If a database does not, it will throw a SQLException on line 9.
We then attempt to update the number of acres allocated to each animal. If we are unsuc-
cessful and no rows are updated, we roll back the transaction on line 15, causing the state of
the database to remain unchanged.

894  Chapter 15  ■  JDBC

Assuming at least one row is updated, we check exhibits and make sure none of the
rows contain an invalid num_acres value. If this were a real application, we would have
more logic to make sure the amount of space makes sense. On lines 26–30, we decide
whether to commit the transaction to the database or roll back all updates made to the
exhibits table.

Autocommit Edge Cases

You need to know two edge cases for the exam. First, calling setAutoCommit(true) will
automatically trigger a commit when you are not already in autocommit mode. After that,
autocommit mode takes effect, and each statement is automatically committed.

The other edge case is what happens if you have autocommit set to false and close
your connection without rolling back or committing your changes. The answer is that the
behavior is undefined. It may commit or roll back, depending solely on the driver. Don’t
depend on this behavior; remember to commit or roll back at the end of a transaction!

Bookmarking with Savepoints
So far, we have rolled back to the point where autocommit was turned off. You can use save-
points to have more control of the rollback point. Consider the following example:

20: conn.setAutoCommit(false);
21: Savepoint sp1 = conn.setSavepoint();
22: // database code
23: Savepoint sp2 = conn.setSavepoint("second savepoint");
24: // database code
25: conn.rollback(sp2);
26: // database code
27: conn.rollback(sp1);

Line 20 is important. You can only use savepoints when you are controlling the transac-
tion. Lines 21 and 23 show how to create a Savepoint. The name is optional and typically
included in the toString() if you print the savepoint reference.

Line 25 shows the first rollback. That gets rid of any changes made since that savepoint
was created: in this case, the code on line 24. Then line 27 shows the second rollback getting
rid of the code on line 22.

Order matters. If we reversed lines 25 and 27, the code would throw an exception.
Rolling back to sp1 gets rid of any changes made after that, which includes the second save-
point! Similarly, calling conn.rollback() on line 25 would void both savepoints, and line
27 would again throw an exception.

Closing Database Resources  895

Reviewing Transaction APIs
There aren’t many methods for working with transactions, but you need to know all of the
ones in Table 15.9.

Closing Database Resources
As you saw in Chapter 14, “I/O,” it is important to close resources when you are fin-
ished with them. This is true for JDBC as well. JDBC resources, such as a Connection,
are expensive to create. Not closing them creates a resource leak that will eventually slow
your program.

Throughout the chapter, we’ve been using the try-with-resources syntax from Chapter 11.
The resources need to be closed in a specific order. The ResultSet is closed first, followed
by the PreparedStatement (or CallableStatement) and then the Connection.

While it is a good habit to close all three resources, it isn’t strictly necessary.
Closing a JDBC resource should close any resources that it created. In particular, the
following are true:

■■ Closing a Connection also closes PreparedStatement (or CallableStatement)
and ResultSet.

■■ Closing a PreparedStatement (or CallableStatement) also closes the ResultSet.

It is important to close resources in the right order. This avoids both resource leaks and
exceptions.

TABLE 15 .9   Connection APIs for transactions

Method Description

setAutoCommit(boolean b) Sets mode for whether to commit right away

commit() Saves data in database

rollback() Gets rid of statements already made

rollback(Savepoint sp) Goes back to state at Savepoint

setSavepoint() Creates bookmark

setSavepoint(String name) Creates bookmark with name

896  Chapter 15  ■  JDBC

Writing a Resource Leak

In Chapter 11, you learned that it is possible to declare a type before a try-with-resources
statement. Do you see why this method is bad?

 40: public void bad() throws SQLException {
 41: var url = "jdbc:hsqldb:zoo";
 42: var sql = "SELECT not_a_column FROM names";
 43: var conn = DriverManager.getConnection(url);
 44: var ps = conn.prepareStatement(sql);
 45: var rs = ps.executeQuery();
 46:
 47: try (conn; ps; rs) {
 48: while (rs.next())
 49: System.out.println(rs.getString(1));
 50: }
 51: }

Suppose an exception is thrown on line 45. The try-with-resources block is never entered, so
we don’t benefit from automatic resource closing. That means this code has a resource leak
if it fails. Do not write code like this.

There’s another way to close a ResultSet. JDBC automatically closes a ResultSet when you
run another SQL statement from the same Statement. This could be a PreparedStatement or a
CallableStatement.

Dealing with Exceptions

In most of this chapter, we’ve lived in a perfect world. Sure, we mentioned that a checked
SQLException might be thrown by any JDBC method—but we never caught it. We just
declared it and let the caller deal with it. Now let’s catch the exception.

 var sql = "SELECT not_a_column FROM names";
 var url = "jdbc:hsqldb:zoo";
 try (var conn = DriverManager.getConnection(url);
 var ps = conn.prepareStatement(sql);
 var rs = ps.executeQuery()) {

Summary  897

 while (rs.next())
 System.out.println(rs.getString(1));
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 System.out.println(e.getSQLState());
 System.out.println(e.getErrorCode());

 }

The output looks like this:

 Column 'NOT_A_COLUMN' is either not in any table ...
 42X04
 30000

Each of these methods gives you a different piece of information. The getMessage()
method returns a human-readable message about what went wrong. We’ve only included
the beginning of it here. The getSQLState() method returns a code as to what went
wrong. You can Google the name of your database and the SQL state to get more
information about the error. In comparison, getErrorCode() is a database-specific code.
On this database, it doesn’t do anything.

Summary
There are four key SQL statements you should know for the exam, one for each of the
CRUD operations: create (INSERT) a new row, read (SELECT) data, update (UPDATE) one or
more rows, and delete (DELETE) one or more rows.

For the exam, you should be familiar with five JDBC interfaces: Driver, Connection,
PreparedStatement, CallableStatement, and ResultSet. The interfaces are part of
the Java API. A database-specific JAR file provides the implementations.

To connect to a database, you need the JDBC URL. A JDBC URL has three parts sepa-
rated by colons. The first part is jdbc. The second part is the name of the vendor/product.
The third part varies by database, but it includes the location and/or name of the database.
The location is either localhost or an IP address followed by an optional port.

The DriverManager class provides a factory method called getConnection() to
get a Connection implementation. You create a PreparedStatement or
CallableStatement using prepareStatement() and prepareCall(), respectively.
A PreparedStatement is used when the SQL is specified in your application, and a
CallableStatement is used when the SQL is in the database. A PreparedStatement
allows you to set the values of bind variables. A CallableStatement also allows you to set
IN, OUT, and INOUT parameters.

898  Chapter 15  ■  JDBC

When running a SELECT SQL statement, the executeQuery() method returns a ResultSet.
When running a DELETE, INSERT, or UPDATE SQL statement, the executeUpdate() method
returns the number of rows that were affected. There is also an execute() method that returns
a boolean to indicate whether the statement was a query.

You call rs.next() from an if statement or while loop to advance the cursor posi-
tion. To get data from a column, call a method like getString(1) or getString("a").
Column indexes begin with 1, not 0. In addition to getting a String or primitive, you can
call getObject() to get any type.

JDBC lets you choose whether to automatically commit your statements or manage trans-
actions yourself. If you choose the latter, you can control when data is committed or rolled
back. Additionally, you can set savepoints to roll back to specific points.

It is important to close JDBC resources when finished with them to avoid leaking
resources. Closing a Connection automatically closes the Statement and ResultSet objects.
Closing a Statement automatically closes the ResultSet object. Also, running another SQL
statement closes the previous ResultSet object from that Statement.

Exam Essentials
Name the core five JDBC interfaces that you need to know for the exam and where they are
defined.   The five key interfaces are Driver, Connection, PreparedStatement,
CallableStatement, and ResultSet. The interfaces are part of the core Java APIs. The
implementations are part of a database driver JAR file.

Identify correct and incorrect JDBC URLs.   A JDBC URL starts with jdbc:, followed by
the vendor/product name. Next comes another colon and then a database-specific connec-
tion string. This database-specific string includes the location, such as localhost or an IP
address with an optional port. It may also contain the name of the database.

Describe how to get a Connection using DriverManager.   After including the driver
JAR in the classpath, call DriverManager.getConnection(url) or
DriverManager.getConnection(url, username, password) to get a driver-specific
Connection implementation class.

Run queries using a PreparedStatement.   When using a PreparedStatement, the SQL
contains question marks (?) for the parameters or bind variables. This SQL is passed at the
time the PreparedStatement is created, not when it is run. You must call a setter for each
of these with the proper value before executing the query.

Run queries using a CallableStatement.   When using a CallableStatement, the SQL
looks like { call my_proc(?)}. If you are returning a value, {?= call my_proc(?)} is
also permitted. You must set any parameter values before executing the query. Additionally,
you must call registerOutParameter() for any OUT or INOUT parameters.

Exam Essentials  899

Loop through a ResultSet.   Before trying to get data from a ResultSet, you call
rs.next() inside an if statement or while loop. This ensures that the cursor is in
a valid position. To get data from a column, call a method like getString(1) or
getString("a"). Remember that column indexes begin with 1.

Work with transactions.   When autocommit is false, the commit() and rollback()
methods control the transaction. There is an overloaded rollback method taking a
Savepoint to roll back to a specific point.

Identify when a resource should be closed.   If you’re closing all three resources,
the ResultSet must be closed first, followed by the PreparedStatement/
CallableStatement, and the Connection.

900  Chapter 15  ■  JDBC

Review Questions
The answers to the chapter review questions can be found in the Appendix.

1.	 Which interfaces or classes are in a database-specific JAR file? (Choose all that apply.)

A.	 Driver
B.	 Driver’s implementation

C.	 Manager
D.	 DriverManager’s implementation

E.	 PreparedStatement
F.	 PreparedStatement implementation

2.	 Which of the following is a valid JDBC URL?

A.	 jdbc:sybase:localhost:1234/db
B.	 jdbc::sybase::localhost::/db
C.	 jdbc::sybase:localhost::1234/db
D.	 sybase:localhost:1234/db
E.	 sybase::localhost::/db
F.	 sybase::localhost::1234/db

3.	 Which of the options can fill in the blank to make the code compile and run without error?
(Choose all that apply.)

var sql = """
 UPDATE habitat SET environment = null
 WHERE environment = ? """;
try (var ps = conn.prepareStatement(sql)) {

 ps.executeUpdate();
}

A.	 ps.setString(0, "snow");
B.	 ps.setString(1, "snow");
C.	 ps.setString("environment", "snow");
D.	 ps.setString(1, "snow"); ps.setString(1, "snow");
E.	 ps.setString(1, "snow"); ps.setString(2, "snow");
F.	 ps.setString("environment", "snow"); ps.setString("environment",

"snow");

Review Questions  901

4.	 Suppose that you have a table named animal with two rows. What is the result of the fol-
lowing code?

6: var conn = new Connection(url, userName, password);
7: var ps = conn.prepareStatement(
8: "SELECT count(*) FROM animal");
9: var rs = ps.executeQuery();
10: if (rs.next()) System.out.println(rs.getInt(1));

A.	 0
B.	 2
C.	 There is a compiler error on line 6.

D.	 There is a compiler error on line 10.

E.	 There is a compiler error on another line.

F.	 A runtime exception is thrown.

5.	 Which option can fill in the blanks to make the code compile?

boolean bool = ps. ();
int num = ps. ();
ResultSet rs = ps. ();

A.	 execute, executeQuery, executeUpdate
B.	 execute, executeUpdate, executeQuery
C.	 executeQuery, execute, executeUpdate
D.	 executeQuery, executeUpdate, execute
E.	 executeUpdate, execute, executeQuery
F.	 executeUpdate, executeQuery, execute

6.	 Suppose there are two rows in the table before this code is run, and executeUpdate() runs
without error. How many rows are in the table after the code completes?

conn.setAutoCommit(true);

String sql = "INSERT INTO games VALUES(3, Jenga);";

try (PreparedStatement ps = conn.prepareStatement(sql,
 ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)) {
 ps.executeUpdate();
}
conn.rollback();

902  Chapter 15  ■  JDBC

A.	 Two

B.	 Three

C.	 The code does not compile.

D.	 The code throws an exception.

7.	 Suppose that the table names has five rows and the following SQL statement updates all of
them. What is the result of this code?

public static void main(String[] args) throws SQLException {
 var sql = "UPDATE names SET name = 'Animal'";
 try (var conn = DriverManager.getConnection("jdbc:hsqldb:file:zoo");
 var ps = conn.prepareStatement(sql)) {

 var result = ps.executeUpdate();
 System.out.println(result);
 }
}

A.	 0
B.	 1
C.	 5
D.	 The code does not compile.

E.	 A SQLException is thrown.

F.	 A different exception is thrown.

8.	 Suppose learn() is a stored procedure that takes one IN parameter. What is wrong with
the following code? (Choose all that apply.)

18: var sql = "call learn()";
19: try (var cs = conn.prepareCall(sql)) {
20: cs.setString(1, "java");
21: try (var rs = cs.executeQuery()) {
22: while (rs.next())
23: System.out.println(rs.getString(3));
24: }
25: }

A.	 Line 18 is missing braces.

B.	 Line 18 is missing a ?.

C.	 Line 19 is not allowed to use var.

D.	 Line 20 does not compile.

E.	 Line 22 does not compile.

F.	 Something else is wrong with the code.

G.	 None of the above. This code is correct.

Review Questions  903

9.	 Suppose that the table enrichment has three rows with the animals bat, rat, and snake. How
many lines does this code print?

var sql = "SELECT toy FROM enrichment WHERE animal = ?";
try (var ps = conn.prepareStatement(sql)) {
 try (var rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getString(1));
 }
}

A.	 0

B.	 1

C.	 3

D.	 The code does not compile.

E.	 A SQLException is thrown.

F.	 A different exception is thrown.

10.	 Suppose that the table food has five rows, and this SQL statement updates all of them. What
is the result of this code?

public static void main(String[] args) {
 var sql = "UPDATE food SET amount = amount + 1";
 try (var conn = DriverManager.getConnection("jdbc:hsqldb:file:zoo");
 var ps = conn.prepareStatement(sql)) {

 var result = ps.executeUpdate();
 System.out.println(result);
 }
}

A.	 0
B.	 1
C.	 5
D.	 The code does not compile.

E.	 A SQLException is thrown.

F.	 A different exception is thrown.

904  Chapter 15  ■  JDBC

11.	 Suppose we have a JDBC program that calls a stored procedure, which returns a set of
results. Which is the correct order in which to close database resources for this call?

A.	 Connection, ResultSet, CallableStatement
B.	 Connection, CallableStatement, ResultSet
C.	 ResultSet, Connection, CallableStatement
D.	 ResultSet, CallableStatement, Connection
E.	 CallableStatement, Connection, ResultSet
F.	 CallableStatement, ResultSet, Connection

12.	 Suppose that the table counts has five rows with the numbers 1 to 5. How many lines does
this code print?

var sql = "SELECT num FROM counts WHERE num> ?";
try (var ps = conn.prepareStatement(sql,
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE)) {
 ps.setInt(1, 3);

 try (var rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getObject(1));
 }

 ps.setInt(1, 100);

 try (var rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getObject(1));
 }
}

A.	 0

B.	 1

C.	 2

D.	 4

E.	 The code does not compile.

F.	 The code throws an exception.

13.	 Which of the following can fill in the blank correctly? (Choose all that apply.)

var rs = ps.executeQuery();
if (rs.next())
 ;

Review Questions  905

A.	 String s = rs.getString(0)
B.	 String s = rs.getString(1)
C.	 String s = rs.getObject(0)
D.	 String s = rs.getObject(1)
E.	 Object s = rs.getObject(0)
F.	 Object s = rs.getObject(1)

14.	 Suppose learn() is a stored procedure that takes one IN parameter and one OUT param-
eter. What is wrong with the following code? (Choose all that apply.)

18: var sql = "{?= call learn(?)}";
19: try (var cs = conn.prepareCall(sql)) {
20: cs.setInt(1, 8);
21: cs.execute();
22: System.out.println(cs.getInt(1));
23: }

A.	 Line 18 does not call the stored procedure properly.

B.	 The parameter value is not set for input.

C.	 The parameter is not registered for output.

D.	 The code does not compile.

E.	 Something else is wrong with the code.

F.	 None of the above. This code is correct.

15.	 Which can fill in the blank and have the code run without error? (Choose all that apply.)

17: conn.setAutoCommit(false);
18:
19: var larry = conn.setSavepoint();
20: var curly = conn.setSavepoint();
21: var moe = conn.setSavepoint();
22: var shemp = conn.setSavepoint();
23:
24: ;
25:
26: conn.rollback(curly);

A.	 conn.rollback(larry)
B.	 conn.rollback(curly)
C.	 conn.rollback(moe)
D.	 conn.rollback(shemp)
E.	 conn.rollback()
F.	 The code does not compile.

906  Chapter 15  ■  JDBC

16.	 Which of the following can fill in the blank? (Choose all that apply.)

var sql = " ";
try (var ps = conn.prepareStatement(sql)) {
 ps.setObject(3, "red");
 ps.setInt(2, 8);
 ps.setString(1, "ball");
 ps.executeUpdate();
}

A.	 { call insert_toys(?, ?) }
B.	 { call insert_toys(?, ?, ?) }
C.	 { call insert_toys(?, ?, ?, ?) }
D.	 INSERT INTO toys VALUES (?, ?)
E.	 INSERT INTO toys VALUES (?, ?, ?)
F.	 INSERT INTO toys VALUES (?, ?, ?, ?)

17.	 Suppose that the table counts has five rows with the numbers 1 to 5. How many lines does
this code print?

var sql = "SELECT num FROM counts WHERE num> ?";
try (var ps = conn.prepareStatement(sql)) {
 ps.setInt(1, 3);

 try (var rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getObject(1));
 }
 try (var rs = ps.executeQuery()) {
 while (rs.next())
 System.out.println(rs.getObject(1));
 }
}

A.	 0

B.	 1

C.	 2

D.	 4

E.	 The code does not compile.

F.	 The code throws an exception.

Review Questions  907

18.	 There are currently 100 rows in the table species before inserting a new row. What is the
output of the following code?

String insert = "INSERT INTO species VALUES (3, 'Ant', .05)";
String select = "SELECT count(*) FROM species";
try (var ps = conn.prepareStatement(insert)) {
 ps.executeUpdate();
}
try (var ps = conn.prepareStatement(select)) {
 var rs = ps.executeQuery();
 System.out.println(rs.getInt(1));
}

A.	 100
B.	 101
C.	 The code does not compile.

D.	 A SQLException is thrown.

E.	 A different exception is thrown.

19.	 Which of the options can fill in the blank to make the code compile and run without error?
(Choose all that apply.)

var sql = "UPDATE habitat WHERE environment = ?";
try (var ps = conn.prepareCall(sql)) {

 ps.executeUpdate();
}

A.	 ps.setString(0, "snow");
B.	 ps.setString(1, "snow");
C.	 ps.setString("environment", "snow");
D.	 The code does not compile.

E.	 The code throws an exception at runtime.

20.	 Which is the first line containing a compiler error?

25: String url = "jdbc:hsqldb:file:zoo";
26: try (var conn = DriverManager.getConnection(url);
27: var ps = conn.prepareStatement();
28: var rs = ps.executeQuery("SELECT * FROM swings")) {

908  Chapter 15  ■  JDBC

29: while (rs.next()) {
30: System.out.println(rs.getInteger(1));
31: }
32: }

A.	 Line 26

B.	 Line 27

C.	 Line 28

D.	 Line 29

E.	 Line 30

F.	 None of the above

21.	 Suppose conn is a valid connection object and the exhibits table is empty. Which are true?
(Choose two.)

try (conn) {
 conn.setAutoCommit(false);

 String sql = "INSERT INTO exhibits VALUES(3, 'Test', 2)";
 try (PreparedStatement ps = conn.prepareStatement(sql)) {
 ps.executeUpdate();
 }

 conn.setAutoCommit(true); // line W
}

A.	 As written, the table will remain empty after this code.

B.	 As written, the table will contain one row after this code.

C.	 As written, the code will throw an exception.

D.	 When line W is commented out, the table will remain empty after this code.

E.	 When line W is commented out, the table will contain one row after this code.

F.	 When line W is commented out, the code will throw an exception.

Answers to the
Review Questions

Appendix

910  Appendix  ■  Answers to the Review Questions

Chapter 1: Building Blocks
1.	 D, E.  Option E is the canonical main() method signature. You need to memorize it.

Option D is an alternate form with the redundant final. Option A is incorrect because the
main() method must be public. Options B and F are incorrect because the main() method
must have a void return type. Option C is incorrect because the main() method must
be static.

2.	 C, D, E.  The package and import statements are both optional. If both are present, the
order must be package, then import, and then class. Option A is incorrect because
class is before package and import. Option B is incorrect because import is before
package. Option F is incorrect because class is before package.

3.	 A, E.  Bunny is a class, which can be seen from the declaration: public class Bunny.
The variable bun is a reference to an object. The method main() is the standard entry
point to a program. Option G is incorrect because the parameter type matters, not the
parameter name.

4.	 B, E, G.  Option A is invalid because a single underscore is not allowed. Option C is not a
valid identifier because true is a Java reserved word. Option D is not valid because a period
(.) is not allowed in identifiers. Option F is not valid because the first character is not a
letter, dollar sign ($), or underscore (_). Options B, E, and G are valid because they contain
only valid characters.

5.	 A, D, F.  Garbage collection is never guaranteed to run, making option F correct and option E
incorrect. Next, the class compiles and runs without issue, so option G is incorrect. The Bear
object created on line 9 is accessible until line 13 via the brownBear reference variable,
which is option A. The Bear object created on line 10 is accessible via both the polarBear
reference and the brownBear.pandaBear reference. After line 12, the object is still acces-
sible via brownBear.pandaBear. After line 13, though, it is no longer accessible since
brownBear is no longer accessible, which makes option D the final answer.

6.	 F.  To solve this problem, you need to trace the braces {} and see when variables go in and
out of scope. The variables on lines 2 and 7 are only in scope for a single line block. The var-
iable on line 12 is only in scope for the for loop. None of these are in scope on line 14. By
contrast, the three instance variables on lines 3 and 4 are available in all instance methods.
Additionally, the variables on lines 6, 9, and 10 are available since the method and while
loop are still in scope. This is a total of 7 variables, which is option F.

7.	 C, E.  The first thing to recognize is that this is a text block and the code inside the """ is
just text. Options A and B are incorrect because the numForks and numKnives variables
are not used. This is convenient since numKnives is not initialized and would not compile if
it were referenced. Option C is correct as it is matching text. Option D is incorrect because
the text block does not have a trailing blank line. Finally, option E is also an answer since
" # knives is indented.

Chapter 1: Building Blocks  911

8.	 B, D, E, H.  A var cannot be initialized with a null value without a type, but it can be
assigned a null value later if the underlying type is not a primitive. For these reasons, option
H is correct, but options A and C are incorrect. Options B and D are correct as the under-
lying types are String and Integer, respectively. Option E is correct as this is a valid
numeric expression. You might know that dividing by zero produces a runtime exception, but
the question was only about whether the code compiled. Finally, options F and G are incor-
rect as var cannot be used in a multiple-variable assignment.

9.	 E.  Options C and D are incorrect because local variables don’t have default values. Option A
is incorrect because float should have a decimal point. Option B is incorrect because prim-
itives do not default to null. Option E is correct and option F incorrect because reference
types in class variables default to null.

10.	 A, E, F.  An underscore (_) can be placed in any numeric literal, as long as it is not at the
beginning, at the end, or next to a decimal point (.). Underscores can even be placed next to
each other. For these reasons, options A, E, and F are correct. Options B and D are incorrect
as the underscore (_) is next to a decimal point (.). Options C and G are incorrect because
an underscore (_) cannot be placed at the beginning or end of the literal.

11.	 E.  The first two imports can be removed because java.lang is automatically imported. The
following two imports can be removed because Tank and Water are in the same package,
making the correct option E. If Tank and Water were in different packages, exactly one of
these two imports could be removed. In that case, the answer would be option D.

12.	 A, C, D.  Line 2 does not compile as only one type should be specified, making option A
correct. Line 3 compiles without issue as it declares a local variable inside an instance initial-
izer that is never used. Line 4 does not compile because Java does not support setting default
method parameter values, making option C correct. Finally, line 7 does not compile because
fins is in scope and accessible only inside the instance initializer on line 3, making option
D correct.

13.	 A, B, C.  Option A is correct because it imports all the classes in the aquarium package
including aquarium.Water. Options B and C are correct because they import Water by
class name. Since importing by class name takes precedence over wildcards, these compile.
Option D is incorrect because Java doesn’t know which of the two wildcard Water classes to
use. Option E is incorrect because you cannot specify the same class name in two imports.

14.	 A, B, D, E.  Line 3 does not compile because the L suffix makes the literal value a long,
which cannot be stored inside a short directly, making option A correct. Line 4 does not
compile because int is an integral type, but 2.0 is a double literal value, making option B
correct. Line 5 compiles without issue. Lines 6 and 7 do not compile because numPets and
numGrains are both primitives, and you can call methods only on reference types, not prim-
itive values, making options D and E correct, respectively. Finally, line 8 compiles because
there is a length() method defined on String.

15.	 C, E, F.  In Java, there are no guarantees about when garbage collection will run. The JVM
is free to ignore calls to System.gc(). For this reason, options A, B, and D are incorrect.
Option C is correct as the purpose of garbage collection is to reclaim used memory. Option
E is also correct that an object may never be garbage collected, such as if the program ends

912  Appendix  ■  Answers to the Review Questions

before garbage collection runs. Option F is correct and is the primary means by which gar-
bage collection algorithms determine whether an object is eligible for garbage collection.
Finally, option G is incorrect as marking a variable final means it is constant within its
own scope. For example, a local variable marked final will be eligible for garbage collec-
tion after the method ends, assuming there are no other references to the object that exist
outside the method.

16.	 A, D.  Option A is correct. There are two lines. One starts with squirrel, and the other
starts with pigeon. Remember that a backslash means to skip the line break. Option D
is also correct as \s means to keep whitespace. In a text block, incidental indentation is
ignored, making option F incorrect.

17.	 D, F, G.  The code compiles and runs without issue, so options A and B are incorrect. A
boolean field initializes to false, making option D correct with Empty = false being
printed. Object references initialize to null, not the empty String, so option F is correct
with Brand = null being printed. Finally, the default value of floating-point numbers is
0.0. Although float values can be declared with an f suffix, they are not printed with an f
suffix. For these reasons, option G is correct and Code = 0.0 is printed.

18.	 B, C, F.  A var cannot be used for a constructor or method parameter or for an instance or
class variable, making option A incorrect and option C correct. The type of a var is known
at compile-time, and the type cannot be changed at runtime, although its value can change
at runtime. For these reasons, options B and F are correct, and option E is incorrect. Option
D is incorrect, as var is not permitted in multiple-variable declarations. Finally, option G is
incorrect, as var is not a reserved word in Java.

19.	 A, D.  The first two lines provide a way to convert a String into a number. The first is
a long primitive and the second is a Long reference object, making option D one of the
answers. The code is correct and the maximum is 100, which is option A.

20.	 C.  The key thing to notice is that line 4 does not define a constructor, but instead a method
named PoliceBox(), since it has a return type of void. This method is never executed
during the program run, and color and age are assigned the default values null and 0L,
respectively. Lines 11 and 12 change the values for an object associated with p, but then, on
line 13, the p variable is changed to point to the object associated with q, which still has the
default values. For this reason, the program prints Q1=null, Q2=0, P1=null, and P2=0,
making option C the only correct answer.

21.	 D.  We start with the main() method, which prints 7- on line 10. Next, a new Salmon
instance is created on line 11. This calls the two instance initializers on lines 3 and 4 to be
executed in order. The default value of an instance variable of type int is 0, so 0- is printed
next and count is assigned a value of 1. Next, the constructor is called. This assigns a value
of 4 to count and prints 2-. Finally, line 12 prints 4-, since that is the value of count.
Putting it all together, we have 7-0-2-4-, making option D the correct answer.

22.	 C, F, G.  First, 0b is the prefix for a binary value, and 0x is the prefix for a hexadecimal
value. These values can be assigned to many primitive types, including int and double,
making options C and F correct. Option A is incorrect because naming the variable Amount
will cause the System.out.print(amount) call on the next line to not compile. Option
B is incorrect because 9L is a long value. If the type was changed to long amount = 9L,

Chapter 2: Operators  913

then it would compile. Option D is incorrect because 1_2.0 is a double value. If the type
was changed to double amount = 1_2.0, then it would compile. Options E and H are
incorrect because the underscore (_) appears next to the decimal point (.), which is not
allowed. Finally, option G is correct, and the underscore and assignment usage are valid.

23.	 A, D.  The first compiler error is on line 3. The variable temp is declared as a float, but the
assigned value is 50.0, which is a double without the F/f postfix. Since a double doesn’t
fit inside a float, line 3 does not compile. Next, depth is declared inside the for loop and
only has scope inside this loop. Therefore, reading the value on line 10 triggers a compiler
error. For these reasons, options A and D are the correct answers.

Chapter 2: Operators
1.	 A, D, G.  Option A is the equality operator and can be used on primitives and object refer-

ences. Options B and C are both arithmetic operators and cannot be applied to a boolean
value. Option D is the logical complement operator and is used exclusively with boolean
values. Option E is the modulus operator, which can be used only with numeric primitives.
Option F is a bitwise complement operator and can only be applied to integer values. Finally,
option G is correct, as you can cast a boolean variable since boolean is a type.

2.	 A, B, D.  The expression apples + oranges is automatically promoted to int, so int and
data types that can be promoted automatically from int will work. Options A, B, and D
are such data types. Option C will not work because boolean is not a numeric data type.
Options E and F will not work without an explicit cast to a smaller data type.

3.	 B, C, D, F.  The code will not compile as is, so option A is not correct. The value 2 * ear is
automatically promoted to long and cannot be automatically stored in hearing, which is
an int value. Options B, C, and D solve this problem by reducing the long value to int.
Option E does not solve the problem and actually makes it worse by attempting to place the
value in a smaller data type. Option F solves the problem by increasing the data type of the
assignment so that long is allowed.

4.	 B.  The code compiles and runs without issue, so option E is not correct. This example
is tricky because of the second assignment operator embedded in line 5. The expression
(wolf=false) assigns the value false to wolf and returns false for the entire expres-
sion. Since teeth does not equal 10, the left side returns true; therefore, the exclusive or
(^) of the entire expression assigned to canine is true. The output reflects these assign-
ments, with no change to teeth, so option B is the only correct answer.

5.	 A, C.  Options A and C show operators in increasing or the same order of precedence.
Options B and E are in decreasing or the same order of precedence. Options D, F, and G are
in neither increasing nor decreasing order of precedence. In option D, the assignment oper-
ator (=) is between two unary operators, with the multiplication operator (*) incorrectly
being in place of highest precedence. In option F, the logical complement operator (!) has the
highest order of precedence, so it should be last. In option G, the assignment operators have
the lowest order of precedence, not the highest, so the last two operators should be first.

914  Appendix  ■  Answers to the Review Questions

6.	 F.  The code does not compile because line 3 contains a compilation error. The cast (int)
is applied to fruit, not the expression fruit+vegetables. Since the cast operator has
a higher operator precedence than the addition operator, it is applied to fruit, but the
expression is promoted to a float, due to vegetables being float. The result cannot
be returned as long in the addCandy() method without a cast. For this reason, option F is
correct. If parentheses were added around fruit+vegetables, then the output would be
3, 5, 6, and option B would be correct. Remember that casting floating-point numbers to
integral values results in truncation, not rounding.

7.	 D.  In the first boolean expression, vis is 2 and ph is 7, so this expression evaluates to
true & (true || false), which reduces to true. The second boolean expression
uses the conditional operator, and since (vis > 2) is false, the right side is not evaluated,
leaving ph at 7. In the last assignment, ph is 7, and the pre-decrement operator is applied
first, reducing the expression to 7 <= 6 and resulting in an assignment of false. For these
reasons, option D is the correct answer.

8.	 A.  The code compiles and runs without issue, so option E is incorrect. Line 7 does not
produce a compilation error since the compound operator applies casting automatically.
Line 5 increments pig by 1, but it returns the original value of 4 since it is using the post-
increment operator. The pig variable is then assigned this value, and the increment operation
is discarded. Line 7 just reduces the value of goat by 1, resulting in an output of 4 - 1 and
making option A the correct answer.

9.	 A, D, E.  The code compiles without issue, so option G is incorrect. In the first expression,
a > 2 is false, so b is incremented to 5; but since the post-increment operator is used,
4 is printed, making option D correct. The --c was not applied, because only one of the
right-hand expressions was evaluated. In the second expression, a!=c is false since c was
never modified. Since b is 5 due to the previous line and the post-increment operator is used,
b++ returns 5. The result is then assigned to b using the assignment operator, overriding
the incremented value for b and printing 5, making option E correct. In the last expression,
parentheses are not required, but lack of parentheses can make ternary expressions difficult
to read. From the previous lines, a is 2, b is 5, and c is 2. We can rewrite this expression
with parentheses as (2 > 5 ? (5 < 2 ? 5 : 2) : 1). The second ternary expres-
sion is never evaluated since 2 > 5 is false, and the expression returns 1, making option
A correct.

10.	 G.  The code does not compile due to an error on the second line. Even though both height
and weight are cast to byte, the multiplication operator automatically promotes them to
int, resulting in an attempt to store an int in a short variable. For this reason, the code
does not compile, and option G is the only correct answer. This line contains the only compi-
lation error.

11.	 D.  First, * and % have the same operator precedence, so the expression is evaluated from left
to right unless parentheses are present. The first expression evaluates to 8 % 3, which leaves
a remainder of 2. The second expression is evaluated left to right since * and % have the
same operator precedence, and it reduces to 6 % 3, which is 0. The last expression reduces
to 5 * 1, which is 5. Therefore, the output on line 14 is 2, 0, 5, making option D the
correct answer.

Chapter 2: Operators  915

12.	 D.  The pre- prefix indicates the operation is applied first, and the new value is returned,
while the post- prefix indicates the original value is returned prior to the operation. Next,
increment increases the value, while decrement decreases the value. For these reasons, option
D is the correct answer.

13.	 F.  The first expression is evaluated from left to right since the operator precedence of & and
^ is the same, letting us reduce it to false ^ sunday, which is true, because sunday
is true. In the second expression, we apply the negation operator (!) first, reducing the
expression to sunday && true, which evaluates to true. In the last expression, both vari-
ables are true, so they reduce to !(true && true), which further reduces to !true, aka
false. For these reasons, option F is the correct answer.

14.	 B, E, G.  The return value of an assignment operation in the expression is the same as the
value of the newly assigned variable. For this reason, option A is incorrect, and option E is
correct. Option B is correct, as the equality (==) and inequality (!=) operators can both be
used with objects. Option C is incorrect, as boolean and numeric types are not comparable.
For example, you can’t say true == 3 without a compilation error. Option D is incorrect,
as logical operators evaluate both sides of the expression. The (|) operator will cause both
sides to be evaluated. Option F is incorrect, as Java does not accept numbers for boolean
values. Finally, option G is correct, as you need to use the negation operator (-) to flip or
negate numeric values, not the logical complement operator (!).

15.	 D.  The ternary operator is the only operator that takes three values, making option D the
only correct choice. Options A, B, C, E, and G are all binary operators. While they can be
strung together in longer expressions, each operation uses only two values at a time. Option
F is a unary operator and takes only one value.

16.	 B.  The first line contains a compilation error. The value 3 is cast to long. The 1 * 2 value
is evaluated as int but promoted to long when added to the 3. Trying to store a long
value in an int variable triggers a compiler error. The other lines do not contain any compi-
lation errors, as they store smaller values in larger or same-size data types, with lines 2 and 4
using casting to do so. Since only one line does not compile, option B is correct.

17.	 C, F.  The starting values of ticketsTaken and ticketsSold are 1 and 3, respectively.
After the first compound assignment, ticketsTaken is incremented to 2. The
ticketsSold value is increased from 3 to 5; since the post-increment operator was used,
the value of ticketsTaken++ returns 1. On the next line, ticketsTaken is doubled to
4. On the final line, ticketsSold is increased by 1 to 6. The final values of the variables
are 4 and 6, for ticketsTaken and ticketsSold, respectively, making options C and F
the correct answers. Note the last line does not trigger a compilation error as the compound
operator automatically casts the right-hand operand.

18.	 C.  Only parentheses, (), can be used to change the order of operation in an expression,
making option C correct. The other operators, such as [], < >, and { }, cannot be used as
parentheses in Java.

19.	 B, F.  The code compiles and runs successfully, so options G and H are incorrect. On line 5,
the pre-increment operator is executed first, so start is incremented to 8, and the new value
is returned as the right side of the expression. The value of end is computed by adding 8 to

916  Appendix  ■  Answers to the Review Questions

the original value of 4, leaving a new value of 12 for end and making option F a correct
answer. On line 6, we are incrementing one past the maximum byte value. Due to overflow,
this will result in a negative number, making option B the correct answer. Even if you didn’t
know the maximum value of byte, you should have known the code compiles and runs and
looked for the answer for start with a negative number.

20.	 A, D, E.  Unary operators have the highest order of precedence, making option A correct. The
negation operator (-) is used only for numeric values, while the logical complement oper-
ator (!) is used exclusively for boolean values. For these reasons, option B is incorrect, and
option E is correct. Finally, the pre-increment/pre-decrement operators return the new value
of the variable, while the post-increment/post-decrement operators return the original vari-
able. For these reasons, option C is incorrect, and option D is correct.

21.	 E.  The bitwise complement of 8 can be found by multiplying the number by negative one
and subtracting one, making -9 the value of bird. By contrast, plane is -8 because it
negates myFavoriteNumber. Since bird and plane are not the same, superman is
assigned a value of 10. The pre-decrement operator takes superman, subtracts 1, and
returns the new value, printing 9. For this reason, option E is correct.

Chapter 3: Making Decisions
1.	 A, B, C, E, F, G.  A switch expression supports only the primitives int, byte, short,

and char, along with their associated wrapper classes Integer, Byte, Short, and
Character, respectively, making options B, C, and F correct and ruling out options D and
H. It also supports enum and String, making options A and E correct. Finally, switch
supports var if the type can be resolved to a supported switch data type, making option
G correct.

2.	 B.  The code compiles and runs without issue, so options D, E, and F are incorrect. Even
though two consecutive else statements on lines 7 and 8 look a little odd, they are associ-
ated with separate if statements on lines 5 and 6, respectively. The value of humidity on
line 4 is equal to -4 + 12, which is 8. The first if statement evaluates to true on line 5, so
line 6 is executed and evaluates to false. This causes the else statement on line 7 to run,
printing Just Right and making option B the correct answer.

3.	 A, D, F, H.  A for-each loop supports arrays, making options A and F correct. For
Double[][], each element of the for-each loop would be a Double[]. A for-each loop also
supports classes that implement java.lang.Iterable. Although this includes many of
the Collections Framework classes, not all of them implement java.lang.Iterable. For
this reason, option C is incorrect, and options D and H are correct. Options B, E, and G are
incorrect, as they do not implement java.lang.Iterable. Although a String is a list of
ordered characters, the class does not implement the required interface for a for-each loop.

Chapter 3: Making Decisions  917

4.	 F.  The code does not compile because the switch expression requires all possible case
values to be handled, making option F correct. If a valid default statement was added, then
the code would compile and print Turtle at runtime. Unlike traditional switch statements,
switch expressions execute exactly one branch and do not use break statements between
case statements.

5.	 E.  The second for-each loop contains a continue followed by a print() statement.
Because the continue is not conditional and always included as part of the body of the for-
each loop, the print() statement is not reachable. For this reason, the print() statement
does not compile. As this is the only compilation error, option E is correct. The other lines of
code compile without issue.

6.	 C, D, E.  A for-each loop can be executed on any Collections object that implements
java.lang.Iterable, such as List or Set, but not all Collections classes, such as Map,
so option A is incorrect. The body of a do/while loop is executed one or more times, while
the body of a while loop is executed zero or more times, making option E correct and
option B incorrect. The conditional expression of for loops is evaluated at the start of the
loop execution, meaning the for loop may execute zero or more times, making option C
correct. A switch expression that takes a String requires a default branch if the result
is assigned to a variable, making option D correct. Finally, each if statement has at most one
matching else statement, making option F incorrect.

7.	 B, D.  Option A is incorrect because on the first iteration, it attempts to access
weather[weather.length] of the nonempty array, which causes an
ArrayIndexOutOfBoundsException to be thrown. Option B is correct and will print
the elements in order. Option C doesn’t compile as i is undefined in weather[i]. For this
to work, the body of the for-each loop would have to be updated as well. Option D is also
correct and is a common way to print the elements of an array in reverse order. Option E
does not compile and is therefore incorrect. You can declare multiple elements in a for loop,
but the data type must be listed only once, such as in for(int i=0, j=3; ...). Finally,
option F is incorrect because the first element of the array is skipped. Since the conditional
expression is checked before the loop is executed the first time, the first value of i used inside
the body of the loop will be 1.

8.	 G.  The first two pattern matching statements compile without issue. The variable bat is
allowed to be used again, provided it is no longer in scope. Line 36 does not compile,
though. Due to flow scoping, if s is not a Long, then bat is not in scope in the expres-
sion bat <= 20. Line 38 also does not compile as default cannot be used as part of an
if/else statement. For these two reasons, option G is correct.

9.	 B, C, E.  The code contains a nested loop and a conditional expression that is executed if the
sum of col + row is an even number; otherwise, count is incremented. Note that options
E and F are equivalent to options B and D, respectively, since unlabeled statements apply to
the most inner loop. Studying the loops, the first time the condition is true is in the second
iteration of the inner loop, when row is 1 and col is 1. Option A is incorrect because this
causes the loop to exit immediately with count only being set to 1. Options B, C, and E
follow the same pathway. First, count is incremented to 1 on the first inner loop, and then

918  Appendix  ■  Answers to the Review Questions

the inner loop is exited. On the next iteration of the outer loop, row is 2 and col is 0, so
execution exits the inner loop immediately. On the third iteration of the outer loop, row is 3
and col is 0, so count is incremented to 2. In the next iteration of the inner loop, the sum
is even, so we exit, and our program is complete, making options B, C, and E each correct.
Options D and F are both incorrect, as they cause the inner and outer loops to execute mul-
tiple times, with count having a value of 5 when done. You don’t need to trace through all
the iterations; just stop when the value of count exceeds 2.

10.	 E.  This code contains numerous compilation errors, making options A and H incorrect. Line
15 does not compile, as continue cannot be used inside a switch statement like this. Line
16 is not a compile-time constant since any int value can be passed as a parameter. Mark-
ing it final does not change this, so it doesn’t compile. Line 18 does not compile because
Sunday is not marked as final. Being effectively final is insufficient. Finally, line 19 does
not compile because DayOfWeek.MONDAY is not an int value. While switch statements
do support enum values, each case statement must have the same data type as the switch
variable otherDay, which is int. The rest of the lines do compile. Since exactly four lines
do not compile, option E is the correct answer.

11.	 A.  The code compiles and runs without issue, printing 3 at runtime and making option
A correct. The default statement on line 17 is optional since all the enum values are
accounted for and can be removed without changing the output.

12.	 C.  Prior to the first iteration, sing = 8, squawk = 2, and notes = 0. After the itera-
tion of the first loop, sing is updated to 7, squawk to 4, and notes to the sum of the new
values for sing + squawk, 7 + 4 = 11. After the iteration of the second loop, sing is
updated to 6, squawk to 6, and notes to the sum of itself plus the new values for
sing + squawk, 11 + 6 + 6 = 23. On the third iteration of the loop,
sing > squawk evaluates to false, as 6 > 6 is false. The loop ends and the most
recent value of sing, 23, is output, so the correct answer is option C.

13.	 G.  This example may look complicated, but the code does not compile. Line 8 is missing the
required parentheses around the boolean conditional expression. Since the code does not
compile and it is not because of line 6, option G is the correct answer. If line 8 was corrected
with parentheses, then the loop would be executed twice, and the output would be 11.

14.	 B, D, F.  The code does compile, making option G incorrect. In the first for-each loop, the
right side of the for-each loop has a type of int[], so each element penguin has a type
of int, making option B correct. In the second for-each loop, ostrich has a type of
Character[], so emu has a data type of Character, making option D correct. In the
last for-each loop, parrots has a data type of List<Integer>. Since the generic type
of Integer is used in the List, macaw will have a data type of Integer, making option
F correct.

15.	 F.  The code does not compile, although not for the reason specified in option E. The sec-
ond case statement contains invalid syntax. Each case statement must have the keyword
case—in other words, you cannot chain them with a colon (:). For this reason, option F
is the correct answer. This line could have been fixed to say case 'B', 'C' or by adding
the case keyword before 'C'; then the rest of the code would have compiled and printed
great good at runtime.

Chapter 3: Making Decisions  919

16.	 A, B, D.  To print items in the wolf array in reverse order, the code needs to start with
wolf[wolf.length-1] and end with wolf[0]. Option A accomplishes this and is the
first correct answer. Option B is also correct and is one of the most common ways a reverse
loop is written. The termination condition is often m>=0 or m>-1, and both are correct.
Options C and F each cause an ArrayIndexOutOfBoundsException at runtime since
both read from wolf[wolf.length] first, with an index that is passed the length of the
0-based array wolf. The form of option C would be successful if the value was changed to
wolf[wolf.length-z-1]. Option D is also correct, as the j is extraneous and can be
ignored in this example. Finally, option E is incorrect and produces an infinite loop, as w is
repeatedly set to r-1, in this case 4, on every loop iteration. Since the update statement has
no effect after the first iteration, the condition is never met, and the loop never terminates.

17.	 B, E.  The code compiles without issue and prints two distinct numbers at runtime, so options
G and H are incorrect. The first loop executes a total of five times, with the loop ending
when participants has a value of 10. For this reason, option E is correct. In the second
loop, animals starts out not less than or equal to 1, but since it is a do/while loop, it
executes at least once. In this manner, animals takes on a value of 3 and the loop termi-
nates, making option B correct. Finally, the last loop executes a total of two times, with
performers starting with -1, going to 1 at the end of the first loop, and then ending with
a value of 3 after the second loop, which breaks the loop. This makes option B a correct
answer twice over.

18.	 C, E.  Pattern matching with an if statement is implemented using the instanceof oper-
ator, making option C correct and options A and B incorrect. Option D is incorrect as it is
possible to access a pattern variable outside the if statement in which it is defined. Option
E is a correct statement about flow scoping. Option F is incorrect. Pattern matching does not
support declaring variables in else statements as else statements do not have a boolean
expression.

19.	 E.  The variable snake is declared within the body of the do/while statement, so it is out
of scope on line 7. For this reason, option E is the correct answer. If snake were declared
before line 3 with a value of 1, then the output would have been 1 2 3 4 5 -5.0, and
option G would have been the correct answer.

20.	 A, E.  The most important thing to notice when reading this code is that the innermost loop
is an infinite loop. Therefore, you are looking for solutions that skip the innermost loop
entirely or that exit that loop. Option A is correct, as break L2 on line 8 causes the second
inner loop to exit every time it is entered, skipping the innermost loop entirely. For option B,
the first continue on line 8 causes the execution to skip the innermost loop on the first iter-
ation of the second loop but not the second iteration of the second loop. The innermost loop
is executed, and with continue on line 12, it produces an infinite loop at runtime, making
option B incorrect. Option C is incorrect because it contains a compiler error. The label L3
is not visible outside its loop. Option D is incorrect, as it is equivalent to option B since the
unlabeled break and continue apply to the nearest loop and therefore produce an infinite
loop at runtime. Like option A, the continue L2 on line 8 allows the innermost loop to be
executed the second time the second loop is called. The continue L2 on line 12 exits the
infinite loop, though, causing control to return to the second loop. Since the first and second
loops terminate, the code terminates, and option E is a correct answer.

920  Appendix  ■  Answers to the Review Questions

21.	 E.  Line 22 does not compile because Long is not a compatible type for a switch statement
or expression. Line 23 does not compile because it is missing a semicolon after "Jane" and
a yield statement. Line 24 does not compile because it contains an extra semicolon at the
end. Finally, lines 25 and 26 do not compile because they use the same case value. At least
one of them would need to be changed for the code to compile. Since four lines need to be
corrected, option E is correct.

22.	 E.  The code compiles without issue, making options F and G incorrect. Remember, var is
supported in both switch and while loops, provided the compiler determines that the type
is compatible with these statements. In addition, the variable one is allowed in a case state-
ment because it is a final local variable, making it a compile-time constant. The value of
tailFeathers is 3, which matches the second case statement, making 5 the first output.
The while loop is executed twice, with the pre-increment operator (--) modifying the value
of tailFeathers from 3 to 2 and then to 1 on the second loop. For this reason, the final
output is 5 2 1, making option E the correct answer.

23.	 F.  Line 19 starts with an else statement, but there is no preceding if statement that it
matches. For this reason, line 19 does not compile, making option F the correct answer. If the
else keyword was removed from line 19, then the code snippet would print Success.

24.	 G.  The statement is not a valid for-each loop (or a traditional for loop) since it uses a non-
existent in keyword. For this reason, the code does not compile, and option G is correct. If
the in was changed to a colon (:), then Set, int[], and Collection would be correct.

25.	 D.  The code compiles without issue, so option F is incorrect. The viola variable created on
line 8 is never used and can be ignored. If it had been used as the case value on line 15, it
would have caused a compilation error since it is not marked final. Since "violin" and
"VIOLIN" are not an exact match, the default branch of the switch statement is exe-
cuted at runtime. This execution path increments p a total of three times, bringing the final
value of p to 2 and making option D the correct answer.

26.	 F.  The code snippet does not contain any compilation errors, so options D and E are incor-
rect. There is a problem with this code snippet, though. While it may seem complicated, the
key is to notice that the variable r is updated outside of the do/while loop. This is allowed
from a compilation standpoint, since it is defined before the loop, but it means the innermost
loop never breaks the termination condition r <= 1. At runtime, this will produce an infi-
nite loop the first time the innermost loop is entered, making option F the correct answer.

27.	 F.  Line 27 does not compile because the case block does not yield a value if name is not
equal to Frog. For this reason, option F is correct. Every path within a case block must
yield a value if the switch expression is expected to return a value.

28.	 F.  Based on flow scoping, guppy is in scope after lines 41–42 if the type is not a String.
In this case, line 43 declares a variable guppy that is a duplicate of the previously defined
local variable defined on line 41. For this reason, the code does not compile, and option F is
correct. If a different variable name was used on line 43, then the code would compile and
print Swim! at runtime with the specified input.

Chapter 4: Core APIs  921

29.	 C.  Since the pre-increment operator was used, the first value that will be displayed is -1, so
options A and B are incorrect. On the second-to-last iteration of the loop, y will be incre-
mented to 5, and the loop will output 5. The loop will continue since 5 <= 5 is true, and
on the last iteration, 6 will be output. At the end of this last iteration, the boolean expres-
sion 6 <= 5 will evaluate to false, and the loop will terminate. Since 6 was the last value
output by the loop, the answer is option C.

Chapter 4: Core APIs
1.	 F.  Line 5 does not compile. This question is checking to see whether you are paying attention

to the types. numFish is an int, and 1 is an int. Therefore, we use numeric addition and
get 5. The problem is that we can’t store an int in a String variable. Suppose line 5 said
String anotherFish = numFish + 1 + "";. In that case, the answers would be
option A and option C. The variable defined on line 5 would be the string "5", and both
output statements would use concatenation.

2.	 C, E, F.  Option C uses the variable name as if it were a type, which is clearly illegal. Options
E and F don’t specify any size. Although it is legal to leave out the size for later dimensions of
a multidimensional array, the first one is required. Option A declares a legal 2D array. Option
B declares a legal 3D array. Option D declares a legal 2D array. Remember that it is normal
to see classes on the exam you might not have learned. You aren’t expected to know anything
about them.

3.	 A, C, D.  Option B throws an exception because there is no March 40. Option E also throws
an exception because 2023 isn’t a leap year and therefore has no February 29. Option F
doesn’t compile because the enum should be named Month, rather than MonthEnum. Option
D is correct because it is just a regular date and has nothing to do with daylight saving time.
Options A and C are correct because Java is smart enough to adjust for daylight saving time.

4.	 A, C, D.  The code compiles fine. Line 3 points to the String in the string pool. Line 4 calls
the String constructor explicitly and is therefore a different object than s. Line 5 checks
for object equality, which is true, and so it prints one. Line 6 uses object reference equality,
which is not true since we have different objects. Line 7 calls intern(), which returns the
value from the string pool and is therefore the same reference as s. Line 8 also compares ref-
erences but is true since both references point to the object from the string pool. Finally, line
9 is a trick. The string Hello is already in the string pool, so calling intern() does not
change anything. The reference t is a different object, so the result is still false.

5.	 B.  This example uses method chaining. After the call to append(), sb contains "aaa".
That result is passed to the first insert() call, which inserts at index 1. At this point, sb
contains abbaa. That result is passed to the final insert(), which inserts at index 4, result-
ing in abbaccca.

922  Appendix  ■  Answers to the Review Questions

6.	 C.  Remember to watch return types on math operations. One of the tricks is line 24. The
round() method returns an int when called with a float. However, we are calling it with
a double, so it returns a long. The other trick is line 25. The random() method returns a
double. Since two lines have a compiler error, option C is the answer.

7.	 A, E.  When dealing with time zones, it is best to convert to GMT first by subtracting the
time zone. Remember that subtracting a negative is like adding. The first date/time is 9:00
GMT, and the second is 15:00 GMT. Therefore, the first one is earlier by six hours.

8.	 A, B, F.  Remember that indexes are zero-based, which means index 4 corresponds to 5, and
option A is correct. For option B, the replace() method starts the replacement at index 2
and ends before index 4. This means two characters are replaced, and charAt(3) is called
on the intermediate value of 1265. The character at index 3 is 5, making option B correct.
Option C is similar, making the intermediate value 126 and returning 6.

Option D results in an exception since there is no character at index 5. Option E is incorrect.
It does not compile because the parentheses for the length() method are missing. Finally,
option F’s replace results in the intermediate value 145. The character at index 2 is 5, so
option F is correct.

9.	 A, C, F.  Arrays are zero-indexed, making option A correct and option B incorrect. They are
not able to change size, which is option C. The values can be changed, making option D
incorrect. An array does not override equals(), so it uses object equality. Since two differ-
ent objects are not equal, option F is correct, and options E and G are incorrect.

10.	 A.  All of these lines compile. The min() and floor() methods return the same type passed
in: int and double, respectively. The round() method returns a long when called with a
double. Option A is correct since the code compiles.

11.	 E.  A LocalDate does not have a time element. Therefore, there is no method to add hours,
making option E the answer.

12.	 A, D, E.  First, notice that the indent() call adds a blank space to the beginning of
numbers, and stripLeading() immediately removes it. Therefore, these methods cancel
each other out and have no effect. The substring() method has two forms. The first takes
the index to start with and the index to stop immediately before. The second takes just the
index to start with and goes to the end of the String. Remember that indexes are zero-
based. The first call starts at index 1 and ends with index 2 since it needs to stop before index
3. This gives us option A. The second call starts at index 7 and ends in the same place, result-
ing in an empty String which is option E. This prints out a blank line. The final call starts
at index 7 and goes to the end of the String finishing up with option D.

13.	 B.  A String is immutable. Calling concat() returns a new String but does not change
the original. A StringBuilder is mutable. Calling append() adds characters to the exist-
ing character sequence along with returning a reference to the same object. Therefore, option
B is correct.

14.	 A, F.  Option A correctly creates the current instant. Option F is also a proper conversion.
Option B is incorrect because Instant, like many other date/time classes, does not have
a public constructor and is instantiated via methods. Options C, D, and E are incorrect
because the source object does not represent a point in time. Without a time zone, Java
doesn’t know what moment in time to use for the Instant.

Chapter 4: Core APIs  923

15.	 C, E.  Numbers sort before letters and uppercase sorts before lowercase. This makes option
C one of the answers. The binarySearch() method looks at where a value would be
inserted, which is before the second element for Pippa. It then negates it and subtracts one,
which is option E.

16.	 A, B, G.  There are 11 characters in base because there are two escape characters. The \n
counts as one character representing a new line, and the \\ counts as one character repre-
senting a backslash. This makes option B one of the answers. The indent() method adds
two characters to the beginning of each of the two lines of base. This gives us four addi-
tional characters. However, the method also normalizes by adding a new line to the end if
it is missing. The extra character means we add five characters to the existing 11, which is
option G. Finally, the translateEscapes() method turns any text escape characters into
actual escape characters, making \\t into \t. This gets rid of one character, leaving us with
10 characters matching option A.

17.	 A, G.  The substring() method includes the starting index but not the ending index.
When called with 1 and 2, it returns a single-character String, making option A correct and
option E incorrect. Calling substring() with 2 as both parameters is legal. It
returns an empty String, making options B and F incorrect. Java does not allow the
indexes to be specified in reverse order. Option G is correct because it throws a
StringIndexOutOfBoundsException. Finally, option H is incorrect because it returns
an empty String.

18.	 C, F.  This question is tricky because it has several parts. First, you have to know that the text
block on lines 13 and 14 is equivalent to a regular String. Since there is no line break at
the end, this is four characters. Then, you have to know that String objects are immutable,
which means the results of lines 17–19 are ignored. Finally, on line 20, something happens.
We concatenate three new characters to s1 and now have a String of length 7, making
option C correct.

Next, s2 += 2 expands to s2 = s2 + 2. A String concatenated with any other type
gives a String. Lines 22, 23, and 24 all append to s2, giving a result of "2cfalse". The
if statement on line 27 returns true because the values of the two String objects are
the same using object equality. The if statement on line 26 returns false because the two
String objects are not the same in memory. One comes directly from the string pool, and
the other comes from building using String operations.

19.	 A, B, D.  The compare() method returns a positive integer when the arrays are different and
the first is larger. This is the case for option A since the element at index 1 comes first alpha-
betically. It is not the case for option C because the s4 is longer or for option E because the
arrays are the same.

The mismatch() method returns a positive integer when the arrays are different in a posi-
tion index 1 or greater. This is the case for options B and D since the difference is at index 1.
It is not the case for option F because there is no difference.

20.	 A, D.  The dateTime1 object has a time of 1:30 per initialization. The dateTime2 object
is an hour later. However, there is no 2:30 when springing ahead, setting the time to 3:30.
Option A is correct because it is an hour later. Option D is also correct because the hour of
the new time is 3. Option E is not correct because we have changed the time zone offset due
to daylight saving time.

924  Appendix  ■  Answers to the Review Questions

21.	 A, C.  The reverse() method is the easiest way of reversing the characters in a
StringBuilder; therefore, option A is correct. In option B, substring() returns a
String, which is not stored anywhere. Option C uses method chaining. First, it creates the
value "JavavaJ$". Then, it removes the first three characters, resulting in "avaJ$". Finally,
it removes the last character, resulting in "avaJ". Option D throws an exception because
you cannot delete the character after the last index. Remember that deleteCharAt() uses
indexes that are zero-based, and length() counts the number of characters rather than
the index.

22.	 A.  The date starts out as April 30, 2022. Since dates are immutable and the plus methods’
return values are ignored, the result is unchanged. Therefore, option A is correct.

Chapter 5: Methods
1.	 A, E.  Instance and static variables can be marked final, making option A correct. Effec-

tively final means a local variable is not marked final but whose value does not change
after it is set, making option B incorrect. Option C is incorrect, as final refers only to
the reference to an object, not its contents. Option D is incorrect, as var and final can
be used together. Finally, option E is correct: once a primitive is marked final, it cannot
be modified.

2.	 B, C.  The keyword void is a return type. Only the access modifier or optional specifiers are
allowed before the return type. Option C is correct, creating a method with private access.
Option B is also correct, creating a method with package access and the optional specifier
final. Since package access does not use a modifier, we get to jump right to
final. Option A is incorrect because package access omits the access modifier rather than
specifying default. Option D is incorrect because Java is case sensitive. It would have been
correct if public were the choice. Option E is incorrect because the method already has a
void return type. Option F is incorrect because labels are not allowed for methods.

3.	 A, D.  Options A and D are correct because the optional specifiers are allowed in any order.
Options B and C are incorrect because they each have two return types. Options E and F
are incorrect because the return type is before the optional specifier and access modifier,
respectively.

4.	 A, B, C, E.  The value 6 can be implicitly promoted to any of the primitive types, making
options A, C, and E correct. It can also be autoboxed to Integer, making option B correct.
It cannot be both promoted and autoboxed, making options D and F incorrect.

5.	 A, C, D.  Options A and C are correct because a void method is optionally allowed to have
a return statement as long as it doesn’t try to return a value. Option B does not compile
because null requires a reference object as the return type. Since int is primitive, it is not
a reference object. Option D is correct because it returns an int value. Option E does not
compile because it tries to return a double when the return type is int. Since a
double cannot be assigned to an int, it cannot be returned as one either. Option F does not
compile because no value is actually returned.

Chapter 5: Methods  925

6.	 A, B, F.  Options A and B are correct because the single varargs parameter is the last param-
eter declared. Option F is correct because it doesn’t use any varargs parameters. Option C is
incorrect because the varargs parameter is not last. Option D is incorrect because two varargs
parameters are not allowed in the same method. Option E is incorrect because the ... for a
varargs must be after the type, not before it.

7.	 D, F.  Option D passes the initial parameter plus two more to turn into a varargs array of size
2. Option F passes the initial parameter plus an array of size 2. Option A does not compile
because it does not pass the initial parameter. Option E does not compile because it does not
declare an array properly. It should be new boolean[] {true, true}. Option B creates
a varargs array of size 0, and option C creates a varargs array of size 1.

8.	 D.  Option D is correct. A common practice is to set all fields to be private and all
methods to be public. Option A is incorrect because protected access allows everything
that package access allows and additionally allows subclasses access. Option B is incor-
rect because the class is public. This means that other classes can see the class. However,
they cannot call any of the methods or read any of the fields. It is essentially a useless class.
Option C is incorrect because package access applies to the whole package. Option E is
incorrect because Java has no such wildcard access capability.

9.	 B, C, D, F.  The two classes are in different packages, which means private access and
package access will not compile. This causes compiler errors on lines 5, 6, and 7, making
options B, C, and D correct answers. Additionally, protected access will not compile since
School does not inherit from Classroom. This causes the compiler error on line 9, making
option F a correct answer as well.

10.	 B.  Rope runs line 3, setting LENGTH to 5, and then immediately after that runs the
static initializer, which sets it to 10. Line 5 in the Chimp class calls the static method
normally and prints swing and a space. Line 6 also calls the static method. Java allows
calling a static method through an instance variable, although it is not recommended.
Line 7 uses the static import on line 2 to reference LENGTH. For these reasons, option B
is correct.

11.	 B, E.  Line 10 does not compile because static methods are not allowed to call instance
methods. Even though we are calling play() as if it were an instance method and an in-
stance exists, Java knows play() is really a static method and treats it as such. Since
this is the only line that does not compile, option B is correct. If line 10 is removed, the
code prints swing-swing, making option E correct. It does not throw a
NullPointerException on line 17 because play() is a static method. Java looks at
the type of the reference for rope2 and translates the call to Rope.play().

12.	 B.  The test for effectively final is if the final modifier can be added to the local variable
and the code still compiles. The monkey variable declared on line 11 is not effectively final
because it is modified on line 13. The giraffe and name variables declared on lines 13 and
14, respectively, are effectively final and not modified after they are set. The name variable
declared on line 17 is not effectively final since it is modified on line 22. Finally, the food
variable on line 18 is not effectively final since it is modified on line 20. Since there are two
effectively final variables, option B is correct.

926  Appendix  ■  Answers to the Review Questions

13.	 D.  There are two details to notice in this code. First, note that RopeSwing has an instance
initializer and not a static initializer. Since RopeSwing is never constructed, the instance
initializer does not run. The other detail is that length is static. Changes from any object
update this common static variable. The code prints 8, making option D correct.

14.	 E.  If a variable is static final, it must be set exactly once, and it must be in the dec-
laration line or in a static initialization block. Line 4 doesn’t compile because bench is
not set in either of these locations. Line 15 doesn’t compile because final variables are not
allowed to be set after that point. Line 11 doesn’t compile because name is set twice: once in
the declaration and again in the static block. Line 12 doesn’t compile because rightRope
is set twice as well. Both are in static initialization blocks. Since four lines do not compile,
option E is correct.

15.	 B.  The two valid ways to do this are import static java.util.Collections.*;
and import static java.util.Collections.sort;. Option A is incorrect because
you can do a static import only on static members. Classes such as Collections require
a regular import. Option C is nonsense as method parameters have no business in an
import. Options D, E, and F try to trick you into reversing the syntax of import static.

16.	 E.  The argument on line 17 is a short. It can be promoted to an int, so print() on line
5 is invoked. The argument on line 18 is a boolean. It can be autoboxed to a Boolean,
so print() on line 11 is invoked. The argument on line 19 is a double. It can be auto-
boxed to a Double, so print() on line 11 is invoked. Therefore, the output is
int-Object-Object-, and the correct answer is option E.

17.	 B.  Since Java is pass-by-value and the variable on line 8 never gets reassigned, it stays as 9.
In the method square, x starts as 9. The y value becomes 81, and then x gets set to –1. Line
9 does set result to 81. However, we are printing out value, and that is still 9, making
option B correct.

18.	 B, D, E.  Since Java is pass-by-value, assigning a new object to a does not change the caller.
Calling append() does affect the caller because both the method parameter and the caller
have a reference to the same object. Finally, returning a value does pass the reference to the
caller for assignment to s3. For these reasons, options B, D, and E are correct.

19.	 B, C, E.  The variable value1 is a final instance variable. It can be set only once: in the
variable declaration, an instance initializer, or a constructor. Option A does not compile
because the final variable was already set in the declaration. The variable value2 is a
static variable. Both instance and static initializers are able to access static variables,
making options B and E correct. The variable value3 is an instance variable. Options D and
F do not compile because a static initializer does not have access to instance variables.

20.	 A, E.  The 100 parameter is an int and so calls the matching int method, making option A
correct. When this method is removed, Java looks for the next most specific constructor. Java
prefers autoboxing to varargs, so it chooses the Integer constructor. The 100L parameter
is a long. Since it can’t be converted into a smaller type, it is autoboxed into a Long, and
then the method for Object is called, making option E correct.

Chapter 6: Class Design  927

21.	 B, D.  Option A is incorrect because it has the same parameter list of types and therefore the
same signature as the original method. Options B and D are valid method overloads because
the types of parameters in the list change. When overloading methods, the return type and
access modifiers do not need to be the same. Options C and E are incorrect because the
method name is different. Options F and G do not compile. There can be at most one varargs
parameter, and it must be the last element in the parameter list.

Chapter 6: Class Design
1.	 E.  Options A and B will not compile because constructors cannot be called without new.

Options C and D will compile but will create a new object rather than setting the fields in
this one. The result is the program will print 0, not 2, at runtime. Calling an overloaded con-
structor, using this(), or a parent constructor, using super(), is only allowed on the first
line of the constructor, making option E correct and option F incorrect. Finally, option G is
incorrect because the program prints 0 without any changes, not 2.

2.	 A, B, F.  The final modifier can be used with private and static, making options A
and F correct. Marking a private method final is redundant but allowed. A private
method may also be marked static, making option B correct. Options C, D, and E are
incorrect because methods marked static, private, or final cannot be overridden;
therefore, they cannot be marked abstract.

3.	 B, C.  Overloaded methods have the same method name but a different signature (the method
parameters differ), making option A incorrect. Overridden instance methods and hidden
static methods must have the same signature (the name and method parameters must
match), making options B and C correct. Overloaded methods can have different return
types, while overridden and hidden methods can have covariant return types. None of these
methods are required to use the same return type, making options D, E, and F incorrect.

4.	 F.  The code will not compile as is, because the parent class Mammal does not define a no-
argument constructor. For this reason, the first line of a Platypus constructor should be
an explicit call to super(int), making option F the correct answer. Option E is incorrect,
as line 7 compiles without issue. The sneeze() method in the Mammal class is marked
private, meaning it is not inherited and therefore is not overridden in the Platypus class.
For this reason, the sneeze() method in the Platypus class is free to define the same
method with any return type.

5.	 E.  The code compiles, making option F incorrect. An instance variable with the same name
as an inherited instance variable is hidden, not overridden. This means that both variables
exist, and the one that is used depends on the location and reference type. Because the
main() method uses a reference type of Speedster to access the numSpots variable, the
variable in the Speedster class, not the Cheetah class, must be set to 50. Option A is
incorrect, as it reassigns the method parameter to itself. Option B is incorrect, as it assigns

928  Appendix  ■  Answers to the Review Questions

the method parameter the value of the instance variable in Cheetah, which is 0. Option C
is incorrect, as it assigns the value to the instance variable in Cheetah, not Speedster.
Option D is incorrect, as it assigns the method parameter the value of the instance variable in
Speedster, which is 0. Options A, B, C, and D all print 0 at runtime. Option E is the only
correct answer, as it assigns the instance variable numSpots in the Speedster class a value
of 50. The numSpots variable in the Speedster class is then correctly referenced in the
main() method, printing 50 at runtime.

6.	 D, E.  The Moose class doesn’t compile, as the final variable antlers is not initialized
when it is declared, in an instance initializer, or in a constructor. Caribou and Reindeer
are not immutable because they are not marked final, which means a subclass could
extend them and add mutable fields. Elk and Deer are both immutable classes since they
are marked final and only include private final members, making options D and
E correct. As shown with Elk, a class doesn’t need to declare any fields to be considered
immutable.

7.	 A.  The code compiles and runs without issue, so options E and F are incorrect. The
Arthropod class defines two overloaded versions of the printName() method. The
printName() method that takes an int value on line 5 is correctly overridden in the
Spider class on line 9. Remember, an overridden method can have a broader access
modifier, and protected access is broader than package access. Because of polymorphism,
the overridden method replaces the method on all calls, even if an Arthropod reference
variable is used, as is done in the main() method. For these reasons, the overridden method
is called on lines 14 and 15, printing Spider twice. Note that the short value is auto-
matically cast to the larger type of int, which then uses the overridden method. Line 16
calls the overloaded method in the Arthropod class, as the long value 5L does not match
the overridden method, resulting in Arthropod being printed. Therefore, option A is the
correct answer.

8.	 D.  The code compiles without issue. The question is making sure you know that superclass
constructors are called in the same manner in abstract classes as they are in non-abstract
classes. Line 9 calls the constructor on line 6. The compiler automatically inserts super() as
the first line of the constructor defined on line 6. The program then calls the constructor on
line 3 and prints Wow-. Control then returns to line 6, and Oh- is printed. Finally, the
method call on line 10 uses the version of fly() in the Pelican class, since it is marked
private and the reference type of var is resolved as Pelican. The final output is
Wow-Oh-Pelican, making option D the correct answer. Remember that private methods
cannot be overridden. If the reference type of chirp was Bird, then the code would not
compile as it would not be accessible outside the class.

9.	 B, E.  The signature must match exactly, making option A incorrect. There is no such thing as
a covariant signature. An overridden method must not declare any new checked exceptions
or a checked exception that is broader than the inherited method. For this reason, option B is
correct, and option D is incorrect. Option C is incorrect because an overridden method may
have the same access modifier as the version in the parent class. Finally, overridden methods
must have covariant return types, and only void is covariant with void, making option
E correct.

Chapter 6: Class Design  929

10.	 A, C.  Option A is correct, as this(3) calls the constructor declared on line 5, while
this("") calls the constructor declared on line 10. Option B does not compile, as inserting
this() at line 3 results in a compiler error, since there is no matching constructor. Option
C is correct, as short can be implicitly cast to int, resulting in this((short)1) calling
the constructor declared on line 5. In addition, this(null) calls the String constructor
declared on line 10. Option D does not compile because inserting super() on line 14 results
in an invalid constructor call. The Howler class does not contain a no-argument constructor.
Option E is also incorrect. Inserting this(2L) at line 3 results in a recursive constructor
definition. The compiler detects this and reports an error. Option F is incorrect, as using
super(null) on line 14 does not match any parent constructors. If an explicit cast was
used, such as super((Integer)null), then the code would have compiled but would
throw an exception at runtime during unboxing. Finally, option G is incorrect because the
superclass Howler does not contain a no-argument constructor. Therefore, the constructor
declared on line 13 will not compile without an explicit call to an overloaded or parent
constructor.

11.	 C.  The code compiles and runs without issue, making options F and G incorrect. Line 16 ini-
tializes a PolarBear instance and assigns it to the bear reference. The variable declaration
and instance initializers are run first, setting value to tac. The constructor declared on line
5 is called, resulting in value being set to tacb. Remember, a static main() method can
access private constructors declared in the same class. Line 17 creates another PolarBear
instance, replacing the bear reference declared on line 16. First, value is initialized to tac
as before. Line 17 calls the constructor declared on line 8, since String is the narrowest
match of a String literal. This constructor then calls the overloaded constructor declared
on line 5, resulting in value being updated to tacb. Control returns to the previous con-
structor, with line 10 updating value to tacbf, and making option C the correct answer.
Note that if the constructor declared on line 8 did not exist, then the constructor on line
12 would match. Finally, the bear reference is properly cast to PolarBear on line 18,
making the value parameter accessible.

12.	 C.  The code doesn’t compile, so option A is incorrect. The first compilation error is on line
8. Since Rodent declares at least one constructor and it is not a no-argument constructor,
Beaver must declare a constructor with an explicit call to a super() constructor. Line 9
contains two compilation errors. First, the return types are not covariant since Number is
a supertype, not a subtype, of Integer. Second, the inherited method is static, but the
overridden method is not, making this an invalid override. The code contains three compila-
tion errors, although they are limited to two lines, making option C the correct answer.

13.	 A, G.  The compiler will insert a default no-argument constructor if the class compiles and
does not define any constructors. Options A and G fulfill this requirement, making them
the correct answers. The bird() declaration in option G is a method declaration, not a
constructor. Options B and C do not compile. Since the constructor name does not match
the class name, the compiler treats these as methods with missing return types. Options D,
E, and F all compile, but since they declare at least one constructor, the compiler does not
supply one.

930  Appendix  ■  Answers to the Review Questions

14.	 B, E, F.  A class can only directly extend a single class, making option A incorrect. A class can
implement any number of interfaces, though, making option B correct. Option C is incor-
rect because primitive variables types do not inherit java.lang.Object. If a class extends
another class, then it is a subclass, not a superclass, making option D incorrect. A class that
implements an interface is a subtype of that interface, making option E correct. Finally,
option F is correct as it is an accurate description of multiple inheritance, which is not per-
mitted in Java.

15.	 C.  The code does not compile because the isBlind() method in Nocturnal is not
marked abstract and does not contain a method body. The rest of the lines compile
without issue, making option C the only correct answer. If the abstract modifier was
added to line 2, then the code would compile and print false at runtime, making option B
the correct answer.

16.	 D.  The code compiles, so option G is incorrect. Based on order of initialization, the static
components are initialized first, starting with the Arachnid class, since it is the parent of
the Scorpion class, which initializes the StringBuilder to u. The static initializer in
Scorpion then updates sb to contain uq, which is printed twice by lines 13 and 14 along
with spaces separating the values. Next, an instance of Arachnid is initialized on line 15.
There are two instance initializers in Arachnid, and they run in order, appending cr to the
StringBuilder, resulting in a value of uqcr. An instance of Scorpion is then initialized
on line 16. The instance initializers in the superclass Arachnid run first, appending cr again
and updating the value of sb to uqcrcr. Finally, the instance initializer in Scorpion runs
and appends m. The program completes with the final value printed being uq uq uqcrcrm,
making option D the correct answer.

17.	 C, F.  Calling an overloaded constructor with this() may be used only as the first line of a
constructor, making options A and B incorrect. Accessing this.variableName can be per-
formed from any instance method, constructor, or instance initializer, but not from a static
method or static initializer. For this reason, option C is correct, and option D is incorrect.
Option E is tricky. The default constructor is written by the compiler only if no user-defined
constructors were provided. And this() can only be called from a constructor in the same
class. Since there can be no user-defined constructors in the class if a default constructor was
created, it is impossible for option E to be true. Since the main() method is in the same
class, it can call private methods in the class, making option F correct.

18.	 D, F.  The eat() method is private in the Mammal class. Since it is not inherited in the
Primate class, it is neither overridden nor overloaded, making options A and B incorrect.
The drink() method in Mammal is correctly hidden in the Monkey class, as the signature is
the same and both are static, making option D correct and option C incorrect. The version
in the Monkey class throws a new exception, but it is unchecked; therefore, it is allowed. The
dance() method in Mammal is correctly overloaded in the Monkey class because the signa-
tures are not the same, making option E incorrect and option F correct. For methods to be
overridden, the signatures must match exactly. Finally, line 12 is an invalid override and does
not compile, as int is not covariant with void, making options G and H both incorrect.

19.	 F.  The Reptile class defines a constructor, but it is not a no-argument constructor. There-
fore, the Lizard constructor must explicitly call super(), passing in an int value. For this
reason, line 9 does not compile, and option F is the correct answer. If the Lizard class were

Chapter 6: Class Design  931

corrected to call the appropriate super() constructor, then the program would print
BALizard at runtime, with the static initializer running first, followed by the instance
initializer, and finally the method call using the overridden method.

20.	 E.  The program compiles and runs without issue, making options A through D incorrect. The
fly() method is correctly overridden in each subclass since the signature is the same, the
access modifier is less restrictive, and the return types are covariant. For covariance, Macaw is
a subtype of Parrot, which is a subtype of Bird, so overridden return types are valid. Like-
wise, the constructors are all implemented properly, with explicit calls to the parent construc-
tors as needed. Line 19 calls the overridden version of fly() defined in the Macaw class, as
overriding replaces the method regardless of the reference type. This results in feathers
being assigned a value of 3. The Macaw object is then cast to Parrot, which is allowed
because Macaw inherits Parrot. The feathers variable is visible since it is defined in the
Bird class, and line 19 prints 3, making option E the correct answer.

21.	 B, G.  Immutable objects do not include setter methods, making option A incorrect. An
immutable class must be marked final or contain only private constructors, so no sub-
class can extend it and make it mutable, making option B correct. Options C and E are
incorrect, as immutable classes can contain both instance and static variables. Option D
is incorrect, as marking a class static is not a property of immutable objects. Option F is
incorrect. While an immutable class may contain only private constructors, this is not a
requirement. Finally, option G is correct. It is allowed for the caller to access data in mutable
elements of an immutable object, provided they have no ability to modify these elements.

22.	 D.  The code compiles and runs without issue, making option E incorrect. The Child class
overrides the setName() method and hides the static name variable defined in the
inherited Person class. Since variables are only hidden, not overridden, there are two dis-
tinct name variables accessible, depending on the location and reference type. Line 8 creates
a Child instance, which is implicitly cast to a Person reference type on line 9. Line 10 uses
the Child reference type, updating Child.name to Elysia. Line 11 uses the Person ref-
erence type, updating Person.name to Sophia. Lines 12 and 13 both call the overridden
setName() instance method declared on line 6. This sets Child.name to Webby on line
12 and then to Olivia on line 13. The final values of Child.name and Person.name are
Olivia and Sophia, respectively, making option D the correct answer.

23.	 B.  The program compiles, making option F incorrect. The constructors are called from the
child class upward, but since each line of a constructor is a call to another constructor, via
this() or super(), they are ultimately executed in a top-down manner. On line 29, the
main() method calls the Fennec() constructor declared on line 19. Remember, integer
literals in Java are considered int by default. This constructor calls the Fox() constructor
defined on line 12, which in turn calls the overloaded Fox() constructor declared on line
11. Since the constructor on line 11 does not explicitly call a parent constructor, the compiler
inserts a call to the no-argument super() constructor, which exists on line 3 of the Canine
class. Line 3 is then executed, adding q to the output, and the compiler chain is unwound.
Line 11 then executes, adding p, followed by line 14, adding z. Finally, line 21 is executed,
and j is added, resulting in a final value for logger of qpzj, and making option B correct.
For the exam, remember to follow constructors from the lowest level upward to determine
the correct pathway, but then execute them from the top down using the established order.

http://child.name
http://person.name
http://child.name
http://child.name
http://person.name

932  Appendix  ■  Answers to the Review Questions

24.	 C.  The code compiles and runs without issue, making options E and F incorrect. First, the
class is initialized, starting with the superclass Antelope and then the subclass
Gazelle. This involves invoking the static variable declarations and static initializers.
The program first prints 1, followed by 8. Then we follow the constructor pathway from the
object created on line 14 upward, initializing each class instance using a top-down approach.
Within each class, the instance initializers are run, followed by the referenced construc-
tors. The Antelope instance is initialized, printing 24, followed by the Gazelle instance,
printing 93. The final output is 182493, making option C the correct answer.

25.	 B, C.  Concrete classes are, by definition, not abstract, so option A is incorrect. A concrete
class must implement all inherited abstract methods, so option B is correct. Concrete classes
can be optionally marked final, so option C is correct. Option D is incorrect; concrete
classes need not be immutable. A concrete subclass only needs to override the inherited
abstract method, not match the declaration exactly. For example, a covariant return type can
be used. For this reason, option E is incorrect.

26.	 D.  The classes are structured correctly, but the body of the main() method contains a com-
piler error. The Orca object is implicitly cast to a Whale reference on line 7. This is per-
mitted because Orca is a subclass of Whale. By performing the cast, the whale reference on
line 8 does not have access to the dive(int... depth) method. For this reason, line 8
does not compile, making option D correct.

Chapter 7: Beyond Classes
1.	 B, D.  Iguana does not compile, as it declares a static field with the same name as an in-

stance field. Records are implicitly final and cannot be marked abstract, which is why
Gecko compiles and Chameleon does not, making option B correct. Notice in Gecko that
records are not required to declare any fields. BeardedDragon also compiles, as records
may override any accessor methods, making option D correct. Newt does not compile
because records are immutable, so any mutator methods that modify fields are not permitted.
Overriding the equals() method is allowed, though.

2.	 A, B, D, E.  The code compiles without issue, so option G is incorrect. The blank can be filled
with any class or interface that is a supertype of TurtleFrog. Option A is the direct super-
class of TurtleFrog, and option B is the same class, so both are correct.
BrazilianHornedFrog is not a superclass of TurtleFrog, so option C is incorrect.
TurtleFrog inherits the CanHop interface, so option D is correct. Option E is also correct,
as var is permitted when the type is known. Finally, Long is an unrelated class that is not a
superclass of TurtleFrog and is therefore incorrect.

3.	 C.  When an enum contains only a list of values, the semicolon (;) after the list is optional.
When an enum contains any other members, such as a constructor or variable, the semi-
colon is required. Since the enum list does not end with a semicolon, the code does not com-
pile, making option C the correct answer. If the missing semicolon were added, the program
would print 0 1 2 at runtime.

Chapter 7: Beyond Classes  933

4.	 C.  A class extending a sealed class must be marked final, sealed, or non-sealed. Since
Armadillo is missing a modifier, the code does not compile, and option C is correct.

5.	 E.  First, the declarations of HasExoskeleton and Insect are correct and do not contain
any errors, making options C and D incorrect. The concrete class Beetle extends
Insect and inherits two abstract methods, getNumberOfSections() and
getNumberOfLegs(). The Beetle class includes an overloaded version of
getNumberOfSections() that takes an int value. The method declaration is valid, mak-
ing option F incorrect, although it does not satisfy the abstract method requirement inherited
from HasExoskeleton. For this reason, only one of the two abstract methods is properly
overridden. The Beetle class therefore does not compile, and option E is correct.

6.	 D, E.  Line 4 does not compile, since an abstract method cannot include a body. Line 7
also does not compile because the wrong keyword is used. A class implements an interface; it
does not extend it. For these reasons, options D and E are correct.

7.	 E.  The inherited interface method getNumOfGills(int) is implicitly public; therefore,
it must be declared public in any concrete class that implements the interface. Since the
method uses the package (default) modifier in the ClownFish class, line 6 does not com-
pile, making option E the correct answer. If the method declaration were corrected to include
public on line 6, then the program would compile and print 15 at runtime, and option B
would be the correct answer.

8.	 A, B, C.  Instance variables must include the private access modifier, making option D
incorrect. While it is common for methods to be public, this is not required. Options A, B,
and C fulfill this requirement.

9.	 A, E, F.  The setSnake() method requires an instance of Snake. Cobra is a direct subclass,
while GardenSnake is an indirect subclass. For these reasons, options A and E are correct.
Option B is incorrect because Snake is abstract and requires a concrete subclass for
instantiation. Option C is incorrect because Object is a supertype of Snake, not a subtype.
Option D is incorrect as String is an unrelated class and does not inherit Snake. Finally, a
null value can always be passed as an object value, regardless of type, so option
F is also correct.

10.	 A, B, C, E.  Walk declares a private method that is not inherited in any of its subtypes. For
this reason, any valid class is supported on line X, making options A, B, and C correct. Line
Z is more restrictive, with only ArrayList or subtypes of ArrayList supported, making
option E correct.

11.	 B.  Starting with Java 16, inner classes can contain static variables, so the code compiles.
Remember that private constructors can be used by any methods within the outer class.
The butter reference on line 8 refers to the inner class variable defined on line 6, with the
output being 10 at runtime, and making option B correct.

12.	 A, B, E.  Encapsulation allows using methods to get and set instance variables so other classes
are not directly using them, making options A and B correct. Instance variables must be
private for this to work, making option E correct and option D incorrect. While there are
common naming conventions, they are not required, making option C incorrect.

934  Appendix  ■  Answers to the Review Questions

13.	 F.  When using an enum in a switch expression, the case statement must be made up of the
enum values only. If the enum name is used in the case statement value, then the code does
not compile. In this question, SPRING is acceptable, but Seasons.SPRING is not.
For this reason, the three case statements do not compile, making option F the correct
answer. If these three lines were corrected, then the code would compile and produce a
NullPointerException at runtime.

14.	 A, C, E.  A sealed interface restricts which interfaces may extend it, or which classes may
implement it, making options A and E correct. Option B is incorrect. For example, a
non-sealed subclass allows classes not listed in the permits clause to indirectly extend
the sealed class. Option C is correct. While a sealed class is commonly extended by a sub-
class marked final, it can also be extended by a sealed or non-sealed subclass marked
abstract. Option D is incorrect, as the modifier is non-sealed, not nonsealed. Finally,
option F is incorrect, as sealed classes can contain nested subclasses.

15.	 G.  Trick question—the code does not compile! For this reason, option G is correct. The
Spirit class is marked final, so it cannot be extended. The main() method uses an
anonymous class that inherits from Spirit, which is not allowed. If Spirit were not
marked final, then options C and F would be correct. Option A would print Booo!!!,
while options B, D, and E would not compile for various reasons.

16.	 E.  The OstrichWrangler class is a static nested class; therefore, it cannot access the
instance member count. For this reason, line 5 does not compile, and option E is correct.

17.	 E, G.  Lines 2 and 3 compile with interface variables implicitly public, static, and
final. Line 4 also compiles, as static methods are implicitly public. Line 5 does not
compile, making option E correct. Non-static interface methods with a body must be
explicitly marked private or default. Line 6 compiles, with the public modifier being
added by the compiler. Line 7 does not compile, as interfaces do not have protected mem-
bers, making option G correct. Finally, line 8 compiles without issue.

18.	 E.  Diet is an inner class, which requires an instance of Deer to instantiate. Since the
main() method is static, there is no such instance. Therefore, the main() method does
not compile, and option E is correct. If a reference to Deer were used, such as calling
new Deer().new Diet(), then the code would compile and print b at runtime.

19.	 G.  The isHealthy() method is marked abstract in the enum; therefore, it must be
implemented in each enum value declaration. Since only INSECTS implements it, the code
does not compile, making option G correct.

20.	 A, D, F.  Polymorphism is the property of an object to take on many forms. Part of polymor-
phism is that methods are replaced through overriding wherever they are called, regardless of
whether they’re in a parent or child class. For this reason, option A is correct, and option E
is incorrect. With hidden static methods, Java relies on the location and reference type to
determine which method is called, making option B incorrect and option F correct. Finally,
making a method final, not static, prevents it from being overridden, making option D
correct and option C incorrect.

Chapter 7: Beyond Classes  935

21.	 F.  The record defines an overloaded constructor using parentheses, not a
compact one. For this reason, the first line must be a call to another constructor, such as
this(500, "Acme", LocalDate.now()). For this reason, the code does not compile
and option F is correct. If the parentheses were removed from the constructor to declare a
compact constructor, then options A, C, and E would be correct.

22.	 C, D, G.  Option C correctly creates an instance of an inner class Cub using an instance of
the outer class Lion. Options A, B, E, and H use incorrect syntax for creating an instance of
the Cub class. Options D and G correctly create an instance of the static nested Den class,
which does not require an instance of Lion, while option F uses invalid syntax.

23.	 D.  First, if a class or interface inherits two interfaces containing default methods with the
same signature, it must override the method with its own implementation. The Penguin
class does this correctly, so option E is incorrect. The way to access an inherited default
method is by using the syntax Swim.super.perform(), making option D correct. We
agree that the syntax is bizarre, but you need to learn it. Options A, B, and C are incorrect
and result in compiler errors.

24.	 B, E.  Line 3 does not compile because the static method hunt() cannot access an
abstract instance method getName(), making option B correct. Line 6 does not com-
pile because the private static method sneak() cannot access the private instance
method roar(), making option E correct. The rest of the lines compile without issue.

25.	 B.  Zebra.this.x is the correct way to refer to x in the Zebra class. Line 5 defines an
abstract local class within a method, while line 11 defines a concrete anonymous class that
extends the Stripes class. The code compiles without issue and prints x is 24 at runtime,
making option B the correct answer.

26.	 C, F.  Enums are required to have a semicolon (;) after the list of values if there is anything
else in the enum. Don’t worry; you won’t be expected to track down missing semicolons on
the whole exam—only on enum questions. For this reason, line 5 should have a semicolon
after it since it is the end of the list of enums, making option F correct. Enum constructors
are implicitly private, making option C correct as well. The rest of the enum compiles
without issue.

27.	 B, C, D, G.  The compiler inserts an accessor for each field, a constructor containing all
of the fields in the order they are declared, and useful implementations of equals(),
hashCode(), and toString(), making options B, C, D, and G correct. Option A is incor-
rect, as the compiler would only insert a no-argument constructor if the record had no fields.
Option E is incorrect, as records are immutable. Option F is also incorrect and not a property
of records.

28.	 A, B, D.  Camel does not compile because the travel() method does not declare a
body, nor is it marked abstract, making option A correct. EatsGrass also does not
compile because an interface method cannot be marked both private and abstract,
making option B correct. Finally, Eagle does not compile because it declares an abstract
method soar() in a concrete class, making option D correct. The other classes compile
without issue.

936  Appendix  ■  Answers to the Review Questions

29.	 F.  The code does not compile, so options A through C are incorrect. Both lines 5 and 12 do
not compile, as this() is used instead of this. Remember, this() refers to calling a con-
structor, whereas this is a reference to the current instance. Next, the compiler does not
allow casting to an unrelated class type. Since Orangutan is not a subclass of Primate, the
cast on line 15 is invalid, and the code does not compile. Due to these three lines containing
compilation errors, option F is the correct answer.

30.	 C, E.  Bird and its nested Flamingo subclass compile without issue. The permits clause is
optional if the subclass is nested or declared in the same file. For this reason, Monkey and its
subclass Mandrill also compile without issue. EmperorTamarin does not compile, as it is
missing a non-sealed, sealed, or final modifier, making option C correct. Friendly
also does not compile, since it lists a subclass Silly that does not extend it, making option
E correct. While the permits clause is optional, the extends clause is not. Silly compiles
just fine. Even though it does not extend Friendly, the compiler error is in the sealed class.

Chapter 8: Lambdas and Functional
Interfaces
1.	 A.  This code is correct. Line 8 creates a lambda expression that checks whether the age

is less than 5, making option A correct. Since there is only one parameter and it does not
specify a type, the parentheses around the parameter are optional. Lines 11 and 13 use the
Predicate interface, which declares a test() method.

2.	 C.  The interface takes two int parameters. The code on line 7 attempts to use them as if
h is a String making option C correct. It is tricky to use types in a lambda when they are
implicitly specified. Remember to check the interface for the real type.

3.	 A, C.  A functional interface can contain any number of non-abstract methods, including
default, private, static, and private static. For this reason, option A is correct,
and option D is incorrect. Option B is incorrect, as classes are never considered functional
interfaces. A functional interface contains exactly one abstract method, although methods
that have matching signatures as public methods in java.lang.Object do not count
toward the single method test. For these reasons, option C is correct. Finally, option E is
incorrect. While a functional interface can be marked with the @FunctionalInterface
annotation, it is not required.

4.	 A, F.  Option B is incorrect because it does not use the return keyword. Options C, D, and
E are incorrect because the variable e is already in use from the lambda and cannot be rede-
fined. Additionally, option C is missing the return keyword, and option E is missing the
semicolon. Therefore, options A and F are correct.

5.	 A, C, E.  Java includes support for three primitive streams, along with numerous functional
interfaces to go with them: int, double, and long. For this reason, options C and E are
correct. Additionally, there is a BooleanSupplier functional interface, making option A

Chapter 8: Lambdas and Functional Interfaces  937

correct. Java does not include primitive streams or related functional interfaces for other
numeric data types, making options B and D incorrect. Option F is incorrect because String
is not a primitive but an object. Only primitives have custom suppliers.

6.	 A, C.  Predicate<String> takes a parameter list of one parameter using the specified
type. Options E and F are incorrect because they specify the wrong type. Options B and D
are incorrect because they use the wrong syntax for the arrow operator. This leaves us with
options A and C as the answers.

7.	 E.  While there appears to have been a variable name shortage when this code was written,
it does compile. Lambda variables and method names are allowed to be the same. The x
lambda parameter is scoped to within each lambda, so it is allowed to be reused. The type
is inferred by the method it calls. The first lambda maps x to a String and the second to a
Boolean. Therefore, option E is correct.

8.	 E.  The question starts with a UnaryOperator<Integer>, which takes one parameter
and returns a value of the same type. Therefore, option E is correct, as UnaryOperator
extends Function. Notice that other options don’t even compile because they have the
wrong number of generic types for the functional interface provided. You should know that
a BiFunction<T,U,R> takes three generic arguments, a BinaryOperator<T> takes one
generic argument, and a Function<T,R> takes two generic arguments.

9.	 A, F.  Option A is correct and option B is incorrect because a Supplier returns a value
while a Consumer takes one and acts on it. Option C is tricky. IntSupplier does return
an int. However, the option asks about IntegerSupplier, which doesn’t exist. Option
D is incorrect because a Predicate returns a boolean. It does have a method named
test(), making option F correct. Finally, option E is incorrect because Function has an
apply() method.

10.	 A, B, C.  Since the scope of start and c is within the lambda, the variables can be declared
or updated after it without issue, making options A, B, and C correct. Option D is incorrect
because setting end prevents it from being effectively final.

11.	 D.  The code does not compile because the lambdas are assigned to var. The compiler does
not have enough information to determine they are of type Predicate<String>. There-
fore, option D is correct.

12.	 A.  The a.compose(b) method calls the Function parameter b before the reference
Function variable a. In this case, that means that we multiply by 3 before adding 4. This
gives a result of 7, making option A correct.

13.	 E.  Lambdas are only allowed to reference final or effectively final variables. You can tell
the variable j is effectively final because adding a final keyword before it wouldn’t intro-
duce a compiler error. Each time the else statement is executed, the variable is redeclared
and goes out of scope. Therefore, it is not reassigned. Similarly, length is effectively final.
There are no compiler errors, and option E is correct.

14.	 B, D.  Option B is a valid functional interface, one that could be assigned to a
Consumer<Camel> reference. Notice that the final modifier is permitted on variables in
the parameter list. Option D is correct, as the exception is being returned as an object and
not thrown. This would be compatible with a BiFunction that included
RuntimeException as its return type.

938  Appendix  ■  Answers to the Review Questions

Options A and G are incorrect because they mix format types for the parameters. Option C
is invalid because the variable b is used twice. Option E is incorrect, as a return statement
is permitted only inside braces ({}). Option F is incorrect because the variable declaration
requires a semicolon (;) after it.

15.	 A, F.  Option A is a valid lambda expression. While main() is a static method, it can
access age since it is using a reference to an instance of Hyena, which is effectively final in
this method. Since var is not a reserved word, it may be used for variable names. Option F
is also correct, with the lambda variable being a reference to a Hyena object. The variable is
processed using deferred execution in the testLaugh() method.

Options B and E are incorrect; since the local variable age is not effectively final, this would
lead to a compilation error. Option C would also cause a compilation error, since the expres-
sion uses the variable name p, which is already declared within the method. Finally, option D
is incorrect, as this is not even a lambda expression.

16.	 C.  Lambdas are not allowed to redeclare local variables, making options A and B incorrect.
Option D is incorrect because setting end prevents it from being effectively final. Lambdas
are only allowed to reference final or effectively final variables. Option C compiles since
chars is not used.

17.	 C.  Line 8 uses braces around the body. This means the return keyword and semicolon are
required. Since the code doesn’t compile, option C is the answer.

18.	 B, F, G.  We can eliminate four choices right away. Options A and C are there to mislead you;
these interfaces don’t exist. Option D is incorrect because a BiFunction<T,U,R> takes
three generic arguments, not two. Option E is incorrect because none of the examples returns
a boolean.

The declaration on line 6 doesn’t take any parameters, and it returns a String, so a
Supplier<String> can fill in the blank, making option F correct. The declaration on line
7 requires you to recognize that Consumer and Function, along with their binary equiva-
lents, have an andThen() method. This makes option B correct. Finally, line 8 takes a single
parameter, and it returns the same type, which is a UnaryOperator. Since the types are the
same, only one generic parameter is needed, making option G correct.

19.	 F.  While there is a lot in this question trying to confuse you, note that there are no options
about the code not compiling. This allows you to focus on the lambdas and method refer-
ences. Option A is incorrect because a Consumer requires one parameter. Options B and C
are close. The syntax for a lambda is correct. However, s is already defined as a local vari-
able, and therefore the lambda can’t redefine it. Options D and E use incorrect syntax for a
method reference. Option F is correct.

20.	 E.  Option A does not compile because the second statement within the block is missing
a semicolon (;) at the end. Option B is an invalid lambda expression because t is defined
twice: in the parameter list and within the lambda expression. Options C and D are both
missing a return statement and semicolon. Options E and F are both valid lambda expres-
sions, although only option E matches the behavior of the Sloth class. In particular, option
F only prints Sleep:, not Sleep: 10.0.

Chapter 9: Collections and Generics  939

21.	 A, E, F.  A valid functional interface is one that contains a single abstract method,
excluding any public methods that are already defined in the java.lang.Object class.
Transport and Boat are valid functional interfaces, as they each contain a single abstract
method: go() and hashCode(String), respectively. This gives us options A and E. Since
the other methods are part of Object, they do not count as abstract methods. Train is
also a functional interface since it extends Transport and does not define any additional
abstract methods. This adds option F as the final correct answer.

Car is not a functional interface because it is an abstract class. Locomotive is not a
functional interface because it includes two abstract methods, one of which is inherited.
Finally, Spaceship is not a valid interface, let alone a functional interface, because a
default method must provide a body. A quick way to test whether an interface is a
functional interface is to apply the @FunctionalInterface annotation and check if the
code still compiles.

Chapter 9: Collections and Generics
1.	 A, E.  For the first scenario, the answer needs to implement List because the scenario allows

duplicates, narrowing it down to options A and D. Option A is a better answer than option D
because LinkedList is both a List and a Queue, and you just need a regular List.

For the second scenario, the answer needs to implement Map because you are dealing with
key/value pairs per the unique id field. This narrows it down to options B and E. Since the
question talks about ordering, you need the TreeMap. Therefore, the answer is option E.

2.	 C, G.  Line 12 creates a List<?>, which means it is treated as if all the elements are of type
Object rather than String. Lines 15 and 16 do not compile since they call the String
methods isEmpty() and length(), which are not defined on Object. Line 13 creates
a List<String> because var uses the type that it deduces from the context. Lines 17
and 18 do compile. However, List.of() creates an immutable list, so both of those lines
would throw an UnsupportedOperationException if run. Therefore, options C and G
are correct.

3.	 B.  This is a double-ended queue. On lines 4 and 5, we add to the back, giving us
[hello, hi]. On line 6, we add to the front and have [ola, hello, hi]. On line 7,
we remove the first element, which is "ola". On line 8, we look at the new first element
("hello") but don’t remove it. On lines 9 and 10, we remove each element in turn until no
elements are left, printing hello and hi together which makes option B the answer.

4.	 B, F.  Option A does not compile because the generic types are not compatible. We could say
HashSet<? extends Number> hs2 = new HashSet<Integer>();. Option B uses
a lower bound, so it allows superclass generic types. Option C does not compile because the
diamond operator is allowed only on the right side. Option D does not compile because a
Set is not a List. Option E does not compile because upper bounds are not allowed when
instantiating the type. Finally, option F does compile because the upper bound is on the
correct side of the =.

940  Appendix  ■  Answers to the Review Questions

5.	 B.  The record compiles and runs without issue. Line 8 gives a compiler warning for not
using generics but not a compiler error. Line 7 creates the Hello class with the generic type
String. It also passes an int to the println() method, which gets autoboxed into an
Integer. While the println() method takes a generic parameter of type T, it is not the
same <T> defined for the class on line 1. Instead, it is a different T defined as part of the
method declaration on line 3. Therefore, the String argument on line 7 applies only to the
class. The method can take any object as a parameter, including autoboxed primitives. Line
8 creates the Hello class with the generic type Object since no type is specified for that
instance. It passes a boolean to println(), which gets autoboxed into a Boolean. The
result is that hi-1hola-true is printed, making option B correct.

6.	 B, F.  We’re looking for a Comparator definition that sorts in descending order by
beakLength. Option A is incorrect because it sorts in ascending order by beakLength.
Similarly, option C is incorrect because it sorts by beakLength in ascending order within
those matches that have the same name. Option E is incorrect because there is no
thenComparingNumber() method.

Option B is a correct answer, as it sorts by beakLength in descending order. Options D
and F are trickier. First, notice that we can call either thenComparing() or
thenComparingInt() because the former will simply autobox the int into an
Integer. Then observe what reversed() applies to. Option D is incorrect because it sorts
by name in ascending order and only reverses the beak length of those with the same name.
Option F creates a comparator that sorts by name in ascending order and then by beak size
in ascending order. Finally, it reverses the result. This is just what we want, so option F is
correct.

7.	 B, F.  A valid override of a method with generic arguments must have a return type that is
covariant, with matching generic type parameters. Options D and E are incorrect because
the return type is too broad. Additionally, the generic arguments must have the same signa-
ture with the same generic types. This eliminates options A and C. The remaining options are
correct, making the answer options B and F.

8.	 A.  The array is sorted using MyComparator, which sorts the elements in reverse alpha-
betical order in a case-insensitive fashion. Normally, numbers sort before letters. This code
reverses that by calling the compareTo() method on b instead of a. Therefore, option A
is correct.

9.	 A, B, D.  The generic type must be Exception or a subclass of Exception since this is an
upper bound, making options A and B correct. Options C and E are wrong because
Throwable is a superclass of Exception. Additionally, option D is correct despite the odd
syntax by explicitly listing the type. You should still be able to recognize it as acceptable.

10.	 A, B, E, F.  The forEach() method works with a List or a Set. Therefore, options A and
B are correct. Additionally, options E and F return a Set and can be used as well. Options
D and G refer to methods that do not exist. Option C is tricky because a Map does have a
forEach() method. However, it uses two lambda parameters rather than one. Since there is
no matching System.out.println method, it does not compile.

Chapter 9: Collections and Generics  941

11.	 B, E.  The showSize() method can take any type of List since it uses an unbounded wild-
card. Option A is incorrect because it is a Set and not a List. Option C is incorrect because
the wildcard is not allowed to be on the right side of an assignment. Option D is incorrect
because the generic types are not compatible.

Option B is correct because a lower-bounded wildcard allows that same type to be the
generic. Option E is correct because Integer is a subclass of Number.

12.	 C.  This question is difficult because it defines both Comparable and Comparator on
the same object. The t1 object doesn’t specify a Comparator, so it uses the Comparable
object’s compareTo() method. This sorts by the text instance variable. The t2 object
does specify a Comparator when calling the constructor, so it uses the compare() method,
which sorts by the int. This gives us option C as the answer.

13.	 A.  When using binarySearch(), the List must be sorted in the same order that the
Comparator uses. Since the binarySearch() method does not specify a Comparator
explicitly, the default sort order is used. Only c2 uses that sort order and correctly identifies
that the value 2 is at index 0. Therefore, option A is correct. The other two comparators sort
in descending order. Therefore, the precondition for binarySearch() is not met, and the
result is undefined for those two. The two calls to reverse() are just there to distract you;
they cancel each other out.

14.	 A, B.  Y is both a class and a type parameter. This means that within the class Z, when we
refer to Y, it uses the type parameter. All of the choices that mention class Y are incorrect
because it no longer means the class Y. Only options A and B are correct.

15.	 A, C.  A LinkedList implements both List and Queue. The List interface has a method
to remove by index. Since this method exists, Java does not autobox to call the other method,
making the output [10] and option A correct. Similarly, option C is correct because the
method to remove an element by index is available on a LinkedList<Object> (which is
what var represents here). By contrast, Queue has only the remove by object method, so
Java does autobox there. Since the number 1 is not in the list, Java does not remove anything
for the Queue, and the output is [10, 12].

16.	 E.  This question looks like it is about generics, but it’s not. It is trying to see whether you
noticed that Map does not have a contains() method. It has containsKey() and
containsValue() instead, making option E the answer. If containsKey() were
called, the answer would be false because 123 is an Integer key in the Map, rather
than a String.

17.	 A, E.  The key to this question is keeping track of the types. Line 48 is a
Map<Integer, Integer>. Line 49 builds a List out of a Set of Entry objects, giving
us List<Entry<Integer, Integer>>. This causes a compiler error on line 56 since we
can’t multiply an Entry object by two.

Lines 51–54 are all of type List<Integer>. The first three are immutable, and the one on
line 54 is mutable. This means line 57 throws an UnsupportedOperationException
since we attempt to modify the list. Line 58 would work if we could get to it. Since there is
one compiler error and one runtime error, options A and E are correct.

942  Appendix  ■  Answers to the Review Questions

18.	 B.  When using generic types in a method, the generic specification goes before the return
type and option B is correct.

19.	 F.  The first call to merge() calls the mapping function and adds the numbers to get 13. It
then updates the map. The second call to merge() sees that the map currently has a null
value for that key. It does not call the mapping function but instead replaces it with the new
value of 3. Therefore, option F is correct.

20.	 B, D, F.  The java.lang.Comparable interface is implemented on the object to
compare. It specifies the compareTo() method, which takes one parameter. The
java.util.Comparator interface specifies the compare() method, which takes two
parameters. This gives us options B, D, and F as the answers.

Chapter 10: Streams
1.	 D.  No terminal operation is called, so the stream never executes. The first line creates an infi-

nite stream reference. If the stream were executed on the second line, it would get the first
two elements from that infinite stream, "" and "1", and add an extra character, resulting in
"2" and "12", respectively. Since the stream is not executed, the reference is printed instead,
giving us option D.

2.	 F.  Both streams created in this code snippet are infinite streams. The variable b1 is set to
true since anyMatch() terminates. Even though the stream is infinite, Java finds a match
on the first element and stops looking. However, when allMatch() runs, it needs to keep
going until the end of the stream since it keeps finding matches. Since all elements continue
to match, the program hangs, making option F the answer.

3.	 E.  An infinite stream is generated where each element is twice as long as the previous one.
While this code uses the three-parameter iterate() method, the condition is never false.
The variable b1 is set to false because Java finds an element that matches when it gets to
the element of length 4. However, the next line tries to operate on the same stream. Since
streams can be used only once, this throws an exception that the “stream has already been
operated upon or closed” and making option E the answer. If two different streams were
used, the result would be option B.

4.	 A, B.  Terminal operations are the final step in a stream pipeline. Exactly one is required,
because it triggers the execution of the entire stream pipeline. Therefore, options A and B are
correct. Option C is true of intermediate operations rather than terminal operations. Option
D is incorrect because peek() is an intermediate operation. Finally, option E is incorrect
because once a stream pipeline is run, the Stream is marked invalid.

5.	 C, F.  Yes, we know this question is a lot of reading. Remember to look for the differences
between options rather than studying each line. These options all have much in common. All
of them start out with a LongStream and attempt to convert it to an IntStream. How-
ever, options B and E are incorrect because they do not cast the long to an int, resulting in
a compiler error on the mapToInt() calls.

Chapter 10: Streams  943

Next, we hit the second difference. Options A and D are incorrect because they are missing
boxed() before the collect() call. Since groupingBy() is creating a Collection, we
need a nonprimitive Stream. The final difference is that option F specifies the type of
Collection. This is allowed, though, meaning both options C and F are correct.

6.	 A.  Options C and D do not compile because these methods do not take a Predicate
parameter and do not return a boolean. When working with streams, it is important to
remember the behavior of the underlying functional interfaces. Options B and E are incor-
rect. While the code compiles, it runs infinitely. The stream has no way to know that a match
won’t show up later. Option A is correct because it is safe to return false as soon as one
element passes through the stream that doesn’t match.

7.	 F.  There is no Stream<T> method called compare() or compareTo(), so options A
through D can be eliminated. The sorted() method is correct to use in a stream pipeline
to return a sorted Stream. The collect() method can be used to turn the stream into a
List. The collect() method requires a collector be selected, making option E incorrect
and option F correct.

8.	 D, E.  The average() method returns an OptionalDouble since averages of any type can
result in a fraction. Therefore, options A and B are both incorrect. The findAny() method
returns an OptionalInt because there might not be any elements to find. Therefore, option
D is correct. The sum() method returns an int rather than an OptionalInt because the
sum of an empty list is zero. Therefore, option E is correct.

9.	 B, D.  Lines 4–6 compile and run without issue, making option F incorrect. Line 4 creates a
stream of elements [1, 2, 3]. Line 5 maps the stream to a new stream with values
[10, 20, 30]. Line 6 filters out all items not less than 5, which in this case results in an
empty stream. For this reason, findFirst() returns an empty Optional.

Option A does not compile. It would work for a Stream<T> object, but we have a
LongStream and therefore need to call getAsLong(). Option C also does not compile, as
it is missing the :: that would make it a method reference. Options B and D both compile
and run without error, although neither produces any output at runtime since the stream is
empty.

10.	 F.  Only one of the method calls, forEach(), is a terminal operation, so any answer in
which M is not the last line will not execute the pipeline. This eliminates all but options C, E,
and F. Option C is incorrect because filter() is called before limit(). Since none of the
elements of the stream meets the requirement for the Predicate<String>, the filter()
operation will run infinitely, never passing any elements to limit(). Option E is incorrect
because there is no limit() operation, which means that the code would run infinitely.
Only option F is correct. It first limits the infinite stream to a finite stream of ten elements
and then prints the result.

11.	 B, C, E.  As written, the code doesn’t compile because the Collectors.joining() expects
to get a Stream<String>. Option B fixes this, at which point nothing is output because
the collector creates a String without outputting the result. Option E fixes this and causes
the output to be 11111. Since the post-increment operator is used, the stream contains an
infinite number of the character 1. Option C fixes this and causes the stream to contain
increasing numbers.

944  Appendix  ■  Answers to the Review Questions

12.	 F.  The code does not compile because Stream.concat() takes two parameters, not the
three provided. This makes the answer option F.

13.	 F.  If the map() and flatMap() calls were reversed, option B would be correct. In this case,
the Stream created from the source is of type Stream<List>. Trying to use the addition
operator (+) on a List is not supported in Java. Therefore, the code does not compile, and
option F is correct.

14.	 B, D.  Line 4 creates a Stream and uses autoboxing to put the Integer wrapper of 1
inside. Line 5 does not compile because boxed() is available only on primitive streams like
IntStream, not Stream<Integer>. This makes option B one answer. Line 6 converts
to a double primitive, which works since Integer can be unboxed to a value that can be
implicitly cast to a double. Line 7 does not compile for two reasons making option D the
second answer. First, converting from a double to an int would require an explicit cast.
Also, mapToInt() returns an IntStream, so the data type of s2 is incorrect. The rest of
the lines compile without issue.

15.	 B, D.  Options A and C do not compile because they are invalid generic declarations. Prim-
itives are not allowed as generics, and Map must have two generic type parameters. Option
E is incorrect because partitioning only gives a Boolean key. Options B and D are correct
because they return a Map with a Boolean key and a value type that can be customized to
any Collection.

16.	 B, C.  First, this mess of code does compile. While it starts with an infinite stream on line
23, it becomes finite on line 24 thanks to limit(), making option F incorrect. The pipeline
preserves only nonempty elements on line 25. Since there aren’t any of those, the pipeline is
empty. Line 26 converts this to an empty map.

Lines 27 and 28 create a Set with no elements and then another empty stream. Lines 29 and
30 convert the generic type of the Stream to List<String> and then String. Finally,
line 31 gives us another Map<Boolean, List<String>>.

The partitioningBy() operation always returns a map with two Boolean keys, even
if there are no corresponding values. Therefore, option B is correct if the code is kept as is.
By contrast, groupingBy() returns only keys that are actually needed, making option C
correct if the code is modified on line 31.

17.	 D.  The terminal operation is count(). Since there is a terminal operation, the intermediate
operations run. The peek() operation comes before the filter(), so both numbers are
printed, making option D the answer. After the filter(), the count() happens to be 1
since one of the numbers is filtered out. However, the result of the stream pipeline isn’t stored
in a variable or printed, and it is ignored.

18.	 D.  This compiles, ruling out options E, F, and G. Since line 29 filters by names starting with
E, that rules out options A and B. Finally, line 31 counts the entire list, which is of size 2,
giving us option D as the answer.

Chapter 11: Exceptions and Localization  945

19.	 B.  Both lists and streams have forEach() methods. There is no reason to collect into a list
just to loop through it. Option A is incorrect because it does not contain a terminal operation
or print anything. Options B and C both work. However, the question asks about the sim-
plest way, which is option B.

20.	 C, E, F.  Options A and B compile and return an empty string without throwing an
exception, using a String and Supplier parameter, respectively. Option G does
not compile as the get() method does not take a parameter. Options C and F throw a
NoSuchElementException. Option E throws a RuntimeException. Option D looks
correct but will compile only if the throw is removed. Remember, the orElseThrow()
should get a lambda expression or method reference that returns an exception, not one that
throws an exception.

21.	 B.  We start with an infinite stream where each element is x. The spliterator()
method is a terminal operation since it returns a Spliterator rather than a Stream.
The tryAdvance() method gets the first element and prints a single x. The trySplit()
method takes a large number of elements from the stream. Since this is an infinite stream, it
doesn’t attempt to take half. Then tryAdvance() is called on the new split variable, and
another x is printed. Since there are two values printed, option B is correct.

Chapter 11: Exceptions and Localization
1.	 A, C, D, E.  A method that declares an exception isn’t required to throw one, making option

A correct. Unchecked exceptions can be thrown in any method, making options C and E
correct. Option D matches the exception type declared, so it’s also correct. Option B is incor-
rect because a broader exception is not allowed.

2.	 F.  The code does not compile because the throw and throws keywords are incorrectly used
on lines 6, 7, and 9. If the keywords were fixed, the rest of the code would compile and print
a stack trace with YesProblem at runtime. For this reason, option F is correct.

3.	 A, D, E.  Localization refers to user-facing elements. Dates, currency, and numbers are com-
monly used in different formats for different countries, making options A, D, and E correct.
Class and variable names, along with lambda expressions, are internal to the application, so
there is no need to translate them for users.

4.	 E.  The order of catch blocks is important because they’re checked in the order
they appear after the try block. Because ArithmeticException is a child
class of RuntimeException, the catch block on line 7 is unreachable (if an
ArithmeticException is thrown in the try block, it will be caught on line 5). Line 7
generates a compiler error because it is unreachable code, making option E correct.

5.	 C, F.  The code compiles and runs without issue. When a CompactNumberFormat instance
is requested without a style, it uses the SHORT style by default. This results in both of the first
two statements printing 100K, making option C correct. If the LONG style were used, then
100 thousand would be printed. Option F is also correct, as the full value is printed with a
currency formatter.

946  Appendix  ■  Answers to the Review Questions

6.	 E.  A LocalDate does not have a time element. Therefore, a date/time formatter is not
appropriate. The code compiles but throws an exception at runtime, making option E correct.
If ISO_LOCAL_DATE were used, the code would print 2022 APRIL 30.

7.	 E.  The first compiler error is on line 12 because each resource in a try-with-resources state-
ment must have its own data type and be separated by a semicolon (;). Line 15 does not
compile because the variable s is already declared in the method. Line 17 also does not com-
pile. The FileNotFoundException, which inherits from IOException and Exception,
is a checked exception, so it must be handled in a try/catch block or declared by the
method. Because these three lines of code do not compile, option E is the correct answer.

8.	 C.  Java will first look for the most specific matches it can find, starting with
Dolphins_en_US.properties. Since that is not an answer choice, it drops the country
and looks for Dolphins_en.properties, making option C correct. Option B is incorrect
because a country without a language is not a valid locale.

9.	 D.  When working with a custom number formatter, the 0 symbol displays the digit as 0, even
if it’s not present, while the # symbol omits the digit from the start or end of the String if
it is not present. Based on the requested output, a String that displays at least three digits
before the decimal (including a comma) and at least one after the decimal is required. It
should display a second digit after the decimal if one is available. For this reason, option D is
the correct answer.

10.	 B.  An IllegalArgumentException is used when an unexpected parameter is passed into
a method, making option B correct. Option A is incorrect because returning null or -1 is a
common return value for searching for data. Option D is incorrect because a for loop is typ-
ically used for this scenario. Option E is incorrect because you should find out how to code
the method and not leave it for the unsuspecting programmer who calls your method. Option
C is incorrect because you should run!

11.	 B, E, F.  An exception that must be handled or declared is a checked exception. A checked
exception inherits Exception but not RuntimeException. The entire hierarchy counts,
so options B and E are both correct. Option F is also correct, as a class that inherits
Throwable but not RuntimeException or Error is also checked.

12.	 B, C.  The code does not compile as is because the exception declared by the close()
method must be handled or declared. Option A is incorrect because removing the exception
from the declaration causes a compilation error on line 4, as FileNotFoundException
is a checked exception that must be handled or declared. Option B is correct because the
unhandled exception within the main() method becomes declared. Option C is also correct
because the exception becomes handled. Option D is incorrect because the exception remains
unhandled.

13.	 A, B.  A try-with-resources statement does not require a catch or finally block. A tra-
ditional try statement requires at least one of the two. Neither statement can be written
without a body encased in braces, {}. For these reasons, options A and B are correct.

Chapter 11: Exceptions and Localization  947

14.	 C.  Starting with Java 15, NullPointerException stack traces include the
name of the variable that is null by default, making option A incorrect. The first
NullPointerException encountered at runtime is when dewey.intValue()
is called, making option C correct. Options E and F are incorrect as only one
NullPointerException exception can be thrown at a time.

15.	 C, D.  The code compiles with the appropriate input, so option G is incorrect. A locale con-
sists of a required lowercase language code and optional uppercase country code. In the
Locale() constructor, the language code is provided first. For these reasons, options C
and D are correct. Option E is incorrect because a Locale is created using a constructor
or Locale.Builder class. Option F is really close but is missing build() at the end.
Without that, option F does not compile.

16.	 F.  The code compiles, but the first line produces a runtime exception regardless of what is
inserted into the blank, making option F correct. When creating a custom formatter, any
nonsymbol code must be properly escaped using pairs of single quotes ('). In this case, it fails
because o is not a symbol. Even if you didn’t know o wasn’t a symbol, the code contains an
unmatched single quote. If the properly escaped value of "hh' o''clock'" were used,
then the correct answers would be ZonedDateTime, LocalDateTime, and LocalTime.
Option B would not be correct because LocalDate values do not have an hour part.

17.	 D, F.  Option A is incorrect because Java will look at parent bundles if a key is not found in
a specified resource bundle. Option B is incorrect because resource bundles are loaded from
static factory methods. Option C is incorrect, as resource bundle values are read from the
ResourceBundle object directly. Option D is correct because the locale is changed only
in memory. Option E is incorrect, as the resource bundle for the default locale may be used
if there is no resource bundle for the specified locale (or its locale without a country code).
Finally, option F is correct. The JVM will set a default locale automatically.

18.	 C.  After both resources are declared and created in the try-with-resources statement, T is
printed as part of the body. Then the try-with-resources completes and closes the resources
in the reverse of the order in which they were declared. After W is printed, an exception is
thrown. However, the remaining resource still needs to be closed, so D is printed. Once all
the resources are closed, the exception is thrown and swallowed in the catch block, causing
E to be printed. Last, the finally block is run, printing F. Therefore, the answer is TWDEF
and option C is correct.

19.	 D.  Java will use Dolphins_fr.properties as the matching resource bundle on line 7
because it is an exact match on the language of the requested locale. Line 8 finds a match-
ing key in this file. Line 9 does not find a match in that file; therefore, it has to look higher
up in the hierarchy. Once a bundle is chosen, only resources in that hierarchy are allowed. It
cannot use the default locale anymore, but it can use the default resource bundle specified by
Dolphins.properties. For these reasons, option D is correct.

20.	 G.  The main() method invokes go(), and A is printed on line 3. The stop() method
is invoked, and E is printed on line 14. Line 16 throws a NullPointerException, so
stop() immediately ends, and line 17 doesn’t execute. The exception isn’t caught in go(),

948  Appendix  ■  Answers to the Review Questions

so the go() method ends as well, but not before its finally block executes and C is
printed on line 9. Because main() doesn’t catch the exception, the stack trace displays, and
no further output occurs. For these reasons, AEC is printed followed by a stack trace for a
NullPointerException, making option G correct.

21.	 C.  The code does not compile because the multi-catch block on line 7 cannot catch both
a superclass and a related subclass. Options A and B do not address this problem, so they
are incorrect. Since the try body throws SneezeException, it can be caught in a catch
block, making option C correct. Option D allows the catch block to compile but causes a
compiler error on line 6. Both of the custom exceptions are checked and must be handled or
declared in the main() method. A SneezeException is not a SniffleException, so
the exception is not handled. Likewise, option E leads to an unhandled exception compiler
error on line 6.

22.	 B.  For this question, the date used is April 5, 2022 at 12:30:20pm. The code compiles,
and either form of the formatter is correct: dateTime.format(formatter) or
formatter.format(dateTime). The custom format m returns the minute, so 30 is
output first. The next line throws an exception as z relates to time zone, and date/time does
not have a zone component. This exception is then swallowed by the try/catch block. Since
this is the only value printed, option B is correct. If the code had not thrown an exception,
the last line would have printed 2022.

23.	 A, E.  Resources must inherit AutoCloseable to be used in a try-with-resources block.
Since Closeable, which is used for I/O classes, extends AutoCloseable, both may be
used, making options A and E correct.

24.	 G.  The code does not compile because the resource walk1 is not final or effectively final
and cannot be used in the declaration of a try-with-resources statement. For this reason,
option G is correct. If the line that set walk1 to null were removed, then the code would
compile and print blizzard 2 at runtime, with the exception inside the try block being
the primary exception since it is thrown first. Then two suppressed exceptions would be
added to it when trying to close the AutoCloseable resources.

25.	 A.  The code compiles and prints the value for Germany, 2,40 €, making option A the
correct answer. Note that the default locale category is ignored since an explicit currency
locale is selected.

26.	 B, F.  The try block is not capable of throwing an IOException, making the catch block
unreachable code and option A incorrect. Options B and F are correct, as both are unchecked
exceptions that do not extend or inherit from IllegalArgumentException. Remember,
it is not a good idea to catch Error in practice, although because it is possible, it may come
up on the exam. Option C is incorrect because the variable c is declared already in the
method declaration. Option D is incorrect because the IllegalArgumentException
inherits from RuntimeException, making the first declaration unnecessary.
Similarly, option E is incorrect because NumberFormatException inherits from
IllegalArgumentException, making the second declaration unnecessary. Since options
B and F are correct, option G is incorrect.

Chapter 12: Modules  949

Chapter 12: Modules
1.	 E.  Modules are required to have a module-info.java file at the root directory of the

module. Option E matches this requirement.

2.	 B.  Options A, C, and E are incorrect because they refer to directives that don’t exist. The
exports directive is used when allowing a package to be called by code outside of the
module, making option B the correct answer. Notice that options D and F are incorrect
because of requires.

3.	 G.  The -m or --module option is used to specify the module and class name. The -p or
--module-path option is used to specify the location of the modules. Option D would be
correct if the rest of the command were correct. However, running a program requires spec-
ifying the package name with periods (.) instead of slashes. Since the command is incorrect,
option G is correct.

4.	 D.  A service consists of the service provider interface and logic to look up implementations
using a service locator. This makes option D correct. Make sure you know that the service
provider itself is the implementation, which is not considered part of the service.

5.	 E, F.  Automatic modules are on the module path but do not have a module-info.java
file. Named modules are on the module path and do have a module-info. Unnamed mod-
ules are on the classpath. Therefore, options E and F are correct.

6.	 A, F.  Options C and D are incorrect because there is no use directive. Options A and F are
correct because opens is for reflection and uses declares that an API consumes a service.

7.	 A, B, E.  Any version information at the end of the JAR filename is removed, making options
A and B correct. Underscores (_) are turned into dots (.), making options C and D incorrect.
Other special characters like a dollar sign ($) are also turned into dots. However, adjacent
dots are merged, and leading/trailing dots are removed. Therefore, option E is correct.

8.	 A, D.  A cyclic dependency is when a module graph forms a circle. Option A is correct
because the Java Platform Module System does not allow cyclic dependencies between mod-
ules. No such restriction exists for packages, making option B incorrect. A cyclic dependency
can involve two or more modules that require each other, making option D correct, while
option C is incorrect. Finally, option E is incorrect because unnamed modules cannot be
referenced from an automatic module.

9.	 F.  The provides directive takes the interface name first and the implementing class
name second and also uses with. Only option F meets these two criteria, making it the
correct answer.

950  Appendix  ■  Answers to the Review Questions

10.	 B, C.  Packages inside a module are not exported by default, making option B correct and
option A incorrect. Exporting is necessary for other code to use the packages; it is not
necessary to call the main() method at the command line, making option C correct and
option D incorrect. The module-info.java file has the correct name and compiles, mak-
ing options E and F incorrect.

11.	 D, G, H.  Options A, B, E, and F are incorrect because they refer to directives that don’t exist.
The requires transitive directive is used when specifying a module to be used by the
requesting module and any other modules that use the requesting module. Therefore, dog
needs to specify the transitive relationship, and option G is correct. The module puppy just
needs requires dog, and it gets the transitive dependencies, making option D correct.
However, requires transitive does everything requires does and more, which
makes option H the final answer.

12.	 A, B, C, F.  Option D is incorrect because it is a package name rather than a module name.
Option E is incorrect because java.base is the module name, not jdk.base. Option G is
wrong because we made it up. Options A, B, C, and F are correct.

13.	 D.  There is no getStream() method on a ServiceLoader, making options A and C
incorrect. Option B does not compile because the stream() method returns a list of
Provider interfaces and needs to be converted to the Unicorn interface we are interested
in. Therefore, option D is correct.

14.	 C.  The -p option is a shorter form of --module-path. Since the same option cannot
be specified twice, options B, D, and F are incorrect. The --module-path option is an
alternate form of -p. The module name and class name are separated with a slash, making
option C the answer. Note that x-x is legal because the module path is a folder name, so
dashes are allowed.

15.	 B.  A top-down migration strategy first places all JARs on the module path. Then it migrates
the top-level module to be a named module, leaving the other modules as automatic modules.
Option B is correct as it matches both of those characteristics.

16.	 A.  Since this is a new module, you need to compile it. However, none of the existing modules
needs to be recompiled, making option A correct. The service locator will see the new service
provider simply by having that new service provider on the module path.

17.	 E.  Trick question! An unnamed module doesn’t use a module-info.java file. Therefore,
option E is correct. An unnamed module can access an automatic module. The unnamed
module would simply treat the automatic module as a regular JAR without involving the
module.info file.

18.	 D.  The jlink command creates a directory with a smaller Java runtime containing just
what is needed. The JMOD format is for native code. Therefore, option D is correct.

19.	 E.  There is a trick here. A module definition uses the keyword module rather than class.
Since the code does not compile, option E is correct. If the code did compile, options A and D
would be correct.

http://module.info

Chapter 13: Concurrency  951

20.	 A.  When running java with the -d option, all the required modules are listed. Addition-
ally, the java.base module is listed since it is included automatically. The line ends with
mandated, making option A correct. The java.lang is a trick since it is a package that is
imported by default in a class rather than a module.

21.	 H.  This question is tricky. The service locator must have a uses directive, but that is on the
service provider interface. No modules need to specify requires on the service provider
since that is the implementation. Since none are correct, option H is the answer.

22.	 A, F.  An automatic module exports all packages, making option A correct. An unnamed
module is not available to any modules on the module path. Therefore, it doesn’t export any
packages, and option F is correct.

23.	 E.  The module name is valid, as are the exports statements. Lines 4 and 5 are tricky
because each is valid independently. However, the same module name is not allowed to be
used in two requires statements. The second one fails to compile on line 5, making option
E the answer.

24.	 A.  Since the JAR is on the classpath, it is treated as a regular unnamed module even though
it has a module-info.java file inside. Remember from learning about top-down migra-
tion that modules on the module path are not allowed to refer to the classpath, making
options B and D incorrect. The classpath does not have a facility to restrict packages, making
option A correct and options C and E incorrect.

25.	 A, C, D.  Options A and C are correct because both the consumer and the service locator
depend on the service provider interface. Additionally, option D is correct because the service
locator must specify that it uses the service provider interface to look it up.

Chapter 13: Concurrency
1.	 D, F.  There is no such class within the Java API called ParallelStream, so options A and

E are incorrect. The method defined in the Stream class to create a parallel stream from
an existing stream is parallel(); therefore, option F is correct, and option C is incorrect.
The method defined in the Collection class to create a parallel stream from a collection is
parallelStream(); therefore, option D is correct, and option B is incorrect.

2.	 A, D.  The tryLock() method returns immediately with a value of false if the lock cannot
be acquired. Unlike lock(), it does not wait for a lock to become available. This code fails
to check the return value on line 8, resulting in the protected code being entered regardless of
whether the lock is obtained. In some executions (when tryLock() returns true on every
call), the code will complete successfully and print 45 at runtime, making option A correct.
On other executions (when tryLock() returns false at least once), the unlock()
method on line 10 will throw an IllegalMonitorStateException at runtime, making
option D correct. Option B would be possible if line 10 did not throw an exception.

952  Appendix  ■  Answers to the Review Questions

3.	 B, C, F.  Runnable returns void and Callable returns a generic type, making options A
and D incorrect and option F correct. All methods are capable of throwing unchecked excep-
tions, so option B is correct. Only Callable is capable of throwing checked exceptions, so
option E is incorrect. Both Runnable and Callable are functional interfaces that can be
implemented with a lambda expression, so option C is also correct.

4.	 B, C.  The code does not compile, so options A and F are incorrect. The first problem
is that although a ScheduledExecutorService is created, it is assigned to an
ExecutorService. The type of the variable on line w1 would have to be updated to
ScheduledExecutorService for the code to compile, making option B correct. The
second problem is that scheduleWithFixedDelay() supports only Runnable, not
Callable, and any attempt to return a value is invalid in a Runnable lambda expression;
therefore, line w2 will also not compile, and option C is correct. The rest of the lines compile
without issue, so options D and E are incorrect.

5.	 C.  The code compiles and runs without throwing an exception or entering an infinite loop,
so options D, E, and F are incorrect. The key here is that the increment operator ++ is not
atomic. While the first part of the output will always be 100, the second part is nondetermin-
istic. It may output any value from 1 to 100, because the threads can overwrite each other’s
work. Therefore, option C is the correct answer, and options A and B are incorrect.

6.	 C, E.  The code compiles, so option G is incorrect. The peek() method on a parallel stream
will process the elements concurrently, so the order cannot be determined ahead of time, and
option C is correct. The forEachOrdered() method will process the elements in the order
in which they are stored in the stream, making option E correct. None of the methods sort
the elements, so options A and D are incorrect.

7.	 D.  Livelock occurs when two or more threads are conceptually blocked forever, although
they are each still active and trying to complete their task. A race condition is an undesirable
result that occurs when two tasks that should have been completed sequentially are com-
pleted at the same time. For these reasons, option D is correct.

8.	 B.  Be wary of run() vs. start() on the exam! The method looks like it executes a task
concurrently, but it runs synchronously. In each iteration of the forEach() loop, the pro-
cess waits for the run() method to complete before moving on. For this reason, the code
is thread-safe. Since the program consistently prints 500 at runtime, option B is correct.
Note that if start() had been used instead of run() (or the stream was parallel), then the
output would be indeterminate, and option C would have been correct.

9.	 C.  If a task is submitted to a thread executor, and the thread executor does not have any
available threads, the call to the task will return immediately with the task being queued
internally by the thread executor. For this reason, option C is the correct answer.

10.	 A.  The code compiles without issue, so option D is incorrect. The
CopyOnWriteArrrayList class is designed to preserve the original list on iteration, so
the first loop will be executed exactly three times and, in the process, will increase the size of
tigers to six elements. The ConcurrentSkipListSet class allows modifications, and
since it enforces the uniqueness of its elements, the value 5 is added only once, leading to a
total of four elements in bears. Finally, despite using the elements of lions to populate
the collections, tigers and bears are not backed by the original list, so the size of lions
is 3 throughout this program. For these reasons, the program prints 3 6 4, and option A
is correct.

Chapter 13: Concurrency  953

11.	 F.  The code compiles and runs without issue, so options C, D, E, and G are incorrect.
There are two important things to notice. First, synchronizing on the first variable doesn’t
impact the results of the code. Second, sorting on a parallel stream does not mean that
findAny() will return the first record. The findAny() method will return the value from
the first thread that retrieves a record. Therefore, the output is not guaranteed, and option
F is correct. Option A looks correct, but even on serial streams, findAny() is free to select
any element.

12.	 B.  The code snippet submits three tasks to an ExecutorService, shuts it down, and then
waits for the results. The awaitTermination() method waits a specified amount of time
for all tasks to complete and the service to finish shutting down. Since each five-second task
is still executing, the awaitTermination() method will return with a value of false
after two seconds but not throw an exception. For these reasons, option B is correct.

13.	 C.  The code does not compile, so options A and E are incorrect. The problem here is that
c1 is an Integer and c2 is a String, so the code fails to combine on line q2, since calling
length() on an Integer is not allowed, and option C is correct. The rest of the lines com-
pile without issue. Note that calling parallel() on an already parallel stream is allowed,
and it may return the same object.

14.	 C, E.  The code compiles without issue, so option D is incorrect. Since both tasks are sub-
mitted to the same thread executor pool, the order cannot be determined, so options A and
B are incorrect, and option C is correct. The key here is that the order in which the resources
o1 and o2 are synchronized could result in a deadlock. For example, if the first thread gets a
lock on o1 and the second thread gets a lock on o2 before either thread can get their second
lock, the code will hang at runtime, making option E correct. The code cannot produce a
livelock, since both threads are waiting, so option F is incorrect. Finally, if a deadlock does
occur, an exception will not be thrown, so option G is incorrect.

15.	 A.  The code compiles and runs without issue, so options C, D, E, and F are incorrect. The
collect() operation groups the animals into those that do and do not start with the letter
p. Note that there are four animals that do not start with the letter p and three animals that
do. The logical complement operator (!) before the startsWith() method means that
results are reversed, so the output is 3 4, and option A is correct, making option B incorrect.

16.	 A, B.  The code compiles just fine. If the calls to fuel++ are ordered sequentially, then the
program will print 100 at runtime, making option B correct. On the other hand, the calls
may overwrite each other. The volatile attribute only guarantees memory consistency, not
thread-safety, making option A correct and option C incorrect. Option E is also incorrect,
as no InterruptedException is thrown by this code. Remember, interrupt() only
impacts a thread that is in a WAITING or TIMED_WAITING state. Calling interrupt() on
a thread in a NEW or RUNNABLE state has no impact unless the code is running and explicitly
checking the isInterrupted() method.

17.	 F.  The lock() method will wait indefinitely for a lock, so option A is incorrect. Options B
and C are also incorrect, as the correct method name to attempt to acquire a lock is
tryLock(). Option D is incorrect, as fairness is set to false by default and must be
enabled by using an overloaded constructor. Finally, option E is incorrect because a thread
that holds the lock may have called lock() or tryLock() multiple times. A thread needs
to call unlock() once for each call to lock() and successful tryLock(). Option F is the
correct answer since none of the other options are valid statements.

954  Appendix  ■  Answers to the Review Questions

18.	 C, E, G.  A Callable lambda expression takes no values and returns a generic type; there-
fore, options C, E, and G are correct. Options A and F are incorrect because they both take
an input parameter. Option B is incorrect because it does not return a value. Option D is not
a valid lambda expression, because it is missing a semicolon at the end of the return state-
ment, which is required when inside braces {}.

19.	 E, G.  The application compiles and does not throw an exception. Even though the stream
is processed in sequential order, the tasks are submitted to a thread executor, which may
complete the tasks in any order. Therefore, the output cannot be determined ahead of time,
and option E is correct. Finally, the thread executor is never shut down; therefore, the code
will run but never terminate, making option G also correct.

20.	 F.  The key to solving this question is to remember that the execute() method returns
void, not a Future object. Therefore, line n1 does not compile, and option F is the
correct answer. If the submit() method had been used instead of execute(), option C
would have been the correct answer, as the output of the submit(Runnable) task is a
Future<?> object that can only return null on its get() method.

21.	 A, D.  The findFirst() method guarantees the first element in the stream will be returned,
whether it is serial or parallel, making options A and D correct. While option B may con-
sistently print 1 at runtime, the behavior of findAny() on a serial stream is not guaran-
teed, so option B is incorrect. Option C is likewise incorrect, with the output being random
at runtime.

22.	 B.  The code compiles and runs without issue. The key aspect to notice in the code is that a
single-thread executor is used, meaning that no task will be executed concurrently. There-
fore, the results are valid and predictable, with 100 100 being the output, and option B is
the correct answer. If a thread executor with more threads was used, then the s2++ opera-
tions could overwrite each other, making the second value indeterminate at the end of the
program. In this case, option C would be the correct answer.

23.	 F.  The code compiles without issue, so options B, C, and D are incorrect. The limit on the
cyclic barrier is 10, but the stream can generate only up to 9 threads that reach the barrier;
therefore, the limit can never be reached, and option F is the correct answer, making options
A and E incorrect. Even if the limit(9) statement was changed to limit(10), the
program could still hang since the JVM might not allocate 10 threads to the parallel stream.

24.	 A, F.  The class compiles without issue, so option A is correct. Since getInstance() is a
static method and sellTickets() is an instance method, lines k1 and k4 synchro-
nize on different objects, making option D incorrect. The class is not thread-safe because the
addTickets() method is not synchronized, and option E is incorrect. One thread could
call sellTickets() while another thread calls addTickets(), possibly resulting in bad
data. Finally, option F is correct because the getInstance() method is synchronized.
Since the constructor is private, this method is the only way to create an instance of
TicketManager outside the class. The first thread to enter the method will set the
instance variable, and all other threads will use the existing value. This is a singleton
pattern.

Chapter 14: I/O  955

25.	 C, D.  The code compiles and runs without issue, so options F and G are incorrect. The return
type of performCount() is void, so submit() is interpreted as being applied to a
Runnable expression. While submit(Runnable) does return a Future<?>, calling
get() on it always returns null. For this reason, options A and B are incorrect, and option
C is correct. The performCount() method can also throw a runtime exception, which will
then be thrown by the get() call as an ExecutionException; therefore, option D is also
a correct answer. Finally, it is also possible for our performCount() to hang indefinitely,
such as with a deadlock or infinite loop. Luckily, the call to get() includes a timeout value.
While each call to Future.get() can wait up to a day for a result, it will eventually finish,
so option E is incorrect.

Chapter 14: I/O
1.	 C.  Since the question asks about putting data into a structured object, the best class would

be one that deserializes the data. Therefore, ObjectInputStream is the best choice, which
is option C. ObjectWriter, BufferedStream, and ObjectReader are not I/O stream
classes. ObjectOutputStream is an I/O class but is used to serialize data, not deserialize
it. FileReader can be used to read text file data and construct an object, but the question
asks what would be the best class to use for binary data.

2.	 A, F.  Paths that begin with the root directory are absolute paths, so option A is correct, and
option C is incorrect. Option B is incorrect because the path could be a file or directory
within the file system. There is no rule that files have to end with a file extension. Option D is
incorrect, as it is possible to create a File reference to files and directories that do not exist.
Option E is also incorrect. The delete() method returns false if the file or directory
cannot be deleted. Character stream classes often include built-in convenience methods for
working with String data, so option F is correct. There is no such optimization for multi-
threading, making option G incorrect.

3.	 B, D.  If the console is unavailable, System.console() will return null, making
option D correct and options E and F incorrect. The writer methods throw a checked
IOException, making option C incorrect. The code works correctly, prompting for input
and printing it. Therefore, option A is incorrect and option B is correct.

4.	 F.  The code does not compile, as Files.deleteIfExists() declares the checked
IOException that must be handled or declared. Remember, most Files methods declare
IOException, especially the ones that modify a file or directory. For this reason, option F is
correct. If the method were corrected to declare the appropriate exceptions, option C would
be correct. Option B would also be correct if the method were provided a symbolic link
that pointed to an empty directory. Options A and E would not print anything, as
Files.isDirectory() returns false for both. Finally, option D would throw a
DirectoryNotEmptyException at runtime.

956  Appendix  ■  Answers to the Review Questions

5.	 C.  The filter() operation applied to a Stream<Path> takes only one parameter, not
two, so the code does not compile, and option C is correct. If the code were rewritten to
use the Files.find() method with the BiPredicate as input (along with a maxDepth
value), the output would be option B, Has Sub, since the directory is given to be empty. For
fun, we reversed the expected output of the ternary operation.

6.	 C.  The code compiles and runs without issue, so options F and G are incorrect. The key
here is that while Eagle is serializable, its parent class, Bird, is not. Therefore, none of the
members of Bird will be serialized. Even if you didn’t know that, you should know what
happens on deserialization. During deserialization, Java calls the constructor of the first non-
serializable parent. In this case, the Bird constructor is called, with name being set to
Matt, making option C correct. Note that none of the constructors or instance initializers in
Eagle are executed as part of deserialization.

7.	 B, C.  The code snippet will attempt to create a directory if the target of the symbolic link
exists and is a directory. If the directory already exists, though, it will throw an exception.
For this reason, option A is incorrect, and option B is correct. It will be created in
/mammal/kangaroo/joey and also reachable at /kang/joey because of the symbolic
link, making option C correct.

8.	 B.  The readAllLines() method returns a List, not a Stream. Therefore, the call
to flatMap() is invalid, and option B is correct. If the Files.lines() method were
used instead, it would print the contents of the file one capitalized word at a time with the
commas removed.

9.	 C, E, G.  First, the method does compile, so options A and B are incorrect. Methods to
read/write byte[] values exist in the abstract parent of all I/O stream classes. This imple-
mentation is not correct, though, as the return value of read(buffer) is not used properly.
It will only correctly copy files whose character count is a multiple of 10, making option C
correct and option D incorrect. Option E is also correct as the data may not have made it to
disk yet. Option F would be correct if the flush() method were called after every write.
Finally, option G is correct as the reader stream is never closed.

10.	 B, D, G.  Options A and E are incorrect because Path and FileSystem, respectively, are
abstract types that should be instantiated using a factory method. Option C is incorrect
because the static method in the Path interface is of(), not get(). Option F is incorrect
because the static method in the Paths class is get(), not getPath(). Options B and
D are correct ways to obtain a Path instance. Option G is also correct, as there is an over-
loaded static method in Path that takes a URI instead of a String.

11.	 A, E.  The code will compile if the correct classes are used, so option G is incorrect.
Remember, a try-with-resources statement can use resources declared before the start of the
statement. The reference type of wrapper is InputStream, so we need a class that inherits
InputStream. We can eliminate BufferedWriter, ObjectOutputStream, and
BufferedReader since their names do not end in InputStream. Next, we see the class
must take another stream as input, so we need to choose the remaining streams that are high-
level streams. BufferedInputStream is a high-level stream, so option A is correct. Even
though the instance is already a BufferedInputStream, there’s no rule that it can’t be

Chapter 14: I/O  957

wrapped multiple times by a high-level stream. Option D is incorrect, as
FileInputStream operates on a file, not another stream. Finally, option E is correct—an
ObjectInputStream is a high-level stream that operates on other streams.

12.	 C, E.  The method to create a directory in the Files class is createDirectory(), not
mkdir(). For this reason, line 6 does not compile, and option C is correct. In addition, the
setTimes() method is available only on BasicFileAttributeView, not the read-only
BasicFileAttributes, so line 8 will also not compile, making option E correct.

13.	 A, G.  For a class to be serialized, it must implement the Serializable interface and
contain instance members that are serializable or marked transient. For these reasons,
options A and G are correct and option F is incorrect. Option B is incorrect because even
records are required to implement Serializable to be serialized. Option C is incorrect
because it describes deserialization. The Serializable interface is a marker interface that
does not contain any abstract methods, making option D incorrect. While it is a good prac-
tice for a serializable class to include a static serialVersionUID variable, it is not
required. Therefore, option E is incorrect as well.

14.	 B, D, E.  Path is immutable, so line 23 is ignored. If it were assigned to p1, option A would
be correct. Since it is not assigned, the original value is still present, which is option B.
Moving on to the second section, the subpath() method on line 27 is applied to the abso-
lute path, which returns the relative path animals/bear. Next, the getName() method
is applied to the relative path, and since this is indexed from 0, it returns the relative path
bear. Therefore, option D is correct. Finally, remember calling resolve() with an absolute
path as a parameter returns the absolute path, so option E is correct.

15.	 B, E, F.  Option A does not compile, as there is no File constructor that takes three param-
eters. Option B is correct and is the proper way to create a File instance with a single
String parameter. Option C is incorrect, as there is no constructor that takes a String
followed by a File. There is a constructor that takes a File followed by a String, mak-
ing option E correct. Option D is incorrect because the first parameter is missing a slash
(/) to indicate it is an absolute path. Since it’s a relative path, it is correct only when the
user’s current directory is the root directory. Finally, option F is correct as it creates a File
from a Path.

16.	 A, D.  The method compiles, so option E is incorrect. The method creates a new-zoo.txt
file and copies the first line from zoo-data.txt into it, making option A correct. The try-
with-resources statement closes all of the declared resources, including the FileWriter o.
For this reason, the Writer is closed when the last o.write() is called, resulting in an
IOException at runtime and making option D correct. Option F is incorrect because this
implementation uses the character stream classes, which inherit from Reader or Writer.

17.	 B, C, E.  Options B and C are properties of NIO.2 and are good reasons to use it over the
java.io.File class. Option A is incorrect as both APIs can delete only empty directories,
not a directory tree. Using a view to read multiple attributes leads to fewer round trips
between the process and the file system and better performance, making option E correct.
Views can be used to access file system–specific attributes that are not available in Files
methods; therefore, option D is correct. Files is part of NIO.2, whereas File is part of
java.io, which means option F is incorrect.

958  Appendix  ■  Answers to the Review Questions

18.	 C.  Since a Reader may or may not support mark(), we can rule out options E, F, G, and
H. Assuming mark() is supported, P is added to the StringBuilder first. Next, the posi-
tion in the stream is marked before E. The E is added to the StringBuilder, with AC being
skipped, and then the O is added to the StringBuilder, with CK being skipped. The stream
is then reset() to the position before the E. The call to skip(0) doesn’t do anything since
there are no characters to skip, so E is added onto the StringBuilder in the next read()
call. The value PEOE is printed, and option C is correct.

19.	 C.  The code compiles and runs without issue, so option G is incorrect. If you simplify the
redundant path symbols, p1 and p2 represent the same path, /lizard/walking.txt.
Therefore, isSameFile() returns true. The second output is false, because equals()
checks only if the path values are the same, without reducing the path symbols. Finally,
mismatch() sees that the contents are the same and returns -1. For these reasons, option C
is correct.

20.	 D.  The target path of the file after the move() operation is /animals, not
/animals/monkey.txt, so options A and B are both incorrect. Both will throw an
exception at runtime since /animals already exists and is a directory. Next, the
NOFOLLOW_LINKS option means that if the source is a symbolic link, the link itself and not
the target will be copied at runtime, so option C is also incorrect. The option ATOMIC_MOVE
means that any process monitoring the file system will not see an incomplete file during the
move, so option D is correct.

21.	 C.  The code compiles and runs without issue, so options D, E, and F are incorrect. The most
important thing to notice is that the depth parameter specified as the second argument to
find() is 0, meaning the only record that will be searched is the top-level directory. Since
we know that the top directory is a directory and not a symbolic link, no other paths will be
visited, and nothing will be printed. For these reasons, option C is the correct answer.

22.	 G.  The code compiles, so option F is incorrect. To be serializable, a class must implement
the Serializable interface, which Zebra does. It must also contain instance members
that either are marked transient or are serializable. The instance member stripes is of
type Object, which is not serializable. If Object implemented Serializable, all objects
would be serializable by default, defeating the purpose of having the Serializable inter-
face. Therefore, the Zebra class is not serializable, with the program throwing an exception
at runtime if serialized and making option G correct. If stripes were removed from the
class, options A and D would be the correct answers, as name and age are both marked
transient.

23.	 A, D.  The code compiles without issue, so options E and F are incorrect. The
toRealPath() method will simplify the path to /animals and throw an exception if it
does not exist, making option D correct. If the path does exist, calling getParent() on it
returns the root directory. Walking the root directory with the filter expression will print all
.java files in the root directory (along with all .java files in the directory tree), making
option A correct. Option B is incorrect because it will skip files and directories that do not
end in the .java extension. Option C is also incorrect as Files.walk() does not follow
symbolic links by default. Only if the FOLLOW_LINKS option is provided and a cycle is
encountered will the exception be thrown.

Chapter 15: JDBC  959

24.	 B.  The method compiles without issue, so option E is incorrect. Option F is also incorrect.
Even though /flip exists, createDirectories() does not throw an exception if the
path already exists. If createDirectory() were used instead, option F would be correct.
Next, the copy() command takes a target that is the path to the new file location, not the
directory to be copied into. Therefore, the target path should be /flip/sounds.txt,
not /flip. For this reason, options A and C are incorrect. Since the question says the file
already exists, the REPLACE_EXISTING option must be specified or an exception will be
thrown at runtime, making option B the correct answer.

25.	 B, D.  Since you need to read characters, the Reader classes are appropriate. Therefore, you
can eliminate options A, C, and F. Additionally, options E and G are incorrect, as they ref-
erence classes that do not exist. Options B and D are correct since they read from a file and
buffer for performance.

Chapter 15: JDBC
1.	 B, F.  The Driver and PreparedStatement interfaces are part of the JDK, making

options A and E incorrect. Option C is incorrect because we made it up. The concrete
DriverManager class is also part of the JDK, making option D incorrect. Options B and
F are correct since the implementation of these interfaces is part of the database-specific
driver JAR file.

2.	 A.  A JDBC URL has three main parts separated by single colons, making options B, C, E,
and F incorrect. The first part is always jdbc, making option D incorrect. Therefore, the
correct answer is option A. Notice that you can get this right even if you’ve never heard of
the Sybase database before.

3.	 B, D.  When setting parameters on a PreparedStatement, there are only options that
take an index, making options C and F incorrect. The indexing starts with 1, making option
A incorrect. This query has only one parameter, so option E is also incorrect. Option B is
correct because it simply sets the parameter. Option D is also correct because it sets the
parameter and then immediately overwrites it with the same value.

4.	 C.  A Connection is created using a static method on DriverManager. It does not use
a constructor. Therefore, option C is correct. If the Connection was created properly, the
answer would be option B.

5.	 B.  The first line has a return type of boolean, making it an execute() call. The second
line returns the number of modified rows, making it an executeUpdate() call. The third
line returns the results of a query, making it an executeQuery() call. Therefore, option B
is the answer.

6.	 B.  The first line enables autocommit mode. This is the default and means to commit immedi-
ately after each update. When the rollback() runs, there are no uncommitted statements,
so there is nothing to roll back. This gives us the initial two rows in addition to the inserted
one making option B correct. If setAutoCommit(false) were called, option A would
be the answer. The ResultSet types are just there to mislead you. Any types are valid for
executeUpdate() since no ResultSet is involved.

960  Appendix  ■  Answers to the Review Questions

7.	 C.  This code works as expected. It updates each of the five rows in the table and returns the
number of rows updated. Therefore, option C is correct.

8.	 A, B.  Option A is one of the answers because you are supposed to use braces ({}) for all
SQL in a CallableStatement. Option B is the other answer because each parameter
should be passed with a question mark (?). The rest of the code is correct. Note that your
database might not behave the way that’s described here, but you still need to know this
syntax for the exam.

9.	 E.  This code declares a bind variable with ? but never assigns a value to it. The compiler
does not enforce bind variables have values, so the code compiles, but produces a
SQLException at runtime, making option E correct.

10.	 D.  JDBC code throws a SQLException, which is a checked exception. The code does not
handle or declare this exception, and therefore it doesn’t compile. Since the code doesn’t
compile, option D is correct. If the exception were handled or declared, the answer would be
option C.

11.	 D.  JDBC resources should be closed in the reverse order from that in which they were
opened. The order for opening is Connection, CallableStatement, and ResultSet.
The order for closing is ResultSet, CallableStatement, and Connection, which
is option D.

12.	 C.  This code calls the PreparedStatement twice. The first time, it gets the numbers
greater than 3. Since there are two such numbers, it prints two lines. The second time, it gets
the numbers greater than 100. There are no such numbers, so the ResultSet is empty. Two
lines are printed in total, making option C correct. The ResultSet options are just there to
trick you since only the default settings are used by the rest of the code.

13.	 B, F.  In a ResultSet, columns are indexed starting with 1, not 0. Therefore, options A, C,
and E are incorrect. There are methods to get the column as a String or Object. However,
option D is incorrect because an Object cannot be assigned to a String without a cast.

14.	 C.  Since an OUT parameter is used, the code should call registerOutParameter(). Since
this is missing, option C is correct.

15.	 C, D.  Rolling back to a point invalidates any savepoints created after it. Options A and E are
incorrect because they roll back to lines 19 and 17, respectively. Option B is incorrect because
you cannot roll back to the same savepoint twice. Options C and D are the answers because
those savepoints were created after curly.

16.	 E.  First, notice that this code uses a PreparedStatement. Options A, B, and C are incor-
rect because they are for a CallableStatement. Next, remember that the number of
parameters must be an exact match, making option E correct. Remember that you will not be
tested on SQL syntax. When you see a question that appears to be about SQL, think about
what it might be trying to test you on.

17.	 D.  This code calls the PreparedStatement twice. The first time, it gets the numbers
greater than 3. Since there are two such numbers, it prints two lines. Since the parameter is
not set between the first and second calls, the second attempt also prints two rows. Four lines
are printed in total, making option D correct.

Chapter 15: JDBC  961

18.	 D.  Before accessing data from a ResultSet, the cursor needs to be positioned. The call to
rs.next() is missing from this code causing a SQLException and option D to be correct.

19.	 E.  This code should call prepareStatement() instead of prepareCall() since it is not
executing a stored procedure. Since we are using var, it does compile. Java will happily cre-
ate a CallableStatement for you. Since this compile safety is lost, the code will not cause
issues until runtime. At that point, Java will complain that you are trying to execute SQL as if
it were a stored procedure, making option E correct.

20.	 B.  The prepareStatement() method requires SQL to be passed in. Since this parameter
is omitted, line 27 does not compile, and option B is correct.

21.	 B, D.  The code starts with autocommit off. As written, we turn autocommit mode back on
and immediately commit the transaction. This is option B. When line W is commented out,
the update gets lost, making option D the other answer.

Index

A
absolute path, 788
abstract classes

compared with interfaces, 352–353
creating

about, 315–317
concrete classes, 318–320
constructors in abstract classes, 320–321
declaring abstract methods, 317–318
finding invalid declarations, 321–323

creating constructors in, 320–321
abstract methods

calling, 359
declaring, 317–318
inheriting duplicate, 350–351

abstract modifier, 223, 278, 347, 351–352
access modifiers

about, 8, 221–222, 307
applying

about, 235
package access, 236–237
private access, 235–236
protected access, 237–241
public access, 242
reviewing access modifiers, 242–243

accessing
data with volatile, 741–742
elements of varargs, 234
static data

accessing static variables or
methods, 244–245

class vs. instance membership, 245–248
designing static methods and

variables, 243–244
static imports, 251–252
static initializers, 250–251
static variable modifiers, 248–249

static variables/methods, 244–245
this reference, 283–284

accessor method, 375
accumulator, 547, 548
add() method, 466, 479
addBatch() method, 881–882
adding

constructors, 364–366
custom text values, 628–629
data to APIs, 466

fields, 364–366
finally blocks, 611–614
methods, 364–366
object methods, 427–428
optional labels, 132
parentheses, 73–74
service providers, 685–686

additive operators (+, −), 73
adjusting

case, 161
data, 875–876
loop variables, 129
order of operations, 73–74

advanced APIs
file attributes, 840–843
manipulating input streams, 838–839
searching directories, 847–848
traversing directory trees, 843–847

advanced stream pipeline concepts
chaining Optionals, 566–568
collecting results, 570–578
linking streams to underlying data, 565–566
using Spliterator, 569–570

allMatch() method, 544
anonymous classes

about, 382
defining, 389–390

anyMatch() method, 544
append() method, 172–173
appending values, 172–173
application programming interfaces (APIs). See also

core APIs
about, 3, 464–465
adding data, 466
advanced

file attributes, 840–843
manipulating input streams, 838–839
searching directories, 847–848
traversing directory trees, 843–847

checking contents, 468
clearing collections, 467–468
collection

about, 464–465
adding data, 466
checking contents, 468
clearing collections, 467–468
counting elements, 467
determining equality, 470

964  applications  –  BinaryOperator

iterating, 469
removing data, 466–467
removing with conditions, 468–469
using diamond operator (<>), 465–466

Concurrency API, creating threads with
increasing concurrency with pools, 739–740
scheduling tasks, 737–739
shutting down thread executors, 731–732
single-thread executor, 730–731
submitting tasks, 732–733
waiting for results, 733–736

counting elements, 467
determining equality, 470
iterating, 469
Java Persistence API (JPA), 865
key, 848–850
logging, 833
removing data, 466–467
removing with conditions, 468–469
transaction, 895
using diamond operator (<>), 465–466

applications, migrating
about, 704–705
bottom-up migration strategy, 706–707
cyclic dependency, 709–711
determining order, 705–706
splitting big projects into modules, 709
top-down migration strategy, 707–708

applying
access modifiers

about, 235
package access, 236–237
private access, 235–236
protected access, 237–241
public access, 242
reviewing access modifiers, 242–243

case blocks, 118–120
casting, 79–80
class access modifiers, 282–283
multi-catch blocks, 609–611
records, 375–377
ReentrantLock class, 747–748
resource management, 620–621
scope to classes, 47
Serializable interface, 825–826
switch statements

about, 110
switch expression, 115–121
switch statement, 110–115

arithmetic operators
about, 72–73
adding parentheses, 73–74
division, 74–75
modulus, 74–75

ArithmeticException, 601
ArrayIndexOutOfBoundsException, 602

ArrayList, 472–474
arrays

about, 178, 261
comparing, 185–187
converting List to, 476–477
creating arrays of primitives, 179–180
creating arrays with reference

variables, 180–182
multidimensional, 188–190
searching, 184–185
sorting, 183–184
using, 182–183
using methods with varargs, 187–188

arrow operator (->), 69
assigning

lambdas to var, 425
values

assignment operator, 77
casting values, 77–81
compound assignment operators, 81–82
return value of assignment operators, 82–83

assignment operators
about, 77
return value of, 82–83

@FunctionalInterface annotation, 426
atomic classes, protecting data with, 742–744
@Override annotation, 310
attributes (file), 840–843
autoboxing

about, 261
variables, 256–257

automatic modules, 701–703
automating resource management

about, 615
applying effectively final, 620–621
suppressed exceptions, 621–624
try-with-resources, 615–620

available() method, 830
awaitTermination() method, 736

B
backslash (\), 666
Bai, Ying (author)

Practical Database Programming with Java,
864

base 10, 29
batching statements, 881–882
BiConsumer, implementing, 436–438
BiFunction, implementing, 439
binary format, 29
binary operators, 72
BinaryOperator, implementing, 440–441

binarySearch() method  –  chaining  965

binarySearch() method, 501–502
bind variables

defined, 878
using, 887

BiPredicate, implementing, 438–439
bit, 813
bitwise complement operator (), 70
bitwise operators, 87–88
blocks, 102–103
boilerplate code, 106
bookmarking, with savepoints, 894
boolean type

about, 114
functional interfaces for, 444

bottom-up migration strategy, 706–707
bounded parameter types, 512
bounding generic types, 512–517
boxed() method, 563
braces ({})

about, 24–25, 45
indentation and, 104

branching
about, 139
controlling flow with

about, 131
adding optional labels, 132
branching, 139
break statement, 133–135
continue statement, 135–136
nested loops, 131–132
return statement, 137–138
unreachable code, 138

breadth-first search, 844
break statement

about, 133–135
exiting with, 113–114

built-in functional interfaces
about, 434–435
checking, 441–442
implementing

BiConsumer, 436–438
BiFunction, 439
BinaryOperator, 440–441
BiPredicate, 438–439
Consumer, 436–438
Function, 439
Predicate, 438–439
Supplier, 435–436
UnaryOperator, 440–441

for primitives, 443–445
using convenience methods on,

442–443
byte streams, 813–814
byte type, 28

C
CallableStatement, calling

calling procedures without
parameters, 888–889

comparing callable statement parameters, 891
passing IN parameters, 889
returning an OUT parameter, 889–890
using additional options, 891–892
working with INOUT parameters, 890–891

calling
abstract methods, 359
basic Map methods, 486
CallableStatement

about, 887–888
calling procedures without

parameters, 888–889
comparing callable statement

parameters, 891
passing IN parameters, 889
returning an OUT parameter, 889–890
using additional options, 891–892
working with INOUT parameters,

890–891
constructors, 22–23, 433
hidden default methods, 356–357
instance methods

on objects, 430–431
on parameters, 432

methods
that throw exceptions, 598–599
with varargs, 233

name() method, 362
ordinal() method, 362
overload constructors with this(), 289–291
parent constructors with super(), 292–296
procedures without parameters, 888–889
static methods, 430
super reference, 284–286
valueOf() method, 363
values() method, 362

camel case, 36
case, adjusting, 161
case blocks, applying, 118–120
case values, combining, 111–112
casting

interfaces, 396
objects, 395–396
values, 77–81
variables, 80–81

catch blocks, chaining, 607–609
ceil() method, 191–192
ceiling, determining, 191–192
chaining

966  char type  –  code

about, 171
catch blocks, 607–609
Optionals, 566–568

char type, 28
character encoding, 813–814
character streams, 813–814
charAt() method, 159
checkAnswer() method, 40
checked Exception classes, 604–605
checked exceptions, 307–308, 594–595
checking

for blank strings, 167
contents of APIs, 468
for empty strings, 167
for equality, 162
functional interfaces, 441–442
parentheses syntax, 74
version of Java, 4

checkTime() method, 358
ChronoUnit, 203
class access modifiers, applying, 282–283
class design

about, 276, 326–327
creating abstract classes

about, 315–317
creating concrete classes, 318–320
creating constructors in abstract

classes, 320–321
declaring abstract methods, 317–318
finding invalid declarations, 321–323

creating classes
accessing this reference, 283–284
applying class access modifiers, 282–283
calling super reference, 284–286
extending classes, 281–282

creating immutable objects
declaring immutable classes, 323–325
performing defensive copies, 325–326

declaring constructors
calling overload constructors with

this(), 289–291
calling parent constructors with

super(), 292–296
creating constructors, 286–287
default constructor, 287–289

exam essentials, 327–329
inheritance

about, 276
class modifiers, 278
declaring subclasses, 276–278
inheriting Object, 279–280
single vs. multiple, 279

inheriting members
about, 304–305
hiding static methods, 311–313

hiding variables, 313–314
overriding methods, 305–310
redeclaring private methods, 311
writing final methods, 314

initializing objects
initializing classes, 297–298
initializing final fields, 298–300
initializing instances, 300–304

review question answers, 927–932
review questions, 330–344

.class files, creating for inner classes, 384
class keyword, 4–5
class membership, instance membership

vs., 245–248
class modifiers, 278
class variables, defining, 41
ClassCastException, 602
classes

applying scope to, 47
concurrent, 755–757
ensuring they’re Serializable, 827–828
generic, 504–506
initializing, 297–298
inner

about, 382
creating .class files for, 384
declaring, 382–386
instantiating instances of, 384
referencing members of, 384–386

loading, 297
ordering elements in, 21–22
sealing

about, 367, 401–402
compiling, 368–369
declaring, 367–368
exam essentials, 402–403
interfaces, 372
omitting permits clause, 370–372
review questions, 404–418
rules for, 372–373
specifying subclass modifier, 369–370

structure of
about, 4
comments, 5–7
fields and methods, 4–5
source files, 7

classpath, 17–18, 667
clear() method, 467–468
clearing collections on APIs, 467–468
close() method, 621–624, 823–824
closing

database resources, 895–897
system streams, 833–834

code
of functional interfaces

code blocks  –  comparing  967

about, 426–427
adding object methods, 427–428

reusing with private interface
methods, 358–359

shortening, 106–110
unreachable, 138

code blocks, 24–25
collect() method, 547–549, 570–573, 767, 768
collecting

about, 547–549
results, 570–578

collection APIs
about, 464–465
adding data, 466
checking contents, 468
clearing collections, 467–468
counting elements, 467
determining equality, 470
iterating, 469
removing data, 466–467
removing with conditions, 468–469
using diamond operator (<>), 465–466

collections and generics
about, 519–520
comparing collection types, 490–491
Deque interface

about, 479–480
comparing implementations, 480
working with methods, 480–483

exam essentials, 520
List interface

about, 471
comparing implementations, 472
converting to arrays, 476–477
creating with constructors, 473–474
creating with factories, 472–473
working with methods, 474–476

Map interface
about, 483–484
calling basic methods, 486
comparing implementations, 484
getting values, 487–488
inserting through, 487
merging data, 488–490
putIfAbsent() method, 488
replacing values, 488
working with methods, 484–485

Queue interface
about, 479–480
comparing implementations, 480
working with methods, 480–483

review question answers, 939–942
review questions, 521–529
Set interface

about, 477

comparing implementations, 477–478
working with methods, 478–479

sorting data
about, 492
comparing Comparable and

Comparator, 497–498
comparing data with

Comparator, 496–497
comparing multiple fields, 498–500
creating Comparable class, 492–496
List, 503
searching and, 500–502

using common collection APIs
about, 464–465
adding data, 466
checking contents, 468
clearing collections, 467–468
counting elements, 467
determining equality, 470
iterating, 469
removing data, 466–467
removing with conditions, 468–469
using diamond operator (<>), 465–466

working with generics
about, 503–504, 517–519
bounding generic types, 512–517
creating generic classes, 504–506
creating generic records, 512
implementing generic interfaces, 509–510
type erasure, 506–508
writing generic methods, 510–511

combiner, 548
combining

case values, 111–112
with newBufferedReader() and

newBufferedWriter(), 822–823
command-line options, 697–700
comments, 5–7
committing, rolling back and, 892–894
compact constructors, 379
CompactNumberFormat, 635–637
comparator, 184
compare() method, 185–187
compareTo() method, 107, 492–494, 495–

496, 500–501
comparing

arrays, 185–187
callable statement parameters, 891
collection types, 490–491
Comparable and Comparator, 497–498
data with Comparator, 496–497
equals() and ==, 175–176
files with isSameFile() and

mismatch(), 809–811
implementations of List, 472

968  compiling  –  context switch

Map implementations, 484
multiple fields, 498–500
Queue and Dequeue implementations, 480
Set implementations, 477–478
values

conditional operators, 88–90
equality operators, 83–84
logical operators, 87–88
relational operators, 84–87

compiling
code with packages, 16–18
with JAR files, 20
modules, 666–668, 870
to other directories, 18–19
sealed classes, 368–369
with wildcards, 17

complement operators, 70–71
compound assignment operators, 81–82
compound key, 866
concatenating

streams, 551
strings, 157–158

concrete classes, creating, 318–320
concrete methods, declaring, 353–361
concurrency

about, 722, 770
creating threads with Concurrency API

about, 730
increasing concurrency with pools, 739–740
scheduling tasks, 737–739
shutting down thread executors, 731–732
single-thread executor, 730–731
submitting tasks, 732–733
waiting for results, 733–736

exam essentials, 770–771
identifying threading problems, 758–761
parallel streams

about, 761–762
creating, 762
performing parallel decomposition, 762–764
processing parallel reductions, 764–769

review question answers, 951–955
review questions, 772–783
threads

about, 722–723
creating threads, 724–725
interrupting, 729–730
managing life cycle of, 727
polling, 727–729
types, 725–726

using concurrent collections
concurrent classes, 755–757
memory consistency errors, 754–755
obtaining synchronized collections, 757–758

writing thread-safe code

about, 740–741
accessing data with volatile, 741–742
improving access with synchronized

blocks, 744–746
Lock framework, 747–751
orchestrating tasks with

CyclicBarrier, 751–754
protecting data with atomic

classes, 742–744
synchronizing on methods, 746–747

Concurrency API, creating threads with
increasing concurrency with pools, 739–740
scheduling tasks, 737–739
shutting down thread executors, 731–732
single-thread executor, 730–731
submitting tasks, 732–733
waiting for results, 733–736

concurrent classes, 755–757
concurrent collections

concurrent classes, 755–757
memory consistency errors, 754–755
obtaining synchronized collections, 757–758

conditional operators, 88–90
conflicting modifiers, 352
conflicts, naming, 15
connecting to databases

building URL, 870–871
getting database Connection, 871–873

Console, acquiring input with, 834–837
constructor overloading, 287
constructor parameters, passing, 40
constructor reference, 433
constructors

adding, 364–366
calling, 22–23, 433
compact, 379
creating

about, 286–287
in abstract classes, 320–321
List with, 473–474

declaring
about, 378–381
calling overload constructors with

this(), 289–291
calling parent constructors with

super(), 292–296
creating constructors, 286–287
default constructor, 287–289

default, 287–289
overloaded, 380–381

Consumer, implementing, 436–438
consumers, invoking from, 684–685
contains() method, 468, 486
contents, deleting, 173–174
context switch, 723

continue statement  –  creating  969

continue statement, 135–136
control flow statements, 102
controlling

data with transactions
bookmarking with savepoints, 894
committing and rolling back, 892–894
transaction APIs, 895

flow with branching
about, 131
adding optional labels, 132
branching, 139
break statement, 133–135
continue statement, 135–136
nested loops, 131–132
return statement, 137–138
unreachable code, 138

life cycle of threads, 727
race conditions, 761
variable scope

applying to classes, 47
limiting, 45–46
reviewing, 48
tracing, 46–47

converting List to arrays, 476–477
Coordinated Universal Time (UTC), 194
copy() method, 807–808
copying files, 806–808
core APIs

about, 156, 208
arrays

about, 178
comparing, 185–187
creating arrays of primitives, 179–180
creating arrays with reference

variables, 180–182
multidimensional, 188–190
searching, 184–185
sorting, 183–184
using, 182–183
using methods with varargs, 187–188

dates and times
about, 192–193
creating, 193–197
daylight saving time, 206–207
durations, 202–204
Instant class, 205
manipulating, 197–199
Period vs. Duration, 204–205
periods, 199–202

equality
comparing equals() and ==, 175–176
string pool, 176–178

exam essentials, 209
math

calculating exponents, 192

determining ceiling and floor, 191–192
finding minimum/maximum, 190–191
generating random numbers, 192
rounding numbers, 191

review question answers, 921–924
review questions, 210–218
StringBuilder class

about, 170–171
chaining, 171
creating, 172
mutability, 171
StringBuilder methods, 172–175

strings
about, 156
concatenating, 157–158
method chaining, 169–170
string methods, 158–169

count() method, 542
counting

about, 542
elements of APIs, 467

covariant return types, 309–310
create() method, 568
createDirectory() method, 806
creating

about, 172
abstract classes

about, 315–317
creating concrete classes, 318–320
creating constructors in abstract

classes, 320–321
declaring abstract methods, 317–318
finding invalid declarations, 321–323

arrays
of primitives, 179–180
with reference variables, 180–182

.class files for inner classes, 384
classes

accessing this reference, 283–284
applying class access modifiers, 282–283
calling super reference, 284–286
extending, 281–282

Comparable class, 492–496
concrete classes, 318–320
constructors

about, 286–287
in abstract classes, 320–321

dates, 193–197
directories, 805–806
enums, 361–363
File class, 789–792
files, 665–666
finite streams, 539–540
generic classes, 504–506
generic records, 512

970  custom text values  –  data

immutable objects
declaring immutable classes, 323–325
performing defensive copies, 325–326

infinite streams, 540–541
JAR files, 20–21
Java runtimes, 696–697
List

with constructors, 473–474
with factories, 472–473

local variables, 38–40
methods with varargs, 232–233
modular programs

about, 664–665, 668–669
compiling modules, 666–668
creating files, 665–666
packaging modules, 669

nested classes
about, 382, 401–402
declaring inner classes, 382–386
defining anonymous classes, 389–390
exam essentials, 402–403
review question answers, 932–936
review questions, 404–418
reviewing nested classes, 391
static, 386–387
writing local classes, 387–388

objects
calling constructors, 22–23
executing instance initializer blocks, 23–24
following order of initialization, 24–25
reading member fields, 23
writing member fields, 23

Optional, 533–534
or loops

about, 124
for-each loop, 129–130
for loops, 124–129

packages, 16
parallel streams, 539–540, 762
Path class, 789–792
random numbers, 192
resource bundles, 640–641
service locators, 682–684
services

about, 680
adding service providers, 685–686
creating service locators, 682–684
declaring service provider

interface, 681–682
invoking from consumers, 684–685
reviewing directives and services, 686–687

sources, 539–541
statements

blocks, 102–103
else statement, 104–106
if statement, 103–104

pattern matching, 106–110
statements, 102–103

static nested classes, 386–387
strings

about, 156
concatenating, 157–158
method chaining, 169–170
string methods, 158–169

threads, 724–725
threads with Concurrency API

about, 730
increasing concurrency with pools, 739–740
scheduling tasks, 737–739
shutting down thread executors, 731–732
single-thread executor, 730–731
submitting tasks, 732–733
waiting for results, 733–736

times, 193–197
URLs, 870–871
wrapper classes, 31–32

custom text values, adding, 628–629
customizing

date/time format, 626–629
records, 381–382

cyclic dependencies, 709–711
CyclicBarrier, orchestrating tasks

with, 751–754

D
data

controlling with transactions
bookmarking with savepoints, 894
committing and rolling back, 892–894
transaction APIs, 895

encapsulating with records
about, 401–402
applying records, 375–377
customizing records, 381–382
declaring constructors, 378–381
encapsulation, 374–375
exam essentials, 402–403
recording immutability, 377–378
review questions, 404–418

getting from ResultSet
for columns, 885–886
reading ResultSet, 882–885
using bind variables, 887

inserting, 173
linking streams to underlying, 565–566
marking transient, 827
merging, 488–490
modifying, 875–876
passing among methods

databases  –  declaring  971

about, 253
autoboxing variables, 256–257
passing objects, 253–255
returning objects, 255
unboxing variables, 256–257

printing, 832–833
processing, 876–877
protecting with atomic classes, 742–744
reading, 876
serializing

about, 824–825
applying Serializable

interface, 825–826
deserialization creation process, 830–832
ensuring classes are

Serializable, 827–828
marking data transient, 827
storing data with ObjectOutputStream

and ObjectInputStream, 828–830
sorting

about, 492
comparing Comparable and

Comparator, 497–498
comparing data with

Comparator, 496–497
comparing multiple fields, 498–500
creating Comparable class, 492–496
List, 503
searching and, 500–502

storing with ObjectOutputStream and
ObjectInputStream, 828–830

types
creating wrapper classes, 31–32
defining text blocks, 32–34
primitive, 27–28, 30
reference, 29–30
returning consistent, 118
underscore character, 29
writing literals, 28–29

databases
closing resources, 895–897
connecting to

building URL, 870–871
getting database Connection, 871–873

dates
about, 192–193, 625–626
creating, 193–197
daylight saving time, 206–207
durations, 202–204
Instant class, 205
localizing, 637–638
manipulating, 197–199
Period vs. Duration, 204–205
periods, 199–202

daylight saving time, 206–207
deadlock, 758–760
debugging complicated generics, 577

decimal number system, 29
decision-making

about, 102, 139–140
applying switch statements

about, 110
switch expression, 115–121
switch statement, 110–115

controlling flow with branching
about, 131
adding optional labels, 132
branching, 139
break statement, 133–135
continue statement, 135–136
nested loops, 131–132
return statement, 137–138
unreachable code, 138

creating for loops
about, 124
for-each loop, 129–130
for loops, 124–129

creating statements
blocks, 102–103
else statement, 104–106
if statement, 103–104
pattern matching, 106–110
statements, 102–103

exam essentials, 140–141
review question answers, 916–921
review questions, 142–154
writing while loops

about, 121
do/while statement, 123
infinite loops, 123–124
while statement, 121–122

declarations
finding invalid, 321–323
multiple arrays in, 180

declare rule, 594
declaring

abstract methods, 317–318
concrete methods, 353–361
constructors

about, 378–381
calling overload constructors with

this(), 289–291
calling parent constructors with

super(), 292–296
creating constructors, 286–287
default constructor, 287–289

exporting packages, 676–677
immutable classes, 323–325
inner classes, 382–386
instance variables

about, 228–229
effectively final variables, 230–231
instance variable modifiers, 231–232
local variable modifiers, 229–230

972  decrement operator (--)  –  enums

interfaces, 345–348
local variables

about, 228–229
effectively final variables, 230–231
instance variable modifiers, 231–232
local variable modifiers, 229–230

opening packages, 679–680
requiring transitively, 677–679
sealed classes, 367–368
service provider interface, 681–682
static interface methods, 357–358
subclasses, 276–278
variables

identifying identifiers, 35–36
multiple, 36–38

decrement operator (--), 71–72
deep copy, 806
default constructor, 287–289
default methods, 223, 351–352,

354–357
default package, 16
defensive copies, performing, 325–326
defining

anonymous classes, 389–390
instance and class variables, 41
text blocks, 32–34

delete() method, 173–174, 809
deleteCharAt() method, 173–174
deleteIfExists() method, 809
deleting contents, 173–174
depth-first search, 844
Deque interface

about, 479–480
comparing implementations, 480
working with methods, 480–483

deserialization
about, 825
creation process for, 830–832

designing. See also class design
about, 220–221
access modifiers, 221–222
exception list, 227–228
method body, 228
method name, 226
method signature, 227
optional specifiers, 222–224
parameter list, 226–227
return types, 224–225
static methods and variables,

243–244
destroying objects

about, 48
garbage collection, 48–49
tracing eligibility, 49–51

determining
acceptable case values, 114–115
ceiling and floor, 191–192
equality of APIs, 470

exponents, 192
length, 158–159
order, 705–706

diamond operator (<>), 465–466
directives, 686–687
directories

compiling to other, 18–19
creating, 805–806
referencing

creating File or Path class, 789–792
file system, 786–789

searching, 847–848
directory trees, traversing, 843–847
disabling NullPointerException, 603
distinct() method, 549–550
dive() method, 428
division operators, 74–75
==, comparing with equals(), 175–176
:: operator, 429
double quotes (""), 32
double type

about, 114
functional interfaces for, 444–445

DoubleStream, 557–560
do/while statement, 123
downloading JDKs, 3
downstream collector, 575
DriverManager class, 871
duplicates, removing, 549–550
durations, 202–204

E
eat() method, 312
effectively final variables, 230–231
eligibility, tracing, 49–51
else statement, 90, 104–106
empty() method, 558
enabling NullPointerException, 603
encapsulating

about, 374–375
data with records

about, 401–402
applying records, 375–377
customizing records, 381–382
declaring constructors, 378–381
encapsulation, 374–375
exam essentials, 402–403
recording immutability, 377–378
review question answers, 932–936
review questions, 404–418

endsWith() method, 163
enums

about, 361, 401–402
adding constructors, fields, and

methods, 364–366

environment (Java)  –  fields  973

creating, 361–363
exam essentials, 402–403
review question answers, 932–936
review questions, 404–418
using in switch statements, 363–364

environment (Java)
checking version of, 4
downloading JDKs, 3
major components, 2–3

equality
checking for, 162
comparing equals() and ==, 175–176
operators for, 83–84
string pool, 176–178

equals() method, 162, 175–176, 280, 377, 381,
468, 470, 479, 495–496

equals operator (==), 83
equalsIgnoreCase() method, 162
equalsObject() method, 162
Error classes, 605
Error exceptions, 595
escapes, translating, 167
essential whitespace, 33
exam essentials

class design, 327–329
collections and generics, 520
concurrency, 770–771
core APIs, 209
creating nested classes, 402–403
decision-making, 140–141
encapsulating data with records, 402–403
enums, 402–403
exceptions and localization, 647
implementing interfaces, 402–403
input/output (I/O), 851
Java, 52–53
Java Database Connectivity (JDBC), 898–899
lambdas and functional interfaces, 451–452
methods, 264
modules, 712
operators, 92–93
polymorphism, 402–403
sealing classes, 402–403
streams, 579–580

exception classes, recognizing
checked Exception classes, 604–605
Error classes, 605
RuntimeException classes, 601–604

exception list, 227–228
exceptions and localization

about, 592, 646
automating resource management

about, 615
applying effectively final, 620–621
suppressed exceptions, 621–624
try-with-resources, 615–620

calling methods that throw exceptions, 598–599
checked exceptions, 307–308

exam essentials, 647
exception types, 593–596
formatting values

customizing date/time format, 626–629
dates and times, 625–626
numbers, 624–625

handling exceptions
adding finally blocks, 611–614
applying multi-catch blocks, 609–611
chaining catch blocks, 607–609
using try and catch statements, 606–607

loading properties with resource bundles
about, 639–640
creating resource bundles, 640–641
formatting messages, 645
Properties class, 645–646
selecting resource bundles, 641–643
selecting values, 643–645

overriding methods with exceptions, 599
printing exceptions, 600
recognizing exception classes

checked Exception classes, 604–605
Error classes, 605
RuntimeException classes, 601–604

review question answers, 945–948
review questions, 648–659
role of expectations, 592–593
supporting internationalization and localization

about, 629–630
localizing dates, 637–638
localizing numbers, 632–637
picking locales, 630–632
specifying locale category, 638–639

throwing exceptions, 596–597
execute() method, 732–733, 876–877
executeBatch() methods, 881–882
executeQuery() method, 876
executeUpdate() method, 875–876
executing

instance initializer blocks, 23–24
PreparedStatement, 875–878

ExecutorService, 730–733, 737–738
exitShell() method, 308
exponents, calculating, 192
exporting packages, 676–677
expressions, pattern variables and, 107–108
extending

classes, 281–282
interfaces, 348–349

extends keyword, 348–349

F
factories, creating List with, 472–473
fall() method, 594, 607
fields

about, 4–5

974  fifth() method  –  functional interfaces.

adding, 364–366
fifth() method, 519
File classes

about, 84
creating, 789–792
operating on

comparing files with isSameFile() and
mismatch(), 809–811

copying files, 806–808
creating directories, 805–806
handling methods that declare

IOException, 797
interacting with NIO.2 paths, 799–805
moving paths with move(), 808–809
providing NIO.2 optional

parameters, 797–798
renaming paths with move(), 808–809
using shared functionality, 793–797

file systems, 786–789
files

attributes of, 840–843
copying, 806–808
creating, 665–666
reading and writing

combining with
newBufferedReader() and
newBufferedWriter(), 822–823

common read and write methods, 823–824
enhancing with Files, 820–822
using I/O streams, 817–820

referencing
creating File or Path class, 789–792
file system, 786–789

Files.list() method, 843
FileSystem class, 791
filter() method, 549, 567
filtering, 549
final fields, initializing, 298–300
final keyword, 38–39, 223, 231, 278, 314, 369
finally blocks, adding, 611–614
find() method, 847
findAnswer() method, 40, 43
findAny() method, 543–544, 764
findFirst() method, 543–544
finding

indexes, 159–160
invalid declarations, 321–323
minimum/maximum, 190–191, 542–543
values, 543–544

finite streams
about, 536
creating, 539–540

first() method, 518
first-in, first-out (FIFO) method, 479–480, 482
flags, using format() with, 169

flatMap() method, 551, 561, 567
float type, 28, 114
floor

determining, 191–192
value of, 75

floor() method, 191–192
flow

controlling with branching
about, 131
adding optional labels, 132
branching, 139
break statement, 133–135
continue statement, 135–136
nested loops, 131–132
return statement, 137–138
unreachable code, 138

scoping, 108–110
flush() method, 823–824
following

order of initialization, 24–25
order of operations, 619–620

for loops
about, 124–129
creating

about, 124
for-each loop, 129–130
for loops, 124–129

for-each loop, 129–130
forEach() method, 469, 487, 545, 552–553
format() method, 168–169, 628, 835
formatted() method, 168–169
formatting

messages, 645
values

about, 167–169
customizing date/time format, 626–629
dates and times, 625–626
numbers, 624–625

fourth() method, 519
free store, 48
fully qualified class name, 15
Function, implementing, 439
functional interfaces. See also lambdas and

functional interfaces
built-in

about, 434–435
checking functional interfaces, 441–442
functional interfaces for primitives, 443–445
implementing BiConsumer, 436–438
implementing BiFunction, 439
implementing BinaryOperator, 440–441
implementing BiPredicate, 438–439
implementing Consumer, 436–438
implementing Function, 439
implementing Predicate, 438–439

garbage collection  –  imports and package declarations  975

implementing Supplier, 435–436
implementing UnaryOperator, 440–441
using convenience methods on functional

interfaces, 442–443
coding

about, 426–427
adding object methods, 427–428

G
garbage collection, 48–49
generics. See collections and generics
get() method, 475, 487–488, 534, 683–684,

735–736
getAge() method, 321
getAsDouble() method, 563
getByte() method, 886
getChar() method, 886
getConnection() method, 872
getDelay() method, 737–738
getFilename() method, 801
getFloat() method, 886
getName() method, 320, 799, 800
getNameCount() method, 799, 800
getOrDefault() method, 487–488
getParent() method, 801
getPathSize() method, 845–846
getSize() method, 311, 845
getState() method, 727
getter. See accessor method
getting

data from ResultSet
for columns, 885–886
reading ResultSet, 882–885
using bind variables, 887

values, 487–488
getType() method, 350
Greenwich Mean Time (GMT), 194
grouping, 575–578
groupingBy() method, 575–578

H
handle rule, 594
hashCode() method, 162, 377, 381,

477–479, 484
HashMap class, 645
hasNext() method, 469
heap, 48
hexadecimal format, 29
hibernate() method, 313
hidden variables, 313

hide() method, 308
hiding

members vs. overriding members, 399–401
static methods, 311–313
variables, 313–314

high-level streams, 814–815
HyperSQL database, 871–872

I
identifiers, identifying, 35–36
identifying

built-in modules, 688–689
identifiers, 35–36
threading problems, 758–761

identity, 546
if statement, 90, 103–104
ifPresent() method, 534, 543, 566
IllegalArgumentException, 603–604
immutability

creating immutable objects
declaring immutable classes, 323–325
performing defensive copies, 325–326

declaring immutable classes, 323–325
recording, 377–378

immutable objects pattern, 323
implementing

BiConsumer, 436–438
BiFunction, 439
BinaryOperator, 440–441
BiPredicate, 438–439
Consumer, 436–438
Function, 439
generic interfaces, 509–510
interfaces

about, 345
declaring and using, 345–348
declaring concrete methods, 353–361
extending, 348–349
inheriting, 349–351
inserting implicit modifiers, 351–353

Map, 484
Predicate, 438–439
Queue and Dequeue, 480
Set, 477–478
Supplier, 435–436
UnaryOperator, 440–441

implicit modifiers, inserting, 351–353
import statement, 11, 13–14
imports and package declarations

about, 11–12
compiling and running code with

packages, 16–18
compiling to other directories, 18–19

976  improving  –  input/output (I/O)

compiling with JAR files, 20
creating JAR files, 20–21
creating packages, 16
naming conflicts, 15
ordering elements in classes, 21–22
packages, 12–13
redundant imports, 13–14
wildcards, 13

improving
access with synchronized blocks, 744–746
concurrency with pools, 739–740

IN parameters, passing, 889
incidental whitespace, 33
increment operator (++), 71–72
indent() method, 165–166
indentation

braces ({}) and, 104
working with, 164–166

indexes, finding, 159–160
indexOf() method, 159–160
inferring type, with var, 41–44
infinite loops, 123–124
infinite streams

about, 536
creating, 540–541

inheritance
about, 276
class modifiers, 278
declaring subclasses, 276–278
duplicate abstract methods, 350–351
interfaces, 349–351
members

about, 304–305
hiding static methods, 311–313
hiding variables, 313–314
overriding methods, 305–310
redeclaring private methods, 311
writing final methods, 314

Object, 279–280
single vs. multiple, 279

initializer, 547
initializing

classes, 297–298
final fields, 298–300
instances, 300–304
objects

initializing classes, 297–298
initializing final fields, 298–300
initializing instances, 300–304

variables
creating local variables, 38–40
defining instance and class variables, 41
inferring type with var, 41–44
passing constructor and method

parameters, 40

inner classes
about, 382
creating .class files for, 384
declaring, 382–386
instantiating instances of, 384
referencing members of, 384–386

INOUT parameters, working with, 890–891
input streams, manipulating, 838–839
input/output (I/O)

about, 786, 850
exam essentials, 851
interacting with users

acquiring input with Console, 834–837
closing system streams, 833–834
printing data, 832–833
reading input as I/O streams, 833

key APIs, 848–850
operating on File and Path classes

comparing files with isSameFile() and
mismatch(), 809–811

copying files, 806–808
creating directories, 805–806
handling methods that declare

IOException, 797
interacting with NIO.2 paths, 799–805
moving paths with move(), 808–809
providing NIO.2 optional

parameters, 797–798
renaming paths with move(), 808–809
using shared functionality, 793–797

reading and writing files
combining with

newBufferedReader() and
newBufferedWriter(), 822–823

common read and write methods, 823–824
enhancing with Files, 820–822
using I/O streams, 817–820

referencing files and directories
creating File or Path class, 789–792
file system, 786–789

review question answers, 955–959
review questions, 852–862
serializing data

about, 824–825
applying Serializable

interface, 825–826
deserialization creation process, 830–832
ensuring classes are

Serializable, 827–828
marking data transient, 827
storing data with ObjectOutputStream

and ObjectInputStream, 828–830
streams

about, 811–812
nomenclature, 812–817

insert() method  –  Java  977

reading input as, 833
using, 817–820

working with advanced APIs
file attributes, 840–843
manipulating input streams, 838–839
searching directories, 847–848
traversing directory trees, 843–847

insert() method, 173
inserting

data, 173
implicit modifiers, 351–353
Map through, 487

instance initializers, 25
instance methods

calling on objects, 430–431
calling on parameters, 432

instance variables
declaring

about, 228–229
effectively final variables, 230–231
instance variable modifiers, 231–232
local variable modifiers, 229–230

defining, 41
modifiers for, 231–232

instanceof operator, 85–87, 397
instances, initializing, 300–304
Instant class, 205
instantiating instances of inner classes, 384
int type

about, 28
functional interfaces for, 444–445

integrated development environment (IDE), 3
interacting

with NIO.2 paths, 799–805
with users

acquiring input with Console, 834–837
closing system streams, 833–834
printing data, 832–833
reading input as I/O streams, 833

interfaces. See also specific interfaces
about, 401–402
casting, 396
compared with abstract classes, 352–353
generic, 509–510
implementing

about, 345
declaring and using, 345–348
declaring concrete methods, 353–361
exam essentials, 402–403
extending, 348–349
inheriting, 349–351
inserting implicit modifiers, 351–353
review questions, 404–418

review question answers, 932–936
sealing, 372

intermediate operations, 549–553
internationalization and localization

about, 629–630
localizing dates, 637–638
localizing numbers, 632–637
picking locales, 630–632
specifying locale category, 638–639

interrupt() method, 736
interrupting threads, 729–730
IntStream, 557–560
invoking, from consumers, 684–685
IOException, 595, 797
isBlank() method, 167
isDirectory() method, 840
isEmpty() method, 167, 432, 467
isPresent() method, 534
isRegularFile() method, 840
isSameFile() method, 809–811
isShutdown() method, 731
isSymbolicLink() method, 840
iterate() method, 540
iterating, 469, 545

J
jar, 693
JAR hell, 662
java, 690–692
Java

about, 2, 51–52
class structure

about, 4
comments, 5–7
fields and methods, 4–5
source files, 7

creating objects
calling constructors, 22–23
executing instance initializer blocks, 23–24
following order of initialization, 24–25
reading member fields, 23
writing member fields, 23

creating runtimes, 696–697
data types

creating wrapper classes, 31–32
defining text blocks, 32–34
primitive, 27–28, 30
reference, 29–30
underscore character, 29
writing literals, 28–29

declaring variables
identifying identifiers, 35–36
multiple, 36–38

destroying objects

978  Java archive (JAR) files  –  lambda bodies

about, 48
garbage collection, 48–49
tracing eligibility, 49–51

environment
checking version of, 4
downloading JDKs, 3
major components, 2–3

exam essentials, 52–53
initializing variables

creating local variables, 38–40
defining instance and class variables, 41
inferring type with var, 41–44
passing constructor and method

parameters, 40
managing variable scope

applying to classes, 47
limiting, 45–46
reviewing, 48
tracing, 46–47

operators
about, 66
precedence, 67–69
types, 66–67

package declarations and imports
about, 11–12
compiling and running code with

packages, 16–18
compiling to other directories, 18–19
compiling with JAR files, 20
creating JAR files, 20–21
creating packages, 16
naming conflicts, 15
ordering elements in classes, 21–22
packages, 12–13
redundant imports, 13–14
wildcards, 13

passing parameters to Java programs, 9–11
review question answers, 910–913
review questions, 54–64
single-file source-code, 11
writing main() method, 8–11

Java archive (JAR) files
about, 662
compiling with, 20
creating, 20–21

Java Database Connectivity (JDBC)
about, 864, 897–898
calling CallableStatement

about, 887–888
calling procedures without

parameters, 888–889
comparing callable statement

parameters, 891
passing IN parameters, 889
returning an OUT parameter, 889–890
using additional options, 891–892

working with INOUT parameters, 890–891
closing database resources, 895–897
connecting to databases

building URL, 870–871
getting database Connection, 871–873

controlling data with transactions
bookmarking with savepoints, 894
committing and rolling back, 892–894
transaction APIs, 895

exam essentials, 898–899
getting data from ResultSet

for columns, 885–886
reading ResultSet, 882–885
using bind variables, 887

interfaces, 868–870
PreparedStatement

about, 873–874
executing, 875–878
obtaining, 874–875
updating multiple records, 881–882
working with parameters, 878–880

relational databases and SQL
about, 864–865
structure of relational databases, 866
writing basic SQL statements, 867–868

review question answers, 959–961
review questions, 900–908

Java Development Kit (JDK), 2–3
Java Persistence API (JPA), 865
Java Platform Module System (JPMS), 662–663
Java Runtime Environment (JRE), 3
Java Virtual Machine (JVM), 297, 600
Javadoc comment, 6
JavaPattern class, 106
jdeps, 693–695
--jdk-internals flag, 695–696
jlink, 696–697
jmod, 696

K
keySet() method, 486, 641, 755
keywords. See also specific keywords

about, 4
mixing class and interface, 350

L
labels, adding optional, 132
lambda bodies

referencing variables from, 449–450
using local variables inside, 448–449

lambda expressions  –  managing  979

lambda expressions, anonymous classes and, 390
lambdas and functional interfaces

about, 451
coding functional interfaces

about, 426–427
adding object methods, 427–428

exam essentials, 451–452
review question answers, 936–939
review questions, 453–462
using method references

about, 429–430, 433–434
calling constructors, 433
calling instance methods on

objects, 430–431
calling instance methods on parameters, 432
calling static methods, 430

working with built-in functional interfaces
about, 434–435
checking functional interfaces, 441–442
functional interfaces for primitives, 443–445
implementing BiConsumer, 436–438
implementing BiFunction, 439
implementing BinaryOperator, 440–441
implementing BiPredicate, 438–439
implementing Consumer, 436–438
implementing Function, 439
implementing Predicate, 438–439
implementing Supplier, 435–436
implementing UnaryOperator, 440–441
using convenience methods on functional

interfaces, 442–443
working with variables in lambdas

about, 445–446
listing parameters, 447–448
referencing variables from lambda

bodies, 449–450
using local variables inside lambda

bodies, 448–449
writing lambdas

about, 420–422
syntax for lambdas, 422–425

last-in, first-out (LIFO), 482–483
laugh() method, 313
lazy evaluation, 537
length() method, 30, 158–159
limit() method, 550, 554, 555–556
limiting scope, 45–46
LinkedList, 472–474
linking streams, to underlying data, 565–566
Linux, 666
List interface

about, 471
comparing implementations, 472
converting to arrays, 476–477
creating with constructors, 473–474
creating with factories, 472–473

working with methods, 474–476
list() method, 807
listing parameters, 447–448
literals, writing, 28–29
livelock, 760
liveness, 758–760
load() method, 682
loading

classes, 297
properties with resource bundles

about, 639–640
creating resource bundles, 640–641
formatting messages, 645
Properties class, 645–646
selecting resource bundles, 641–643
selecting values, 643–645

local classes
about, 382
writing, 387–388

local variables
creating, 38–40
declaring

about, 228–229
effectively final variables, 230–231
instance variable modifiers, 231–232
local variable modifiers, 229–230

modifiers for, 229–230
using inside lambda bodies, 448–449

locales
picking, 630–632
specifying category for, 638–639

localization. See exceptions and localization;
internationalization and localization

localizing
dates, 637–638
numbers, 632–637

Lock framework, 747–751
lock() method, 749–750
logging APIs, 833
logical complement operator (!), 70
logical operators, 87–88
long constructor, 378
long type, 28, 114, 444–445
LongStream, 557–560
low-level streams, 814–815

M
main() method, 243–244, 665,

724–725, 726, 731
managing

dates, 197–199
exceptions

adding finally blocks, 611–614

980  MANIFEST.MF file  –  methods

applying multi-catch blocks, 609–611
chaining catch blocks, 607–609
using try and catch statements, 606–607

input streams, 838–839
methods that declare IOException, 797
strings

about, 156
concatenating, 157–158
method chaining, 169–170
string methods, 158–169

times, 197–199
MANIFEST.MF file, 701–702
Map interface

about, 483–484
calling basic methods, 486
comparing implementations, 484
getting values, 487–488
inserting through, 487
merging data, 488–490
putIfAbsent() method, 488
replacing values, 488
working with methods, 484–485

map() method, 550
mapping

about, 550, 575–578
streams, 560–563

mapToObj() method, 563
mark() method, 838–839
marking data transient, 827
matching, 544
math

calculating exponents, 192
determining ceiling and floor, 191–192
finding minimum/maximum, 190–191
generating random numbers, 192
rounding numbers, 191

max() method, 32, 190–191, 542–543, 564–565
member fields, 23
member inner classes. See inner classes
members, inheriting

about, 304–305
hiding static methods, 311–313
hiding variables, 313–314
overriding methods, 305–310
redeclaring private methods, 311
writing final methods, 314

memory consistency errors, 754–755
merge() method, 488–490
merging data, 488–490
messages, formatting, 645
method body, 228
method chaining, 169–170
method declaration, 220
method name, 226
method parameters, passing, 40

method references
about, 429–430, 433–434
calling

constructors, 433
instance methods on objects, 430–431
instance methods on parameters, 432
static methods, 430

method signatures, 5, 220, 227, 306–307
methods

about, 4–5, 263–264
accessing static data

accessing static variables or
methods, 244–245

class vs. instance membership, 245–248
designing static methods and

variables, 243–244
static imports, 251–252
static initializers, 250–251
static variable modifiers, 248–249

adding, 364–366
applying access modifiers

about, 235
package access, 236–237
private access, 235–236
protected access, 237–241
public access, 242
reviewing access modifiers, 242–243

calling, that throw exceptions, 598–599
data among

about, 253
autoboxing variables, 256–257
passing objects, 253–255
returning objects, 255
unboxing variables, 256–257

declaring local and instance variables
about, 228–229
effectively final variables, 230–231
instance variable modifiers, 231–232
local variable modifiers, 229–230

Dequeue, 480–483
designing

about, 220–221
access modifiers, 221–222
exception list, 227–228
method body, 228
method name, 226
method signature, 227
optional specifiers, 222–224
parameter list, 226–227
return types, 224–225

exam essentials, 264
generic, 510–511
List, 474–476
main(), 8–11
Map, 484–485

migrating applications  –  nested classes  981

overloading
about, 258–259, 262–263
arrays, 261
autoboxing, 261
primitives, 260–261
reference types, 259–260
varargs, 261–262

overriding, 162, 305–310, 397–399
overriding with exceptions, 599
passing data among

about, 253
autoboxing variables, 256–257
passing objects, 253–255
returning objects, 255
unboxing variables, 256–257

Queue, 480–483
review question answers, 924–927
review questions, 265–274
Set, 478–479
varargs

about, 187–188
accessing elements of, 234
calling methods with, 233
creating methods with, 232–233
using with other method parameters, 234

working with, 474–476
migrating applications

about, 704–705
bottom-up migration strategy, 706–707
cyclic dependency, 709–711
determining order, 705–706
splitting big projects into modules, 709
top-down migration strategy, 707–708

min() method, 32, 190–191, 542–543, 564–565
minimum/maximum, finding, 190–191
mismatch() method, 185, 187, 809–811
mixing class and interface keywords, 350
modifiers

class, 278
conflicting, 352

module declaration, 663
modules

about, 662–664, 687, 711–712
benefits of, 664
command-line options, 697–700
compiling with, 870
creating and running modular programs

about, 664–665, 668–669
compiling modules, 666–668
creating files, 665–666
packaging modules, 669

creating services
about, 680
adding service providers, 685–686
creating service locators, 682–684
declaring service provider

interface, 681–682

invoking from consumers, 684–685
reviewing directives and services, 686–687

declaration
exporting packages, 676–677
opening packages, 679–680
requiring transitively, 677–679

exam essentials, 712
example of multiple, 669–675
identifying built-in, 688–689
jar, 693
java, 690–692
jdeps, 693–695
--jdk-internals flag, 695–696
jlink, 696–697
jmod, 696
migrating applications

about, 704–705
bottom-up migration strategy, 706–707
cyclic dependency, 709–711
determining order, 705–706
splitting big projects into modules, 709
top-down migration strategy, 707–708

review question answers, 949–951
review questions, 713–720
types

about, 704
automatic, 701–703
named, 701
unnamed, 704

modulus operator (%), 74–75
move() method, 808–809
moving paths, with move(), 808–809
multi-catch blocks, applying, 609–611
multidimensional arrays, 188–190
multiple-line (multiline) comment, 6
multiplicative operators (*, /, %), 73
mutability, 171
mutable reduction, 547
mutator methods, 375
mutual exclusion, 744

N
name() method, calling, 362
named modules, 701
naming conflicts, 15
naming conventions, for generics, 504–505
native modifier, 223
negation operator (−), 70–71
nested classes

about, 391
creating

about, 401–402
review questions, 404–418

exam essentials, 402–403

982  nested loops  –  Optional

nested loops, 131–132
nested subclasses, referencing, 371
newBufferedReader(), combining

with, 822–823
newBufferedWriter(), combining

with, 822–823
newSingleThreadExecutor() method, 731
next() method, 469
NIO.2 paths, interacting with, 799–805
nomenclature, for streams, 812–817
noneMatch() method, 544
nonsealed modifier, 278, 368, 370
normalize() method, 803–804
NoSQL database, 865
now() method, 194
null variable, 87, 470, 494–495, 536
NullPointerException, 89, 602–603
NumberFormatException, 604
numbers

about, 624–625
localizing, 632–637
rounding, 191

numeric comparison operators, 85–87
numeric promotion, 75–77, 256

O
Object, inheriting, 279–280
object methods, adding, 427–428
ObjectInputStream, storing data

with, 828–830
ObjectOutputStream, storing data

with, 828–830
objects

about, 4
casting, 395–396
compared with references, 49
creating

calling constructors, 22–23
executing instance initializer blocks, 23–24
following order of initialization, 24–25
reading member fields, 23
writing member fields, 23

destroying
about, 48
garbage collection, 48–49
tracing eligibility, 49–51

initializing
initializing classes, 297–298
initializing final fields, 298–300
initializing instances, 300–304

passing, 253–255
vs. reference, 393–394

returning, 255
obtaining

input with Console, 834–837
PreparedStatement, 874–875
synchronized collections, 757–758

octal format, 29
of() method, 201, 559
open source software, 662
opening packages, 679–680
operators

about, 92
arithmetic

about, 72–73
adding parentheses, 73–74
division, 74–75
modulus, 74–75

assigning values
assignment operator, 77
casting values, 77–81
compound assignment operators, 81–82
return value of assignment operators, 82–83

comparing values
conditional operators, 88–90
equality operators, 83–84
logical operators, 87–88
relational operators, 84–87

exam essentials, 92–93
on File and Path classes

comparing files with isSameFile() and
mismatch(), 809–811

copying files, 806–808
creating directories, 805–806
handling methods that declare

IOException, 797
interacting with NIO.2 paths, 799–805
moving paths with move(), 808–809
providing NIO.2 optional

parameters, 797–798
renaming paths with move(), 808–809
using shared functionality, 793–797

Java
about, 66
precedence, 67–69
types, 66–67

numeric promotion, 75–77
review question answers, 913–916
review questions, 94–100
ternary, 90–92
unary

about, 69
complement, 69–70
decrement, 70–71
increment, 70–71
negation, 69–70

Optional

optional modifiers  –  Path classes  983

creating, 533–534
empty, 534–536
returning

about, 532
creating Optional, 533–534
dealing with empty Optional, 534–536

using, 563–564
optional modifiers, in main() methods, 9
optional specifiers, 222–224
order of initialization, following, 24–25
order of operations

about, 67–69
changing, 73–74
following, 619–620

ordering elements in classes, 21–22
ordinal() method, 362
orElseGet() method, 563
OUT parameter, returning, 889–890
overflow, 79
overloaded constructors

about, 380–381
calling with this(), 289–291

overloading
generic methods, 507–508
methods

about, 258–259, 262–263
arrays, 261
autoboxing, 261
primitives, 260–261
reference types, 259–260
varargs, 261–262

overriding
members vs. hiding members, 399–401
methods, 162, 305–310, 397–399
methods with exceptions, 599

P
package access, 221, 235, 236–237
package declarations and imports

about, 11–12
compiling and running code with

packages, 16–18
compiling to other directories, 18–19
compiling with JAR files, 20
creating JAR files, 20–21
creating packages, 16
naming conflicts, 15
ordering elements in classes, 21–22
packages, 12–13
redundant imports, 13–14
wildcards, 13

packages

about, 12–13
compiling and running code with, 16–18
creating, 16
exporting, 676–677
of modules, 669
opening, 679–680

parallel decomposition, performing, 762–764
parallel reductions, processing, 764–769
parallel streams

about, 761–762
creating, 539–540, 762
performing parallel decomposition, 762–764
processing parallel reductions, 764–769

parameter list, 226–227
parameters

about, 5
calling procedures without, 888–889
comparing callable statement, 891
listing, 447–448
passing to Java programs, 9–11
transforming, 379–380
working with, 878–880

parent constructors, calling with
super(), 292–296

parentheses
adding, 73–74
verifying syntax, 74

parse() method, 632, 634–635
partitioning, 575–578
PartitioningBy() method, 575–578
pass-by-reference, 254–255
pass-by-value, 254–255
passing

constructor parameters, 40
data among methods

about, 253
autoboxing variables, 256–257
passing objects, 253–255
returning objects, 255
unboxing variables, 256–257

method parameters, 40
objects, 253–255
IN parameters, 889
parameters to Java programs, 9–11

path, 787
Path classes

creating, 789–792
operating on

comparing files with isSameFile() and
mismatch(), 809–811

copying files, 806–808
creating directories, 805–806
handling methods that declare

IOException, 797
interacting with NIO.2 paths, 799–805

984  pattern matching  –  raw type

moving paths with move(), 808–809
providing NIO.2 optional

parameters, 797–798
renaming paths with move(), 808–809
using shared functionality, 793–797

pattern matching, 106–110
pattern variables

about, 107
expressions and, 107–108

peek() method, 552–553
performing

defensive copies, 325–326
parallel decomposition, 762–764
tasks with CyclicBarrier, 751–754

period (.), 20
Period, Duration compared with, 204–205
periods, 199–202
permits clause, 368, 370–372
pipeline flow, 536–539, 553–556
Plain Old Java Object (POJO), 374
play() method, 352–353, 508
pointer, 29–30
polling, 727–729
polymorphism

about, 392–393, 401–402
casting objects, 395–396
exam essentials, 402–403
instanceof operator, 397
method overriding, 397–399
object vs. reference, 393–394
overriding vs. hiding members, 399–401
review question answers, 932–936
review questions, 404–418

pools, increasing concurrency with, 739–740
position, restricting by, 550
pow() method, 192
Practical Database Programming with Java

(Bai), 864
precedence of operators, 67–69
Predicate, implementing, 438–439
prepareCall() method, 889
PreparedStatement

about, 873–874
executing, 875–878
obtaining, 874–875
updating multiple records, 881–882
working with parameters, 878–880

preview features, 3
primary key, 866
primitive assignments, 78–79
primitive data type, 27–28, 30
primitive streams

about, 557–560
mapping streams, 560–563
summarizing statistics, 564–565
using Optional with, 563–564

primitives
creating arrays of, 179–180
functional interfaces for, 443–445

primitives methods, 260–261
printData() method, 286
printing

data, 832–833
elements in reverse, 126–127
exceptions, 600
stream references, 540

printList() method, 514
println() statement, 26
private access, 235–236
private methods

about, 354
redeclaring, 311
reusing code with, 358–359

private modifier, 221, 235
processing

data, 876–877
parallel reductions, 764–769

properties, loading with resource bundles
about, 639–640
creating resource bundles, 640–641
formatting messages, 645
Properties class, 645–646
selecting resource bundles, 641–643
selecting values, 643–645

Properties class, 645–646
protected access, 237–241
protected modifier, 222, 235
public access, 242
public modifier, 4–5, 222, 235, 354
put() method, 486
putIfAbsent() method, 488

Q
Queue interface

about, 479–480
comparing implementations, 480
working with methods, 480–483

R
race conditions

defined, 741
managing, 761

random() method, 192
random numbers, generating, 192
range() method, 560
raw type, 509

read accessor methods  –  reverse() method  985

read accessor methods, 325
read() method, 817–820, 838–839
reading

data, 876
files

combining with
newBufferedReader() and
newBufferedWriter(), 822–823

common read and write methods, 823–824
enhancing with Files, 820–822
using I/O streams, 817–820

input as I/O streams, 833
member fields, 23
ResultSet, 882–885

readLine() method, 833
readObject() method, 829
reassigning pattern variables, 107
recording immutability, 377–378
records

applying, 375–377
customizing, 381–382
encapsulating data with

about, 401–402
applying records, 375–377
customizing records, 381–382
declaring constructors, 378–381
encapsulation, 374–375
exam essentials, 402–403
recording immutability, 377–378
review questions, 404–418

generic, 512
serializing, 828

redeclaring private methods, 311
reduce() method, 545–547, 765–767
reducing, 545–547
reductions, 541
redundant imports, 13–14
ReentrantLock class, applying, 747–748
reference data type, 29–30, 259–260
reference variables, creating arrays with, 180–182
references

about, 4
compared with objects, 49
vs. objects, 393–394

referencing
files and directories

creating File or Path class, 789–792
file system, 786–789

members of inner classes, 384–386
nested subclasses, 371
variables from lambda bodies, 449–450

reflection, 679
relational databases, SQL and

about, 864–865
structure of relational databases, 866
writing basic SQL statements, 867–868

relational operators, 84–87

relativize() method, 802–803
remainder operator, 74–75
remove() method, 466–467, 476
removeIf() method, 468–469
removing

with conditions, 468–469
data from APIs, 466–467
duplicates, 549–550
whitespace, 163–164

renaming paths with move(), 808–809
replace() method, 163, 174
replaceAll() method, 475
replacing

portions, 174
values, 163, 488

requires statement, 678–679
reserved type name, 44
reset() method, 838–839
resolution, module, 692
resolve() method, 802
resource bundles

creating, 640–641
loading properties with

about, 639–640
creating resource bundles, 640–641
formatting messages, 645
Properties class, 645–646
selecting resource bundles, 641–643
selecting values, 643–645

selecting, 641–643
resource management, automating

applying effectively final, 620–621
suppressed exceptions, 621–624
try-with-resources, 615–620

restricting, by position, 550
results, collecting, 570–578
ResultSet

for columns, 885–886
reading ResultSet, 882–885
using bind variables, 887

return statement, 137–138
return types

about, 9, 224–225
covariant, 309–310

return value, of assignment operators, 82–83
returning

consistent data types, 118
generic types, 508
objects, 255
Optional

about, 532
creating Optional, 533–534
dealing with empty Optional, 534–536

OUT parameter, 889–890
reusing code with private interface

methods, 358–359
reverse() method, 174–175

986  reverseOrder() method  –  ServiceLoader

reverseOrder() method, 552
reversing, 174–175
review question answers

class design, 927–932
collections and generics, 939–942
concurrency, 951–955
core APIs, 921–924
creating nested classes, 932–936
decision-making, 916–921
encapsulating data with records, 932–936
enums, 932–936
exceptions and localization, 945–948
input/output (I.O), 955–959
interfaces, 932–936
Java, 910–913
JDBC, 959–961
lambdas and functional interfaces, 936–939
methods, 924–927
modules, 949–951
operators, 913–916
polymorphism, 932–936
sealing classes, 932–936
streams, 942–945

review questions
class design, 330–344
collections and generics, 521–529
concurrency, 772–783
creating nested classes, 404–418
decision-making, 142–154
encapsulating data with records, 404–418
enums, 404–418
exceptions and localization, 648–659
implementing interfaces, 404–418
input/output (I/O), 852–862
Java, 54–64
Java Database Connectivity (JDBC), 900–908
lambdas and functional interfaces, 453–462
methods, 265–274
modules, 713–720
operators, 94–100
polymorphism, 404–418
sealing classes, 404–418
streams, 581–590

roar() method, 282
root directory, 787
round() method, 191, 430
rounding numbers, 191
round-robin schedule, 723
running

code with packages, 16–18
modular programs

about, 664–665, 668–669
compiling modules, 666–668
creating files, 665–666
packaging modules, 669

runtime exception, 595
RuntimeException classes, 601–604

S
schedule() method, 737–738
scheduleAtFixedRate() method, 738
scheduleWithFixedDelay() method, 739
scheduling tasks, 737–739
scope, of try-with-resources, 619
sealed modifier, 278, 367, 369–370
sealing classes

about, 367, 401–402
compiling, 368–369
declaring, 367–368
exam essentials, 402–403
omitting permits clause, 370–372
review question answers, 932–936
review questions, 404–418
rules for, 372–373
sealing interfaces, 372
specifying subclass modifier, 369–370

search depth, 844
searching

arrays, 184–185
directories, 847–848
for substrings, 163

second() method, 518–519
selecting

format() method, 628
locales, 630–632
resource bundles, 641–643
switch data types, 114
values, 643–645

semicolons, in switch expressions, 119–120
Serializable interface, applying, 825–826
serializing

about, 825
data

about, 824–825
applying Serializable

interface, 825–826
deserialization creation process, 830–832
ensuring classes are

Serializable, 827–828
marking data transient, 827
storing data with ObjectOutputStream

and ObjectInputStream, 828–830
service locators, creating, 682–684
service providers

adding, 685–686
declaring interface, 681–682

ServiceLoader, 683–684

services  –  streams  987

services
about, 686–687
creating

about, 680
adding service providers, 685–686
creating service locators, 682–684
declaring service provider

interface, 681–682
invoking from consumers, 684–685
reviewing directives and services, 686–687

Set interface
about, 477
comparing implementations, 477–478
working with methods, 478–479

setAge() method, 282
setDefault() method, 632
setName() method, 5
setProperties() method, 282
setter. See mutator methods
shallow copy, 806
shared environment, 722
shared functionality, 793–797
ship() method, 509–510
short type, 28
short-circuit operators. See conditional operators
shortening code, 106–110
shutdown() method, 731–732, 736
shutting down thread executors, 731–732
single abstract method (SAM) rule, 426
single inheritance, compared with multiple

inheritance, 279
single-file source-code, 11
single-line comment, 5–6
single-thread executor, 730–731
size() method, 467
skip() method, 222, 550, 839
sleep() method, 308, 508, 729
snake-case, 132
sneeze() method, 313
sort() method, 501, 503
sorted() method, 552, 555
sorting

about, 552
arrays, 183–184
data

about, 492
comparing Comparable and

Comparator, 497–498
comparing data with

Comparator, 496–497
comparing multiple fields, 498–500
creating Comparable class, 492–496
List, 503
searching and, 500–502

source files, 7

sources, creating, 539–541
specifying

locale category, 638–639
subclass modifier, 369–370

Spliterator, 569–570
splitting big projects, into modules, 709
sprint() method, 427
SQL For Dummies, 9th Edition (Taylor), 864
startsWith() method, 163, 431
starvation, 760
stateful lambda expression, 769
statements. See also specific statements

about, 102–103
batching, 881–882
creating

blocks, 102–103
else statement, 104–106
if statement, 103–104
pattern matching, 106–110
statements, 102–103

defined, 11
static data, accessing

accessing static variables or
methods, 244–245

class vs. instance membership, 245–248
designing static methods and

variables, 243–244
static imports, 251–252
static initializers, 250–251
static variable modifiers, 248–249

static imports, 251–252
static initializers, 250–251
static interface methods, 357–358
static methods

about, 351–352
calling, 430
hiding, 311–313

static modifier, 47, 223, 278
static nested classes

about, 382
creating, 386–387

static variable modifiers, 248–249
statistics, summarizing, 564–565
stored procedures, 887
storing data, with ObjectOutputStream and

ObjectInputStream, 828–830
stream() method, 555
streams

about, 532, 578–579, 811–812
advanced stream pipeline concepts

chaining Optionals, 566–568
collecting results, 570–578
linking streams to underlying data, 565–566
using Spliterator, 569–570

concatenating, 551

988  strictfp modifier  –  threads

exam essentials, 579–580
nomenclature, 812–817
primitive

about, 557–560
mapping streams, 560–563
summarizing statistics, 564–565
using Optional with, 563–564

returning Optional
about, 532
creating Optional, 533–534
dealing with empty Optional, 534–536

review question answers, 942–945
review questions, 581–590
using

creating sources, 539–541
pipeline flow, 536–539, 553–556
using common intermediate

operations, 549–553
using common terminal

operations, 541–549
strictfp modifier, 223
string methods, 158–169
string pool, 176–178
StringBuilder class

about, 170–171
chaining, 171
creating, 172
mutability, 171
StringBuilder methods, 172–175

StringBuilder methods, 172–175
strings, creating and manipulating

about, 156
concatenating, 157–158
method chaining, 169–170
string methods, 158–169

strip() method, 163–164
stripIndent() method, 165–166
stripLeading() method, 164
stripTrailing() method, 164
Structured Query Language (SQL), 865
subclasses

declaring, 276–278
specifying modifiers, 369–370

submit() method, 732–733, 735, 736
submitting tasks, 732–733
subname, 870
subpath() method, 800
subprotocol, 870
substring() method, 160–161
substrings

about, 160–161
searching for, 163

subtypes, 108
sum, 32
summarizing statistics, 564–565

super() method, calling parent constructors
with, 292–296

super reference, calling, 284–286
supplier, 548
Supplier, implementing, 435–436
suppressed exceptions, 621–624
swap() method, 254–255
switch expression, 115–121
switch statements

about, 110–115
applying

about, 110
switch expression, 115–121
switch statement, 110–115

using enums in, 363–364
synchronized blocks, improving access

with, 744–746
synchronized collections, obtaining, 757–758
synchronized modifier, 223
synchronizing, on methods, 746–747
system streams, closing, 833–834
System.exit() method, 614

T
tasks

scheduling, 737–739
submitting, 732–733

Taylor, Allen G. (author)
SQL For Dummies, 9th Edition, 864

teeing() method, 577
terminal operations, 541–549
ternary operators, 90–92
text blocks, defining, 32–34
third() method, 519
this() method, calling overload constructors

with, 289–291
this reference, accessing, 283–284
thread executors, shutting down, 731–732
thread priority, 723
thread scheduler, 723
threads

about, 722–723
creating, 724–725
creating with Concurrency API

about, 730
increasing concurrency with pools, 739–740
scheduling tasks, 737–739
shutting down thread executors, 731–732
single-thread executor, 730–731
submitting tasks, 732–733
waiting for results, 733–736

interrupting, 729–730

Throwable exception  –  varargs  989

managing life cycle of, 727
polling, 727–729
types, 725–726
writing thread-safe code

about, 740–741
accessing data with volatile, 741–742
improving access with synchronized

blocks, 744–746
Lock framework, 747–751
orchestrating tasks with

CyclicBarrier, 751–754
protecting data with atomic

classes, 742–744
synchronizing on methods, 746–747

Throwable exception, 595
throwing exceptions, 596–597
times

about, 192–193, 625–626
creating, 193–197
daylight saving time, 206–207
durations, 202–204
Instant class, 205
manipulating, 197–199
Period vs. Duration, 204–205
periods, 199–202

top-down migration strategy, 707–708
top-level type, 7
toRealPath() method, 804
toString() method, 162, 175, 280, 377, 381,

428, 436, 799, 894
toUpperCase() method, 161
tracing

eligibility, 49–51
scope, 46–47

transaction APIs, 895
transforming parameters, 379–380
transient modifier, 231
translateEscapes() method, 167
translating escapes, 167
traversing directory trees, 843–847
trim() method, 163–164
try and catch statements, 606–607
tryAdvance() method, 570
tryLock() method, 749–750
try-with-resources, 615–620
type erasure, 506–508

U
unary operators

about, 69
complement, 69–70
decrement, 70–71
increment, 70–71

negation, 69–70
UnaryOperator, implementing, 440–441
unboxing variables, 256–257
unchecked exceptions, 595
underflow, 79
underscore (_) character, 29, 36
unnamed modules, 704
unperformed side effect, 90–92
unreachable code, 138
updating multiple records, 881–882
URLs, building, 870–871
user-defined thread, 726
users, interacting with

acquiring input with Console, 834–837
closing system streams, 833–834
printing data, 832–833
reading input as I/O streams, 833

V
valueOf() method, 31, 363
values

appending, 172–173
assigning

assignment operator, 77
casting values, 77–81
compound assignment operators, 81–82
return value of assignment operators, 82–83

casting, 77–81
comparing

conditional operators, 88–90
equality operators, 83–84
logical operators, 87–88
relational operators, 84–87

finding, 543–544
formatting

about, 167–169
customizing date/time format, 626–629
dates and times, 625–626
numbers, 624–625

getting, 487–488
replacing, 163, 488
selecting, 643–645

values() method, 362, 487
var

assigning lambdas to, 425
inferring type with, 41–44
using with ArrayList, 474

varargs
about, 261–262
accessing elements of, 234
calling methods with, 233
creating methods with, 232–233
using methods with, 187–188

990  variables  –  yield keyword

using with other method parameters, 234
variables

autoboxing, 256–257
casting, 80–81
declaring

identifying identifiers, 35–36
multiple, 36–38

hiding, 313–314
initializing

creating local variables, 38–40
defining instance and class variables,

41
inferring type with var, 41–44
passing constructor and method

parameters, 40
managing scope

applying to classes, 47
limiting, 45–46
reviewing, 48
tracing, 46–47

referencing from lambda bodies, 449–450
unboxing, 256–257
working with in lambdas

about, 445–446
listing parameters, 447–448
referencing variables from lambda

bodies, 449–450
using local variables inside lambda

bodies, 448–449
versions, checking for Java, 4
void keyword, 5
volatile modifier

about, 231
accessing data with, 741–742

W
walk() method, 844–845, 845–846, 848
whatAmI() method, 447
while loops

about, 728–729
writing

about, 121
do/while statement, 123
infinite loops, 123–124
while statement, 121–122

while statement, 121–122

whitespace, removing, 163–164
wildcards

about, 13
compiling with, 17
generic types, 512

wrapper classes, creating, 31–32
write() method, 817–820
writeObject() method, 829
writing

basic SQL statements, 867–868
default methods, 354–357
files

combining with
newBufferedReader() and
newBufferedWriter(), 822–823

common read and write methods,
823–824

enhancing with Files, 820–822
using I/O streams, 817–820

final methods, 314
generic methods, 510–511
lambdas, 420–422

syntax for lambdas, 422–425
literals, 28–29
local classes, 387–388
main() method, 8–11
member fields, 23
thread-safe code

about, 740–741
accessing data with volatile, 741–742
improving access with synchronized

blocks, 744–746
Lock framework, 747–751
orchestrating tasks with

CyclicBarrier, 751–754
protecting data with atomic

classes, 742–744
synchronizing on methods, 746–747

while loops
about, 121
do/while statement, 123
infinite loops, 123–124
while statement, 121–122

Y
yield keyword, 119

Online Test Bank
To help you study for your OCP Java SE 17 Developer certification exam, register

to gain one year of FREE access after activation to the online interactive test
bank—included with your purchase of this book! All of the chapter review and
practice questions in this book are included in the online test bank so you can

study in a timed and graded setting.

Register and Access the Online Test Bank

To register your book and get access to the online test bank, follow these steps:

1.	Go to www.wiley.com/go/sybextestprep.
2.	Select your book from the list.
3.	Complete the required registration information, including answering the

security verification to prove book ownership. You will be emailed a pin
code.

4.	Follow the directions in the email or go to www.wiley.com/go/sybextestprep.
5.	Find your book on that page and click the “Register or Login” link with it.

Then enter the pin code you received and click the “Activate PIN” button.
6.	On the Create an Account or Login page, enter your username and password,

and click Login or, if you don’t have an account already, create a new
account.

7.	At this point, you should be in the test bank site with your new test bank
listed at the top of the page. If you do not see it there, please refresh the page
or log out and log back in.

http://www.wiley.com/go/sybextestprep
http://www.wiley.com/go/sybextestprep

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Introduction
	Understanding the Exam
	Reading This Book
	Studying for the Exam
	Applying Test-Taking Strategies
	Taking the Exam
	Objective Map
	Assessment Test

	Chapter 1 Building Blocks
	Learning about the Environment
	Major Components of Java
	Downloading a JDK

	Understanding the Class Structure
	Fields and Methods
	Comments
	Classes and Source Files

	Writing a main() Method
	Creating a main() Method
	Passing Parameters to a Java Program

	Understanding Package Declarations and Imports
	Packages
	Wildcards
	Redundant Imports
	Naming Conflicts
	Creating a New Package
	Compiling and Running Code with Packages
	Compiling to Another Directory
	Compiling with JAR Files
	Creating a JAR File
	Ordering Elements in a Class

	Creating Objects
	Calling Constructors
	Reading and Writing Member Fields
	Executing Instance Initializer Blocks
	Following the Order of Initialization

	Understanding Data Types
	Using Primitive Types
	Using Reference Types
	Distinguishing between Primitives and Reference Types
	Creating Wrapper Classes
	Defining Text Blocks

	Declaring Variables
	Identifying Identifiers
	Declaring Multiple Variables

	Initializing Variables
	Creating Local Variables
	Passing Constructor and Method Parameters
	Defining Instance and Class Variables
	Inferring the Type with var

	Managing Variable Scope
	Limiting Scope
	Tracing Scope
	Applying Scope to Classes
	Reviewing Scope

	Destroying Objects
	Understanding Garbage Collection
	Tracing Eligibility

	Summary
	Exam Essentials
	Review Questions

	Chapter 2 Operators
	Understanding Java Operators
	Types of Operators
	Operator Precedence

	Applying Unary Operators
	Complement and Negation Operators
	Increment and Decrement Operators

	Working with Binary Arithmetic Operators
	Arithmetic Operators
	Numeric Promotion

	Assigning Values
	Assignment Operator
	Casting Values
	Compound Assignment Operators
	Return Value of Assignment Operators

	Comparing Values
	Equality Operators
	Relational Operators
	Logical Operators
	Conditional Operators

	Making Decisions with the Ternary Operator
	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Making Decisions
	Creating Decision-Making Statements
	Statements and Blocks
	The if Statement
	The else Statement
	Shortening Code with Pattern Matching

	Applying switch Statements
	The switch Statement
	The switch Expression

	Writing while Loops
	The while Statement
	The do/while Statement
	Infinite Loops

	Constructing for Loops
	The for Loop
	The for-each Loop

	Controlling Flow with Branching
	Nested Loops
	Adding Optional Labels
	The break Statement
	The continue Statement
	The return Statement
	Unreachable Code
	Reviewing Branching

	Summary
	Exam Essentials
	Review Questions

	Chapter 4 Core APIs
	Creating and Manipulating Strings
	Concatenating
	Important String Methods
	Method Chaining

	Using the StringBuilder Class
	Mutability and Chaining
	Creating a StringBuilder
	Important StringBuilder Methods

	Understanding Equality
	Comparing equals() and ==
	The String Pool

	Understanding Arrays
	Creating an Array of Primitives
	Creating an Array with Reference Variables
	Using an Array
	Sorting
	Searching
	Comparing
	Using Methods with Varargs
	Working with Multidimensional Arrays

	Calculating with Math APIs
	Finding the Minimum and Maximum
	Rounding Numbers
	Determining the Ceiling and Floor
	Calculating Exponents
	Generating Random Numbers

	Working with Dates and Times
	Day vs. Date
	Creating Dates and Times
	Manipulating Dates and Times
	Working with Periods
	Working with Durations
	Period vs. Duration
	Working with Instants
	Accounting for Daylight Saving Time

	Summary
	Exam Essentials
	Review Questions

	Chapter 5 Methods
	Designing Methods
	Access Modifiers
	Optional Specifiers
	Return Type
	Method Name
	Parameter List
	Method Signature
	Exception List
	Method Body

	Declaring Local and Instance Variables
	Local Variable Modifiers
	Effectively Final Variables
	Instance Variable Modifiers

	Working with Varargs
	Creating Methods with Varargs
	Calling Methods with Varargs
	Accessing Elements of a Vararg
	Using Varargs with Other Method Parameters

	Applying Access Modifiers
	Private Access
	Package Access
	Protected Access
	Public Access
	Reviewing Access Modifiers

	Accessing static Data
	Designing static Methods and Variables
	Accessing a static Variable or Method
	Class vs. Instance Membership
	static Variable Modifiers
	static Initializers
	static Imports

	Passing Data among Methods
	Passing Objects
	Returning Objects
	Autoboxing and Unboxing Variables

	Overloading Methods
	Reference Types
	Primitives
	Autoboxing
	Arrays
	Varargs
	Putting It All Together

	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Class Design
	Understanding Inheritance
	Declaring a Subclass
	Class Modifiers
	Single vs. Multiple Inheritance
	Inheriting Object

	Creating Classes
	Extending a Class
	Applying Class Access Modifiers
	Accessing the this Reference
	Calling the super Reference

	Declaring Constructors
	Creating a Constructor
	The Default Constructor
	Calling Overloaded Constructors with this()
	Calling Parent Constructors with super()

	Initializing Objects
	Initializing Classes
	Initializing final Fields
	Initializing Instances

	Inheriting Members
	Overriding a Method
	Redeclaring private Methods
	Hiding Static Methods
	Hiding Variables
	Writing final Methods

	Creating Abstract Classes
	Introducing Abstract Classes
	Declaring Abstract Methods
	Creating a Concrete Class
	Creating Constructors in Abstract Classes
	Spotting Invalid Declarations

	Creating Immutable Objects
	Declaring an Immutable Class
	Performing a Defensive Copy

	Summary
	Exam Essentials
	Review Questions

	Chapter 7 Beyond Classes
	Implementing Interfaces
	Declaring and Using an Interface
	Extending an Interface
	Inheriting an Interface
	Inserting Implicit Modifiers
	Declaring Concrete Interface Methods

	Working with Enums
	Creating Simple Enums
	Using Enums in switch Statements
	Adding Constructors, Fields, and Methods

	Sealing Classes
	Declaring a Sealed Class
	Compiling Sealed Classes
	Specifying the Subclass Modifier
	Omitting the permits Clause
	Sealing Interfaces
	Reviewing Sealed Class Rules

	Encapsulating Data with Records
	Understanding Encapsulation
	Applying Records
	Understanding Record Immutability
	Declaring Constructors
	Customizing Records

	Creating Nested Classes
	Declaring an Inner Class
	Creating a static Nested Class
	Writing a Local Class
	Defining an Anonymous Class
	Reviewing Nested Classes

	Understanding Polymorphism
	Object vs. Reference
	Casting Objects
	The instanceof Operator
	Polymorphism and Method Overriding
	Overriding vs. Hiding Members

	Summary
	Exam Essentials
	Review Questions

	Chapter 8 Lambdas and Functional Interfaces
	Writing Simple Lambdas
	Looking at a Lambda Example
	Learning Lambda Syntax

	Coding Functional Interfaces
	Defining a Functional Interface
	Adding Object Methods

	Using Method References
	Calling static Methods
	Calling Instance Methods on a Particular Object
	Calling Instance Methods on a Parameter
	Calling Constructors
	Reviewing Method References

	Working with Built-in Functional Interfaces
	Implementing Supplier
	Implementing Consumer and BiConsumer
	Implementing Predicate and BiPredicate
	Implementing Function and BiFunction
	Implementing UnaryOperator and BinaryOperator
	Checking Functional Interfaces
	Using Convenience Methods on Functional Interfaces
	Learning the Functional Interfaces for Primitives

	Working with Variables in Lambdas
	Listing Parameters
	Using Local Variables Inside a Lambda Body
	Referencing Variables from the Lambda Body

	Summary
	Exam Essentials
	Review Questions

	Chapter 9 Collections and Generics
	Using Common Collection APIs
	Using the Diamond Operator
	Adding Data
	Removing Data
	Counting Elements
	Clearing the Collection
	Check Contents
	Removing with Conditions
	Iterating
	Determining Equality

	Using the List Interface
	Comparing List Implementations
	Creating a List with a Factory
	Creating a List with a Constructor
	Working with List Methods
	Converting from List to an Array

	Using the Set Interface
	Comparing Set Implementations
	Working with Set Methods

	Using the Queue and Deque Interfaces
	Comparing Deque Implementations
	Working with Queue and Deque Methods

	Using the Map Interface
	Comparing Map Implementations
	Working with Map Methods
	Calling Basic Methods
	Iterating through a Map
	Getting Values Safely
	Replacing Values
	Putting if Absent
	Merging Data

	Comparing Collection Types
	Sorting Data
	Creating a Comparable Class
	Comparing Data with a Comparator
	Comparing Comparable and Comparator
	Comparing Multiple Fields
	Sorting and Searching
	Sorting a List

	Working with Generics
	Creating Generic Classes
	Understanding Type Erasure
	Implementing Generic Interfaces
	Writing Generic Methods
	Creating a Generic Record
	Bounding Generic Types
	Putting It All Together

	Summary
	Exam Essentials
	Review Questions

	Chapter 10 Streams
	Returning an Optional
	Creating an Optional
	Dealing with an Empty Optional

	Using Streams
	Understanding the Pipeline Flow
	Creating Stream Sources
	Using Common Terminal Operations
	Using Common Intermediate Operations
	Putting Together the Pipeline

	Working with Primitive Streams
	Creating Primitive Streams
	Mapping Streams
	Using Optional with Primitive Streams
	Summarizing Statistics

	Working with Advanced Stream Pipeline Concepts
	Linking Streams to the Underlying Data
	Chaining Optionals
	Using a Spliterator
	Collecting Results

	Summary
	Exam Essentials
	Review Questions

	Chapter 11 Exceptions and Localization
	Understanding Exceptions
	The Role of Exceptions
	Understanding Exception Types
	Throwing an Exception
	Calling Methods That Throw Exceptions
	Overriding Methods with Exceptions
	Printing an Exception

	Recognizing Exception Classes
	RuntimeException Classes
	Checked Exception Classes
	Error Classes

	Handling Exceptions
	Using try and catch Statements
	Chaining catch Blocks
	Applying a Multi-catch Block
	Adding a finally Block

	Automating Resource Management
	Introducing Try-with-Resources
	Basics of Try-with-Resources
	Applying Effectively Final
	Understanding Suppressed Exceptions

	Formatting Values
	Formatting Numbers
	Formatting Dates and Times
	Customizing the Date/Time Format

	Supporting Internationalization and Localization
	Picking a Locale
	Localizing Numbers
	Localizing Dates
	Specifying a Locale Category

	Loading Properties with Resource Bundles
	Creating a Resource Bundle
	Picking a Resource Bundle
	Selecting Resource Bundle Values
	Formatting Messages
	Using the Properties Class

	Summary
	Exam Essentials
	Review Questions

	Chapter 12 Modules
	Introducing Modules
	Exploring a Module
	Benefits of Modules

	Creating and Running a Modular Program
	Creating the Files
	Compiling Our First Module
	Running Our First Module
	Packaging Our First Module

	Updating Our Example for Multiple Modules
	Updating the Feeding Module
	Creating a Care Module
	Creating the Talks Module
	Creating the Staff Module

	Diving into the Module Declaration
	Exporting a Package
	Requiring a Module Transitively
	Opening a Package

	Creating a Service
	Declaring the Service Provider Interface
	Creating a Service Locator
	Invoking from a Consumer
	Adding a Service Provider
	Reviewing Directives and Services

	Discovering Modules
	Identifying Built-in Modules
	Getting Details with java
	Describing with jar
	Learning about Dependencies with jdeps
	Using the --jdk-internals Flag
	Using Module Files with jmod
	Creating Java Runtimes with jlink
	Reviewing Command-Line Options

	Comparing Types of Modules
	Named Modules
	Automatic Modules
	Unnamed Modules
	Reviewing Module Types

	Migrating an Application
	Determining the Order
	Exploring a Bottom-Up Migration Strategy
	Exploring a Top-Down Migration Strategy
	Splitting a Big Project into Modules
	Failing to Compile with a Cyclic Dependency

	Summary
	Exam Essentials
	Review Questions

	Chapter 13 Concurrency
	Introducing Threads
	Understanding Thread Concurrency
	Creating a Thread
	Distinguishing Thread Types
	Managing a Thread’s Life Cycle
	Polling with Sleep
	Interrupting a Thread

	Creating Threads with the Concurrency API
	Introducing the Single-Thread Executor
	Shutting Down a Thread Executor
	Submitting Tasks
	Waiting for Results
	Scheduling Tasks
	Increasing Concurrency with Pools

	Writing Thread-Safe Code
	Understanding Thread-Safety
	Accessing Data with volatile
	Protecting Data with Atomic Classes
	Improving Access with synchronized Blocks
	Synchronizing on Methods
	Understanding the Lock Framework
	Orchestrating Tasks with a CyclicBarrier

	Using Concurrent Collections
	Understanding Memory Consistency Errors
	Working with Concurrent Classes
	Obtaining Synchronized Collections

	Identifying Threading Problems
	Understanding Liveness
	Managing Race Conditions

	Working with Parallel Streams
	Creating Parallel Streams
	Performing a Parallel Decomposition
	Processing Parallel Reductions

	Summary
	Exam Essentials
	Review Questions

	Chapter 14 I/O
	Referencing Files and Directories
	Conceptualizing the File System
	Creating a File or Path

	Operating on File and Path
	Using Shared Functionality
	Handling Methods That Declare IOException
	Providing NIO.2 Optional Parameters
	Interacting with NIO.2 Paths
	Creating, Moving, and Deleting Files and Directories
	Comparing Files with isSameFile() and mismatch()

	Introducing I/O Streams
	Understanding I/O Stream Fundamentals
	Learning I/O Stream Nomenclature

	Reading and Writing Files
	Using I/O Streams
	Enhancing with Files
	Combining with newBufferedReader() and newBufferedWriter()
	Reviewing Common Read and Write Methods

	Serializing Data
	Applying the Serializable Interface
	Marking Data transient
	Ensuring That a Class Is Serializable
	Storing Data with ObjectOutputStream and ObjectInputStream
	Understanding the Deserialization Creation Process

	Interacting with Users
	Printing Data to the User
	Reading Input as an I/O Stream
	Closing System Streams
	Acquiring Input with Console

	Working with Advanced APIs
	Manipulating Input Streams
	Discovering File Attributes
	Traversing a Directory Tree
	Searching a Directory

	Review of Key APIs
	Summary
	Exam Essentials
	Review Questions

	Chapter 15 JDBC
	Introducing Relational Databases and SQL
	Identifying the Structure of a Relational Database
	Writing Basic SQL Statements

	Introducing the Interfaces of JDBC
	Connecting to a Database
	Building a JDBC URL
	Getting a Database Connection

	Working with a PreparedStatement
	Little Bobby Tables
	Obtaining a PreparedStatement
	Executing a PreparedStatement
	Working with Parameters
	Updating Multiple Records

	Getting Data from a ResultSet
	Reading a ResultSet
	Getting Data for a Column
	Using Bind Variables

	Calling a CallableStatement
	Calling a Procedure without Parameters
	Passing an IN Parameter
	Returning an OUT Parameter
	Working with an INOUT Parameter
	Comparing Callable Statement Parameters
	Using Additional Options

	Controlling Data with Transactions
	Committing and Rolling Back
	Bookmarking with Savepoints
	Reviewing Transaction APIs

	Closing Database Resources
	Summary
	Exam Essentials
	Review Questions

	Appendix Answers to the Review Questions
	Chapter 1: Building Blocks
	Chapter 2: Operators
	Chapter 3: Making Decisions
	Chapter 4: Core APIs
	Chapter 5: Methods
	Chapter 6: Class Design
	Chapter 7: Beyond Classes
	Chapter 8: Lambdas and Functional Interfaces
	Chapter 9: Collections and Generics
	Chapter 10: Streams
	Chapter 11: Exceptions and Localization
	Chapter 12: Modules
	Chapter 13: Concurrency
	Chapter 14: I/O
	Chapter 15: JDBC

	Index
	EULA

0CP
gier

