

Programming
Arduino®

Next Steps

00_FM.indd 1 9/4/18 7:01 PM

About the Author
Simon Monk has a bachelor’s degree in cybernetics and computer science
and a Ph.D. in software engineering. He has authored more than 20 books,
including Programming Arduino: Getting Started with Sketches, Programming
the Raspberry Pi, Programming the BBC micro:bit, and Practical Electronics for
Inventors. Dr. Monk also runs the website monkmakes.com, which fea-
tures his own products.

00_FM.indd 2 9/4/18 7:01 PM

http://monkmakes.com

Programming
Arduino®

 Next Steps
Going Further with Sketches

Second Edition

Simon Monk

New York Chicago San Francisco Athens
London Madrid Mexico City Milan

New Delhi Singapore Sydney Toronto

00_FM.indd 3 9/4/18 7:01 PM

Copyright © 2019 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means,
or stored in a database or retrieval system, without the prior written permission of the publisher, with the excep-
tion that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-1-25-958860-0
MHID: 1-25-958860-2

The material in this eBook also appears in the print version of this title: ISBN: 978-1-25-958859-4,
MHID: 1-25-958859-9.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner,
with no intention of infringement of the trademark. Where such designations appear in this book, they have been
printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promo-
tions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at
www.mhprofessional.com.

McGraw-Hill Education, the McGraw-Hill Education logo, TAB, and related trade dress are trademarks or reg-
istered trademarks of McGraw-Hill Education and/or its affiliates in the United States and other countries and
may not be used without written permission. All other trademarks are the property of their respective owners.
McGraw-Hill Education is not associated with any product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because
of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill
Education does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible
for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify,
create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any
part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial
and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if
you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO
GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY
DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the
work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any
information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licen-
sors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the
use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract,
tort or otherwise.

http://www.mhprofessional.com

v

CONTENTS AT A GLANCE

 1 Programming Arduino . 1

 2 Under the Hood . 39

 3 When Is an Arduino Not an Arduino? 59

 4 Interrupts and Timers . 73

 5 Making Arduino Faster. 85

 6 Low-Power Arduino . 101

 7 Memory . 119

 8 Interfacing with Arduino . 141

 9 Using I2C. 153

 10 Interfacing with 1-Wire Devices . 169

 11 Interfacing with SPI Devices . 177

 12 Serial UART Programming. 187

 13 USB Programming. 203

 14 Network and Internet of Things Programming 211

 15 Digital Signal Processing . 239

 16 Managing with One Process. 259

 17 Writing Libraries . 271

 A Parts . 283

 Index . 287

00_FM.indd 5 9/4/18 7:01 PM

00_FM.indd 6 9/4/18 7:01 PM

vii

CONTENTS

Preface . xv

Acknowledgments . xvii

Introduction . xix

 1 Programming Arduino . 1
What Is Arduino? . 1

Installation and the IDE. 4

Installing the IDE . 4

Blink . 5

A Tour of Arduino . 7

Power Supply . 8

Power Connections . 9

Analog Inputs . 9

Digital Connections . 9

Arduino Boards . 10

Uno and Similar . 10

Big Arduino Boards . 12

Small Arduino Boards . 13

Unofficial Arduinos . 14

Programming Language . 15

Modifying the Blink Sketch. 15

Variables. 17

If . 18

Loops . 19

Functions . 20

Digital Inputs . 22

Digital Outputs . 24

The Serial Monitor . 24

Arrays and Strings . 26

Analog Inputs . 28

00_FM.indd 7 9/4/18 7:01 PM

viii Contents

Analog Outputs . 30

Using Libraries . 32

Arduino Data Types . 34

Arduino Commands . 36

Summary . 37

 2 Under the Hood . 39
A Brief History of Arduino . 39

Anatomy of an Arduino . 40

AVR Processors . 41

ATmega328. 41

ATmega32u4 . 43

ATmega2560. 43

AT91SAM3X8E . 43

Arduino and Wiring. 44

From Sketch to Arduino . 48

AVR Studio . 51

Installing a Bootloader. 54

Burning a Bootloader with AVR Studio
and a Programmer . 54

Burning a Bootloader with the Arduino IDE
and a Second Arduino . 55

Summary . 57

 3 When Is an Arduino Not an Arduino? 59
The Arduino IDE’s Extensible Architecture 60

Adafruit Circuit Playground Express . 61

NodeMCU . 64

ESP32 . 66

ATtiny Microcontrollers . 67

ATtiny44 . 67

Using an Arduino as a Programmer. 68

Installing ATtinyCore into the IDE. 70

Clocks, Crystals, and Fuses . 70

Minimal Arduino . 72

Summary . 72

00_FM.indd 8 9/4/18 7:01 PM

 Contents ix

 4 Interrupts and Timers . 73
Hardware Interrupts . 73

Interrupt Pins. 76

Interrupt Modes . 77

Enabling Internal Pull-Up . 77

Interrupt Service Routines . 78

Volatile Variables . 79

ISR Summary . 80

Enabling and Disabling Interrupts . 80

Timer Interrupts . 80

Summary . 84

 5 Making Arduino Faster. 85
How Fast Is an Arduino?. 85

Comparing Arduino Boards . 86

Speeding Up Arithmetic . 87

Do You Really Need to Use a Float?. 88

Lookup vs. Calculate . 89

Fast I/O . 92

Basic Code Optimization . 92

Bytes and Bits. 94

ATmega328 Ports . 94

Very Fast Digital Output . 95

Fast Digital Input . 97

Speeding Up Analog Inputs . 98

Summary . 100

 6 Low-Power Arduino . 101
Power Consumption of Arduino Boards 101

Current and Batteries. 103

Reducing the Clock Speed . 104

Turning Things Off. 107

Sleeping ATmega-Based Arduinos . 108

Narcoleptic . 108

Waking ATmega-Based Arduinos on External Interrupts . 111

ESP8266 Sleeping . 113

00_FM.indd 9 9/4/18 7:01 PM

x Contents

ESP32 Sleeping . 114

Use Digital Outputs to Control Power 116

Summary . 118

 7 Memory . 119
Arduino Memory . 119

Minimizing RAM Usage . 121

Use the Right Data Structures . 121

Store String Constants in Flash Memory 122

Common Misconceptions . 122

Measure Free Memory . 123

Minimizing Flash Usage . 123

Use Constants . 124

Remove Unwanted Trace. 124

Bypass the Bootloader . 124

Static vs. Dynamic Memory Allocation. 125

Strings . 127

C char Arrays . 127

The Arduino String Object Library. 130

Using EEPROM . 131

EEPROM Example . 132

Using the avr/eeprom.h Library . 135

EEPROM Limitations . 137

Using Flash . 137

Using SD Card Storage . 139

Summary . 140

 8 Interfacing with Arduino . 141
Binary . 141

Arduino Types and Binary . 142

Hexadecimal . 144

Masking Bits . 145

Shifting Bits . 146

Serial Data . 148

Summary . 152

00_FM.indd 10 9/4/18 7:01 PM

 Contents xi

 9 Using I2C. 153
I2C Hardware . 155

The I2C Protocol . 156

The Wire Library. 157

Initializing I2C. 157

Master Sending Data . 157

Master Receiving Data . 158

I2C Examples . 159

TEA5767 FM Radio . 159

Arduino-to-Arduino Communication 161

LED Backpack Boards . 164

DS1307 Real-Time Clock . 165

Summary . 167

 10 Interfacing with 1-Wire Devices . 169
1-Wire Hardware . 169

The 1-Wire Protocol . 170

The OneWire Library . 170

Initializing 1-Wire . 171

Scanning the Bus . 171

Using the DS18B20 . 173

Summary . 175

 11 Interfacing with SPI Devices . 177
Bit Manipulation. 177

SPI Hardware . 178

The SPI Protocol . 179

The SPI Library . 180

SPI Example . 181

Summary . 185

 12 Serial UART Programming. 187
Serial Hardware . 187

Serial Protocol . 190

The Serial Commands . 190

The SoftwareSerial Library . 193

00_FM.indd 11 9/4/18 7:01 PM

xii Contents

Serial Examples. 194

Computer to Arduino over USB . 194

Arduino to Arduino . 196

GPS Module . 199

Summary . 202

 13 USB Programming. 203
Keyboard and Mouse Emulation . 203

Keyboard Emulation. 204

Keyboard Emulation Example . 205

Mouse Emulation . 206

Mouse Emulation Example . 206

USB Host on the Arduino Due . 207

Summary . 210

 14 Network and Internet of Things Programming 211
Networking Hardware . 211

Ethernet Shield . 212

Arduino Ethernet/EtherTen . 212

The Ethernet Library . 213

Making a Connection . 214

Setting Up a Web Server. 216

Making Requests . 217

Wired Ethernet Examples . 218

Physical Web Server . 218

Using a JSON Web Service. 223

The Official Arduino WiFi Library. 227

Making a Connection . 227

WiFi-Specific Functions . 227

Arduino WiFi Example . 228

ESP8266/ESP32 WiFi Example. 229

Internet of Things . 232

dweet.io . 233

Programming the NodeMCU or Wemos D1 Mini 234

Attaching the TMP36 . 235

00_FM.indd 12 9/4/18 7:01 PM

 Contents xiii

A Web Page to Display the Temperature 236

Summary . 237

 15 Digital Signal Processing . 239
Introducing Digital Signal Processing. 239

Averaging Readings . 241

An Introduction to Filtering . 243

Creating a Simple Low-Pass Filter. 243

Arduino Uno DSP. 245

Arduino Due DSP. 247

Filter Code Generation . 249

The Fourier Transform. 253

Spectrum Analyzer Example. 254

Frequency Measurement Example . 256

Summary . 257

 16 Managing with One Process. 259
Making the Transition from Big Programming 259

Why You Don’t Need Threads . 260

Setup and Loop. 260

Sense Then Act. 261

Pause Without Blocking . 262

The Timer Library. 263

State Diagrams . 265

State Machines in Arduino . 266

Summary . 269

 17 Writing Libraries . 271
When to Make a Library . 271

Using Classes and Methods . 272

Library Example (TEA5767 Radio) . 272

Define the Library’s Interface . 274

Write the Header File . 275

Write the Implementation File . 276

Write the Keywords File. 277

Make the Examples Folder . 278

00_FM.indd 13 9/4/18 7:01 PM

xiv Contents

Testing the Library . 278

Releasing the Library . 278

Publishing Your Library on GitHub . 279

GitHub . 279

Creating a Repository. 280

Summary . 282

 A Parts . 283
Arduino Boards . 283

Components and Modules . 284

Suppliers . 284

Arduino Starter Kits. 285

 Index . 287

00_FM.indd 14 9/4/18 7:01 PM

xv

PREFACE

Since the first edition of this book was released in 2013, some things in
the world of Arduino have stayed surprisingly constant and others have
changed. The Arduino Uno is still most people’s idea of what an Arduino
should be and the Arduino IDE has kept its simple interface, while adding
some great new features such as the Library and Board Managers.

However, what has changed is that the word “Arduino” has come to
denote a way of programming boards as much as the boards themselves.
New Arduino-compatible boards provide a vast variety of hardware to
choose from, all of which can be programmed using the Arduino IDE.

The main changes to this edition include the addition of two new
chapters:

• Chapter 3, “When Is an Arduino Not an Arduino?” This chapter
shows you how to use the Arduino IDE with Arduino-compatible
boards such as the ESP8266 and ESP32 boards as well as ARM m0
boards such as the Adafruit Circuit Playground Express and Trinket
m0 boards.

• Chapter 8, “Interfacing with Arduino” This chapter explains the
theory behind interfacing with microcontrollers that you will need
to understand when working with I2C, SPI, and UART serial.

The “Network Programming” chapter from the first edition (now
Chapter 14, “Network and Internet of Things Programming”) has been
extensively revised to include both official Arduino network program-
ming and the more widely used ESP8266 and ESP32 WiFi programming.
The chapter has also been extended to look at parsing JSON web services
and use of the dweet.io IoT service.

00_FM.indd 15 9/4/18 7:01 PM

http://dweet.io

xvi Preface

Chapter 16, “Managing with One Process,” has gained a new section on
designing programs using finite state machine diagrams.

The other chapters of the book have also been given a general update.

Simon Monk

00_FM.indd 16 9/4/18 7:01 PM

xvii

ACKNOWLEDGMENTS

Many thanks to all those at McGraw-Hill Education who have done such
a great job in producing this book. In particular, thanks to my editor Lara
Zoble and to Patricia Wallenburg, Elizabeth Houde, Lynn Messina, Stephen
Smith, and Claire Splan.

Thanks to Duncan Amos for his diligent technical review. This book is
greatly improved by his keen eye for detail and unerring ability to sniff
out waffle and vagueness.

I would also like to thank Adafruit, SparkFun, and CPC for supplying
many of the modules and components used in the preparation of this
book.

And last but not least, thanks once again to Linda, for her patience and
generosity in giving me space to do this.

00_FM.indd 17 9/17/18 9:42 AM

00_FM.indd 18 9/4/18 7:01 PM

xix

INTRODUCTION

Arduino has become the standard microcontroller used by makers, art-
ists, and educators due to its ease of use, low cost, and plethora of interface
boards (shields). Plug-in shields can be attached to the basic board, extend-
ing the Arduino into the Internet, robotic, and home automation realms. As
well as official Arduino hardware, the many types of Arduino-compatible
boards that can be programmed from the Arduino IDE mean that you can
find a board that suits your project’s requirements and cost constraints.

Simple Arduino projects are easy to make. As soon as you start to stray
into territory not covered by the introductory texts, however, you’ll find
that things can rapidly become confusing and frustrating as complexity—
the enemy of all programmers—rears its ugly head.

This book is designed as a companion and sequel to the very successful
book Programming Arduino: Getting Started with Sketches. Although this book
includes a brief recap of basic Arduino programming, it leads the reader
through the more advanced aspects of Arduino programming. Specifically,
this book will help you with:

• Working effectively with minimal memory

• Doing more than one thing at a time, without the luxury of
multithreading

• Setting up the Arduino IDE to use “Arduino-compatible” boards

• Using hardware and timer interrupts

• Maximizing performance

• Minimizing power consumption

• Interfacing with different types of serial busses (I2C, 1-Wire, SPI,
and serial)

• USB programming

• Network programming

• Digital Signal Processing (DSP)

00_FM.indd 19 9/4/18 7:01 PM

xx Introduction

Downloads
The book includes some 75 example sketches, which are all open source and
available from the book’s web page at http://simonmonk.org/nextsteps2.
Follow the link to the pages for this book where you will be able to down-
load the code as well as an up-to-date list of errata for the book.

What Will I Need?
This book is primarily about software. So, for most of the examples, all
you really need is an Arduino (or compatible board) and an LED or multi-
meter. Having said that, if you do have other Arduino shields, these will
come in handy. You will also need an Ethernet or WiFi shield for Chapter
12. Throughout the book, several different types of module are used to
illustrate different interfaces.

Although the book is mostly concerned with the Arduino Uno (the
most commonly used Arduino board), it also covers other special-purpose
Arduinos as well as some of the most popular Arduino-compatible boards.

The Appendix at the end of this book lists possible suppliers for these
parts.

Using This Book
Each of the chapters deals with a specific topic relating to Arduino program-
ming. Apart from Chapter 1, which is a recap and overview of Arduino
basics, the remaining chapters can be accessed pretty much in any order
you like.

Following is a description of each chapter:

1. “Programming Arduino” This chapter contains a summary of
Arduino programming. It is a primer for those needing to get up
to speed quickly with basic Arduino.

2. “Under the Hood” In this chapter, we take a peek under the
hood at how the Arduino software works and where it came from.

00_FM.indd 20 9/4/18 7:01 PM

http://simonmonk.org/nextsteps2

 Introduction xxi

3. “When Is an Arduino Not an Arduino?” The word “Arduino”
has come to mean a lot more than just the standard Arduino
boards. In this chapter you will learn how to use Arduino-
compatible boards with the Arduino IDE.

4. “Interrupts and Timers” Novices often steer clear of using
interrupts. They shouldn’t, however, as they can be handy on
occasion and are not difficult to code for. Although there are some
pitfalls, this chapter tells you what you need to be aware of.

5. “Making Arduino Faster” Arduinos have low-speed, low-power
processors and sometimes you need to squeeze every ounce of
juice out of them. For example, the built-in digitalWrite function
is safe and easy to use, but is not very efficient, especially when
setting multiple outputs at the same time. In this chapter, you
look at ways to exceed this performance and learn about other
techniques for writing time-efficient sketches.

6. “Low-Power Arduino” When you want to run your Arduino
on batteries or solar, then you need to look at minimizing power
consumption. In addition to optimizing the hardware design, you
can also set up the code to reduce the Arduino’s energy use.

7. “Memory” In this chapter, we look at minimizing memory usage
and the benefits and dangers associated with using memory
dynamically within your sketches.

8. “Interfacing with Arduino” This chapter explains the theory
behind interfacing with microcontrollers that you will need to
understand when working with I2C, SPI, and UART serial.

9. “Using I2C” The Arduino’s I2C interface can greatly simplify
talking to modules and components, reducing the number of
interface pins you need to use. This chapter describes how I2C
works and how to use it.

10. “Interfacing with 1-Wire Devices” This chapter focuses on
1-Wire bus devices such as Dallas Semiconductor’s range of
temperature sensors, which are extremely popular for use with
the Arduino. You learn how the bus works and how to use it.

00_FM.indd 21 9/4/18 7:01 PM

xxii Introduction

11. “Interfacing with SPI Devices” Yet another interface standard
used with the Arduino is SPI. This chapter explores how it works
and how to use it.

12. “Serial UART Programming” Serial communications, either
through USB or the Arduino’s Rx and Tx pins, provide a great
way to exchange data between peripherals and other Arduinos.
In this chapter, you learn how to use serial.

13. “USB Programming” This chapter looks at various aspects of
using the Arduino with USB. You’ll learn about the keyboard and
mouse emulation features provided by the Arduino Leonardo
and also the reverse process of allowing a USB keyboard or
mouse to be connected to a suitably equipped Arduino.

14. “Network and Internet of Things Programming” The Arduino
is a common component in the Internet of Things. In this chapter,
you’ll learn how to program Arduino and Arduino-compatibles
for use in network settings and for the Internet of Things.

15. “Digital Signal Processing” The Arduino is capable of fairly
rudimentary signal processing. This chapter discusses a variety
of techniques, from filtering a signal from an analog input using
software rather than external electronics to calculating the relative
magnitude of various frequencies in a signal using the Fast Fourier
Transform.

16. “Managing with One Process” Programmers coming to Arduino
from a background of programming large systems often signal the
lack of multithreading and concurrency in Arduino as some kind of
deficiency. In this chapter, I try to set the record straight and show
how to embrace the single-thread model of embedded systems.

17. “Writing Libraries” Sooner or later, you will make something
really good that you think other people could use. This is the time
to wrap up the code in a library and release it to the world. This
chapter shows you how.

00_FM.indd 22 9/4/18 7:01 PM

 Introduction xxiii

Resources
This book is supported by a page on the author’s website (http://
simonmonk.org/nextsteps2/) and a GitHub repository containing all the
examples (https://github.com/simonmonk/nextsteps2). Follow the link
for this book, and you will find all the source code, as well as other
resources such as errata.

00_FM.indd 23 9/4/18 7:01 PM

http://simonmonk.org/nextsteps2/
http://simonmonk.org/nextsteps2/
https://github.com/simonmonk/nextsteps2

00_FM.indd 24 9/4/18 7:01 PM

1

1
Programming Arduino

This chapter summarizes the basics of Arduino. If you are completely
new to Arduino, then you might find it useful to also read Programming
Arduino: Getting Started with Sketches (McGraw-Hill Professional, 2016).

What Is Arduino?
The term Arduino is used to describe both the physical Arduino board (of
which the most popular type is the Arduino Uno) and the Arduino system
as a whole. The system also includes the Arduino IDE software you need to
run on your computer (to program the board) and the peripheral shields
that you can plug into an Arduino board. Arduino has also come to mean a
whole array of third-party Arduino compatible boards that have nothing to
do with the Arduino organization, but that will work with the Arduino IDE.

To use an Arduino, you also need a “proper” computer. This can be a
Mac, Windows PC, Linux PC, or even something as humble as a Raspberry
Pi. The main reason that you need the computer is so you can install pro-
grams onto the Arduino board. Once installed on the Arduino, these pro-
grams can then run independently.

Figure 1-1 shows an Arduino Uno.
The Arduino can also communicate with your computer over USB.

While the computer is connected, you can send messages in both direc-
tions. Figure 1-2 shows the relationship between the Arduino and your
computer.

01_Ch01.indd 1 9/2/18 5:08 PM

2 Programming Arduino Next Steps

Figure 1-1 An Arduino Uno.

Figure 1-2 The Arduino and your computer.

Sensors

Computer

Actuators

01_Ch01.indd 2 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 3

An Arduino is unlike a conventional computer in that it has hardly any
memory, no operating system, and no keyboard mouse or screen interface.
Its purpose is to control things by interfacing with sensors and actuators.
So, for instance, you might attach a sensor to measure the temperature and
a relay to control the power to a heater.

Figure 1-3 shows some of the things that you can attach to an Arduino
board. There are many more types of devices that you can connect to an
Arduino.

Figure 1-3 Interfacing with an Arduino.

Ethernet
Shield

WiFi
Shield

Bluetooth
Shield

Temp
Sensor

Pressure
Sensor Stress

Sensor

Switches

Variable
Resistor

Relay

Motor
Controller

LED

16x2
Display

Range
Finder

PIR
Sensor

USB
Host

Graphic
Display

01_Ch01.indd 3 9/2/18 5:08 PM

4 Programming Arduino Next Steps

Here is a short selection of some of the amazing projects that have been
built using an Arduino:

• Bubblino—an Arduino linked to a bubble machine that blows
bubbles when you tweet it!

• 3D LED cubes

• Geiger counters

• Musical instruments

• Remote sensors

• Robots

Installation and the IDE
The software that you use to program the Arduino is called the Arduino
Integrated Development Environment (IDE). If you are a software developer
and accustomed to using complex IDEs like Eclipse or Visual Studio,
you’ll find the Arduino IDE very simple—and possibly find yourself
wishing for repository integration, command completion, and the like. If
you are relatively new to programming, you will love the Arduino’s sim-
plicity and ease of use.

Installing the IDE
The first step is to download the software for your type of computer from
the official Arduino website: http://arduino.cc/en/Main/Software.

Once you’ve downloaded the software, then you can find detailed
installation instructions for each platform here: http://arduino.cc/en/
Guide/HomePage.

The Arduino team has also produced an online IDE that runs in your
browser. This is not as comprehensive as the offline version and so it will
not be used in this book.

One of the nice things about the Arduino is that all you need to get
started is an Arduino, a computer, and a USB lead to connect the two. The
Arduino can even be powered over the USB connection to the computer.

01_Ch01.indd 4 9/2/18 5:08 PM

http://arduino.cc/en/Main/Software
http://arduino.cc/en/Guide/HomePage
http://arduino.cc/en/Guide/HomePage

 Chapter 1: Programming Arduino 5

Blink
To prove that the Arduino is working, we are going to program it to flash
an LED that is labeled L on the Arduino board and hence is known as the
“L” LED.

Start by launching the Arduino IDE on your computer. Then, from the
File menu select Examples | 01 Basics | Blink (Figure 1-4).

In an attempt to make programming the Arduino sound less daunting
to nonprogrammers, programs on the Arduino are referred to as sketches.
Before you can send the Blink sketch to your Arduino, you need to tell the
Arduino IDE what type of Arduino you’re using. The most common type
is the Arduino Uno, and in this chapter, I assume that is what you have. So
from the Tools | Board menu, select Arduino Uno (Figure 1-5).

As well as selecting the board type, you also need to select the port it
is connected to. In Windows this is easy, as it is usually COM4 and will
probably be the only port in the list (see Figure 1-6). On a Mac or Linux
computer, however, there will generally be more serial devices listed. The
Arduino IDE shows the most recently connected devices first, so your
Arduino board should be at the top of the list. If you are still not sure
which is your Arduino, unplug it and see which entry dissapears from
the list.

Figure 1-4 The Arduino IDE loading Blink.

01_Ch01.indd 5 9/2/18 5:08 PM

6 Programming Arduino Next Steps

To actually upload the sketch onto the Arduino board, click the Upload
button on the toolbar. This is the second button on the toolbar, which is
highlighted in Figure 1-7.

Once, you click the Upload button, a few things should happen. First, a
progress bar will appear as the Arduino IDE compiles the sketch (meaning
it converts the sketch into a suitable form for uploading). Then, the LEDs
on the Arduino labeled Rx and Tx should flicker for a while. Finally, the
LED labeled L should start to blink. The Arduino IDE will also display a
message like “Binary sketch size: 1,084 bytes (of a 32,256 byte maximum).”

Figure 1-6 Selecting the serial port.

Figure 1-5 Selecting the board type.

01_Ch01.indd 6 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 7

This means the sketch has used about 1 kB of the 32 kB of the flash mem-
ory available for programs on the Arduino.

Before you start programming, let’s have a look at the hardware that
your programs, or sketches, will have to work within and have available
for their use.

A Tour of Arduino
Figure 1-8 shows the anatomy of an Arduino Uno Board. Starting at the
top, next to the USB socket in the top-left corner, is the Reset switch.
Clicking this sends a logic pulse to the microcontroller’s Reset pin, clear-
ing the microcontroller’s memory so it can start its program fresh. Note
that any program stored on the device is retained because it is kept in

Figure 1-7 Uploading the Blink sketch.

01_Ch01.indd 7 9/2/18 5:08 PM

8 Programming Arduino Next Steps

nonvolatile flash memory—that is, memory that remembers even when the
device is not powered on.

Power Supply
The Arduino can either be powered through either the USB connection or
the DC power socket below it. When powering the Arduino from a DC
adaptor or batteries, anything between 7.5 and 12V DC can be supplied
through the power socket. The Arduino itself only uses about 50 mA. So a
small PP3 9V battery (200 mAh) will power it for around 4 hours.

When the Arduino is powered on, the power LED on the right of the
Uno (on the left of the Leonardo) is lit.

Reset
switch

USB
socket

DC power socket Power connectors Analog inputs ATmega328

ICSP
header 2

ICSP
header 1“L” LED

Digital
IO pins

Power
LED

Figure 1-8 Anatomy of an Arduino Uno board.

01_Ch01.indd 8 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 9

Power Connections
Next, let’s look at the connectors at the bottom of Figure 1-8. Apart from the
first connection, you can read the connection names next to the connectors.

The first unlabeled connection is reserved for later use. The next pin,
IOREF, indicates the voltage at which the Arduino operates. Both the Uno
and Leonardo operate at 5V, so this pin will always be set at 5V, but you
will not use it for anything described in this book. Its purpose is to allow
shields attached to 3V Arduinos like the Arduino Due or m0 to detect the
voltage at which the Arduino operates.

The next connect is Reset. This connection does the same thing as press-
ing the Reset switch on the Arduino. Rather like rebooting a PC, it resets
the microcontroller to begin its program from the start. The Reset connec-
tor allows you to reset the microcontroller by momentarily setting this pin
low (connecting it to GND). It is fairly unlikely that you’ll need to do this,
but it’s quite nice to know that the connector is there.

The remaining pins provide different voltages (3.3, 5, GND, and Vin),
as labeled. GND, or ground, just means zero volts. It is the reference volt-
age to which all other voltages on the board are relative. Vin is the input
voltage supplied by the DC power jack (if it is used).

The two GND connections are identical; having more than one GND
pin to connect things to is useful. In fact, there is another GND socket at
the top of the board.

Analog Inputs
The next section of connections is labeled Analog In 0 to 5. These six pins
can be used to measure the voltage connected to them (5V maximum) so
the value can be used in a sketch. Although labeled as analog inputs, these
connections can also be used as digital inputs or outputs. By default, how-
ever, they are analog inputs.

Digital Connections
Now let’s switch to the top connector, starting on the right side (Figure
1-8). We have pins labeled Digital 0 to 13. These can be used as either
inputs or outputs and are therefore called GPIOs (general purpose input

01_Ch01.indd 9 9/2/18 5:08 PM

10 Programming Arduino Next Steps

outputs). When using them as outputs, you can control them from a
sketch. If you turn them on from your sketch, they will be at 5V, and if you
turn them off, they will be at 0V. As with the supply connectors, you have
to be careful not to exceed their maximum current capabilities.

These connections can supply 40 mA at 5V—more than enough power
to light a standard LED, but not enough to drive an electric motor directly.
Note that the total current used by all pins must not exceed 200mA.

Arduino Boards
The Arduino Uno (Figure 1-1) is the current incarnation of the original
Arduino board. It is the most common Arduino board and is generally
what people mean when they say they are using an Arduino.

The other types of Arduino board all satisfy special requirements, like
the need for more I/O (input/output) connections, faster performance, or
a smaller board, or to be stitched into clothing or integrate easily with the
Internet and so on.

No matter how different the hardware, each board is programmed from
the Arduino IDE, with only minor variations in the software features they
can use. Once you have learned how to use one Arduino Board, you have
pretty much learned how to use all of them.

Let’s look at the current range of official Arduino boards. There are
other Arduinos than the ones discussed here, but they tend not to be that
popular. For a full list of boards, check out the official Arduino website
(www.arduino.cc).

Uno and Similar
The Uno R3 is the latest of a series of “standard” boards that include the
plain Uno, Duemilanove, Diecimila, and NG. These boards all use the
ATmega168 or ATmega328 microprocessors, which are pretty much the
same, apart from differing amounts of memory.

Another current Arduino, with the same size and connections as the
Uno R3, is the Arduino Leonardo (Figure 1-9). As you can see, the board is
much more sparsely populated than the Uno. This is because it uses a

01_Ch01.indd 10 9/2/18 5:08 PM

http://www.arduino.cc

 Chapter 1: Programming Arduino 11

different processor. The Leonardo uses the ATmega32u4, which is similar
to the ATmega328 but includes a built-in USB interface, removing the
need for the extra components that you find on the Uno. Moreover, the
Leonardo has slightly more memory, more analog inputs, and other ben-
efits. It is also less expensive than the Uno. In many respects, it is also a
better design than the Uno.

If this is the case, then you might be wondering why the Leonardo is
not the most popular Arduino board, rather than the Uno. The reason is
that the improvements offered by the Leonardo come at the cost of making
it slightly incompatible with the Uno and its predecessors. Some expan-
sion shields (especially old designs) will not work on the Leonardo. In
time, these differences will become less of a problem. At that point, it will
be interesting to see if the Leonardo and its successors become the more
popular boards.

The Arduino m0 is a relatively new addition to the Arduino stable. It
uses a modern Arm m0 processor but has the same layout of pins as the
Arduino Uno. However, it operates at 3.3V rather than the 5V of the
Arduino Uno and can only supply 7 mA from its GPIO pins.

Figure 1-9 The Arduino Leonardo.

01_Ch01.indd 11 9/2/18 5:08 PM

12 Programming Arduino Next Steps

Big Arduino Boards
Sometimes an Uno just doesn’t have enough I/O pins for the application
that you intend to use it for. The choice then arises of either using hard-
ware expansion for the Uno or switching to a bigger board.

TIP If you are coming to Arduino for the first time, do not buy one of these
larger boards. It is tempting because they are bigger and faster, but they have
shield compatibility problems and you will be much better off with a
“standard” Uno.

The super-sized Arduinos have the same sockets as an Uno, but then
they add a double row of extra I/O pins on the end and a longer length of
pins along the side (Figure 1-10).

Traditionally, the “bigger” board would be an Arduino Mega 2560.
These boards, in common with all the larger Arduino boards, have more
of every kind of memory. The Mega 2560 and Mega ADK both use proces-
sors with similar power to the Arduino Uno. However, the Arduino Due
is an altogether more powerful beast. This power comes in the form of a
84 MHz processor (compared with the Uno’s 16 MHz) but at the cost of
further compatibility problems. The biggest of these is that the Due oper-
ates at 3.3V rather than the 5V of most previous Arduinos. Not surpris-
ingly, this means that many Arduino shields are incompatible with it.

Figure 1-10 The Arduino Due.

01_Ch01.indd 12 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 13

For the most demanding projects, however, the Due board has many
advantages:

• Lots of memory for programming and data

• Hardware music output capabilities (hardware digital to analog
converters)

• Four serial ports

• Two USB ports

• USB host and OTG interfaces

• USB keyboard and mouse emulation

Small Arduino Boards
Just as the Uno is too small for some projects, it can also be too big for oth-
ers. Although Arduino boards are low cost, it gets expensive if you start
leaving one embedded in every project you make. There are a range of
smaller and “pro” Arduino boards, designed either to be physically
smaller than a regular Uno or to keep costs down by omitting features not
required in most projects.

Figure 1-11 shows an Arduino Pro Mini. These boards do not have a
USB interface; rather, you need a separate adaptor module to program
them. As well as the Mini, there are also Nanos and Micros, both of which
have built-in USB but cost more.

Figure 1-11 An Arduino Pro Mini and Programmer.

01_Ch01.indd 13 9/2/18 5:08 PM

14 Programming Arduino Next Steps

Unofficial Arduinos
As well as the “official” boards just described, there are also many unof-
ficial copies and variations on the Arduino hardware, given its open
source status. Straight Arduino clones are easy to come by on eBay and
other low-cost outlets and are simply copies of the Arduino designs. They
are only really of interest because of their price. But beware—to keep their
costs so low they generally use different USB interface chips, which can
mean some driver wrangling, especially if you are a Windows user.

Some of the most interesting and useful of the Arduino compatibles are
based on the ESP family of WiFi system on a chip microcontrollers (Figure
1-12). These are great boards for Internet of Things projects.

Now that you have a bit more information about the hardware side of
an Arduino, we can turn to programming it.

Figure 1-12 From left to right: Node MCU (ESP8266), Wemos Lolin32 (ESP32), and
Wemos D1 R32 (ESP32).

01_Ch01.indd 14 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 15

Programming Language
A common misconception about Arduinos is that they have their own pro-
gramming language. Actually, they are programmed in the language sim-
ply called C. This language has been around since the early days of
computing. What Arduino does provide is a nice easy-to-use set of com-
mands written in C that you can use in your programs.

Purists may wish to point out that Arduino uses C++, the object-
oriented extension to C. Although, strictly speaking, this is true, having
only 1 or 2 kB of memory available generally means that the kinds of hab-
its encouraged by object-oriented programming are not normally a good
idea with Arduino, so aside from a few specialized areas, you are effec-
tively programming in C.

Let’s start by modifying the Blink sketch.

Modifying the Blink Sketch
It may be that your Arduino was already blinking when you first plugged
it in. That is because the Arduino is often shipped with the Blink sketch
installed.

If this is the case, then you might like to prove to yourself that you have
actually done something by changing the blink rate. Let’s look at the Blink
sketch to see how to change it to make the LED blink faster.

The first part of the sketch is just a comment telling you what the sketch
is supposed to do. A comment is not actual program code. Part of the
preparation for the code being uploaded is for all such “comments” to be
stripped out. Anything between /* and */ is ignored by the computer, but
should be readable by humans.

/*
 Blink

 Turns an LED on for one second, then off for one second, repeatedly.

 ... text deleted for brevity
 */

Then, there are individual line comments, just like the block comments,
except they start with //.

01_Ch01.indd 15 9/2/18 5:08 PM

16 Programming Arduino Next Steps

The next part of the sketch is the setup function. Every Arduino sketch
must have a setup function, and this function runs every time the Arduino
is reset, either because (as the comment says) the Reset button is pressed
or the Arduino is powered up.

// the setup routine runs once when you press reset:

void setup() {

 // initialize the digital pin as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

The structure of this text is a little confusing if you are new to program-
ming. A function is a section of code that has been given a name (in this
case, the name is setup). For now, just use the previous text as a template
and know that you must start your sketch with the first line void setup() {
and then enter the commands that you want to issue, each on a line ending
with a semicolon (;). The end of the function is marked with a } symbol.

In this case, the only command Arduino will issue is the pinMode(LED_
BUILTIN, OUTPUT) command that, not unsurprisingly, sets that pin to
be an output.

Next comes the juicy part of the sketch, the loop function.
Note that LED_BUILTIN is a recent change to Arduino that identifies

the LED built in to an Arduino board. Unfortunately, this does not work
for all Arduino and compatible boards. So, if the Blink example doesn’t
work for your board, try changing all occurrences of LED_BUILTIN to 13
(the built-in LED on an Arduino Uno).

Like the setup function, every Arduino sketch has to have a loop func-
tion. Unlike setup, which only runs once after a reset, the loop function
runs continuously. That is, as soon as all its instructions have been run, it
starts again.

In the loop function, you turn on the LED by issuing the
digitalWrite(LED_BUILTIN, HIGH) instruction. You then set the sketch
to pause for a second by using the command delay(1000). The value 1000
is for 1000 milliseconds or 1 second. You then turn the LED off and delay
for another second before the whole process starts over.

// the loop routine runs over and over again forever:

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

01_Ch01.indd 16 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 17

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

To modify this sketch to make the LED blink faster, change both occur-
rences of 1000 to be 200. These changes are both in the loop function, so
your function should now look like this:

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(200); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW

 delay(200); // wait for a second

}

If you try and save the sketch before uploading it, the Arduino IDE
reminds you that it is a “read-only” example sketch, but it will offer you
the option to save it as a copy, which you can then modify to your heart’s
content.

You do not have to do this; you can just upload the sketch unsaved. But
if you do decide to save this or any other sketch, you will find that it then
appears in the File | Sketchbook menu on the Arduino IDE.

So, either way, click the Upload button again, and when the uploading
is complete, the Arduino resets itself and the LED should start to blink
much faster.

Variables
Variables give a name to a number. Actually, they can be a lot more power-
ful than this, but for now, we’ll use them for this purpose.

When defining a variable in C, you have to specify the type of variable.
For example, if you want your variables to be whole numbers, you would
use int (short for integer). To define a variable called delayPeriod with a
value of 200, you need to write:

int delayPeriod = 200;

Notice that because delayPeriod is a name, there cannot be any spaces
between words. The convention is to start variables with a lowercase letter
and begin each new word with an uppercase letter. Programmers often
call this bumpy case or camel case.

01_Ch01.indd 17 9/2/18 5:08 PM

18 Programming Arduino Next Steps

Let’s fit this into the blink sketch, so that instead of “hard-coding” the
value 200 for the length of delay, we use a variable instead. While we are
at it, we can replace that potentially troublesome LED_BUILTIN with our
own variable called just “led,” assigned explicitly to pin 13.

Notice, that in the example below I have moved the opening “{” (curly
brace) onto a line of its own. This does not alter the way that the program
works at all, but I think it makes the code easier to read. Note that this is
very much a matter of personal taste.

int led = 13;
int delayPeriod = 200;

void setup()
{
 pinMode(led, OUTPUT);
}

void loop()
{
 digitalWrite(led, HIGH);
 delay(delayPeriod);
 digitalWrite(led, LOW);
 delay(delayPeriod);
}

At each place in the sketch where we used to refer to 200, we now refer to
delayPeriod.

Now, if you want to make the sketch blink faster, you can just change
the value of delayPeriod in one place.

If
Normally, your lines of program are executed in order one after the other,
with no exceptions. But what if you don’t want to do that? What if you
only want to execute part of a sketch if some condition is true?

A good example of that might be to only do something when a button,
attached to the Arduino, is pressed. The code might look like this:

void setup()
{
 pinMode(5, INPUT_PULLUP);

01_Ch01.indd 18 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 19

 pinMode(9, OUTPUT);
}
void loop()
{
 if (digitalRead(5) == LOW)
 {
 digitalWrite(9, HIGH);
 }
}

In this case, the condition (after the if) is that the value read from pin 5 has
a value of LOW. The double equals symbol (==) is used for comparing
two values. It is easy to confuse it with a single equals sign that assigns a
value to a variable. An if statement says, if this condition is true, then the
commands inside the curly braces are executed. In this case, the action is
to set digital output to 9, HIGH.

If the condition is not true, then the Arduino just continues on with the
next thing. In this case, that is the loop function, which runs again.

Loops
As well as conditionally performing some of the actions, you also need
your sketch to be able to repeat actions over and over again. You get this
for free of course by putting commands into the sketch’s loop function.
That is, after all, what happens with the Blink example.

Sometimes, however, you’ll need to be more specific about the number
of times that you want to repeat something. You can accomplish this with
the for command, which allows you to use a counter variable. For exam-
ple, let’s write a sketch that blinks the LED ten times. Later, you’ll see why
this approach might be considered less than ideal under some circum-
stances, but for now, it will do just fine.

// sketch 01_01_blink_10
int ledPin = 13;
int delayPeriod = 200;
void setup()
{
 pinMode(ledPin, OUTPUT);
}

01_Ch01.indd 19 9/2/18 5:08 PM

20 Programming Arduino Next Steps

void loop()
{
 for (int i = 0; i < 10; i++)
 {
 digitalWrite(ledPin, HIGH);
 delay(delayPeriod);
 digitalWrite(ledPin, LOW);
 delay(delayPeriod);
 }
}

NOTE As this is the first full sketch, it’s named in a comment at the top of
the file. All the sketches named in this way can be downloaded from the
book’s website at http://simonmonk.org/nextsteps2/.

 To install all the sketches into your Arduino environment, unzip the file
containing the sketches into your Arduino directory, which you’ll find in
your Documents folder. The Arduino IDE automatically creates this folder
for you the first time it is run.

The for command defines a variable called i and gives it an initial value
of 0. After the ; the text i < 10 appears. This is the condition for staying in
the loop. In other words, while i is less than 10, keep doing the things
inside the curly brackets.

The last part of the for command is i++. This is C shorthand for “i = i + 1”,
which, not surprisingly, adds 1 to the value of i. One is added to the value
of i each time around the loop. This is what ensures that you can escape
from the loop, because if you keep adding 1 to i, eventually it will be greater
than 10.

Functions
Functions are a way to group a set of programming commands into a use-
ful chunk. This helps to divide your sketch into manageable chunks, mak-
ing it easier to use.

For example, let’s write a sketch that makes the Arduino blink rapidly
10 times when it first starts and then blink steadily once each second
thereafter.

01_Ch01.indd 20 9/2/18 5:08 PM

http://simonmonk.org/nextsteps2/

 Chapter 1: Programming Arduino 21

Read through the following listing, and then I’ll explain what is going
on.

// sketch 01_02_blink_fast_slow
int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
 flash(10, 100);
}

void loop()
{
 flash(1, 500);
}

void flash(int n, int delayPeriod)
{
 for (int i = 0; i < n; i++)
 {
 digitalWrite(ledPin, HIGH);
 delay(delayPeriod);
 digitalWrite(ledPin, LOW);
 delay(delayPeriod);
 }
}

The setup function now contains a line that says flash(10, 100);. This
means flash 10 times with a delayPeriod of 100 milliseconds. The flash
command is not a built-in Arduino command; you are going to create this
quite useful function yourself.

The definition of the function is at the end of the sketch. The first line of
the function definition is

void flash(int n, int delayPeriod)

This tells the Arduino that you are defining your own function called
flash, which takes two parameters, both of which are ints. The first is n
(the number of times to flash the LED), and the second is delayPeriod (the
delay to use between turning the LED on or off).

01_Ch01.indd 21 9/2/18 5:08 PM

22 Programming Arduino Next Steps

These two parameter variables can only be used inside the function. So,
n is used in the for command to determine how many times to repeat the
loop, and delayPeriod is used inside the delay commands.

The sketch’s loop function also uses the previous flash function, but
with a longer delayPeriod, and it only makes the LED flash once. Because
it is inside loop, it will just keep flashing anyway.

Digital Inputs
To get the most out of this section, you need to find a short length of wire
or even a metal paperclip that has been straightened.

Load the following sketch and run it:

// sketch 01_03_paperclip
int ledPin = 13;
int switchPin = 7;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(switchPin, INPUT_PULLUP);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)
 {
 flash(100);
 }
 else
 {
 flash(500);
 }
}

void flash(int delayPeriod)
{
 digitalWrite(ledPin, HIGH);
 delay(delayPeriod);
 digitalWrite(ledPin, LOW);
 delay(delayPeriod);
}

01_Ch01.indd 22 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 23

Use your wire or paperclip to connect the GND pin to digital pin 7, as
shown in Figure 1-13. You can do this with your Arduino plugged in, but
only after you have uploaded the sketch. The reason is that if on some pre-
vious sketch pin 7 had been set to an output, then connecting it to the GND
would damage the pin. Since the sketch sets pin 7 to be an input, this is safe.

This is what should happen: when the paperclip is connected, the LED
will flash quickly, and when it is not connected, it will flash slowly.

Let’s dissect the sketch and see how it works.
First, we have a new variable called switchPin. This variable is assigned

to pin 7. So the paperclip is acting like a switch. In the setup function, we
specify that this pin will be an input using the pinMode command. The
second argument to pinMode is not simply INPUT but actually
INPUT_PULLUP. This tells the Arduino that, by default, the input is to be
HIGH, unless it is pulled LOW by connecting it to GND (with the paper-
clip). The pulling up of the input is by means of a resistor built into the

Figure 1-13 Using a digital input.

01_Ch01.indd 23 9/2/18 5:08 PM

24 Programming Arduino Next Steps

microcontroller between the input and the positive supply that can be
enabled using software.

In the loop function, we use the digitalRead command to test the value
at the input pin. If it is LOW (the paperclip is in place), then it calls a func-
tion called flash with a parameter of 100 (the delayPeriod). This makes
the LED blink fast.

If, on the other hand, the input is HIGH, then the commands in the else
part of the if statement are run. This calls the same flash function but with
a much longer delay, making the LED blink slowly.

The flash function is a simplified version of the flash function that you
used in the previous sketch, and it just blinks once with the period
specified.

Sometimes you will connect digital outputs from a module that does
not act as a switch, but actually produces an output that is either HIGH or
LOW. In this case, you can use INPUT rather than INPUT_PULLUP in the
pinMode function.

Digital Outputs
There is not really much new to say about digital outputs from a program-
ming point of view, as you have already used them with the built-in LED
on pin 13.

The essence of a digital output is that in your setup function you define
them as being an output using this command:

pinMode(outputPin, OUTPUT);

When you want to set the output HIGH or LOW, you use the digitalWrite
command:

digitalWrite(outputPin, HIGH);

The Serial Monitor
When your Arduino is connected to your computer by USB, you can send
messages between the two using a feature of the Arduino IDE called the
Serial Monitor.

01_Ch01.indd 24 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 25

To illustrate, let’s modify the sketch 01_03 so that, instead of changing
the LED blink rate when digital input 7 is LOW, it sends a message saying
that the paperclip is connected.

Load this sketch:

// sketch 01_04_serial
int switchPin = 7;

void setup()
{
 pinMode(switchPin, INPUT_PULLUP);
 Serial.begin(9600);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)
 {
 Serial.println("Paperclip connected");
 }
 else
 {
 Serial.println("Paperclip NOT connected");
 }
 delay(1000);
}

Now open the Serial Monitor on the Arduino IDE by clicking the icon
that looks like a magnifying glass on the toolbar. You should immediately
start to see some messages appear, once each second (Figure 1-14). If the
messages do not appear, then check that the drop-down list in the bottom
right of the Serial Monitor is set to “9600 baud” to match the baud rate
specified in the Serial Monitor.

Disconnect one end of the paperclip, and you should see the message
change.

Because you are no longer using the built-in LED, you do not need the
ledPin variable any more. Instead, you need to use the Serial.begin com-
mand to start serial communications. The parameter is the baud rate. In
Chapter 13, you will find out much more about serial communications.

To write messages to the Serial Monitor, all you need to do is use the
Serial.println command.

In this example, the Arduino is sending messages to the Serial Monitor.

01_Ch01.indd 25 9/2/18 5:08 PM

26 Programming Arduino Next Steps

Arrays and Strings
Arrays are a way of containing a list of values. The variables you have met
so far have only contained a single value, usually an int. By contrast, an
array contains a list of values, and you can access any one of those values
by its position in the list.

C, in common with most programming languages, begins its index
positions at 0 rather than 1. This means that the first element is actually
element zero.

You have already met one kind of array in the last section when you
learned about the Serial Monitor. Messages like "Paperclip NOT con-
nected" are called character arrays because they are essentially collections
of characters.

For example, let’s teach Arduino to talk gibberish over the Serial
Monitor.

Figure 1-14 The Serial Monitor.

01_Ch01.indd 26 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 27

The following sketch has an array of character arrays and will pick one
at random and display it on the Serial Monitor after a random amount of
time. This sketch has the added advantage of showing you how to pro-
duce random numbers with an Arduino.

// sketch 01_05_gibberish

char* messages[] = {
 "My name is Arduino",
 "Buy books by Simon Monk",
 "Make something cool with me",
 "Raspberry Pis are fruity"};

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int delayPeriod = random(2000, 8000);
 delay(delayPeriod);
 int messageIndex = random(4);
 Serial.println(messages[messageIndex]);
}

Each of the messages, or strings as collections of characters are often
called, has a data type of char*. The * is a pointer to something. We’ll get to
the advanced topic of pointers in Chapter 6. The [] on the end of the vari-
able declaration indicates that the variable is an array of char* rather than
just a single char* on its own. Each string is enclosed in double-quotes.

Inside the loop function, the value delayPeriod is assigned a random
value between 2000 and 7999 (the second argument to “random” is exclu-
sive). A pause of this length is then set using the delay function.

The messageIndex variable is also assigned a random value using ran-
dom, but this time random is only given one parameter, in which case a
random number between 0 and 3 is generated as the index for the message
to be displayed.

Finally, the message at that position is sent to the Serial Monitor. Try out
the sketch, remembering to open the Serial Monitor.

01_Ch01.indd 27 9/2/18 5:08 PM

28 Programming Arduino Next Steps

Analog Inputs
The Arduino pins labeled A0 to A5 can measure the voltage applied to
them. The voltage must be between 0 and 5V. The built-in Arduino func-
tion that does this is analogRead, and it returns a value between 0 and
1023: 0 at 0V and 1023 at 5V. So to convert that number into a value between
0 and 5, you have to divide 1023/5 = 204.6. For an interesting analysis on
whether to divide by 1023 or 1024, see this thread on the Arduino forum:
https://forum.arduino.cc/index.php?topic=303189.0.

To measure voltage, int is not the ideal data type as it only represents
whole numbers and it would be good to see the fractional voltage, for
which you need to use the float data type.

Load this sketch onto your Arduino and then attach the paperclip
between A0 and 3.3V (Figure 1-15).

Figure 1-15 Connecting 3.3V to A0.

01_Ch01.indd 28 9/2/18 5:08 PM

https://forum.arduino.cc/index.php?topic=303189.0

 Chapter 1: Programming Arduino 29

// sketch 01_06_analog
int analogPin = A0;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int rawReading = analogRead(analogPin);
 float volts = rawReading / 204.6;
 Serial.println(volts);
 delay(1000);
}

Open the Serial Monitor, and a stream of numbers should appear
(Figure 1-16). These should be close to 3.3.

Figure 1-16 Voltage readings.

01_Ch01.indd 29 9/2/18 5:08 PM

30 Programming Arduino Next Steps

CAUTION Do not connect any of the supply voltages together (5V, 3.3V, or
GND). Creating such a short circuit would probably damage your Arduino
and could even damage your computer.

If you now keep one end of the paperclip in A0 but move the other end
of the paperclip to 5V, the readings will change to around 5V. Moving the
same end to GND gives you a reading of 0V.

Analog Outputs
The Arduino Uno does not produce true analog outputs (for that you need
an Arduino Due or MKR Zero), but it does have a number of outputs that
are capable of producing a pulse-width modulation (PWM) output. This
approximates to an analog output by controlling the length of a stream of
pulses, as you can see in Figure 1-17.

The longer the pulse is high, the higher the average voltage of the sig-
nal. Since there are about 500 pulses per second and most things that you
would connect to a PWM output are quite slow to react, the effect is of the
voltage changing.

1/20 (5%)

10/20 (50%)

18/20 (90%)

5V

5V

0V

0V

5V

0V

1/500 second

Figure 1-17 Pulse-width modulation.

01_Ch01.indd 30 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 31

On an Arduino Uno, the pins marked with a little ~ (pins 3, 5, 6, 9, 10,
and 11) can be used as analog outputs.

If you have a voltmeter, set it to its 0..20V DC range and attach the posi-
tive lead to digital pin 6 and the negative lead to GND (Figure 1-18). Then
load the following sketch:

// sketch 01_07_pwm
int pwmPin = 6;

void setup()
{
 pinMode(pwmPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{

Figure 1-18 Measuring the output voltage.

01_Ch01.indd 31 9/2/18 5:08 PM

32 Programming Arduino Next Steps

 if (Serial.available())
 {
 int dutyCycle = Serial.parseInt();
 analogWrite(pwmPin, dutyCycle);
 }
}

Open the Serial Monitor and type a number between 0 and 255 into the
text entry field at the top of the screen next to the Send button. Then press
Send and you should see the voltage change on your multimeter. Sending
a value of 0 should give a voltage of around 0. A value of 127 should be
about halfway between 0 and 5V (2.5V) and a value of 255 should give a
value near 5V.

In this sketch, the loop function starts with an if statement. The condi-
tion for the if is Serial.available(). This means if a message is waiting from
the Serial Monitor, the commands inside the curly braces will run. In this
case, the Serial.parseInt command converts the message that you typed
into the Serial Monitor into an int, which is then used as the argument to
analogWrite to set the PWM output.

Using Libraries
Because Arduino boards have a quite limited amount of memory, you’ll
find it worthwhile to only include code that will actually be used in what
ends up on the board. One way to achieve this is by using libraries. In
Arduino, and for that matter in C in general, a library is a collection of use-
ful functions.

So, for example, the Arduino IDE includes a library for using an LCD
display. This uses about 1.5 kB of program memory. There is no point in
this library being included unless you are using an LCD display, so such
libraries are “included” when needed.

You accomplish this using the #include directive at the beginning of
your sketch. You can add an include statement for any libraries that the
Arduino IDE has installed using the Sketch | Import Library… menu
option.

The Arduino IDE comes with a large selection of “official” libraries,
including:

01_Ch01.indd 32 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 33

• EEPROM For storing data in EEPROM memory

• Firmata The serial communications standard for Arduino to
computer

• LiquidCrystal For alphanumeric LCD displays

• SD For reading and writing SD flash memory cards

• Servo For controlling servo motors

• SPI The Arduino to peripheral communication bus

• Software Serial For serial communication using nonserial pins

• Stepper For controlling stepper motors

• Wire For I2C communication with peripherals

Some libraries are specific to a type of Arduino board:

• Keyboard USB keyboard emulation (Leonardo, Due, and Micro)

• Mouse USB mouse emulation (Leonardo, Due, and Micro)

• Audio Audio playing utilities (Due only)

Finally, there are a huge number of libraries that other Arduino users
have written that can be downloaded from the Internet. Some of the more
popular ones are

• OneWire For reading data from Dallas Semiconductor’s range of
digital devices using the 1-Wire bus interface

• Xbee For wireless serial communication

• GFX A graphics library for many different types of display from
Adafruit

• Capacitive Sensing For proximity detection

• FFT Frequency analysis library

New libraries appear all the time and you may find them on the official
Arduino site (http://arduino.cc/en/Reference/Libraries) or you may
find them with an Internet search.

If you want to use one of these last categories of libraries, then you need
to install it by one of two methods: using the Library Manager (see Figure
1-19) or by adding the library as a downloaded ZIP file.

01_Ch01.indd 33 9/2/18 5:08 PM

http://arduino.cc/en/Reference/Libraries

34 Programming Arduino Next Steps

The Library Manager is accessed from the Arduino IDE’s “Sketch”
menu by selecting “Include Library” and then “Manage Libraries.” The
Library Manager allows you to search for, add, update, and remove librar-
ies, but only libraries that the IDE is aware of. For lesser known libraries
that you might find on, say, GitHub, you will need to add the library as a
ZIP file.

To add a library from a ZIP file: from the Arduino IDE “Sketch” menu,
select “Include Library” and then “Add .ZIP Library” and navigate to the
ZIP file you downloaded.

Arduino Data Types
A variable of type int in Arduino C uses 2 bytes of data. Unless a sketch
becomes very memory hungry, then ints tend to be used for almost every-
thing, even for Boolean values and small integers that could easily be rep-
resented in a single byte value.

Table 1-1 contains a full list of the data types available.

Figure 1-19 The Arduino IDE Library Manager.

01_Ch01.indd 34 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 35

The data types described in Table 1-1 all apply to the original Arduinos
based on the ATMega family of eight bit microcontrollers. With the advent
of new ARM-based 32-bit microcontrollers, both official and compatible,
these definitions do not necessarily stand for some devices. For this rea-
son, some people prefer to use an alternative and more rigorous set of type
definitions.

These are prefixed by the letter “t.” So, for example if you are expecting
a 16-bit integer and want to make sure you don’t accidentally get a 32-bit
integer, you can define your variable like this:

int16_t myVariable = 0;

To my mind, this looks ugly and makes the code less accessible. So, I
only use these data type definitions, if it is critical that I get exactly the
number of bits that I need. This is something that does not happen often,

Type
Memory
(bytes) Range Notes

boolean 1 true or false (0 or 1) Used to represent logical values.

char 1 –128 to +127 Used to represent an ASCII character code;
for example, A is represented as 65.
Negative numbers are not normally used.

byte 1 0 to 255 Often used for communicating serial data,
as a single unit of data. See Chapter 9.

int 2 –32768 to +32767 These are signed 16 bit values.

unsigned
int

2 0 to 65536 Used for extra precision when negative
numbers are not needed. Use with caution
as arithmetic with ints may cause unex-
pected results.

long 4 2,147,483,648 to
2,147,483,647

Needed only for representing very big
numbers.

unsigned
long

4 0 to 4,294,967,295 See unsigned int.

float 4 –3.4028235E+38 to
+ 3.4028235E+38

Used to represent floating point numbers.

double 4 as float Normally, this would be 8 bytes and higher
precision than float with a greater range.
However, on Arduino double is the same
as float.

Table 1-1 Data Types in Arduino C

01_Ch01.indd 35 9/2/18 5:08 PM

36 Programming Arduino Next Steps

because if your variable ends up being bigger than expected because the
processor processes that number of bits at a time, then the extra bits will
simply be ignored. It only tends to be significant if you are doing some-
thing a bit naughty, like relying on an integer to “wrap-around.”

Arduino Commands
A large number of commands are available in the Arduino software, and a
selection of the most commonly used commands is listed, along with
examples, in Table 1-2.

Command Example Description

Digital I/O

pinMode pinMode(8, OUTPUT); Sets pin 8 to be an output. The
alternative is to set it to be INPUT
or INPUT_PULLUP.

digitalWrite digitalWrite(8, HIGH); Sets pin 8 high. To set it low, use the
constant LOW instead of HIGH.

digitalRead int i;
i = digitalRead(8);

Sets the value of i to HIGH or
LOW,
depending on the voltage at the pin
specified (in this case, pin 8).

pulseIn i = pulseIn(8, HIGH) Returns the duration in micro-
seconds of the next HIGH pulse
on pin 8.

tone tone(8, 440, 1000); Makes pin 8 oscillate at 440 Hz for
1000 milliseconds.

noTone noTone(); Cuts short the playing of any tone
that was in progress.

Analog I/O

analogRead int r;
r = analogRead(0);

Assigns a value to r of between 0
and 1023: 0 for 0V, 1023 if pin0 is
5V (3.3V for a 3V board).

analogWrite analogWrite(9, 127); Outputs a PWM signal. The duty
cycle is a number between 0 and
255, 255 being 100%. This must be
used by one of the pins marked as
PWM on the Arduino board (3, 5, 6,
9, 10, and 11).

Table 1-2 Arduino Functions

01_Ch01.indd 36 9/2/18 5:08 PM

 Chapter 1: Programming Arduino 37

Command Example Description

Time Commands

millis unsigned long l;
l = millis();

The variable type long in Arduino
is represented in 32 bits. The value
returned by millis() is the number
of milliseconds since the last reset.
The number wraps around after
approximately 50 days.

micros long l;
l = micros();

See millis, except this is microsec-
onds since the last reset. It wraps
after approximately 70 minutes.

delay delay(1000); Delays for 1000 milliseconds or 1
second.

delayMicroseconds delayMicroseconds(100000); Delays for 100,000 microseconds.
Note the minimum delay is 3
microseconds; the max is around 16
milliseconds.

Interrupts (see Chapter 3)

attachInterrupt attachInterrupt(1,
myFunction, RISING);

Associates the function myFunc-
tion with a rising transition on
interrupt 1 (D3 on an Uno).

detachInterrupt detachInterrupt(1); Disables any interrupt on inter-
rupt 1.

Table 1-2 Arduino Functions (Continued)

For a full reference to all the Arduino commands, see the official
Arduino documentation at www.arduino.cc/reference/en/.

Summary
By necessity, this chapter has been a very condensed introduction to the
world of Arduino. If you require more information about the basics, then
there are many online resources, including free Arduino tutorials at
www.learn.adafruit.com.

In the next chapter, we will dig under the surface of Arduino and see
just how it works and what is going on inside the nice, easy-to-use Arduino
environment.

01_Ch01.indd 37 9/2/18 5:08 PM

http://www.arduino.cc/reference/en/
http://www.learn.adafruit.com

01_Ch01.indd 38 9/2/18 5:08 PM

39

2
Under the Hood

The nice thing about the Arduino is that a lot of the time, you really do
not need to know what goes on behind the scenes when you upload a
sketch. However, as you get more into Arduino and want to push the
envelope of what it can do, you need to find out a bit more about what’s
going on under the hood.

In this chapter you will learn about what goes on in the background
when Arduino boards are programmed from the Arduino IDE. In the next
chapter you will find out how “Arduino compatible” boards can be pro-
grammed using the Arduino IDE. These Arduino compatibles often use
hardware that is very different from “real” Arduino boards.

A Brief History of Arduino
The first Arduino board was developed back in 2005 in Italy at the
Interaction Design Institute at Ivrea near Turin. The intention was to
design a low-cost and easy-to-use tool for design students to build interac-
tive systems. The software behind Arduino, which is so much a part of
Arduino’s success, is derrived from an open source framework written in
C called Wiring. Wiring was also created by a student at the Institute.

The Arduino version of Wiring is still very close to Wiring, and the
Arduino IDE is written in Wiring’s big brother that runs on PCs, Macs,
and so on, and is called Processing. Processing is well worth a look if you
have a project where your Arduino needs to talk to a PC over USB or
Bluetooth.

02_Ch02.indd 39 9/2/18 5:12 PM

40 Programming Arduino Next Steps

The Arduino hardware has evolved over the years, but the current
Arduino Uno and Leonardo boards retain the same basic shape and sock-
ets as the original.

The Arduino IDE software used to program an Arduino and the
Arduino C language have also stayed much the same.

Anatomy of an Arduino
Figure 2-1 shows the anatomy of an Arduino Uno. The Leonardo is similar
but has the USB interface integrated into the main microcontroller chip.
The Due is also similar, but the processor is powered by 3.3V, not 5V.

In many ways, the Arduino is really little more than a microcontroller
chip with some supporting components. In fact, it is perfectly possible to
build an Arduino on breadboard using the processor chip and a few
extra components or to create a PCB for a design that started out using
an Arduino as a prototype. The Arduino boards make things easy, but
ultimately any Arduino design can be converted into something that just
uses the microcontroller chip and the few components that it really
needs. For example, if the design is only for programming purposes, you
may not need a USB interface, as you could program the chip on an
Arduino and then transplant the programmed chip into an IC socket on
a PCB or to breadboard.

IO connectors

Power connectors

MicrocontrollerUSB
interface

3.3V
regulator

5V
regulator

Figure 2-1 The anatomy of an Arduino Uno.

02_Ch02.indd 40 9/2/18 5:12 PM

 Chapter 2: Under the Hood 41

Later, we’ll look at how Arduinos can be programmed directly using
the ICSP (In Circuit Serial Programming) interface.

AVR Processors
The Arduino family of boards mostly use microcontrollers made by the
company Microchip. They all have similar hardware design principles
and, with the exception of the microcontrollers used in the Due and other
ARM-based Arduinos such as the Zero, they have similar designs.

ATmega328
The ATmega328 is the microcontroller used in the Arduino Uno and its
predecessor the Duemilanove. In fact, the ATmega168 that was used in the
first Arduino boards is basically an ATmega328 but with half of each type
of memory.

Figure 2-2 shows the internals of an ATmega328, taken from its datasheet.
The full datasheet is available from www.microchip.com/wwwproducts/
en/ATmega328 and is worth browsing through to learn more about the
inner workings of this device.

The central processing unit (CPU) is where all the action takes place.
The CPU reads instructions (compiled sketch code) from the flash mem-
ory one instruction at a time. This process is different from a conventional
computer where programs are stored on disk and loaded into random
access memory (RAM) before they can be run. Variables that you use in
your programs are stored separately in the static RAM (SRAM). Unlike
the flash memory containing the program code, the RAM is volatile and
loses its contents when you turn off the power, so the current value of any
variables will be lost when you turn off the power.

To allow the nonvolatile storage of data that remains even after the
device is powered off, a third type of memory called Electrically Erasable
Programmable Read Only Memory (EEPROM) is used.

Another area of interest is the Watchdog Timer and Power Supervision
unit. These give the microcontroller the capability to do a number of things
that are normally hidden by the simplified Arduino layer, including clever
tricks like putting the chip to sleep and then setting a timer to wake it up

02_Ch02.indd 41 9/2/18 5:12 PM

http://www.microchip.com/wwwproducts/en/ATmega328
http://www.microchip.com/wwwproducts/en/ATmega328

42 Programming Arduino Next Steps

AVCC

Watchdog
Timer Power

Supervision
POR/BOD &

RESET

debugWIRE

PROGRAM
LOGIC

Watchdog
Oscillator

Oscillator
Circuits/

Clock
Generation

Flash

EEPROM

8bit T/C 0

8bit T/C 2

D
A

TA
B

U
S

USART 0

PORT D (8) PORT B (8) PORT C (7)

RESET

XTAL [1..2]

ADC [6..7]PC [0..6]PB [0..7]PD [0..7]

SPI TWI

16bit T/C 1

Internal
Bandgap

Analog
Comp.

2

6

SRAM

AREF

GND

AVR CPU

A/D Conv.

Figure 2-2 The ATmega328.

02_Ch02.indd 42 9/2/18 5:12 PM

 Chapter 2: Under the Hood 43

periodically. This trick can be very useful in low current applications, and
you can read more on this in Chapter 6.

The remainder of the block diagram is concerned with the analog-to-
digital conversion, the input/output ports, and the three types of serial
interfaces supported by the chip: UART - Serial, SPI, and TWI (I2C).

ATmega32u4
The ATmega32u4 is used in the Arduino Leonardo and also in the Arduino
Micro and Arduino Nano. This processor is similar to the ATmega328, but
it is a more modern chip with a few enhancements over the ATmega328:

• A built-in USB interface, so there’s no need for extra USB hardware.

• More of the pins are PWM capable.

• There are two serial ports.

• Dedicated pins for I2C (these pins are shared with the analog pins
on the Arduino Uno).

• There is 0.5 kB more SRAM.

The ATmega32u4 used in the Leonardo is in a surface-mount package,
which means it is soldered directly to the Arduino board, whereas the
ATmega328 is in a DIL package fitted into an IC socket for the Arduino
Uno.

ATmega2560
The ATmega2560 is used in the Arduino Mega 2560 and the Arduino Mega
ADK. It is no faster than the other ATmega chips, but it does have far more
of every type of memory (256K flash, 8K SRAM, and 4K of EEPROM) and
many more I/O pins.

AT91SAM3X8E
This is the chip at the heart of the Arduino Due. It is much faster than the
ATmega chips I have discussed so far, being clocked at 84 MHz, rather
than the normal 16 MHz of the ATmegas. It has 512K of flash and 96 kB of
SRAM. The microcontroller does not have any EEPROM. Instead, to save

02_Ch02.indd 43 9/2/18 5:12 PM

44 Programming Arduino Next Steps

persistent data, you need to provide your own additional hardware, either
in the form of an SD card holder and SD card or flash or EEPROM storage
ICs. The chip itself has many advanced features including two analog out-
puts that make it ideal for sound generation.

Arduino and Wiring
The Wiring framework gives Arduino its easy-to-use functions for con-
trolling the hardware pins; however, the main structural part of the lan-
guage is all provided by C.

In early versions of Arduino, if you looked in your Arduino installation
directory, you could still find a file called WProgram.h (Wiring Program).
This file has now been replaced by a similar file called Arduino.h that
indicates the gradual drift of the Arduino fork away from the original
Wiring Project.

If you go to your Arduino installation folder, you’ll find a folder called
“hardware,” and within that, a folder called “arduino,” and within that, a
folder called “cores.”

It is this concept of “cores” that allows the use of non-Arduino boards
with the Arduino IDE that is the subject of Chapter 3.

Note that if you are using a Mac, then you can only get to this folder by
right-clicking on your Arduino application, selecting View Package
Contents from the menu, and then navigating to the Resources/Java/
folder.

Inside the cores folder is another folder called “arduino,” and, in there,
you will find a whole load of C header files with the file extension .h and
C++ implementation files with the extension .cpp (Figure 2-3).

If you open Arduino.h in an editor, you’ll discover that it consists of
many #include statements. These pull in definitions from other header
files within the cores/arduino folder, so they are included during compi-
lation (converting the sketch into a form suitable for installing into the
microcontroller’s flash memory).

You’ll also find constant definitions like this:

#define HIGH 0x1
#define LOW 0x0

02_Ch02.indd 44 9/2/18 5:12 PM

 Chapter 2: Under the Hood 45

#define INPUT 0x0
#define OUTPUT 0x1
#define INPUT_PULLUP 0x2

You can think of these as being a bit like variables, so the name HIGH is
given the value 1. The value is specified as 0x1 rather than just 1 because
the values are all specified in hexadecimal (number base 16). These are not
actually variable definitions; they are called C precompiler directives, which
means that while your sketch is being turned into something that can be
installed into the flash memory on the microcontroller, if it uses the words
HIGH, LOW, and so on, they are automatically converted into the appro-
priate number. This has an advantage over using variables in that no
memory has to be reserved for their use.

Because these constants are numbers, you could write something like
this in your sketch to set pin 5 to be an OUTPUT, but it is better to use the
name in case the Arduino developers ever decide to change the constant’s
value. Using a name also makes the code easier to read.

setMode(5, 1);
setMode(5, OUTPUT);

Figure 2-3 Inside the cores folder.

02_Ch02.indd 45 9/2/18 5:12 PM

46 Programming Arduino Next Steps

Also, within arduino.h, you’ll find lots of function “signatures” like this:

void pinMode(uint8_t, uint8_t);
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
int analogRead(uint8_t);
void analogReference(uint8_t mode);
void analogWrite(uint8_t, int);

These warn the compiler about functions whose actual implementations
are to be found elsewhere. Take the first one as an example. It specifies the
function pinMode as taking two arguments (that you know to be pin
number and mode) that are specified as having a type of uint8_t. The void
command means the function will not return a value when it is called.

You might be wondering why these parameters’ type is specified as
uint8_t rather than int. Normally when defining which pin to use, you
specify an int. In actual fact, int is a universal type when writing sketches.
It means users do not need to worry about a large number of possible
types that they might have to use. But in Arduino C, an int is actually a
16-bit signed number that can represent a number between −32,768 and
32,767. However, when specifying a pin to use, having negative pin num-
bers doesn’t make sense and you are very unlikely to ever get a 32,767-pin
Arduino.

The type uint_8 is a much more precise convention for defining types
because an int in C can be anything between 16 and 64 bits, depending on
the C implementation. The way to read “uint_8” is that the u is for
unsigned, then you have int, and, finally, after the _ you have the number
of bits. So uint_8 is an unsigned 8-bit integer that can represent a number
between 0 and 255.

You can use these well-defined types within your sketches, and, indeed,
some people do. You have to remember, however, that this makes your
code a little less accessible to those who aren’t as experienced in Arduino
programming.

The reason that using a regular signed 16-bit int works, rather than, say, a
unit_8, is that the compiler automatically performs the conversion for you.
Using int variables for pin numbers actually wastes memory. However,
you have to balance this against the simplicity and readability of the code.

02_Ch02.indd 46 9/2/18 5:12 PM

 Chapter 2: Under the Hood 47

Alternatively, you can use “byte” for pin numbers. Generally, in program-
ming it’s better to favor easy-to-read code over minimizing memory usage,
unless you know you are doing something complex that is going to push
the microcontroller’s limits.

It’s a bit like having a truck in which you want to deliver some goods to
someone. If you have a load of stuff to deliver, then you need to think care-
fully about how to pack the load so it all fits. If you know that you are only
going to use one little corner of the available space, then spending a lot of
time minimizing the space it takes is simply unnecessary.

Also within the arduino folder, you’ll find a file called main.cpp. Open
this file; you’ll find it pretty interesting.

#include <Arduino.h>

int main(void)
{
 init();

#if defined(USBCON)
 USBDevice.attach();
#endif

 setup();

 for (;;) {
 loop();
 if (serialEventRun) serialEventRun();
 }

 return 0;
}

If you have done any C, C++, or Java programming before, you are
familiar with the concept of a main function. This function runs automati-
cally when the program is run. Main is the starting point for the whole
program. This is also true of Arduino programs, but it is hidden from the
sketch writer, who is instead told to implement two functions—setup and
loop—within their sketch.

If you look carefully at main.cpp, ignoring the first few lines for now,
you can see that it actually calls setup() and then has a for loop with no
conditions, with the loop function called inside the loop.

02_Ch02.indd 47 9/2/18 5:12 PM

48 Programming Arduino Next Steps

The command for(;;) is simply an ugly way of writing while (true),
which just means repeat forever. Notice that in addition to running the
loop function, there is also an if command inside the for that checks for
serial messages and services them if they arise.

Returning to the top of main.cpp, you can see that the first line is an
include command that pulls in all the definitions in the header file
arduino.h that I mentioned previously.

Next, you see the start of the definition of the main function, which begins
by invoking an init() function. If you look, you can find what this does in the
file wiring.c; it in turn calls a function sei, which enables interrupts.

These lines

#if defined(USBCON)
 USBDevice.attach();
#endif

are another example of a C preprocessor directive. This code is a bit like an
if command that you might use in your sketch, but the decision in the if is
not made when the sketch is actually running on the Arduino. The #if is
evaluated as the sketch is being compiled. This directive is a great way to
switch chunks in and out of your program, depending on whether they
are needed for a particular type of board. In this case, if the Arduino sup-
ports USB, then include the code for attaching the USB (initialize it); oth-
erwise, there is no point in even compiling the code to do that.

From Sketch to Arduino
Now that you have an understanding of where all the magic code comes
from when you write a simple Arduino sketch, let’s look at exactly how
that code gets into the flash memory of an Arduino board’s microcon-
troller when you click the Upload button in the Arduino IDE.

Figure 2-4 shows what happens when you click the Upload button and
the programs on your computer that make up the Arduino “toolchain” are
run.

Arduino sketches are held in a text file with the .ino extension, in a
folder of the same name but without the extension. You may occasionally
come across Arduino sketches with the extension .pde, which is no longer

02_Ch02.indd 48 9/2/18 5:12 PM

49

M
yS

ke
tc

h
Fo

ld
er

M
yS

ke
tc

h.
in

o

A
rd

ui
no

 ID
E

C
om

pu
te

r
ru

nn
in

g
th

e
A

rd
ui

no
 ID

E
A

rd
ui

no
 b

oa
rd

B
oo

tl
oa

d
er

Fl
as

h
m

em
or

y

A
V

R
D

U
D

E
G

C
C

co
m

pi
le

r
an

d
lin

ke
r

G
C

C
pr

ep
ro

ce
ss

or
A

rd
ui

no
 ID

E
pr

ep
ro

ce
ss

or

A
rd

ui
no

.h

co
re

/
ar

d
ui

no

U
SB

 s
er

ia
l

C
on

tr
ol

s

Fi
g

u
re

 2
-4

T

h
e

A
rd

u
in

o
 t

o
o

lc
h

ai
n

.

02_Ch02.indd 49 9/2/18 5:12 PM

50 Programming Arduino Next Steps

used. To make use of such a sketch in the Arduino IDE, you can just change
its extension to .ino.

What actually happens is that the Arduino IDE controls a number of
utility programs that do all the actual work. First, a part of the Arduino
IDE, which (for want of a better name) I have named the Arduino IDE pre-
processor, assembles the files provided as part of the sketch. Note that nor-
mally only one file is in the sketch folder; however, you can place other
files in the folder if you wish, but you need to use a separate editor to
create them.

If you have other files in the folder, they will be included in this build
process. C and C++ files are compiled separately. A line to include
arduino.h is added to the top of the main sketch file.

As there are many different types of Arduino boards that use different
microcontroller chips that have different pin names, the Arduino IDE
must use the right pin definitions for the board. If you look in the hard-
ware/arduino/variants folder, you’ll find a folder for each type of Arduino
board, and inside each folder, you’ll see a file called pins_arduino.h. This
file contains constants for the pin names for that platform.

When everything has been combined, the next step is to invoke the
GCC compiler. This compiler is an open source C++ compiler that is bun-
dled as part of the Arduino distribution. It takes the sketch, header, and C
implementation source code files and converts them into something that
can be run on an Arduino. It does this in a number of steps:

1. The preprocessor interprets all the #if and #define commands
and determines what actually goes into the build.

2. Next, the code is compiled and linked into a single executable file
for the type of processor used by the board.

3. After the compiler has finished its work, another piece of open
source software called avrdude actually sends the executable code,
saved as a hexadecimal representation of the binary, to the board
over the USB serial interface.

We are now in the Arduino’s realm. The Arduino has a small resident
program installed on every microcontroller that is included with its board.
This program is called a bootloader. The bootloader actually runs very

02_Ch02.indd 50 9/2/18 5:12 PM

 Chapter 2: Under the Hood 51

briefly every time an Arduino is reset. This is why when serial communi-
cation starts to an Arduino Uno, the hardware serial link forces a reset to
give the bootloader chance to check for any incoming sketches.

If there is a sketch, then the Arduino effectively programs itself by
unpacking the hexadecimal representation of the program into binary. It
then stores the sketch in the flash memory. The next time that the Arduino
restarts, after the usual bootloader check for a new sketch, the program
that was stored in flash is automatically run.

You might wonder why the host computer cannot program the micro-
controller directly rather than taking this convoluted path. The reason is
that programming a microcontroller requires special hardware that uses a
different interface to the Arduino board (that’s what the ICSP 1 header in
Figure 1-8 is for). By using a bootloader that can listen on a serial port, you
can program the Arduino through USB without having to use special pro-
gramming hardware.

However, if you do have such a programmer, such as the AVRISPv2,
AVRDragon, or the USBtinyISP, then you can program the Arduino
directly through such a programmer, bypassing the bootloader entirely. In
fact, as you shall see later in this chapter, you can also use a second Arduino
as a programmer.

Bypassing the bootloader both reduces the amount of flash memory
needed for the sketch and allows the Arduino to start more quickly, as the
Bootloader spends a second or so checking to see if there is an incoming
program each time the Arduino resets.

AVR Studio
Certain hard-bitten electronic engineers can be a bit snotty about Arduino.
They might tell you that it doesn’t have any technical advantages over
using the tools provided by Atmel for programming the whole family of
AVR microcontrollers. While technically true, this misses the point of
Arduino, which is to demystify the whole process of using a microcon-
troller and to wrestle it from the control of such experts. This does mean
that some of the things us Arduino aficionados do could be considered a
bit amateurish, but I say so what!

02_Ch02.indd 51 9/2/18 5:12 PM

52 Programming Arduino Next Steps

AVR Studio is the manufacturer’s proprietary software for program-
ming the microcontrollers used in Arduinos. You can use it to program the
Arduino itself, rather than using the Arduino IDE. If you do, however, you
will have to accept the following:

• A Windows-only environment

• Using a hardware programmer rather than USB

• A more complex environment

Perhaps this is the point at which you might want to consider why you
might want to do this. Here are some good reasons:

• You want to get rid of the bootloader (it uses 500 bytes on a Uno)
because either you are short of flash memory or you want a quicker
start after reset.

• You want to target other microcontrollers than those used in standard
Arduinos, such as the less expensive and smaller ATtiny family.

• You just want to learn something new.

The Arduino boards mostly come with a six-pin header that can be
used to program the Arduino directly. In fact, some boards such as the
Arduino Uno R3, come with two six-pin headers: one for the main proces-
sor and one for the USB interface, so be careful to connect to the right one.

Figure 2-5 shows AVR Studio 4 in action.
It is beyond the scope of this book to teach AVR Studio. However, as

you can see from Figure 2-5, the Blink sketch does not get any longer, but
it certainly looks more complicated!

Figure 2-6 shows an Arduino connected to an AVR Dragon program-
mer. This programmer is particularly powerful and flexible, and it allows
you to debug and single-step through programs actually running on the
ATmega chip.

In Chapter 5, we look at the kind of direct port manipulation that is
going on in Figure 2-5 as a way to improve I/O performance without hav-
ing to abandon the Arduino IDE.

02_Ch02.indd 52 9/2/18 5:12 PM

 Chapter 2: Under the Hood 53

Figure 2-5 AVR Studio.

Figure 2-6 An Arduino connected to an AVR Dragon programmer.

02_Ch02.indd 53 9/2/18 5:12 PM

54 Programming Arduino Next Steps

Installing a Bootloader
You might want to install the Arduino bootloader onto an Arduino board
for several reasons. You may have damaged the removable ATmega328 on
an Arduino Uno and be replacing the chip with a new ATmega328 (bought
without the bootloader). Alternatively, you may be moving an Arduino
prototype off-board, by taking the ATmega328 off the Arduino board and
fitting it to a custom board of your own design.

Whatever the reason, you can add a bootloader to a blank ATmega328,
either by using one of the programmers mentioned in the previous section
or by using one Arduino to program a second.

Burning a Bootloader with AVR Studio
and a Programmer
The Arduino installation folder contains bootloader hex files that can be
flashed onto an ATmega328 using AVR Studio. You will find these files in
the hardware/arduino/bootloaders folder. There, you will find hex files
for all sorts of different hardware. If want to install a bootloader for an Uno,
use the optiboot_atmega328.hex file in the optiboot folder (Figure 2-7).

First, a word of warning. If you are going to try this, then be aware that
there is a chance you will “brick” your processor chip. These chips have
what are called “fuses” that can be set and sometimes cannot be reset.
They are designed this way for proprietary reasons, when you want to
prevent reprogramming for commercial reasons. Check carefully that the
fuses are set correctly for the Arduino board you are programming before
you take the plunge, and accept that you may incur a loss. The Arduino
forum at www.arduino.cc/forum includes many threads on this topic,
along with “gotchas” to avoid.

To burn the bootloader using AVR Studio and an AVR Dragon, connect
the programmer to the Arduino ISP header pins (see Figure 2-6 earlier in
the chapter). Note that an Arduino Uno actually has two sets of ISP header
pins; the other set is for flashing the USB interface.

From the Tools menu, select the Program AVR option and then connect
to the ATmega328 on the Arduino. Then in the Flash section, browse to the
correct hex file and then click Program.

02_Ch02.indd 54 9/2/18 5:12 PM

http://www.arduino.cc/forum

 Chapter 2: Under the Hood 55

Burning a Bootloader with the Arduino IDE
and a Second Arduino
Flashing one Arduino with a new bootloader by using another Arduino is
remarkably easy. It is certainly easier and less risky than using AVR
Studio. The Arduino IDE includes an option to do this. Here’s all you need
to get started:

• Two Arduino Unos

• Six male-to-male jumper leads (or solid core wire)

• One short length of solid core wire

• A 10 µF 10V (100 µF will also work) capacitor

You first need to make the connections listed in Table 2-1.

Figure 2-7 Burning an Uno bootloader in AVR Studio 4.

02_Ch02.indd 55 9/2/18 5:12 PM

56 Programming Arduino Next Steps

Arduino Acting as Programmer Target Arduino

GND GND

5V 5V

13 13

12 12

11 11

10 Reset

Table 2-1 Arduino to Arduino Programming Connections

You also need to attach a 10 µF capacitor between Reset and GND on
the target Arduino (the one being programmed). The capacitor will have a
longer positive lead, which should go to Reset. The capacitor overrides a
pulse coming from the Arduino doing the programming that would oth-
erwise reset the Arduino being programmed. For an interesting discus-
sion on this, see https://forum.arduino.cc/index.php?topic=104435.0.

Figure 2-8 shows the connected Arduinos. The Arduino on the right of
Figure 2-8 is the one doing the programming. Notice how solid-core wire

Figure 2-8 Arduino to Arduino flashing.

02_Ch02.indd 56 9/2/18 5:12 PM

https://forum.arduino.cc/index.php?topic=104435.0

 Chapter 2: Under the Hood 57

is used for the connection between pin 10 on the programming Arduino
and Reset on the target Arduino. This is so that both the wire and the
positive lead of the capacitor will fit in the Reset socket.

Note that the Arduino doing the programming powers the Arduino
being programmed, so only the programming Arduino needs to be con-
nected to your computer by USB.

The Arduino that is going to do the programming needs to have a
sketch installed on it. You will find this under File | Examples. The sketch
is called ArduinoISP and is in the top section of the Examples.

Select the board type and port in the usual way and upload the
ArduinoISP sketch onto the Arduino doing the programming. Now from
the Tools menu, select the Programmer submenu and select the Arduino
as ISP option. Note that there is also an option here called “ArduinoISP”
that should be avoided.

Finally, select the Burn Bootloader option from the Tools menu. The
process takes just a few seconds, during which the Rx and Tx LEDs should
flicker on the programming Arduino and the “L” LED flicker on the target
Arduino.

When the process finishes, that’s it—the microcontroller on the target
Arduino has a new bootloader installed.

Summary
In this chapter, we looked more closely at what exactly the Arduino is and
how it works. In particular, I showed you what is hidden by the Arduino
environment.

In the next chapter, we look at using interrupts and at how you can use
non-Arduino boards with the Arduino IDE, allowing you to apply your
Arduino programming skills to a wide variety of hardware.

02_Ch02.indd 57 9/2/18 5:12 PM

02_Ch02.indd 58 9/2/18 5:12 PM

59

3
When Is an Arduino

Not an Arduino?

The Arduino team did a great job in making the IDE modular so that
they could easily add new boards to the system. This means it is possible
to add software to support non-Arduino boards to the system and then
program them with the Arduino IDE using the same commands.

Not only can you use ready-made boards such as those shown in Figure
3-1, but you can also use the Arduino IDE to program bare microcontroller
chips (that are different models than those used on Arduino boards) for
your projects.

Figure 3-1 From left to right: Trinket m0, Circuit Playground Express, Wemos D1
Mini, LOLIN32, and NodeMCU.

03_Ch03.indd 59 9/2/18 5:12 PM

60 Programming Arduino Next Steps

The Arduino IDE’s Extensible Architecture
The Arduino IDE—in fact, the whole Arduino project—is open source.
That is, all the code used to create the IDE and the code that runs on the
Arduino board is available to be examined and copied for your own use.
Although purists would argue that the Arduino hardware designs do not
quite conform to open source hardware standards, the fact is, that the
schematic diagrams and all the information you might need to make your
own Arduino are in the public domain.

The Arduino IDE is also designed to be flexible without the need to
actually modify the source code of the program. One key aspect of this is
to allow other platforms or “cores” to be “plugged-in” to the Arduino IDE.

The easiest way to add support for other boards to the Arduino IDE is
to use the Boards Manager (Figure 3-2), which is accessed by selecting the
“Tools” menu, then selecting the “Board” option and then “Boards
Manager…”.

By default, this will not include all board options, especially those from
“less official” sources. But you can inform the Arduino IDE about other
boards by specifying URLs in the “Additional Boards Manager URLs”
field that you will find in “Preferences” from the “File” menu (Figure 3-3).

Figure 3-2 The Boards Manager.

03_Ch03.indd 60 9/2/18 5:12 PM

 Chapter 3: When Is an Arduino Not an Arduino? 61

Figure 3-3 Adding URLs to the Boards Manager.

In the next section we will add support for the popular Adafruit Circuit
Playground.

Adafruit Circuit Playground Express
The Adafruit Circuit Playground (Figure 3-4) can be programmed using
several different programming languages and environments including
Arduino. The board is intended in part for use in education and so includes
a number of built-in peripherals, including 10 RBG “Neopixel” LEDs, a
buzzer, two push switches, an accelerometer, and a microphone.

This board does not use a processor from the mega family used by the
Arduino Uno, but rather uses an ARM-based microcontroller. We will
now use this board to illustrate the use of the Boards Manager.

Open the Boards Manager and then enter “Circuit Playground Express”
in the search window (Figure 3-5). Then select the only entry in the list.
You will notice that this adds support to a whole load of boards, including
the Circuit Playground Express. Click on the “Install” button next to the
version.

03_Ch03.indd 61 9/2/18 5:12 PM

62 Programming Arduino Next Steps

Figure 3-4 The Adafruit Circuit Playground Express.

Figure 3-5 Adding a board using the Boards Manager.

03_Ch03.indd 62 9/2/18 5:12 PM

 Chapter 3: When Is an Arduino Not an Arduino? 63

Once you have installed the board support, you should find it in the
Boards List (Figure 3-6).

To make good use of all the built-in peripherals on the Circuit Express,
you will need to also install the Arduino library for it. To do this, use the
Library Manager and search for “Playground Express”. Try out one of the
examples provided with the library from the “File” menu under
“Examples,” such as “HelloNeoPixels” under the category “Hello Circuit
Playground.” Browse the other example sketches for the Circuit
Playground library to see some of the other things you can do with the
board, programming it as you would a “regular” Arduino board.

Note that if you are a Windows user, before you can use the board you
will need to install a Windows driver for it (see https://learn.adafruit
.com/introducing-circuit-playground/windows-driver-installation). Mac
and Linux users don’t need to do so.

You can find out all about Adafruit’s Playground Express board at
https://learn.adafruit.com/introducing-circuit-playground/.

Figure 3-6 The Circuit Playground Express in the Boards List.

03_Ch03.indd 63 9/2/18 5:12 PM

https://learn.adafruit.com/introducing-circuit-playground/windows-driver-installation
https://learn.adafruit.com/introducing-circuit-playground/windows-driver-installation
https://learn.adafruit.com/introducing-circuit-playground/

64 Programming Arduino Next Steps

Adafruit also has a wide range of Arduino-compatible boards. Go to
their website and search for “feather,” “trinket,” and “flora” to see some of
their other types of Arduino, some of which have special features such as
RF (radio frequency), WiFi, or LiPo battery charging built in.

NodeMCU
The NodeMCU and its relative, the Wemos D1 Mini (Figures 3-7 and 3-8),
are extraordinarily low-cost Arduino-compatible boards with built-in
WiFi connectivity. They are both based on the ESP8266 WiFi microcon-
troller module. It is possible to program these ESP8266-based devices with
a range of programming languages including Arduino.

Figure 3-7 The NodeMCU.

03_Ch03.indd 64 9/2/18 5:12 PM

 Chapter 3: When Is an Arduino Not an Arduino? 65

Figure 3-8 The Wemos D1 Mini.

Although the NodeMCU looks like it has all the GPIO pins of, say, an
Arduino Pro Mini, in actual fact it has a much-reduced set of pins, with
only 1 analog input and 9 digital inputs/outputs pins. The Wemos D1
Mini takes advantage of this reduction in the number of useful pins avail-
able in the ESP8266 module, resulting in a physically much smaller board.

These pins must be referenced with D or A in front of the pin name—for
example, A0, D4, etc. This differs from a regular Arduino where the “D”
can be omitted. Note that the NodeMCU board shown in Figure 3-7 actu-
ally has an error in the pin labelling on the PCB—D2 is marked twice.

If you are a MAC or Windows user, you may have to install drivers for
the CP2102 (NodeMCU) or CH340 USB interface chip (Wemos D1 Mini)
before you can use them (see www.silabs.com/products/development
-tools/software/usb-to-uart-bridge-vcp-drivers or www.arduined.eu/
ch340-windows-8-driver-download, respectively).

03_Ch03.indd 65 9/2/18 5:12 PM

http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
http://www.arduined.eu/ch340-windows-8-driver-download
http://www.arduined.eu/ch340-windows-8-driver-download

66 Programming Arduino Next Steps

To add support for these boards to your Arduino IDE, open the Boards
Manager and search for “ESP8266” and install the Board “esp8266 by
ESP8266 Community.” If you load up the example “sketch_03_01_node_
mcu_blink,” you can blink the built-in LED attached (normally to pin D0,
but sometimes D1 or D2) on a NodeMCU or D4 on a Wemos D1 Mini. You
will find this and all the other sketches used in the book at the book’s web
page (http://simonmonk.org/nextsteps2/).

Note that these boards’ inputs and outputs operate at 3.3V, so do not
connect 5V outputs to an input on this board, or you will break it. Each
digital output can supply 12 mA. This is less than the 40 mA of an Arduino
Uno, but still enough to light an LED brightly.

For examples of using the built-in WiFi capabilities of based boards like
these and the ESP32 in the next section, see Chapter 14.

ESP32
Often, the limited number of GPIO pins of the NodeMCU and other
ESP8266-based Arduino-compatible boards is not a problem. However,
sometimes you need more GPIO pins or might want to use Bluetooth. In
which case, look for a board that uses the ESP32.

SparkFun and Adafruit both make high-quality and well-documented
ESP32-based boards (the ESP32 Thing and Huzzah32 Feather Board,
respectively). Both boards have built-in LiPo battery charging and power
supply hardware making them great for mobile projects. If you want to
spend less, then eBay will find you several low-cost alternatives such as
the LOLIN32 featured in Figure 3-1.

To add ESP32 boards using the boards manager, you have to add the
URL https://dl.espressif.com/dl/package_esp32_index.json into the
Additional Boards URL field in Preferences, in the same way as yoiu
added the URL for the Circuit Playground Express (see Figure 3-3). You
will then find a board named “esp32 by Espresif Systems” in the board
manager.

For more information on the ESP32 Arduino project see: https://
github.com/espressif/arduino-esp32. This page will also tell you the

03_Ch03.indd 66 9/2/18 5:12 PM

http://simonmonk.org/nextsteps2/
https://dl.espressif.com/dl/package_esp32_index.json
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32

 Chapter 3: When Is an Arduino Not an Arduino? 67

current status of the project as at the time of writing some features, such as
PWM output (“analogWrite”), have not been implemented.

The ESP32 is a remarkable device with dual processors, lots of memory,
and really good low-power capabilities, making it a great choice for IoT
projects. We will return to it in Chapter 14.

ATtiny Microcontrollers
Some projects actually require very little in the way of digital inputs and
outputs and also barely make a dent on the 32 kB of flash available for
your programs on the Arduino Uno’s ATmega328 microcontroller. For
such projects, you might like to consider a board based on the ATmega’s
relative, the ATtiny family of microcontrollers. These chips share many of
the characteristics of the ATmega range, but, as the name suggests, gener-
ally have less of everything, including pins and memory of all types. The
advantages, of course, are that they don’t cost as much or take up as much
room as an ATmega and offer an excellent next step for your Arduino Uno
where you can dispense with most of the Arduino board and just base
your project around a single microcontroller.

ATtiny44
By way of illustration, let’s take a look at using the ATtiny44 micro-
controller. This chip sits in the middle ground between the mega micro-
controllers and a truly tiny device like the 8-pin ATtiny85.

The ATtiny44 has just 4 kB of flash memory and 256 bytes of RAM. If
you run low on room for your program, you can always upgrade to the
pin-compatible ATtiny84 that has 8 kB of flash memory.

Figure 3-9 shows an ATtiny44 on solderless breadboard along with an
LED (that we are going to blink) and Series resistor. The chip has 14 pins:
two required for power, one for reset, leaving the remaining 11 available
as GPIO pins (see Figure 3-10).

03_Ch03.indd 67 9/2/18 5:12 PM

68 Programming Arduino Next Steps

Figure 3-9 The ATtiny44 microcontroller on breadboard.

Figure 3-10 The ATtiny44 pinout.

Using an Arduino as a Programmer
You may remember how back in Chapter 2 an Arduino Uno was used as a
“programmer” to flash the Arduino bootloader onto a second Arduino.
We can also use an Arduino Uno to program an ATtiny microcontroller,

03_Ch03.indd 68 9/2/18 5:12 PM

 Chapter 3: When Is an Arduino Not an Arduino? 69

but rather than use it to burn the bootloader onto the ATtiny, we are going
to use the Arduino to put the entire sketch (in this case, a Blink program)
onto the ATtiny.

Before you do anything else, you need to install the “ArduinoISP”
sketch onto your Arduino Uno. You will find it under the “File” menu in
“Examples.” After this is done, you can connect the Arduino to the ATtiny
as described below. It is important to install the ArduinoISP sketch first,
because once you attach the 10 µF capacitor to the Reset pin of your
Arduino you won’t be able to upload another sketch onto your Arduino
until the capacitor is removed.

You can use male-to-male jumper wires to make the connections shown
in Table 3-1 between the Arduino Uno and the ATtiny. These are also
shown in Figure 3-11.

Function Arduino Uno ATtiny44 Physical Pin

SCK (Clock) 13 9

MISO (Master In Slave Out) 12 8

MOSI (Master Out Slave In) 11 7

Reset 10 4

Table 3-1 Connecting an Arduino Uno to an ATtiny44 for Programming

Figure 3-11 Connecting an Arduino Uno to an ATtiny44 for programming.

03_Ch03.indd 69 9/2/18 5:12 PM

70 Programming Arduino Next Steps

You can tell which way the chip goes because it has a small notch at the
top end near pin 1 (see Figure 3-10). To get the chip to fit into the breadboard
holes, you may need to carefully bend all the pins on each side just a tiny
amount. Pressing them gently against your table-top usually does the trick.

The capacitor will have one longer lead. This is the positive lead and
should go to the Reset pin on the Arduino. Similarly, the longer lead of the
LED is the positive lead.

Installing ATtinyCore into the IDE
There are several Cores available for ATtiny that you can add to your
Arduino IDE. The one used in this book is called ATtinyCore and you
can find its documentation here: https://github.com/SpenceKonde/
ATtinyCore.

This page also contains a list of boards that the Core supports, along
with useful pin-out diagrams for the ATtiny ICs supported.

The Core is available from the Boards Manager; however, the URL
(http://drazzy.com/package_drazzy.com_index.json) must be added to
the Boards Manager’s list of URLs as specified in Preferences (see Figure
3-4).

After adding the URL, open the Boards Manager, search for “attinycore,”
and install the latest version.

Clocks, Crystals, and Fuses
Now, we have our Arduino IDE set up for ATtiny and we have our
Arduino Uno ready to act as a programmer for the ATtiny and all the
wires in place. We are almost ready to upload a sketch onto the ATtiny, but
first we need to do a little configuration in the Arduino IDE.

Start by selecting a board type of “ATtiny24/44/84” from the section
“ATtinyCore” (Figure 3-12).

This will add some extra options to the “Tools” menu relating to the
ATtiny. You can leave most of these as their defaults. But you should
change the “Chip” to ATtiny44 (see Figure 3-12). You should also check
that “Clock” is set to “8 MHz (Internal)” and set “Programmer” (at the end
of the “Tools” menu) to “Arduino as ISP.” If you have other programming
hardware, you can select this here.

03_Ch03.indd 70 9/2/18 5:12 PM

https://github.com/SpenceKonde/ATtinyCore
https://github.com/SpenceKonde/ATtinyCore
http://drazzy.com/package_drazzy.com_index.json

 Chapter 3: When Is an Arduino Not an Arduino? 71

Figure 3-12 Selecting a board type of ATtiny24/44/84.

Some of these menu options affect the chip’s “fuses” that determine
how the chip will behave, even configuring what certain pins will do. So,
for example, by setting the “Clock” option to “8 MHz (Internal),” we are
saying that pins 2 and 3 of the ATtiny44 are not needed for a crystal oscil-
lator and can therefore be used as GPIO pins. We need to be a little careful
here, because if, for example, we set the “Clock” fuse to “16 MHz
(External),” then when we program the ATtiny, it would not be possible
without adding a crystal oscillator. We would have “bricked” our chip.
Fortunately, the changes you make in these settings do not take effect until
you click on the “Burn Bootloader” option at the end of the menu. This
does not actually burn the bootloader onto the ATtiny, it just sets the fuses.

Finally, you can upload the sketch onto the ATtiny. You can use the blink
sketch provided as a download called “sketch_03_02_attiny44_blink”. Just
click on the “Upload” button as if you were uploading to a regular Arduino.
When the upload finishes, the LED should start blinking.

03_Ch03.indd 71 9/2/18 5:12 PM

72 Programming Arduino Next Steps

Minimal Arduino
You may have noticed that we seem to have replaced most of an Arduino
Uno with a chip on some solderless breadboard. So, how have we man-
aged to dispense with so much, and what have we sacrificed in doing so?

One thing we have lost is the power supply. We no longer have a volt-
age regulator. The ATtiny is, at the moment, making use of the Arduino
Uno’s power supply. However, the ATtiny is happy with any power sup-
ply between 2.7 and 5.5V. So once we have finished programming it, we
could just power it using 3V from a pair of AA batteries.

By using the Uno as a programmer, we have also dispensed with the
USB interface chip and related components. We have also lost the 16 MHz
crystal oscillator that you will find as a small silver-colored component on
an Arduino Uno. This is possible because the ATtiny is using a built-in
oscillator. This oscillator runs at half the speed of the Arduino Uno’s
16 MHz. The software compensates for this, so, for example, the “delay”
function still delays for the right amount of time. The internal oscillator is
not as accurate as the external crystal. The datasheet for the ATtiny44 only
guarantees an accuracy of ±2 percent for the internal oscillator versus the
accuracy of a typical external crystal oscillator of ±0.003 percent. However,
in practice, the oscillator accuracy is usually much better than ±2 percent.

Summary
In this chapter, we have explored some alternatives to official Arduino
boards including the option of making our own Arduino with a chip and
some breadboard. We will meet some of these devices again in later
chapters.

In the next chapter we will look at interrupts and timers that give a
means of allowing an Arduino to respond to external and timed events.

03_Ch03.indd 72 9/2/18 5:12 PM

73

4
Interrupts and Timers

Interrupts allow microcontrollers to respond to events without hav-
ing to poll continually to see if anything has changed. In addition to
associating interrupts with certain pins you can also use timer-generated
interrupts.

Hardware Interrupts
As an example of how to use interrupts, let’s revisit digital inputs. The
most common way to detect when something has happened at an input
(say a switch has been pressed) is to use some code like this:

void loop
{
 if (digitalRead(inputPin) == LOW)
 {
 // do something
 }
}

This code means we continually check inputPin and the moment it reads
LOW, we do whatever is specified at the //do something comment. This
process works well, but what if you have a lot of other things to do inside
the loop, too? These other things take time, so you could potentially miss
a very quick button press because the processor is busy doing something
else. In actual fact, with a switch, missing the button press is unlikely as it
remains pressed for what in microcontroller terms is a long time.

04_Ch04.indd 73 9/2/18 5:14 PM

74 Programming Arduino Next Steps

But what about shorter pulses from a sensor, which may only be active
for a few millionths of a second? For these cases, you can use interrupts to
catch such events, setting a function to run whenever these events hap-
pen, irrespective of whatever else the microcontroller might be doing.
Thus, these are called hardware interrupts.

On the Arduino Uno, you can only use two pins as hardware inter-
rupts, which is one reason they are used sparingly. The Leonardo has four
interrupt-capable pins; bigger boards like the Mega2560 have many more;
and, on the Due, you can attach interrupts to all the pins. If you are using
an Arduino compatible, you will have to check the documentation for the
microcontroller’s Arduino core to see which, if any, pins are available for
interrupts. The ESP8266 Arduino core is very good for interrupts. It allows
interrupts to be attached to any pin and uses the pin name rather than the
interrupt number.

The following shows how hardware interrupts work. To try this example,
you need some breadboard, a tactile push switch, a 1 kΩ resistor, and some
jumper wires.

Figure 4-1 shows the arrangement. The resistor pulls the interrupt pin
(D2) HIGH until the button on the switch is pressed, at which point D2 is
grounded and goes LOW.

Load the following sketch onto your Arduino:

// sketch 04_01_interrupts

const int ledPin = 13;
const int interruptPin = 2;

void setup()
{
 pinMode(ledPin, OUTPUT);
 attachInterrupt(digitalPinToInterrupt(interruptPin),
 stuffHapenned, FALLING);
}

void loop()
{
}

void stuffHappened()

04_Ch04.indd 74 9/2/18 5:14 PM

 Chapter 4: Interrupts and Timers 75

{
 digitalWrite(ledPin, HIGH);
}

As well as setting the LED pin to be an output, the setup function also
contains a line that associates a function with an interrupt. So whenever
the interrupt occurs, the function is run. Let’s look at this line closely
because its arguments are a little confusing:

attachInterrupt(digitalPinToInterrupt(interruptPin),
 stuffHapenned, FALLING);

The first argument 0 is the interrupt number. It would make far more
sense if this were a regular Arduino pin number, but it isn’t. On an Arduino
Uno, interrupt 0 is pin D2 and interrupt 1 is D3. The situation is made even
more confusing because on other types of Arduino, these pins are not the
same. To make sure that you get the correct interrupt number for a pin, use
the function digitalPinToInterrupt which given a pin number as a param-
eter returns the associated interrupt number.

Figure 4-1 Interrupt test circuit.

IOREF
RESET
3V3

PO
W

E
R

5/

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
ITA

L

A
rd
u
in
o

U
N
O

8
7

6
5

4
3

2
1

0

SCL
SDA

AREF
GND

PWM
PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

O
N

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.ard

u
in
o.cc

04_Ch04.indd 75 9/2/18 5:14 PM

76 Programming Arduino Next Steps

I’ll come back to this later, but for now let’s move on to the second argu-
ment. This argument stuffhappened is the name of the function to be
called when an interrupt occurs. You can see the function defined later in
the sketch. Such functions have a special name; they are called Interrupt
Service Routines, or ISRs for short. They cannot have any parameters and
should not return anything. This makes sense: Although you can generally
call them from other parts of your sketch, no line of code will have called
the ISR, so there is no way for them to be given any parameters or to
return a value.

The final attachInterrupt parameter is a constant, in this case, FALLING.
This means the interrupt only results in the ISR being called if D2 goes from
HIGH to LOW (in other words, it “falls”), which is what happens when the
button is pressed: D2 goes from HIGH to LOW.

You’ll notice there is no code in the loop function. Normally, the loop
function would contain code that would be executed until the interrupt
occurred. The ISR itself simply turns the “L” LED on.

When you try the experiment, after the Arduino has reset, the “L” LED
should go out. Then as soon as you press the button, the “L” LED should
immediately light up and stay lit.

Now change the final argument of attachInterrupt to RISING and
upload the modified sketch. The LED should still remain unlit after the
Arduino has finished restarting because the interrupt may be HIGH, but
it has always been HIGH; it hasn’t, at any point, gone LOW to then “rise”
to HIGH.

When you press and hold the button, the LED should stay unlit until you
release it. Releasing it triggers the interrupt because D2, which was LOW
while the button was pressed, only rises to HIGH when you release it.

If this doesn’t seem to work, then the switch is probably bouncing.
There isn’t a perfect jump from open to closed; rather, the switch will actu-
ally turn on and off a few times before settling into the on position. Try it
several times, pressing the switch firmly, and you should be able to get a
close without a bounce.

The other way to test this is to hold the switch while you press the Reset
button on the Arduino. Then when you are ready, release the test button
and the “L” LED will light.

04_Ch04.indd 76 9/2/18 5:14 PM

 Chapter 4: Interrupts and Timers 77

Interrupt Pins
Returning to the thorny issue of how interrupts are named, Table 4-1
shows how the most common Arduino boards map interrupt numbers to
physical Arduino pins.

The pin swap for the first two interrupts on the Uno and Leonardo is an
easy trap to fall into. The Due approach of using the Arduino pin name
instead of the interrupt number is a much more logical way of doing things.

Interrupt Modes
The RISING and FALLING modes, which we used in the previous example,
are the most handy modes. There are, however, some other interrupt modes.
Table 4-2 lists these modes, along with a description.

Interrupt Number
Board 0 1 2 3 4 5 Notes

Uno/Pro Mini D2 D3 – – – –
Leonardo D3 D2 D0 D1 – – Yes, really—the interrupt

numbers are the opposite of
those on the Uno.

Mega2560 D2 D3 D21 D20 D19 D18
Due Pin numbers are used instead

of interrupt numbers

Table 4-1 Interrupt Pins of Different Arduino Boards

Mode Operation Discussion
LOW Triggers interrupt whenever

LOW.
This mode sets the ISR to run con-
tinuously as long as the pin is LOW.

RISING Triggers when the pin goes
from LOW to HIGH.

FALLING Triggers when the pin goes
from HIGH to LOW.

CHANGE Triggers whenever the pin
changes in either direction.

HIGH Triggers interrupt whenever
HIGH.

This mode is only available on the
Due and like LOW is rarely used.

Table 4-2 Interrupt Modes

04_Ch04.indd 77 9/2/18 5:14 PM

78 Programming Arduino Next Steps

Enabling Internal Pull-Up
The hardware setup in the previous example uses a pull-up resistor. Often,
the signal that causes the interrupt is from a sensor’s digital output, in
which case, you do not need a pull-up resistor.

If, however, the sensor is a switch, wired in the same way as the test
board shown in Figure 4-1, you can reduce the component count by a resis-
tor if you enable the internal pull-up resistor (about 40 kΩ). To do this, you
need to define the interrupt pin explicitly as being an INPUT_PULLUP
type by adding the bold line, shown here, to the setup function:

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(2, INPUT_PULLUP);
 attachInterrupt(digitalPinToInterrupt(interruptPin),
 stuffHappened, RISING);
}

Interrupt Service Routines
Sometimes the idea of being able to interrupt what is going on in the loop
function can seem like an easy way to catch keypresses and so on. But
actually there are some fairly strict conditions regarding what you can
reliably do within an ISR.

The first thing is that you normally need to keep an ISR as short and
fast as possible. If another interrupt occurs while an ISR is running, then
the ISR will not itself be interrupted; instead, the interrupt signal is ignored
until the ISR has finished. This means that if, for example, you are using
the ISR to measure a frequency, you could end up with an incorrect value.

Also, while the ISR is running, nothing happens with the code in the
loop function until the ISR has finished.

While inside an ISR, interrupts are automatically turned off. This pre-
vents the potential confusion caused by ISRs interrupting each other, but
it has some side effects. The delay function uses timers and interrupts, so
that won’t work. The same is true of millis. And although delay uses millis
and it will tell you the milliseconds elapsed since reset at the point that the
ISR started executing, it will not change as the ISR runs. However, you can
use delayMicroseconds because this does not use interrupts.

04_Ch04.indd 78 9/2/18 5:14 PM

 Chapter 4: Interrupts and Timers 79

Serial communication also uses interrupts, so do not use Serial.print or
try to read from Serial. Well, you can try, and it may work, but do not
expect it to work reliably all the time.

Volatile Variables
Because the ISR function is not allowed to take parameters and cannot
return a value, you need a way to pass data between the ISR and the rest
of the program. You typically do this using global variables, as the next
example illustrates:

// sketch 04_02_interrupt_flash

const int ledPin = 13;
const int interruptPin = 2;
volatile boolean flashFast = false;

void setup()
{
 pinMode(ledPin, OUTPUT);
 attachInterrupt(digitalPinToInterrupt(interruptPin),
 stuffHapenned, FALLING);
}

void loop()
{
 int period = 1000;
 if (flashFast) period = 100;
 digitalWrite(ledPin, HIGH);
 delay(period);
 digitalWrite(ledPin, LOW);
 delay(period);
}

void stuffHapenned()
{
 flashFast = ! flashFast;
}

This sketch uses a global variable flashFast in the loop function to deter-
mine the delay period. The ISR then toggles this same variable between
true and false.

Notice that the declaration of the variable flashFast includes the word
“volatile.” You may get away with the sketch working if you do not use

04_Ch04.indd 79 9/2/18 5:14 PM

80 Programming Arduino Next Steps

volatile, but you should use it because if a variable is not declared as being
volatile, the C compiler may generate machine code that caches its value in
a register to improve performance. If, as is the case here, this caching pro-
cess could be interrupted, then the variable might not be updated correctly.

ISR Summary
Keep these points in mind when writing an ISR:

• Keep it fast.

• Pass data between the ISR and the rest of the program using
volatile variables.

• Don’t use delay, but you can use delayMicroseconds.

• Don’t expect serial communications, reading, or writing to be reliable.

• Don’t expect the value returned by millis to change.

Enabling and Disabling Interrupts
By default, interrupts are enabled in a sketch and, as I mentioned previ-
ously, are automatically disabled when you are inside an ISR. However,
you can explicitly turn interrupts on and off from your program code
using the functions interrupts and noInterrupts. Neither function takes
any parameters and they turn all interrupts on or off, respectively.

You might want to explicitly turn interrupts on and off if you have an
area of code that you do not wish to be disturbed, for example, if you are
writing serial data or generating pulses with accurate timing using
delayMicroseconds.

Timer Interrupts
As well as interrupts being triggered by external events, you can also trig-
ger ISRs to be called as a result of timed events. This capability can be
really useful if you need to do something time-critical.

TimerOne makes it easy to set timed interrupts. You can download the
TimerOne library from http://playground.arduino.cc/Code/Timer1.

04_Ch04.indd 80 9/2/18 5:14 PM

http://playground.arduino.cc/Code/Timer1

 Chapter 4: Interrupts and Timers 81

The following example shows how you can use TimerOne to generate a
1 kHz square wave signal. If you have an oscilloscope or multimeter with
a frequency setting, connect it to pin 12 to see the signal (Figure 4-2).

// sketch_04_03_1kHz

#include <TimerOne.h>

int outputPin = 12;
volatile int output = LOW;

void setup()
{
 pinMode(outputPin, OUTPUT);
 Timer1.initialize(500);
 Timer1.attachInterrupt(toggleOutput);
}

void loop()
{
}

void toggleOutput()

Figure 4-2 A timer-generated square wave.

04_Ch04.indd 81 9/2/18 5:14 PM

82 Programming Arduino Next Steps

{
 digitalWrite(outputPin, output);
 output = ! output;
}

Although you could have written this using delay, by using a timer
interrupt, you can do other things inside the loop. Also, if you used delay,
then the frequency would not be as accurate because the actual time to set
the output high would not be accounted for in the delay.

NOTE All the constraints on what you can, and can’t, do in the ISR for
external interrupts also apply to timed interrupts.

You can set the timer interrupt period using this method to anything
from 1 microsecond to 8,388,480 microseconds, or about 8.4 seconds. You
do this by specifying a period in microseconds in the timer’s initialize
function.

The TimerOne library also allows you to use the timer to generate PWM
(Pulse Width Modulation) signals on Arduino pins 9 and 10. This may seem
redundant, as you can do that with analogWrite anyway, but this method
gives you better control of the PWM signal. In particular, it allows you to set
the duty cycle between 0 and 1023 rather than the 0 to 255 of analogWrite.
Also, the frequency of the PWM signal when using analogWrite is fixed at
500 Hz, whereas using TimerOne, you can specify the period for the timer.

To use the TimerOne library to generate PWM signals, use Timer1’s
pwm function, as shown in the following code example:

// sketch_04_04_pwm
#include <TimerOne.h>

void setup()
{
 pinMode(9, OUTPUT);
 pinMode(10, OUTPUT);
 Timer1.initialize(1000);
 Timer1.pwm(9, 512);
 Timer1.pwm(10, 255);
}

04_Ch04.indd 82 9/2/18 5:14 PM

 Chapter 4: Interrupts and Timers 83

Figure 4-3 Using TimerOne to generate PWM at 1 kHz.

void loop()
{
}

In this case, I have set the overall period to 1000 microseconds, resulting
in a PWM frequency of 1 kHz. Figure 4-3 shows the waveforms generated
on pin 10 (top) and pin 9 (bottom).

As an experiment, let’s see how far you can push the PWM frequency.
Changing the period to 10 results in a PWM frequency of 100 kHz. The
waveforms for this are shown in Figure 4-4.

Although there is, as you would expect, a fair amount of transient noise
on the signals, you can see that the duty cycles still look pretty close to
25 percent and 50 percent, respectively.

04_Ch04.indd 83 9/2/18 5:14 PM

84 Programming Arduino Next Steps

Summary
Interrupts, although they sometimes seem like the ideal solution to a diffi-
cult project, can make the code difficult to debug and are by no means
always the best way to handle tasks. Think carefully before you jump into
using them. In Chapter 16, we’ll explore a different technique for getting
around the Arduino’s apparent inability to do more than one thing at a time.

We will also return to interrupts in Chapter 6, where we’ll look at using
them to save power by waking a sleeping Arduino periodically, and in
Chapter 15, where we’ll use them for accurate timing during digital signal
processing.

In the next chapter, we will be looking at squeezing maximum perfor-
mance out of an Arduino.

Figure 4-4 Using TimerOne to generate a 100-kHz PWM.

04_Ch04.indd 84 9/2/18 5:14 PM

85

5
Making Arduino Faster

This chapter is all about finding out how fast your Arduino is and
squeezing it for that extra bit of horse-power when you need it.

How Fast Is an Arduino?
Before you start worrying about improving the speed of your sketches,
let’s take a moment to benchmark your Arduino to see just how it com-
pares with other computers, starting with the oft-quoted MHz and GHz.

An Arduino Uno is clocked at 16 MHz. As most instructions (adding or
storing a value in a variable) are executed in a single clock cycle, that
means the Uno can do 16 million things in one second. Sounds pretty
good, doesn’t it? The story is not that simple, however, as the C that you
write in a sketch expands into quite a few instructions.

Now contrast that with the author’s aging Mac laptop that has two
processors that are each clocked at 2.5 GHz. My laptop has a clock fre-
quency of over 150 times the frequency of the Arduino. Albeit, the proces-
sor takes a few more clock cycles to do each instruction, but as you would
expect, it is a lot faster.

Let’s try running the following test program on both an Arduino and a
slightly modified version on my Mac:

// sketch 05_01_benchmark

void setup()
{

05_Ch05.indd 85 9/2/18 5:14 PM

86 Programming Arduino Next Steps

 Serial.begin(9600);
 Serial.println("Starting Test");
 long startTime = millis();

 // test code here
 long i = 0;
 long j = 0;
 for (i = 0; i < 2000000000; i ++)
 {
 j = i + i * 10;
 if (j > 10) j = 0;
 }
 // end of test code
long endTime = millis();
 float seconds = float(endTime - startTime) / 1000.0;

 Serial.println(j); // prevent loop being optimized out
 Serial.println("Finished Test");
 Serial.print("Seconds taken: ");
 Serial.println(seconds);
}

void loop()
{

}

NOTE You can find the C counterpart to this code in the download area for
code on the book’s website.

Here are the results: on a 2.5 GHz MacBook Pro, the test program took
0.068 seconds to run, whereas on an Arduino Uno, the code took 28 sec-
onds to execute. The Arduino is roughly 400 times slower for this particu-
lar task. However, a laptop is considerably bigger, more power-hungry,
and lacks the ability to directly interface with electronics.

Comparing Arduino Boards
Table 5-1 shows the result of running this test on a few different Arduino
and other boards.

05_Ch05.indd 86 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 87

As you can see, the results for most of the boards are consistent.
However, the Due and ESP module results are impressive—more than ten
times faster than the other boards.

Speeding Up Arithmetic
As an exercise let’s change the benchmark code that we just used and do
the arithmetic with floats rather than longs. Both are 32-bit numbers, so
you might expect the time to complete the task to be similar. An Arduino
Uno is used in the following test.

// sketch 05_02_benchmark_float

void setup()
{
 Serial.begin(9600);
 while (! Serial) {};
 Serial.println("Starting Test");
 long startTime = millis();

 // test code here
 long i = 0;
 float j = 0.0;
 for (i = 0; i < 20000000; i ++)
 {
 j = i + i * 10.0;
 if (j > 10) j = 0.0;
 }
 // end of test code

Board Time to Complete Task (seconds)

Uno 28

Leonardo 29

Arduino Pro Mini 28

Mega 2560 28

Due 3.21

ESP8266 (NodeMCU) 1.75

ESP32 (LOLIN32) 0.34

Table 5-1 Arduino and Arduino-Compatible Performance Test Results

05_Ch05.indd 87 9/2/18 5:14 PM

88 Programming Arduino Next Steps

 long endTime = millis();

 Serial.println(j); // prevent loop being optimized out
 Serial.println("Finished Test");
 Serial.print("Seconds taken: ");
 Serial.println((endTime - startTime) / 1000l);
}

void loop()
{

}

Unfortunately, the task takes a lot longer using floats. This example
takes the Arduino some 467 seconds instead of 28. So, by changing to floats,
my code became about 16 times slower than when I used longs. To be fair,
some of that performance loss was probably also due to converting between
float and integer types, which is also quite costly in terms of time.

Do You Really Need to Use a Float?
A common misconception is that if you are measuring something like tem-
perature, then you need to store it in a float because it will often be a num-
ber like 23.5. In fact, you may sometimes wish to display the temperature
as a float, but you do not need to store it as a float or do floating point
arithmetic in your sketch.

An analog input results in an int being read, in fact, only 12 bits of an
int, which is a number between 0 and 1023. You can put those 12 bits into
a 32-bit float if you like, but you will not be making the data any more
accurate or precise.

This sensor reading could, for example, correspond to a temperature in
degrees Celsius (C). One commonly used sensor (the TMP36) has an out-
put voltage proportional to the temperature. The flowing calculation can
often be found in sketches to convert an analog reading between 0 and
1023 into a temperature in degrees C.

int raw = analogRead(sensePin);
float volts = raw / 204.6;
float tempC = 100.0 * volts - 50;

05_Ch05.indd 88 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 89

But you actually only need to represent that number in floating point
form when you display it.

To make this code example integer only without losing precision, you
could work in millivolts (rather than volts) and tenths of degrees C as follows:

int raw = analogRead(sensePin);
long milliVolts = raw * 5000 / 1023;
long tempCtenths = milliVolts - 500;

Note the use of the “long” data type rather than int to accommodate the
maximum possible value of “raw * 5000” of 5,115,000.

Other things you need to do with the temperature, for example, compar-
ing it or averaging several temperature readings, will be much faster if the
arithmetic is done in the temperature’s raw int state.

Lookup vs. Calculate
As you have seen, it’s best to avoid floats. But if you want to make a sine
wave using an analog output, then, as the word sine suggests, you need to
use the math sin function to “draw” the waveform on the analog output.
To plot a sine wave on the analog output, you step an angle through 2π

radians, and the value that you send to the analog output is the sin of
that angle. Well, actually it’s a bit more complicated because you need to
center the waveform about an analog output of half the maximum.

The following code generates a sine wave in 64 steps per cycle on an
Arduino Due’s DAC0 output. Note that only an Arduino with true analog
output like the Due works for this experiment.

// sketch_05_03_sin

void setup()
{

}

float angle = 0.0;
float angleStep = PI / 32.0;

void loop()
{

05_Ch05.indd 89 9/2/18 5:14 PM

90 Programming Arduino Next Steps

 int x = (int)(sin(angle) * 127) + 127;
 analogWrite(DAC0, x);
 angle += angleStep;
 if (angle > 2 * PI)
 {
 angle = 0.0;
 }
}

Measuring the signal on the output does, indeed, produce a nice sine
wave at a frequency of just 310 Hz. The Arduino Due’s processor is clocked
at 80 MHz, so you might have expected to generate a faster signal. The
problem here is that you are repeating the same calculations again and
again. Since they are the same every time, why don’t we just generate the
values once and store them in an array?

The following code also generates a sine wave with 64 steps, but uses a
lookup table of values that are ready to be written straight to the DAC.

byte sin64[] = {127, 139, 151, 163, 175, 186, 197,
207, 216, 225, 232, 239, 244, 248, 251, 253, 254,
253, 251, 248, 244, 239, 232, 225, 216, 207, 197, 186,
175, 163, 151, 139, 126, 114, 102, 90, 78, 67, 56, 46,
37, 28, 21, 14, 9, 5, 2, 0, 0, 0, 2, 5, 9, 14, 21, 28,
37, 46, 56, 67, 78, 90, 102, 114, 126};

void setup()
{
}

void loop()
{
 for (byte i = 0; i < 64; i++)
 {
 analogWrite(DAC0, sin64[i]);
 }
}

The waveform generated by this code looks just like the one from the pre-
vious example, except that it has a frequency of 4.38 kHz, which is about
14 times faster.

You can calculate the table of sin values in several ways. You can generate
the numbers using nothing more complex than a spreadsheet formula, or
you can write a sketch that writes the numbers to the Serial Monitor, where

05_Ch05.indd 90 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 91

they can be pasted into the replacement sketch. Here is an example that
modifies sketch_05_03_sin to print the values once to the Serial Monitor.

// sketch_05_05_sin_print

float angle = 0.0;
float angleStep = PI / 32.0;

void setup()
{
 Serial.begin(9600);
 Serial.print("byte sin64[] = {");
 while (angle < 2 * PI)
 {
 int x = (int)(sin(angle) * 127) + 127;
 Serial.print(x);
 angle += angleStep;
 if (angle < 2 * PI)
 {
 Serial.print(", ");
 }
 }
 Serial.println("};");
}

void loop()
{
}

Opening the Serial Monitor reveals the code that has been generated
(Figure 5-1).

Figure 5-1 Using a sketch to generate code.

05_Ch05.indd 91 9/2/18 5:14 PM

92 Programming Arduino Next Steps

Fast I/O
In this section, we’ll look at how you can improve the speed when turning
digital output pins on and off. We’ll improve a basic maximum frequency
of an Arduino Uno from 73 kHz up to nearly 4 MHz.

Basic Code Optimization
Let’s start with the basic code to turn a digital I/O pin on and off using
digitalWrite:

// sketch_05_05_square

int pin = 10;
int state = 0;

void setup()
{
 pinMode(pin, OUTPUT);
}

void loop()
{
 digitalWrite(pin, state);
 state = ! state;
}

If you run this code with an oscilloscope or frequency counter attached to
digital pin 10, you’ll get a frequency read of about 73 kHz (73.26 kHz on
my oscilloscope).

Before taking the big step of using direct port manipulation, you can do
a few things to optimize your C code. First, neither of the variables needs
to be 16-bit ints; both can be changed to bytes. Making this change
increases the frequency to 77.17 kHz. Next, let’s make the variable con-
taining the pin name a constant by adding the const keyword before the
variable. Making this change increases the frequency to 77.92 kHz.

In Chapter 2, you learned that the loop function is more than just a
while loop as it also checks for serial communication. Therefore, the next
step in improving the performance is to abandon the main loop function

05_Ch05.indd 92 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 93

and move the code into setup. The code containing all these modifications
is shown here:

// sketch_05_08_no_loop

const byte outPin = 10;
byte state = 0;

void setup()
{
 pinMode(outPin, OUTPUT);
 while (true)
 {
 digitalWrite(outPin, state);
 state = ! state;
 }
}

void loop()
{
}

This further improves performance, giving us a new maximum frequency
of 86.39 kHz.

Table 5-2 summarizes the improvements that you can make to the basic
Arduino code, before taking the final step of abandoning digitalWrite for
something faster.

Sketch Frequency

Original code 04_05 73.26 kHz

Bytes instead of ints 04_06 77.17 kHz

Constant for pin variable 04_07 77.92 kHz

Moving loop into setup 04_08 86.39 kHz

Table 5-2 Speeding Up the Arduino Code

05_Ch05.indd 93 9/2/18 5:14 PM

94 Programming Arduino Next Steps

Bytes and Bits
Before you can manipulate the I/O ports directly, you need to understand
a little about binary, bits, bytes, and ints.

Figure 5-2 shows the relationship between bits and bytes.
A bit (which is short for binary digit) can have one of just two values. It

can either be 0 or 1. A byte is a collection of 8 bits. Because each of those bits
can be either a 1 or a 0, you can actually make 256 different combinations.
A byte can be used to represent any number between 0 and 255.

Each of those bits can also be used to indicate if something is on or off.
Arduino input/output pins are grouped into “ports”of eight bits. So if
you want to turn a particular pin on and off, you need to set a bit to 1 to
make a particular output HIGH.

1

0

01 1 1 bytes (8 bytes)

bit 1 or 0

0 01 0

Figure 5-2 Bits and bytes.

ATmega328 Ports
Figure 5-3 shows the ports on an ATmega328 and how they relate to the
digital pins on an Arduino Uno.

It is no accident that each port has 8 bits (a byte), although ports B and
C only use 6 of the bits. Each port is controlled by three registers. A register
can be thought of as a special variable that you can assign a value to or
read the value of. The registers for port D are shown in Figure 5-4.

The data direction register D (DDRD) has 8 bits, each of which deter-
mines whether the corresponding pin on the microcontroller is to be an
input or an output. If that bit is set to a 1, the pin is an output; otherwise,
it is an input. The Arduino pinMode function uses this.

The PORTD register is used to set outputs, so a digitalWrite sets the
appropriate bit for a pin to be a 1 or a 0 (HIGH or LOW).

The final register is called port input D (PIND). By reading this register,
you can determine which bits of the port are set HIGH and which are set
LOW.

05_Ch05.indd 94 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 95

Each of the three ports has its own three registers, so for port B, they
are called DDRB, PORTB, and PINB, and for Port C, they are DDRC,
PORTC, and PINC.

Very Fast Digital Output
The following code uses the ports directly, rather than pinMode and
digitalWrite:

// sketch_05_09_square_ports

byte state = 0;

D4D5 D2 D0D3

Port D

D1D7 D6

A4A5 A2 A0A3

Port C

A1

D12D13 D10 D8D11

Port B

D9

Figure 5-3 ATmega328 ports.

Figure 5-4 The registers for port D.

D4D5 D2 D0D3

Port D

D1D7 D6 D4D5 D2 D0D3

PIND

D1D7 D6

D4D5 D2 D0D3

DDRD

D1D7 D6

D4D5 D2 D0 Arduino PinD3 D1D7 D6

05_Ch05.indd 95 9/2/18 5:14 PM

96 Programming Arduino Next Steps

void setup()
{
 DDRB = B00000100;
 while (true)
 {
 PORTB = B00000100;
 PORTB = B00000000;
 }
}

void loop()
{
}

Here, we’re switching pin D10, which belongs to port B, so first we set the
third bit from the right (D10) to be a 1. Note the use of a binary constant
B00000100. In the main loop, all you have to do is first set the same bit to
1 and then set it to 0 again. You do this simply by assigning a value to
PORTB, as if it was a variable.

When this code is run, it generates a frequency of 3.97 MHz (Figure 5-5)—
nearly 4 million pulses per second, which is some 46 times faster than
using digitalWrite.

Figure 5-5 Generating a 4-MHz signal with an Arduino.

05_Ch05.indd 96 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 97

The waveform is not very square, showing the kind of transients that
you would expect at that frequency.

Another advantage of using port registers directly is that you can write
to up to eight output pins simultaneously, which is very useful if you are
writing to a parallel data bus.

Fast Digital Input
You can also use the same method of accessing the port registers directly
to speed up digital reads. Although, if you are thinking of doing this
because you want to catch a very short pulse, then using interrupts is
probably best (see Chapter 4).

One situation in which using the ports directly is helpful is when you
want to read a number of bits simultaneously. The following sketch reads
all the inputs of port B (D8 to D13) and writes the result as a binary num-
ber in the Serial Monitor (Figure 5-6).

// sketch_05_010_direct_read

byte state = 0;

void setup()
{
 DDRB = B00000000; // all inputs
 Serial.begin(9600);
}

Figure 5-6 Reading eight inputs at once.

05_Ch05.indd 97 9/2/18 5:14 PM

98 Programming Arduino Next Steps

void loop()
{
 Serial.println(PINB, 2);
 delay(1000);
}

The DDRB register sets all bits to 0, designating all the pins to be inputs.
In the loop, you use Serial.println to send the number back to the Serial
Monitor, where it is displayed in binary. To force it to display in binary
rather than the default of decimal, use the extra 2 argument. Note that
Serial.println is actually quite slow (tens of milliseconds) so avoid using
it in time-critical parts of your code.

Speeding Up Analog Inputs
Let’s start by adapting the benchmark sketch to see just how long an
analogRead takes on an Arduino Uno before trying to speed it up:

// sketch 05_11_analog

void setup()
{
 Serial.begin(9600);
 while (! Serial) {};
 Serial.println("Starting Test");
 long startTime = millis();

 // test code here
 long i = 0;
 for (i = 0; i < 1000000; i ++)
 {
 analogRead(A0);
 }
 // end of test code
 long endTime = millis();

 Serial.println("Finished Test");
 Serial.print("Seconds taken: ");
 Serial.println((endTime - startTime) / 1000l);
}

void loop()
{
}

05_Ch05.indd 98 9/2/18 5:14 PM

 Chapter 5: Making Arduino Faster 99

This sketch takes 112 seconds to run on an Arduino Uno. That means the
Uno can take nearly 9000 analog readings per second.

The analogRead function uses an analog-to-digital converter (ADC) in
the Arduino’s microcontroller. Arduino uses a type of ADC called a succes-
sive approximation ADC. It works by effectively closing in on the analog
value by comparing it with a reference voltage that it adjusts. The ADC is
controlled by a timer, and you can increase the frequency to make the con-
version quicker.

The following code increases the frequency of the ADC from 128 kHz to
1 MHz, which should make things about eight times faster:

// sketch 05_11_analog

const byte PS_128 = (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0);
const byte PS_16 = (1 << ADPS2);

void setup()
{
 ADCSRA &= ~PS_128; // remove prescale of 128
 ADCSRA |= PS_16; // add prescale of 16 (1MHz)
 Serial.begin(9600);
 while (! Serial) {};
 Serial.println(PS_128, 2);
 Serial.println(PS_16, 2);
 Serial.println("Starting Test");
 long startTime = millis();

 // test code here
 long i = 0;
 for (i = 0; i < 1000000; i ++)
 {
 analogRead(A0);
 }
 // end of test code
 long endTime = millis();

 Serial.println("Finished Test");
 Serial.print("Seconds taken: ");
 Serial.println((endTime - startTime) / 1000l);
}

void loop()
{
}

05_Ch05.indd 99 9/2/18 5:14 PM

100 Programming Arduino Next Steps

The code now takes only 17 seconds to run, which is roughly 6.5 times
faster, increasing our samples per second to about 58,000. That is plenty
fast enough to sample audio, although you won’t be able to store much of
it in 2 kB of RAM!

If the original sketch_05_11_analog is run on an Arduino Due, the test
completes in 39 seconds. You cannot use the register trick on the Due,
however, as it has a different architecture.

Summary
In this chapter, we tried to squeeze the last possible drop of juice out of the
meager 16 MHz performance of an Arduino Uno. We have also seen just
how much faster some other models of Arduino and Arduino-compatible
boards are. In the next chapter, we’ll switch our attention to minimizing
the Arduino’s power consumption, something that is quite important for
battery- and solar-powered Arduino projects.

05_Ch05.indd 100 9/2/18 5:14 PM

101

6
Low-Power Arduino

It is fair to say that, without taking any special measures, an Arduino
really does not use a lot of power. Typically, an Arduino Uno draws
about 40 mA, which, when powered from USB at 5V, amounts to just
200 mW. That means it can happily run on a small 9V battery (150 mAh)
for perhaps four hours.

Current consumption becomes important when the Arduino is being
run for long periods of time using batteries, such as in remote monitoring
or control situations in which batteries or solar are the only option. For
instance, I recently made an Arduino-based automatic hen-house door,
using a small solar panel to charge the battery so it had enough juice to
open and close the door twice a day.

Power Consumption of Arduino Boards
Let’s establish some initial figures for the power consumption of a few of
the more popular Arduino and Arduino-compatible boards. Table 6-1
shows the results of directly measuring the current consumption of the
boards with an ammeter. Note that measuring this is a little tricky as the
current varies as timers and other parts of the microcontroller and Arduino
board perform periodic tasks.

One interesting thing is that if you look at the difference between an
Arduino operating at 5V with and without the processor chip, the differ-
ence is just 15 mA, implying that the board itself is using the other 32 mA.
The Arduino board does, of course, have the USB interface chip, an “On”

06_Ch06.indd 101 9/2/18 5:20 PM

102 Programming Arduino Next Steps

LED, and 3.3V voltage regulators, all of which use some power even
without the microcontroller. Note also how much less current the micro-
controller draws at 3.3V.

The techniques described here can reduce the power required by the
processor but not that required by the board itself. In the examples that
follow, I use the Arduino Pro Mini board supplied directly with 3.3V
through its VCC and GND connections (Figure 6-1), bypassing the voltage
regulator, so that apart from the “On” LED, I am only powering the micro-
controller chip.

This setup is one you would be likely to use in a battery-operated sys-
tem, as a single lithium polymer (LiPo) battery cell provides 2.7V when
almost empty and 4.2V when full, a range that is just fine for a naked
ATmega328 microcontroller.

In later sections of this chapter you will see how processors can be put
to sleep either periodically or until receiving an interrupt to minimize
current consumption.

Board Current

Uno (5V USB) 47 mA

Uno (9V power supply) 48 mA

Uno (5V processor removed) 32 mA

Uno (9V processor removed) 40 mA

Leonardo (5V USB) 42 mA

Due (5V USB) 160 mA

Due (9V power supply) 70 mA

Pro Mini (9V power supply) 42 mA

Pro Mini (5V USB) 22 mA

Pro Mini (3.3V direct) 8 mA

ESP8266 NodeMCU (WiFi Connected) 80 mA

ESP8266 NodeMCU (WiFi Disabled) 25 mA

ESP32 LOLIN32 (WiFi Connected) 150 mA

ESP32 LOLIN32 (WiFi Disabled) 60 mA

Table 6-1 Power Consumption for Arduino and Compatible Boards

06_Ch06.indd 102 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 103

Figure 6-1 An Arduino Pro Mini, powered directly from 3V.

Current and Batteries
This book is about software, so I will not dwell on batteries any longer
than is necessary. Figure 6-2 shows a selection of batteries that you might
consider for powering an Arduino or Arduino-compatible board.

At the top-left is a 2400 mAh cylindrical LiPo battery. Below is a small,
flat 850 mAh LiPo battery. LiPo batteries are lightweight and can be
recharged many times and hold a lot of energy for their size and weight.
LiFePo4 are a new alternative to LiPo batteries that have a nominal voltage
of 3.3B rather than the 3.7V of a LiPo cell. At the top-right is a 9V NiMh bat-
tery, with a capacity of 200 mAh. This battery is also rechargeable but uses
an older technology. Because it is a 9V battery, it would be suitable for pow-
ering an Arduino only when using the Arduino’s voltage regulator. You can
buy battery clip adapters that allow you to connect the battery to the barrel
jack on an Arduino. Finally, at the bottom-right is a 3V nonrechargeable
Lithium battery (CR2025) that has a capacity of about 160 mAh.

As a rule of thumb, you can calculate the number of hours that a battery
will last before it is discharged by dividing the capacity in milliamp hours
(mAh) by the number of milliamps (mA) being drawn:

Battery life in hours = Battery capacity in mAh / Current in mA

06_Ch06.indd 103 9/2/18 5:20 PM

104 Programming Arduino Next Steps

For example, if we were to use the CR2025 to power a Pro Mini at 3V, we
could expect it to last 160 mAh/8 mA = 20 hours. If we powered the same
hardware from the 2400 mA LiPo cell, we could expect it to last 2400/8 =
300 hours.

Reducing the Clock Speed
Most of the Arduino family has a clock frequency of 16 MHz. The micro-
controller only really uses significant amounts of current when its binary
logic is switching from a HIGH to a LOW, so the frequency at which the
chip operates has a big effect on the current consumed. Lowering the fre-
quency will, of course, make the microcontroller perform more slowly,
which may or may not be a problem.

You can lower the frequency at which an ATmega328 chip operates
from within your sketch. A convenient way to do this is to use the Arduino
Prescaler library (http://playground.arduino.cc/Code/Prescaler).

Figure 6-2 Batteries for powering Arduino boards.

2400 mAh LiPo battery 9V NiMh battery

850 mAh LiPo battery 3V Lithium battery

06_Ch06.indd 104 9/2/18 5:20 PM

http://playground.arduino.cc/Code/Prescaler

 Chapter 6: Low-Power Arduino 105

As well as allowing you to set the microcontroller’s frequency of opera-
tion, the Prescaler library also provides replacement functions for millis
and delay called trueMillis and trueDelay. These replacements are neces-
sary because reducing the clock frequency will increase the length of a
delay by the same proportion.

The following example sketch turns the “L” LED on for 1 second and
then off for 5 seconds, during which the current is measured for each of
the possible Prescaler values that set the frequency on an Arduino Pro
Mini.

// sketch_06_01_prescale

#include <Prescaler.h>

void setup()
{
 pinMode(13, OUTPUT);
 setClockPrescaler(CLOCK_PRESCALER_256);
}

void loop()
{
 digitalWrite(13, HIGH);
 trueDelay(1000);
 digitalWrite(13, LOW);
 trueDelay(5000);
}

The library provides a number of constants so you can set the amount by
which the clock frequency is divided. Therefore, the value CLOCK_
PRESCALER_1 leaves the clock frequency unchanged at 16 MHz and, at
the other extreme, using the constant CLOCK_PRESCALER_256 will
divide the clock frequency by 256, giving a clock frequency of just 62.5 kHz.

Table 6-2 show the current consumption at each of the possible clock
frequencies, and Figure 6-3 shows these data on a chart. The chart shows
that the curve starts to level off fairly steeply, so 1 MHz looks like a good
compromise of clock frequency versus power consumption.

As well as having to use new versions of millis and delay, there are
other consequences of slowing the clock speed. In fact, any task in which

06_Ch06.indd 105 9/2/18 5:20 PM

106 Programming Arduino Next Steps

timing is critical, such as PWM output and Servo control, is not going to
work as expected.

Most of that 2.1 mA, used at the slowest clock speed, is likely to be con-
sumed by the “On” LED, so if you really want to be economical, you could
carefully de-solder it.

9

8

7

6

5

C
ur

re
nt

 (m
A

)

4

3

2

1

0
16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz 62.5 kHz

Figure 6-3 A chart of current consumption vs. clock speed for an Arduino Pro Mini.

Constant Equivalent Clock Frequency Current (LED off)

CLOCK_PRESCALER_1 16 MHz 7.8 mA

CLOCK_PRESCALER_2 8 MHz 5.4 mA

CLOCK_PRESCALER_4 4 MHz 4.0 mA

CLOCK_PRESCALER_8 2 MHz 3.2 mA

CLOCK_PRESCALER_16 1 MHz 2.6 mA

CLOCK_PRESCALER_32 500 kHz 2.3 mA

CLOCK_PRESCALER_64 250 kHz 2.2 mA

CLOCK_PRESCALER_128 125 kHz 2.1 mA

CLOCK_PRESCALER_256 62.5 kHz 2.1 mA

Table 6-2 Current Consumption vs. Clock Speed for an Arduino Pro Mini

06_Ch06.indd 106 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 107

Turning Things Off
The ATmega chips have very sophisticated power management, to the
extent that you can actually turn off features that you are not using to save
a small amount of current.

What is more, you can turn things on and off in your sketch. So you
could, for example, just turn on the analog-to-digital converter (ADC)
when you need to do an analogRead and then turn it off again afterward.

The power is controlled using a library avr/power.h that includes func-
tions in disable/enable pairs. So the function power_adc_disable turns
the ADC off and power_adc_enable turns it back on again.

The power savings to be had are not great, however. In my testing,
turning everything off on a Pro Mini at 5V and 16 MHz saved a total of just
1.5 mA, reducing the current from 22 mA with everything on, to 14.9 with
everything off. I used the following test sketch:

// sketch_06_02_powering_off

#include <avr/power.h>

void setup()
{
 pinMode(13, OUTPUT);
// power_adc_disable();
 power_spi_disable();
// power_twi_disable();
// power_usart0_disable();
// power_timer0_disable();
// power_timer1_disable();
// power_timer2_disable();
// power_all_disable();
}

void loop()
{
}

The functions available are listed in Table 6-3. Each function also has a
counterpart, ending in enable rather than disable.

06_Ch06.indd 107 9/2/18 5:20 PM

108 Programming Arduino Next Steps

Sleeping ATmega-Based Arduinos
The ultimate way to save power on your Arduino is to put it to sleep when
it doesn’t have anything useful to do.

Narcoleptic
Peter Knight has produced an easy-to-use library for ATmega-based
Arduinos called Narcoleptic, which you can download from here: https://
code.google.com/p/narcoleptic/.

Obviously, putting an Arduino to sleep is of no use if you can’t wake it
up again! There are two methods to wake up an Arduino. One is to use an
external interrupt and the other is to set a timer to wake the Arduino after
a period of time. The Narcoleptic library just uses the timer method.

The Narcoleptic library takes the approach of providing you with an
alternative delay function that puts the Arduino to sleep for the time spec-
ified in the delay. Because nothing happens when the Arduino is doing a
delay anyway, this method works brilliantly.

For example, let’s look at our old favorite sketch, Blink. The following
sketch turns an LED on for 1 second and then turns it off for 10 seconds
and repeats indefinitely:

Function Description

power_adc_disable Disable analog inputs

power_spi_disable Disable the SPI Interface

power_twi_disable Disable TWI (I2C)

power_usart0_disable Disable UART serial (serial communica-
tions over USB use this)

power_timer0_disable Disable Timer 0 (millis and delay use this)

power_timer1_disable Disable Timer 1

power_timer2_disable Disable Timer 2

power_all_disable Disable all the modules listed previously

Table 6-3 Power Management Functions for ATmega Arduinos

06_Ch06.indd 108 9/2/18 5:20 PM

https://code.google.com/p/narcoleptic/
https://code.google.com/p/narcoleptic/

 Chapter 6: Low-Power Arduino 109

// sketch_06_03_blink_standard

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 digitalWrite(13, HIGH);
 delay(1000);
 digitalWrite(13, LOW);
 delay(10000);
}

The Narcoleptic version of this sketch is shown here:

// sketch_06_04_narcoleptic_blink
#include <Narcoleptic.h>

void setup()
{
 pinMode(13, OUTPUT);
}

void loop()
{
 digitalWrite(13, HIGH);
 Narcoleptic.delay(1000);
 digitalWrite(13, LOW);
 Narcoleptic.delay(10000);
}

The only difference is that you import the Narcoleptic library and use
its delay rather than the regular delay.

Running both sketches on a Pro Mini at 5V and 16 MHz, the first
sketch uses around 17.2 mA when the LED is in the off part of the cycle.
On the other hand, the Narcoleptic version of the sketch reduces this to
a tiny 3.2 mA. The “On” LED uses most of that (about 3 mA), so if you
remove it, then your average power consumption could be reduced to
well under 1 mA.

06_Ch06.indd 109 9/2/18 5:20 PM

110 Programming Arduino Next Steps

The microcontroller can go to sleep pretty quickly, so if your project
relies on a button being pressed to trigger some action, you do not neces-
sarily need to use an external interrupt to wake it from sleep. But you
could (probably more easily) write your code so the Arduino wakes
10 times a second, checks to see if an input is HIGH, and then, if it is, does
something rather than go back to sleep. The following sketch illustrates
this process:

// sketch_06_05_narcoleptic_input
#include <Narcoleptic.h>

const int ledPin = 13;
const int inputPin = 2;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(inputPin, INPUT_PULLUP);
}

void loop()
{
 if (digitalRead(inputPin) == LOW)
 {
 doSomething();
 }
 Narcoleptic.delay(100);
}

void doSomething()
{
 for (int i = 0; i < 20; i++)
 {
 digitalWrite(ledPin, HIGH);
 Narcoleptic.delay(200);
 digitalWrite(ledPin, LOW);
 Narcoleptic.delay(200);
 }
}

When running this sketch, a Pro Mini at 5V and 16 MHz uses a miserly
3.25 mA while the Arduino waits for something to happen. When pin2 is
connected to ground, the LED is flashed 20 times, but because you are

06_Ch06.indd 110 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 111

using the Narcoleptic delay in the LED flashing too, the current only rises
to an average of 4 or 5 mA.

If you change the delay inside the loop, to try and make the Arduino
wake, say, 100 times per second, the power will rise again because it does
take a little while for the Arduino to go to sleep. A delay of 50 (20 times a
second), however, would work just fine.

Waking ATmega-Based Arduinos
on External Interrupts
The approach just described works for most situations; however, if you
need to respond more quickly to an external event, then you need to
arrange for the microcontroller to wake up when an external interrupt
occurs.

To rework the previous example to use pin D2 as an external interrupt
pin is a lot more work, but it achieves slightly better results, as it does not
require polling the interrupt pin. The code for this is quite complex, so
first I’ll show you the code and then describe how it all works. If you
skipped Chapter 4 on interrupts, then you should probably read it before
tackling this example.

// sketch_06_06_sleep_external_wake
#include <avr/sleep.h>

const int ledPin = 13;
const int inputPin = 2;

volatile boolean flag;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(inputPin, INPUT_PULLUP);
 goToSleep();
}

void loop()
{
 if (flag)
 {

06_Ch06.indd 111 9/2/18 5:20 PM

112 Programming Arduino Next Steps

 doSomething();
 flag = false;
 goToSleep();
 }
}

void setFlag()
{
 flag = true;
}

void goToSleep()
{
 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 sleep_enable();
 attachInterrupt(0, setFlag, LOW); // pin D2
 sleep_mode(); // sleep now
 // Now asleep until LOW interrupt, then..
 sleep_disable();
 detachInterrupt(0);
}

void doSomething()
{
 for (int i = 0; i < 20; i++)
 {
 digitalWrite(ledPin, HIGH);
 delay(200);
 digitalWrite(ledPin, LOW);
 delay(200);
 }
}

The first thing to note is that the example uses some functions that are
defined in the library avr/sleep.h. Just like avr/power.h that I used earlier,
this library is not part of the Arduino core, but rather a library for the AVR
family of microcontrollers. This means it will not work on the Arduino
Due, but then again, if you are making a low-power Arduino project, the
Due should be just about your last choice of board.

After defining the pins I am going to use, I then define a volatile vari-
able to allow the ISR to communicate with the rest of the sketch.

The setup function sets up the pins and then calls the function
goToSleep. This function sets the type of sleep mode, which, in this case,

06_Ch06.indd 112 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 113

is SLEEP_MODE_PWR_DOWN. This mode saves the most power, so it
makes sense to use it.

It is then necessary to call sleep_enable. Calling this does not actually put
the microcontroller to sleep. Before I do that, I need to attach an interrupt to
interrupt 0 (pin D2) so the Arduino can be woken when the time comes.

NOTE Notice that the interrupt type is set to LOW. This is the only
interrupt type that you can use with this sleep example. RISING,
FALLING, and CHANGE will not work.

Having attached the interrupt, calling sleep_mode() actually puts the
process to sleep. When the microcontroller eventually wakes, the ISR is
run and then the sketch continues from the next line in goToSleep. This
first calls disable_sleep and then detaches the interrupt, so the ISR cannot
be invoked again until the sketch has put itself back to sleep.

When an interrupt occurs on D2, the ISR (setFlag) simply sets a flag
that the loop function checks. Remember that using delays and so on,
in an ISR is a no-no. The loop function must, therefore, monitor the flag
until it becomes set and then call the same doSomething function that was
used in the Narcoleptic example. Having performed the action, the flag is
reset and the Arduino put back to sleep.

The power consumption level was pretty much the same as in the Nar-
coleptic example, except that while flashing the LEDs, the current con-
sumption was higher as the normal delay function was used.

ESP8266 Sleeping
The Narcoleptic library is a great way of reducing the average power con-
sumption of your ATmega-based Arduino. If you are using an Arduino-
compatible board based on the ESP8266, then you can reduce the power
consumption considerably by putting the board to sleep for a period of time.

The following code example illustrates this on a NodeMCU ESP8266
board.

// sketch_06_07_ESP8266_sleep

void setup(){

 Serial.begin(9600);

06_Ch06.indd 113 9/2/18 5:20 PM

114 Programming Arduino Next Steps

 Serial.println("I'm awake");

 delay(10000);

 Serial.println("I'm going to sleep now");

 ESP.deepSleep(20e6);

 Serial.println("This will never be printed, wake goes to setup");

}

void loop(){

 //This will never be reached

}

Note that when the ESP8266 wakes from its sleep, it will not continue
where it left off, but rather act as if it has been reset, running setup again.
The duration of sleep is specified in microseconds, so “20e6” means 20
followed by 6 zeros or 20,000,000. In other words it will sleep for 20 sec-
onds.

When awake, the NodeMCU used 80 mA; when put to sleep, it used
around 10 mA. Other boards may do better, as most of this 10 mA must be
the USB interface chip and other support components rather than the pro-
cessor itself.

ESP32 Sleeping
The ESP32 has many options when it comes to sleeping or specifically
waking. You can set a periodic wakening using the same approach as for
an ESP8266, but the device will also wake for various other stimuli, such
as a digital input becoming high. The following example sets a 20-second
period for the ESP32 to sleep through before restarting itself.

// sketch_06_08_ESP32_sleep

void setup()

{

 Serial.begin(9600);

 Serial.println("I'm awake");

 delay(10000);

 esp_sleep_enable_timer_wakeup(20e6);

 Serial.println("I'm going to sleep now");

 esp_deep_sleep_start();

06_Ch06.indd 114 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 115

 Serial.println("This will never be printed, wake goes to setup");

}

void loop(){

 //This will never be reached

}

While asleep, the LOLIN32 board used 1.4 mA compared with 40 mA
when awake.

This second example of the ESP32 shows how it can be set to wake,
when pin 33 goes low.

// sketch_06_08_ESP32_sleep_pin

gpio_num_t wakeupPin = GPIO_NUM_33;

void setup()

{

 Serial.begin(9600);

 Serial.println("I'm awake");

 delay(2000);

 pinMode(wakeupPin, INPUT_PULLUP);

 esp_sleep_enable_ext0_wakeup(wakeupPin, LOW); // wakeup when goes LOW

 Serial.println("I'm going to sleep now");

 esp_deep_sleep_start();

 Serial.println("This will never be printed, wake goes to setup");

}

void loop(){

 //This will never be reached

}

Note that when identifying pins to be used for wake interrupts on the
ESP32 you have to define the pin number as a “gpio_num_t”. Note how
the pullup resistor is enabled on this pin. This allows you to easily test the
sketch by uploading it, waiting until the ESP32 has gone to sleep and then
connect pin 33 to GND momentarily to wake the ESP32.

The ESP32 can also be woken by a touch to one of its pins. You can find
an example of this here: https://github.com/espressif/arduino-esp32/
blob/master/libraries/ESP32/examples/DeepSleep/TouchWakeUp/
TouchWakeUp.ino.

06_Ch06.indd 115 9/2/18 5:20 PM

https://github.com/espressif/arduino-esp32/blob/master/libraries/ESP32/examples/DeepSleep/Touch
https://github.com/espressif/arduino-esp32/blob/master/libraries/ESP32/examples/DeepSleep/Touch

116 Programming Arduino Next Steps

Use Digital Outputs to Control Power
Although this chapter is really about using software to minimize power
consumption, it would not be out of place to mention a useful hardware
tip to keep the power consumption low.

Figure 6-4 shows a light sensor using a photoresistor (resistance changes
with light) and a fixed resistor connected to an Arduino analog input that
is measuring the light intensity.

The problem with this approach is that there is a constant current flow-
ing from 5V through the photoresistor and then through the fixed resistor.

IOREF
RESET
3V3

PO
W

E
R

5V

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
ITA

L

A
rd

u
in
o

U
N
O

8
7

6
5

4
3

2
1

0

SCL
SDA

AREF
GND

PWM
PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

O
N

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.ard

u
in
o.cc

Figure 6-4 Measuring light with an LDR (photoresistor).

06_Ch06.indd 116 9/2/18 5:20 PM

 Chapter 6: Low-Power Arduino 117

If the photoresistor has a “bright” resistance of 500 Ω, then, using Ohm’s
Law, the current flowing is I = V/R = 5V / (1000 Ω + 500 Ω) = 3.3 mA.

Instead of using the fixed 5V supply of the Arduino, you could use a
digital output (see Figure 6-5) to turn the pin HIGH, take a reading, and
then turn it LOW again. In this way, the 3.3 mA only flows for a tiny
amount of time every time a reading is taken, reducing the average cur-
rent consumption enormously.

The following sketch illustrates this approach:

Figure 6-5 Measuring light economically.

IOREF
RESET
3V3

PO
W

E
R

5V

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
ITA

L

A
rd
u
in
o

U
N
O

8
7

6
5

4
3

2
1

0

SCL
SDA

AREF
GND

PWM
PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

O
N

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.ard

u
in
o.cc

06_Ch06.indd 117 9/2/18 5:20 PM

118 Programming Arduino Next Steps

// sketch_06_10_light_sensing

const int inputPin = A0;
const int powerPin = 12;

void setup()
{
 pinMode(powerPin, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 Serial.println(takeReading());
 delay(500);
}

int takeReading()
{
 digitalWrite(powerPin, HIGH);
 delay(10); // photoresistors are slow to respond
 int reading = analogRead(inputPin);
 digitalWrite(powerPin, LOW);
 return reading;
}

You can use this technique for a lot more than just light sensing. You
could, for example, use the digital output to use a MOSFET transistor to
turn high-power parts of your project on and off as required.

Summary
The best ways to minimize current consumption are to:

• Put the microcontroller to sleep when it’s not doing anything

• Run an Arduino at a lower voltage

• Run an Arduino at a lower clock frequency

06_Ch06.indd 118 9/2/18 5:20 PM

119

7
Memory

Whereas most computers have memory capacities measured in
gigabytes, the Arduino Uno has just 2 kB. That is more than a million
times less memory than a conventional computer. Having only a little
memory to work with focuses the mind wonderfully when writing
code, however. There is no room for the “bloatware” that plagues most
computers.

Although writing memory-efficient code is important, you shouldn’t
do so at the expense of writing code that is easy to read and maintain.
Even with an Arduino’s limited resources, most sketches will not get
close to using all the RAM. You really only need to worry about memory
capacity when you have a very complex sketch or a sketch that uses a lot
of data.

Arduino Memory
Comparing an Arduino’s memory with that of conventional computers is
a little unfair, as they actually use their RAM memory in different ways.
Figure 7-1 shows how a PC uses its memory when running a program.

When a PC runs a program, it first copies the entire program from the
hard disk into RAM and then executes that copy of the program. Variables
in the program then use more of the RAM. By contrast, Figure 7-2 shows
how an Arduino uses memory when a program is run. The program itself
actually runs directly from flash memory. It is not copied into RAM.

07_Ch07.indd 119 9/2/18 5:23 PM

120 Programming Arduino Next Steps

The RAM in an Arduino is only used to hold the contents of variables
and other data relating to the running of the program. RAM is not persis-
tent; that is, when the power is disconnected, the RAM is cleared. If the
program needs to store persistent data, then it must write that data to
EEPROM. The data can then be read back when the sketch restarts.

When pushing the limits of an Arduino, you have to worry about both
RAM usage and, to a lesser extent, the size of the program in flash mem-
ory. Because an Arduino Uno has 32 kB of flash, this limit is not often
reached.

Figure 7-1 How a PC uses memory.

Program 2

Data for program

RAM

Program 1

Program 2

Data �le

Hard disk

Program 3

Figure 7-2 How an Arduino uses memory.

Program 1

Flash Memory

Data for program

RAM

Stored data

EEPROM memory

07_Ch07.indd 120 9/2/18 5:23 PM

 Chapter 7: Memory 121

Many of the newer Arduinos and Arduino compatibles have much
larger memory capacities than the Arduino Uno. Table 7-1 shows the
memory capacities of various boards.

Board RAM Flash

Arduino Uno 2 kB 32 kB

Arduino Due 96 kB 512 kB

ESP8266 (NodeMCU) 50 kB 4 MB

ESP32(LOLIN32) 520 kB 4 MB

Table 7-1 Memory Capacities of Arduinos and Arduino Compatibles

Minimizing RAM Usage
As you have seen, the way to reduce RAM usage is to reduce the amount
of RAM used by variables.

Use the Right Data Structures
By far, the most common data type in Arduino C is the int. Each int uses 2
bytes, but most of the time, you don’t represent a number between –32,768
and +32,767, and the much smaller range of 0 to 255 offered by a “byte”
does just fine. Most built-in methods that work with an int, will work just
the same with a byte.

A common example of how this works is variables used for pin num-
bers. It is common to use ints for this, as shown in the following example:

// sketch_07_01_int
int ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

void setup()
{
 for (int i = 0; i < 12; i++)
 {
 pinMode(ledPins[i], OUTPUT);
 digitalWrite(ledPins[i], HIGH);
 }
}

07_Ch07.indd 121 9/2/18 5:23 PM

122 Programming Arduino Next Steps

void loop()
{
}

You could easily change the int array to be an array of bytes instead. If you
do this, the program functions just the same time, but the array will occupy
half the memory.

A really good way to reduce memory usage is to make sure that any
constant variables are declared as such. To do this, just put the word const
in front of the variable declaration. Knowing that the value will never
change allows the compiler to substitute in the value in place of the vari-
able, which saves space. For example, the array declaration in the previ-
ous example becomes

const byte ledPins[] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

Store String Constants in Flash Memory
By default, if you declare string constants as shown in the following exam-
ple, those character arrays will be stored in RAM and in flash memory—
once for the program code and once when their values are copied into
RAM when the sketch is run:

 Serial.println("Program Started");

If, however, you use the following code, the string constant will be stored
in flash memory only. Saving valuable memory on devices like the Uno:

 Serial.println(F("Program Started"));

In the “Using Flash” section in this chapter, you’ll see how you can use
flash in other ways.

Common Misconceptions
A common misconception is that using short variable names uses less
memory. This is not the case. The compiler takes care of such things, so
the final variable names do not find their way into the binary sketch.
Another misconception is that comments in a program have an effect on

07_Ch07.indd 122 9/2/18 5:23 PM

 Chapter 7: Memory 123

the size of the program when it is installed or on the RAM that it uses.
This is not true.

You may also assume that dividing your code into lots of small func-
tions will increase the size of the compiled code. This is not usually the
case as the compiler is smart enough to actually replace function calls with
inline copies of the body of the function as part of its code optimization
process. This benefit allows you to write more readable code.

Measure Free Memory
You can find out how much RAM a running sketch is using at any point in
time with the MemoryFree library, which you can download from here:
http://playground.arduino.cc/Code/AvailableMemory.

This library is easy to use; it provides a function called freeMemory,
which returns the number of bytes available. The following sketch illus-
trates its use:

#include <MemoryFree.h>

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 Serial.print("freeMemory()=");
 Serial.println(freeMemory());
 delay(1000);
}

This library can be handy if you start to experience unexplained prob-
lems with a sketch that you think might be caused by a memory shortage.
The library does, of course, increase your memory usage a little.

Minimizing Flash Usage
When you successfully compile a sketch, you’ll see a status line at the end
of the process that says something like this:

07_Ch07.indd 123 9/2/18 5:23 PM

http://playground.arduino.cc/Code/AvailableMemory

124 Programming Arduino Next Steps

Binary sketch size: 1,344 bytes (of a 32,256 byte maximum)

This line tells you exactly how much of the Arduino’s flash memory the
sketch will use, so you know if you’re getting close to the 32 kB only.
Saving valuable memory on devices like the Uno. If you are not near the
limit, then you don’t really need to try to optimize the flash memory. If
you are getting close, then there are a few things that you can do.

Use Constants
When variables are defined, especially pin names, it is quite common to
see them defined like this:

int ledPin = 13;

Unless you plan to change which pin is to be used as the LED pin while
the sketch is actually running, then you can use a constant. Just add the
word const to the front of the declaration:

const int ledPin = 13;

This change saves you 2 bytes, plus 2 bytes for every place that the con-
stant is used. For a much used variable, your savings can amount to a few
tens of bytes.

Remove Unwanted Trace
When debugging Arduino sketches, sprinkling the code with Serial.println
commands helps you see the value of variables and work out any bugs in
the program. These commands actually use a fair bit of flash memory. Any
use of Serial.println pulls about 500 bytes of library code into the sketch.
So, once you are convinced that the sketch is working, remove or com-
ment out these lines.

Bypass the Bootloader
Back in Chapters 2 and 3, you discovered how to program the microcon-
troller directly on the Arduino using the ISP connector and programming
hardware. This approach can save you a valuable couple of kBs, as it
means the bootloader does not need to be installed.

07_Ch07.indd 124 9/2/18 5:23 PM

 Chapter 7: Memory 125

Static vs. Dynamic Memory Allocation
If, like the author, you come from a background of writing large-scale sys-
tems in languages such as Java or C#, you’re used to creating objects at
runtime and allowing a garbage collector to tidy up behind you. This
approach to programming is simply inappropriate on a microprocessor
with just 2 kB of memory. For a start, there is simply no garbage collector,
and what is more, allocating and deallocating memory at runtime is rarely
necessary in the type of programs written for an Arduino.

The following example defines an array statically, as you would nor-
mally in a sketch:

// sketch_07_02_static

int array[100];

void setup()
{
 array[0] = 1;
 array[50] = 2;
 Serial.begin(9600);
 Serial.println(array[50]);
}

void loop()
{
}

The memory that the array uses is known while the sketch is being
compiled; therefore, the compiler can reserve the necessary amount of
memory for the array. This second example also creates an array of the
same size, but it allocates the memory for it at runtime, from a pool of
available memory. Note that versions of the Arduino software prior to
1.0.4 do not support malloc.

// sketch_07_03_dynamic

int *array;

void setup()
{

07_Ch07.indd 125 9/2/18 5:23 PM

126 Programming Arduino Next Steps

 array = (int *)malloc(sizeof(int) * 100);
 array[0] = 1;
 array[50] = 2;
 Serial.begin(9600);
 Serial.println(array[50]);
}

void loop()
{
}

You start by defining a variable int *array. The * indicates that this is a
pointer to an integer value (or, in this case, array of ints) rather than a
simple value. The memory to be used by the array itself is not claimed for
use by the array until the following line is executed in setup:

array = (int *)malloc(sizeof(int) * 100);

The malloc (memory allocate) command allocates memory from an area
of RAM called the heap. Its argument is the number of bytes to be allo-
cated. Because the array contains 100 ints, you need to do a little calcula-
tion to work out how many bytes to reserve. Actually, you could just write
200 as the parameter to malloc because you know that each int occupies 2
bytes of memory, but by using the sizeof function, you can make sure to
get the right number.

After the memory has been allocated, you can use the array just as if
you had allocated it statically. The only advantage to allocating it dynami-
cally is that you can delay the decision about how large to make it until the
sketch is actually running (runtime).

The danger with dynamic memory allocation is that you can easily get
in a situation where memory is allocated but not released, so then the
sketch unexpectedly runs out of memory. Running out of memory can
cause the Arduino to hang. If all the memory is allocated statically, how-
ever, this cannot happen.

Note that I have developed hundreds of Arduino projects and have yet
to find a compelling reason to use dynamic memory allocation on an
Arduino.

07_Ch07.indd 126 9/2/18 5:23 PM

 Chapter 7: Memory 127

Strings
Strings (text) are used less commonly in Arduino programming than in
more conventional software development. In most software development,
strings are the most used data type because most programming is about
user interfaces or databases, which naturally involve text of some sort.

Many Arduino programs have no need to represent strings of text at all,
or, if they do, it’s in Serial.println commands used to debug a buggy
sketch. The most common situation where you will need to use strings are
when dealing with displays.

There are essentially two methods for using strings in Arduino: the old
way (C char arrays) and the new way, the String Object library.

C char Arrays
When you define a string constant by typing something like

char message[] = "Hello World";

you are statically defining a char array that is 12 characters long. It is 12
characters rather than the 11 letters of “Hello World” because there is a
final terminating character of 0 to mark the end of the string. This is the
convention for C character strings, and it allows you to use larger arrays of
characters than the size of the string that you are interested in at the start
(Figure 7-3). Each character letter, number, or other symbol has a code
called its ASCII value.

Note that another commonly used convention for string constants is to
write:

char *message = "Hello World";

Figure 7-3 A null-terminated C char array.

I I d \0I o r

ASCII values (decimal)

o WH e

108 108 100 0108 111 114111 32 8772 101

07_Ch07.indd 127 9/2/18 5:23 PM

128 Programming Arduino Next Steps

This syntax works similarly but the “*” declares message to be a pointer to
a character (the first character of the array).

Formatting Strings with Multiple Prints
Much of the time, this is the only way you need to use a string, for instance,
to display a message on an LCD screen or as a parameter to Serial.println.
You may think that being able to join strings and convert numbers to
strings is essential. For example, let’s look at a specific problem—how to
display a message on an LCD screen such as “Temp: 32 C.” You might
believe you need to join the number 32 to a string "Temp: " and then add
the string " C" onto the end. Indeed, if you are a Java programmer, you
will probably expect to write the following in C:

 String text = "Temp: " + tempC + " C";

Sorry, that’s not the way it works in C. In this case, you can print this mes-
sage simply by using multiple print statements, as shown in this example:

lcd.print("Temp: "); lcd.print(tempC); lcd.print(" C");

This method removes the need for any behind-the-scenes copying of data
that would go on during string concatenation in other newer languages.

The same multiple outputs approach works with the Serial Monitor
and Serial.print statements. In this case, you generally make the last print
on the line a println to add a newline to the output.

Formatting Strings with sprintf
The standard C string library (not to be confused with the Arduino String
Object library discussed in the next section) includes a very useful func-
tion called sprintf to format character arrays. This fits variables into a pat-
tern string, as shown in the following example:

 char line1[17];
 int tempC = 30;
 sprintf(line1, "Temp: %d C", tempC);

The character array line1 is a string buffer that is used to contain the
formatted text. The size is specified as 17 to allow an extra null character
on the end. I chose the name line1 to illustrate how this could be the con-
tents of the top line of a 16-character by two-line LCD display.

07_Ch07.indd 128 9/2/18 5:23 PM

 Chapter 7: Memory 129

The sprintf command’s first parameter is the character array into which
the result is to be written. The next argument is the formatting string that
contains a mixture of literal text like Temp: and formatting commands like
%d. In this case, %d means signed decimal. The remainder of the param-
eters will be substituted in order into the formatting string in place of the
formatting commands.

If your LCD display were to show the time on the second line, then you
could format the time from separate hours, minutes, and seconds using
the following line:

 char line2[17];
 int h = 12;
 int m = 30;
 int s = 5;
 sprintf(line2, "Time: %2d:%02d:%02d", h, m, s);

If you were to print line2 to the Serial Monitor or an LCD screen, it
would look like this:

Time: 12:30:05

Not only have the numbers been substituted in the correct place, but also
a leading zero is in front of the 5 digit. In the sketch, between each : you
have the formatting commands for the three parts of the time. For the
hour, it is %2d, which means display the value with a length of two digits
as a decimal. The formatting command for minutes and seconds is slightly
different (%02d). This command still means format as two characters, but
include a leading zero.

Be wary, though, this approach works for ints, but the Arduino devel-
opers have not implemented the standard C library formatting for other
types such as floats.

Finding the Length of a String
Because the string within a character array is often smaller than the actual
character array containing it, a useful function, called strlen, is available.
strlen counts the number of characters in the array before the null that
marks the end of the string.

The function returns the size of the string (excluding the null) and takes
the character array as its only argument, for instance,

07_Ch07.indd 129 9/2/18 5:23 PM

130 Programming Arduino Next Steps

strlen("abc")

returns the number 3.

The Arduino String Object Library
Versions of the Arduino IDE since version 019, several years ago, have
included a String library that is far more familiar and friendly to develop-
ers used to Java, Ruby, Python, and so on, where the norm is to construct
strings by concatenation, often using “+”. This library also offers a whole
host of useful string searching and manipulation features.

This library, of course, comes at the cost of adding several kBs to your
sketch size should you use it. It also uses dynamic memory allocation,
with all its associated problems of running out of memory. So think care-
fully before you decide to use it. Many Arduino users stick to C character
arrays instead. However, if you are using an Arduino or compatible that
has lots of memory, then it is worth taking advantage of this more modern
approach to strings.

This library is beautifully easy to use, and if you have used strings in
Java, you will be very at home with the Arduino String Object library.

Creating Strings
You can create the string using a char array, int, or float, as shown in the
following example:

 String message = "Temp: ";
 String temp = String(123);

Concatenating Strings
Strings can then be concatenated with each other and other data types
using +. Try placing the following code in the setup function of an other-
wise empty sketch:

 Serial.begin(9600);
 String message = "Temp: ";
 String temp = String(123);
 Serial.println(message + temp + " C");

07_Ch07.indd 130 9/2/18 5:23 PM

 Chapter 7: Memory 131

Notice how the final value being concatenated to the String is actually
a character array. As long as the first item in the sequence of values in
between the + signs is a string, the items will automatically be converted
into strings before being concatenated.

Other String Functions
Table 7-2 summarizes some of the more useful things that you can do with
String functions. For chapter and verse on the functions available, see this
reference: http://arduino.cc/en/Reference/StringObject.

Using EEPROM
The contents of any variable used in an Arduino sketch will be cleared and
lost whenever the Arduino loses power or is reset. If you need to store
values persistently, you need to write them a byte at a time into EEPROM
memory. The Arduino Uno has 1 kB of EEPROM memory.

NOTE This is not an option for the Arduino Due and many Arduino
compatibles, which do not have any EEPROM. Instead, you must write
data to a microSD card.

Function Example Description

[] char ch = String("abc")[0] ch gets the value a.

trim String s = " abc ";
s.trim();

Removes the space characters
either side of abc.
s is left with the value abc.

toInt String s = "123";
int x = s.toInt();

Converts the number in the
string to an int or a long.

substring s = "abcdefg";
String s2 = s.substring(1, 3));

Returns a section of the original
string. s2 has the value bc.
Parameters are from index and
before index.

replace String s = "abcdefg";
s.replace("de", "DE");

Replaces all occurrences of “de”
with “DE” in the string. s is left
with the value of “abcDEfg”.

Table 7-2 Some Useful String Functions

07_Ch07.indd 131 9/2/18 5:23 PM

http://arduino.cc/en/Reference/StringObject

132 Programming Arduino Next Steps

Reading and writing to EEPROM memory requires a library that is pre-
installed in the Arduino IDE. The following example shows how to write
a single byte of EEPROM, in this case, from the setup function:

#include <EEPROM.h>
void setup()
{
 byte valueToSave = 123;
 EEPROM.write(0, valueToSave);
}

The first argument of the write function is the address in the EEPROM to
which the byte should be written, and the second argument is the value to
be written to that address.

The read command is used to read the data back from EEPROM. To
read back a single byte, you just use the line

EEPROM.read(0);

where 0 is the EEPROM address.

EEPROM Example
The following example shows a typical scenario where a value is written
during the normal running of a program and then read back during startup.
The application is a door lock project using the Serial Monitor to enter
codes and change the secret code. The EEPROM is used so the secret code
can be changed. If the code had to be reset every time the Arduino started,
then there would be no point in allowing the user to change the code.

During the discussion that follows, certain areas of the sketch will be
highlighted. If you wish to see the entire sketch in your Arduino IDE, it is
called sketch_07_04_EEPROM_example and can be found with the rest
of the code for this book at www.simonmonk.org. You may find it useful
to run the sketch to get a feel for how it works. It does not require that you
connect any extra hardware to the Arduino.

The setup function contains a call to the function initializeCode.

void initializeCode()
{
 byte codeSetMarker = EEPROM.read(0);
 if (codeSetMarker == codeSetMarkerValue)

07_Ch07.indd 132 9/2/18 5:23 PM

http://www.simonmonk.org

 Chapter 7: Memory 133

 {
 code = readSecretCodeFromEEPROM();
 }
 else
 {
 code = defaultCode;
 }
}

This function’s job is to set the variable code (the secret code) to its
value. This value is generally a value read from EEPROM, but there are a
few difficulties with this setup.

EEPROM contents are not cleared by uploading a new sketch; once writ-
ten, EEPROM values can only be changed by writing a new value on top of
the old value. So if this is the first time that the sketch has been run, then there
is no way to know what value might be left in EEPROM by a previous sketch.
You could be left with a lock, that is, a code whose value you do not know.

One way around this is to create a separate sketch specifically to set the
default code. This sketch would need to be installed on the Arduino before
the main sketch.

A second, less reliable, but more convenient approach is to use a marker
value that you write to the EEPROM to indicate that the EEPROM has had
a code written to it. The downside of this approach is there is a slim chance
that the EEPROM location used to store this flag already contains it. If so,
this solution would be unacceptable if you were defining a commercial
product, but here you can elect to take that risk.

The initializeCode function reads the first byte of EEPROM and if it
equals codeMarkerValue, which is set elsewhere to 123, it is assumed that
the EEPROM contains the code and the function readSecretCodeFromEE-
PROM is called:

int readSecretCodeFromEEPROM()
{
 byte high = EEPROM.read(1);
 byte low = EEPROM.read(2);
 return (high << 8) + low;
}

This function reads the 2-byte int code in bytes 1 and 2 of the EEPROM
(Figure 7-4).

07_Ch07.indd 133 9/2/18 5:23 PM

134 Programming Arduino Next Steps

To convert the two separate bytes into a single int, you have to shift the
high bytes to the right 8 binary digits (high << 8) and then add the low
bytes.

The stored code is only read when the Arduino resets. You should,
however, write the secret code to EEPROM every time it is changed, so if
the Arduino is powered down or reset, it still has the code available in
EEPROM to be read back.

The function saveSecretCodeToEEPROM is responsible for this:

void saveSecretCodeToEEPROM()
{
 EEPROM.write(0, codeSetMarkerValue);
 EEPROM.write(1, highByte(code));
 EEPROM.write(2, lowByte(code));
}

This sets the code marker in EEPROM position 0 to indicate that there is a
valid code in EEPROM and then writes the two bytes of the code to
EEPROM. The Arduino utility functions highByte and lowByte are used
to separate the parts of the int code.

Figure 7-4 Storing an int in EEPROM.

int (2 bytes) decimal 1234

High byte Low byte

EEPROM

.......

Address

0 (Marker)

1 (High byte)

2 (Low byte)

3

4

5

1 0 11 0 0 1 000 00 1 00 0

11 11 0 10 1

00 00 1 00 0

10 00 0 11 1

00 00 0 00 0

00 00 0 00 0

00 00 0 00 0

07_Ch07.indd 134 9/2/18 5:23 PM

 Chapter 7: Memory 135

Using the avr/eeprom.h Library
The Arduino EEPROM library only allows you to read and write one byte
at a time. In the example shown in the previous section, you got around
this restriction by splitting the int into two bytes in order to save and
retrieve it in EEPROM. An alternative is to use the underlying EEPROM
library provided by AVR. This gives you more options, including reading
and writing a word (16 bits) and blocks of memory of arbitrary size.

The following sketch uses this library to save and read an int directly,
incrementing it every time the Arduino restarts:

// sketch_07_05_avr_eeprom_int

#include <avr/eeprom.h>

void setup()
{
 int i = eeprom_read_word((uint16_t*)10);
 i++;
 eeprom_write_word((uint16_t*)10, i);
 Serial.begin(9600);
 Serial.println(i);
}

void loop()
{
}

The argument to eeprom_read_word (10) and the first argument to
eeprom_write_word are the starting position of the word. Note that this
occupies two bytes, so if you want to save another int, you specify an
address of 12, not 11. The text (uint16_t*) before 10 is needed to make the
index position the type expected by the library function.

The other useful pair of functions in this library are eeprom_read_block
and eeprom_write_block. These functions allow data structures of any
length (space permitting) to be stored and retrieved.

For example, let’s make a sketch to write a character array string, start-
ing at position 100 in EEPROM:

07_Ch07.indd 135 9/2/18 5:23 PM

136 Programming Arduino Next Steps

// sketch_07_06_avr_eeprom_string

#include <avr/eeprom.h>

void setup()
{
 char message[] = "I am written in EEPROM";
 eeprom_write_block(message, (void *)100,
 strlen(message) + 1);
}

void loop()
{
}

The first argument to eeprom_write_block is the pointer to the char array to
be written, the second is the starting location in EEPROM (100). The final
argument is the number of bytes to write. This is calculated here as the length
of the string plus one to include the null character at the end of the string.

The following sketch reads the string back in again and displays it on
the Serial Monitor along with the string length:

// sketch_07_07_avr_eeprom_string_read

#include <avr/eeprom.h>

void setup()
{
 char message[50]; // big enough
 eeprom_read_block(&message, (void *)100, 50);
 Serial.begin(9600);
 Serial.println(message);
 Serial.println(strlen(message));
}

void loop()
{
}

To read the string, a character array of size 50 is created. The function
eeprom_read_block is then used to read the next 50 characters into mes-
sage. The & sign before message provides the function with the message’s
address in RAM.

07_Ch07.indd 136 9/2/18 5:23 PM

 Chapter 7: Memory 137

Because the message has a null on the end, when it is printed by the
Serial Monitor, only the text expected (not the full 50 characters) is
displayed.

EEPROM Limitations
EEPROM is slow to read and write (about 3 ms). It is also only guaranteed
to be reliable for 100,000 write cycles before it starts suffering from amne-
sia. For this reason, you need to be careful not to write to it every time
around a loop, for example.

Using Flash
An Arduino has a lot more flash memory than it does any other type of
memory. For an Arduino Uno, that is 32 kB compared with 2 kB of RAM.
This makes it a tempting place to store data, especially as flash memory
does not forget when it loses power.

There are, however, a few snags with storing data in flash memory:

• The flash memory in an Arduino can only be written to about 10,000
times before it becomes useless.

• The flash contains your program, so, if you miscalculate and write
over the program, very strange things could happen.

• The flash also contains the bootloader and overwriting that will
“brick” your Arduino unless you have an ISP programmer to rescue
it (see Chapter 2).

• Flash can only be written a block (64 bytes) at a time.

Having said all that, it is quite easy and safe to use flash to hold con-
stant data that are not going to change during the running of a sketch.

A third-party library is being developed that allows the Arduino Due’s
flash memory to be read and written to, to make up for its lack of EEPROM.
You can find out more about this project here: http://pansenti.wordpress
.com/2013/04/19/simple-flash-library-for-arduino-due/.

The easiest way to create flash-stored string on ATmega-based Arduinos
is to use the F function that I described in an earlier section. The syntax is
repeated here as a reminder:

07_Ch07.indd 137 9/2/18 5:23 PM

http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-arduino-due/
http://pansenti.wordpress.com/2013/04/19/simple-flash-library-for-arduino-due/

138 Programming Arduino Next Steps

Serial.println(F("Program Started"));

This form only works when you are using the string constant directly in a
message like this. You cannot, for example, assign the result to a char pointer.

A more flexible, and therefore more complex, way of doing this is to use
the Program Memory (PROGMEM) directive, which can be used to store
any data structure. The data, however, must be constant data that will not
change during the running of the sketch.

The following example illustrates how you can create an array of ints
that will be stored in flash memory:

// sketch_07_08_PROGMEM_array

#include <avr/pgmspace.h>

PROGMEM int value[] = {10, 20, 25, 25, 20, 10};

void setup()
{
 Serial.begin(9600);
 for (int i = 0; i < 6; i++)
 {
 int x = pgm_read_word(&value[i]);
 Serial.println(x);
 }
}

void loop()
{
}

By putting the PROGMEM directive in front of the array declaration,
you ensure that it is only stored in flash memory. To read a value out of it,
however, you now have to use the function pgm_read_word from the avr/
pgmspace library:

 int x = pgm_read_word(&value[i]);

The parameter to this function uses the & symbol in front of the array
name to indicate that it is the address of this array element in flash mem-
ory that is required rather than the value itself.

07_Ch07.indd 138 9/2/18 5:23 PM

 Chapter 7: Memory 139

The pgm_read_word function reads a word (2 bytes) from flash; you
can also use the pgm_read_byte and pgm_read_dword to read 1 byte and
4 bytes, respectively.

Using SD Card Storage
Although Arduino boards do not have SD card slots, several different
types of shield, including the Ethernet shield and the MP3 shield shown in
Figure 7-5, do have an SD or microSD card slot. Using an SD card is often
the only choice for storing persistent data for Arduino compatibles that
lack EEPROM storage.

Figure 7-5 MP3 shield with microSD card slot.

07_Ch07.indd 139 9/2/18 5:23 PM

140 Programming Arduino Next Steps

SD cards use the SPI bus interface (the topic of Chapter 11). Fortunately,
to use SD cards with Arduino, you do not need to do any low-level SPI
programming as there is a library included with the Arduino IDE called
simply “SD.”

This library includes a set of example sketches for using the SD card in
various ways, including finding out information about the SD card as dis-
played in the Serial Monitor, as shown in Figure 7-6.

Writing to the SD card is made easy, as the code snippet here shows:

 File dataFile = SD.open("datalog.txt", FILE_WRITE);

 // if the file is available, write to it:
 if (dataFile) {
 dataFile.println(dataString);
 dataFile.close();
 // print to the serial port too:
 Serial.println(dataString);
 }

Summary
In this chapter, you have learned about memory and data storage within
Arduino. In the next chapters, you will explore interfacing to Arduino using
serial interfaces.

Figure 7-6 Results of the Cardinfo example sketch.

07_Ch07.indd 140 9/2/18 5:23 PM

141

8
Interfacing with Arduino

As well as using straightforward digital inputs and outputs to connect
electronics to an Arduino, the Arduino also supports three common
standards for serial interfaces. These are I2C (pronounced “I squared
C”), SPI, and UART (or TTL Serial).

Whereas digital and outputs are fine for connecting switches or LEDs
with no intelligence, the serial interfaces to Arduino are often used to con-
nect ICs or modules that might have their own microcontroller built-in.
Serial communication is the norm when you need to send and receive
more information than a single high or low. This includes some sensor
chips that might send their readings as a stream of binary digits, or dis-
play modules that expect to be sent a stream of binary digits telling them
what to display.

Each of the three serial interfaces is covered in separate chapters that
follow this one, but all have certain basic principles in common. These
common principles are described in this chapter.

Binary
You may remember that back in Chapter 5, you learned a little about bits
and bytes. Let’s now look at this in more detail.

Computers communicate with each other and with smart peripherals
using binary. A bit is a single “binary digit” that can only have a value of 0
(low) or 1 (high). If you only need to communicate a single bit, then you

08_Ch08.indd 141 9/2/18 5:25 PM

142 Programming Arduino Next Steps

can do that with a digital output that is either high or low. However, if you
need to communicate more information than that at a time, then you need
to combine a number of bits together. Most often you combine eight bits
into what is called a byte.

In our familiar decimal system of numbers (also called base 10), if you
have a number like 123, each digit (1, 2, and 3) has one of a possible 10
values (0 to 9). The rightmost digit represents the units, the next digit to
the left is the tens, and the leftmost digit (in this example) is the hundreds.
So, in actual fact, the decimal number 123 is made up of 1 × 100 + 2 × 10 +
3 × 1.

Computers use binary (base 2) rather than decimal, and in binary, each
digit can only have one of two possible values (0 or 1). Rather than each
digit position (from right to left) being 10 times the previous digit, it’s just
2 times the previous digit position. So, the binary number 110 must not be
confused with decimal one hundred and ten, but is, when converted to
decimal, just 1 × 4 + 1 × 2 + 0 = 6.

A byte of eight bits can therefore be used to represent any number
between 0 and 255. So binary 11111111 is 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
= 255.

Let’s go back to our decimal number 123. That would in binary be:
0 × 128 + 1 × 64 + 1 × 32 + 1 × 16 + 1 × 8 + 0 × 4 + 1 × 2 + 1 × 1. Collecting
together the bits, that gives us a binary number of 01111011. Don’t
worry, you are unlikely to ever need to convert between binary and deci-
mal by hand; your pocket calculator or one of many online number-base
converters can do that for you.

Arduino Types and Binary
Just as you can declare a variable to be of type int, Arduino C also has two
types that are commonly used to represent bytes (byte and char).

A byte represents a number between decimal 0 and decimal 255.
The char data type also represents eight bits, but rather than being con-

cerned with numbers between decimal 0 and decimal 255, the built-in
Arduino char type represents numbers between –128 and +127. It is most
often used with just its first 7 digits (counting from right to left) to

08_Ch08.indd 142 9/2/18 5:25 PM

 Chapter 8: Interfacing with Arduino 143

represent characters in the roman alphabet using the encoding of text
characters into binary called ASCII (American Standard Code for
Information Interchange).

You can read more about Arduino C’s data types in the section “Arduino
Data Types” in Chapter 1.

You can try out a bit of binary arithmetic on your Arduino if you like.
Download sketch_08_01_binary from www.simonmonk.org/nextsteps2
and upload it onto your Arduino.

// sketch_08_01_binary

void setup() {
Serial.begin(9600);
byte a = B00010001; // 17
byte b = B00011001; // 25
byte result = a + b;
Serial.println(result, 2); // binary
Serial.println(result, 16); // hex
Serial.println(result, 10); // decimal
}

void loop() {
}

When you open the Serial Monitor, you should see trace that looks
something like this:

101010

2A

42

Note the use of the B prefix to the numbers to specify that they are in
binary. I have included leading zeros so that all eight bits of the byte are
shown, but this is not mandatory.

The first result (101010) is the result of the addition printed as binary.
Notice the optional number base as the second parameter to println. The
next line (2A) is the result in hexadecimal (more on that in the next sec-
tion) and the final line shows the result in decimal (42).

08_Ch08.indd 143 9/2/18 5:25 PM

http://www.simonmonk.org/nextsteps2

144 Programming Arduino Next Steps

Hexadecimal
Hexadecimal (more commonly just called hex) is number base 16. This
means that each digit of a hex number can have one of 16 possible values.
These are represented by the numerical digits 0 to 9 followed by the letters
A to F. Table 8-1 shows the numbers between 0 and 15 in decimal, binary,
and finally hex.

Decimal Binary Hex

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Table 8-1 Binary and Hexadecimal Numbers

Because a hex digit represents four bits, two hex digits can be used to
represent a byte. When dealing with binary communications, you will
often find that hex is used rather than binary or decimal.

If you need to define hex values in your Arduino code, you can do so
like this:

byte a = 0x2A

The 0x indicates that the digits that follow the x are to be treated as hex, in
this case, assigning the decimal value of 42 to a (2 × 16 + 10).

08_Ch08.indd 144 9/2/18 5:25 PM

 Chapter 8: Interfacing with Arduino 145

Masking Bits
A common problem when you receive data from a peripheral using any
kind of connection is that the data arrives packed into bytes. Peripheral
designers often fit as much information as they can into as few bits as pos-
sible, speeding up communication, but often at the expense of making the
devices more difficult to program.

The process of “masking” bits allows you to disregard some of the data
in a byte or larger data structure. Figure 8-1 shows how a byte containing
multiple data can be masked to produce a number from the least signifi-
cant three bits of the byte.

You’ll come across the phrases “least significant” and “most significant”
to describe binary numbers. In binary written in the normal mathematical
way, the most significant bit is the leftmost bit and the least significant bit
is the rightmost. After all, the rightmost is only worth 1. You’ll also see the
terms most significant bit (MSB) and least significant bit (LSB).

The least significant bit is also sometimes referred to as bit 0, bit 1 being
the next most significant bit, and so on.

In the example shown in Figure 8-1, the data byte has some values at
the most significant end that we are not interested in and only three bits at
the least significant end that we want to extract as a number.

Value

LSBMSB

Data 0×65

Mask 0×07

Result 0×05

&

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 1

0 1 1 0 0 1 0 1

Figure 8-1 Masking bits.

08_Ch08.indd 145 9/2/18 5:25 PM

146 Programming Arduino Next Steps

To do this kind of manipulation use &. The symbol “&” “ands” the cor-
responding bits of two bytes together. That is, the resulting bit will only be
“1” if both the bits at that position are both “1.”

This masking is done by “anding” the data with a mask value that has
the three bits you’re interested in set to 1. Then you “and” together two
bytes; each of the bits is, in turn, “anded” with each other to build a result.
The result of “anding” two bits is only 1, if both the bits are 1.

Here’s how the example looks in Arduino C using the & operator. Note
that bitwise “and” uses the single & character rather than the && often
found in the conditions of “if” statements.

byte data = 0b01100101;
byte result = (data & 0b00000111);

At the end, the variable “result” contains the value 5 (decimal).

Shifting Bits
Another thing you will find with received data is that having masked the
bits you want, those bits are not all at the least significant end of the byte.

For example, if the value of interest in the data used in Figure 8-1 was
between bits 5 and 3 (see Figure 8-2), you need to first mask the bits of
interest, as you did in the previous example, and then sift the bits three
places to the right.

You use the C operator >> to shift bits to the right and the number fol-
lowing the >> is the number of bit positions to shift the bits. This may
result in some bits being shifted off the end of the byte. Here’s this exam-
ple written in C:

byte data = 0b01101001;
byte result = (data & 0b00111000) >> 3;

At the end of this operation, “result” will contain the value 0b101.
Figure 8-2 illustrates this process. What if you need to take two 8-bit bytes
and assemble them into a single 16-bit int? You can accomplish this by
first shifting the bits of one byte (the most significant byte) to one end of
the int and then adding in the second byte. Figure 8-3 illustrates this pro-
cess and here is how it looks in code:

08_Ch08.indd 146 9/2/18 5:25 PM

 Chapter 8: Interfacing with Arduino 147

byte highByte = 0b01101010;
byte lowByte = 0b00001111;
int result = highByte << 8 + lowByte;

Value

0

bit 7 bit 0

1 1 0 1 0 0 1 Data 0×69

Mask 0×38

0×28

Result 0×05

0 0 1 1 1 0 0 0

&

0 0 1 0 1 0 0 0

>> 3

0 0 0 0 0 1 0 1

Figure 8-2 Masking and shifting bits.

High byte 0 × 6A

Low byte 0 × 0F

Result 0 × 6A0F0 0 0 0 1 1 1 10 1 1 0 1 0 1 0

0 0 0 0 1 1 1 1

0 1 1 0 1 0 1 0

Figure 8-3 Combining bytes.

08_Ch08.indd 147 9/2/18 5:25 PM

148 Programming Arduino Next Steps

Serial Data
While you will occasionally find parallel interfaces used for communicat-
ing between microcontrollers and modules, these suffer from the disad-
vantage that they require one GPIO line for each bit being transferred. It is
therefore much more common to use a serial interface where one GPIO
pin is used to send or receive data one bit at a time. This is slower than a
parallel interface but has the advantage that it uses less GPIO pins.

The sending of serial data is time dependent. For example, how do you
know whether a GPIO pin being high for 10 milliseconds constitutes a
single 1 bit or 10 successive 1 bits? This depends on the speed of transmis-
sion, something that can either be agreed on in advance by both the sender
and receiver, or more commonly is specified by one side providing a clock
signal. Figure 8-4 shows how you might connect two Arduinos together so
that they can communicate by a serial connection using two GPIO pins on
each Arduino. One pin (pin 5) is used for data, the second pin (pin 6) is
used to provide a clock signal to synchronize the two Arduinos.

Figure 8-4 Two Arduinos communicating serially.

08_Ch08.indd 148 9/2/18 5:25 PM

 Chapter 8: Interfacing with Arduino 149

We will see the code in a minute, but in this setup, the sending Arduino
is going to start counting and every second it will send the new count to the
receiving Arduino. The receiving Arduino needs the Serial Monitor to dis-
play the count, so it should be connected to your computer and it can then
provide 5V power to the sending Arduino, without the need for USB power.

Figure 8-5 shows what happens on the GPIO pins of the sending
Arduino as it sends a byte 00101010 (decimal 42 again).

The sequence for sending data is as follows:

1. Set the GPIO pin according to the first bit of the byte to be sent.

2. Wait for the GPIO pin to be stable.

3. Pulse the clock pin.

4. Repeat from step 1 for the next bit until all 8 bits are sent.

Figure 8-5 Clocking serial data from one Arduino to another.

Download sketch_08_02_serial_tx from www.simonmonk.org/nextsteps2
and upload it onto one Arduino.

WARNING Do not upload this transmitting sketch (sketch_08_02_
serial_tx) to a pair of Arduinos connected as shown in Figure 8-4, or you
will be connecting one digital output pin directly to another. If one is high
and the other low, this could damage your Arduino.

On your second Arduino (the receiving Arduino) upload sketch_08_03_
serial_rx and open the Serial Monitor. You should then see a series of
numbers sent from the transmitting Arduino. Note that this is not a very
reliable method of serial communication because there is nothing to mark
the start or end of a byte and you may have to press the Reset button on
the receiver to get the two Arduinos in step.

08_Ch08.indd 149 9/2/18 5:25 PM

http://www.simonmonk.org/nextsteps2

150 Programming Arduino Next Steps

Here is the code for the transmitter:

// sketch_08_02_serial_tx

const int dataPin = 5;
const int clockPin = 6;

byte x = 0;

void setup()
{
 pinMode(dataPin, OUTPUT);
 pinMode(clockPin, OUTPUT);
}

void loop() {
 if (x > 100)
 {
 x = 0;
 }
sendByte(x);
 x++;
 delay(1000);
}

void sendByte(byte b)
{
 for (int i = 0; i< 8; i++)
 {
 // set the data high or low
 digitalWrite(dataPin, bitRead(b, 7-i));
 delay(1); // delay for 1ms
 digitalWrite(clockPin, HIGH); // start of clock pulse
 delay(1);
 digitalWrite(clockPin, LOW);
 delay(1);
 }
}

Most of the action for the transmitter takes place in the sendByte func-
tion. The sendByte function contains a loop that sends each bit in turn.
This first of all sets the data pin high or low depending on the current bit

08_Ch08.indd 150 9/2/18 5:25 PM

 Chapter 8: Interfacing with Arduino 151

(bitRead(b, 7-i)). Note that the index position is “7-i” not just “i” because
we are starting with the leftmost digit. A pulse is then applied to the clock
pin and then the next bit is sent.

Here is the corresponding receiver code:

// sketch_08_03_serial_rx

const int dataPin = 5;

const int clockPin = 6;

byte x = 0;

void setup()

{

 pinMode(dataPin, INPUT_PULLUP); // pullup stops floating inputs

 pinMode(clockPin, INPUT_PULLUP);

 Serial.begin(9600);

}

void loop() {

 byte x = 0;

 for (int i = 0; i< 8; i++)

 {

 // wait for clock to go high

 while (digitalRead(clockPin) == LOW) {};

 // read the data pin

 x = x << 1; // shift all the bits left one place

 x += digitalRead(dataPin); // add the new bit

 // wait for clock to go low to be ready for next bit

 while (digitalRead(clockPin) == HIGH) {};

 }

 Serial.println(x);

}

This code uses pins 5 and 6 to communicate with the other Arduino,
but also uses the serial interface to display the numbers it receives in the
Serial Monitor.

The loop function contains a for loop that expects to receive each of the
eight bits of the byte, counting from 0 to 7 with a variable “i.”

The transmitting Arduino will send a pulse on the clock pin when it
wants to send a bit, so, for each bit, the receiving code needs to wait until

08_Ch08.indd 151 9/2/18 5:25 PM

152 Programming Arduino Next Steps

the clock pin goes high and then read the data pin to see if that bit is a 1 or
a 0. This new bit gets added to the byte (“x”) by first shifting all the bits in
the byte one position to the left (“x = x << 1”) and then adding the new bit.

When all eight bits have been collected, the value of “x” will be dis-
played.

Summary
In this chapter you have experienced the basic principles of most serial
communication between microcontrollers or between a microcontroller
and a peripheral. In the chapters that follow, you will delve a bit deeper
into different types of serial interfaces that allow things such as two-way
communication, communication to more than one device at a time
(busses), and communication without a shared clock signal.

08_Ch08.indd 152 9/2/18 5:25 PM

153

9
Using I2C

The I2C (pronounced “I squared C”) interface bus is a standard for con-
necting microcontrollers and peripherals together. I2C is sometimes
referred to as Two Wire Interface (TWI). All the Arduino boards have at
least one I2C interface to which you can attach a wide range of peripher-
als. Some examples are shown in Figure 9-1.

The three devices on the top row of Figure 9-1 are all display modules
from Adafruit. On the bottom row, starting on the left, is a TEA5767 FM
receiver module. You can find these modules on eBay and elsewhere for a
few dollars. The TEA5767 provides you with a full FM receiver module
that you can tune to a certain frequency by sending it I2C commands. In
the center is a real-time clock (RTC) module, including an I2C chip and
crystal oscillator that maintains a fairly accurate time and date. Once you
have set the date and time over I2C, you can read the time and date back
over I2C whenever you need it. This module also includes a long-life lith-
ium button cell that allows it to keep time, even when the module has no
external power. Finally, on the right, is a 16-channel servo/PWM driver
that can give you 16 extra analog outputs from your Arduino.

The I2C standard is defined as a “bus” standard because, unlike the
serial example of Chapter 8, its use is not limited to connecting one com-
ponent directly to another. Say you have a display connected to a micro-
controller; using the same two bus pins, you can connect a whole set of
“slave” devices to a “master” device. The Arduino acts as the “master,”
and each of the “slaves” has a unique address that identifies the device on
the bus.

09_Ch09.indd 153 9/2/18 5:26 PM

154 Programming Arduino Next Steps

Figure 9-2 shows a possible arrangement of two I2C components
attached to an Arduino, a real-time clock (RTC), and a display module.

You can also use I2C to connect two Arduinos together so they can
exchange data. In this case, one of the Arduinos will be configured to act
as a “master” and one as a “slave.”

Figure 9-1 A collection of I2C devices.

Adafruit 7-segment
LED display

Adafruit LED
matrix

TEA5767 FM
receiver module

16-channel servo/
PWM driver

Figure 9-2 An Arduino controlling two I2C devices,

I2C
display
module

Arduino

5V

SDA

Vdd

GND

GND

SCL

I2C RTC
module

Small Adafruit LED
matrix

Real-time clock
(RTC) module

09_Ch09.indd 154 9/2/18 5:26 PM

 Chapter 9: Using I2C 155

I2C Hardware
Electrically, I2C interfaces connection lines from a microcontroller or
peripheral can act as both a digital output or digital input (also called tri-
state). In tri-state mode, the connection lines are neither HIGH nor LOW,
but are, instead, a floating value. The outputs are also open-collector, which
means that they require a pull-up resistor. These resistors should be 4.7 kΩ
in value, and there should be just one pair for the whole I2C bus, pulling
up to either 3.3V or 5V, depending on the voltage at which you want the
bus to operate. If some devices on the bus use different voltages, you need
to use a level converter. Bidirectional level converter modules suitable for
I2C are available, such as the BSS138 device from Adafruit: www.adafruit
.com/products/757.

The various Arduino boards allocate different pins to I2C. For example,
the Uno uses pins A4 and A5 as SDA and SCL, respectively, whereas the
Leonardo uses pins D2 and D3. (More on SDA and SCL in the next sec-
tion.) On both boards, the SDA and SCL pins are available on the socket
header next to the AREF connection (Figure 9-3).

Figure 9-3 I2C connections on an Arduino Uno.

SCL SDA

09_Ch09.indd 155 9/2/18 5:26 PM

http://www.adafruit.com/products/757
http://www.adafruit.com/products/757

156 Programming Arduino Next Steps

Table 9-1 indicates the location of I2C pins on the common Arduino
boards and compatibles.

The I2C Protocol
I2C uses two wires to transmit and receive data (hence, the alternative
name of Two Wire Interface). These two lines are called the Serial Clock
Line (SCL) and the Serial Data Line (SDA). Figure 9-4 shows the timing
diagram for this signal.

The master supplies the SCL clock, and when there is data to be trans-
mitted, the sender (master or slave) takes the SDA line out of tri-state (dig-
ital input mode) and sends data as logic highs or lows in time with the
clock signal. When transmission is complete, the clock can stop and the

Figure 9-4 Timing diagram for I2C.

Start

SDA

SCL

1 0 1 Stop

Board Pins Notes

Uno A4 (SDA) and A5 (SCL) The connections labeled SCL and
SDA near AREF also connect to A4
and A5.

Leonardo D2 (SDA) and D3 (SCL) The connections labeled SCL and
SDA near AREF also connect to D2
and D3.

Mega2560 D20 (SDA) and D21 (SCL)

Due D20 (SDA) and D21 (SCL) The Due also has a second I2C
pair of connections that are labeled
SDA1 and SCL1

NodeMCU/Wemos
D1 Mini (ESP8266)

D1 (SCL) and D2 (SDA)

Lolin32 (ESP32) 21 (SDA) and 22 (SCL)

Table 9-1 I2C Connections on Arduino Boards

09_Ch09.indd 156 9/2/18 5:26 PM

 Chapter 9: Using I2C 157

SDA pin is returned to tri-state. In this way, the bus can communicate in
both directions with just two pins.

The Wire Library
You could, of course, generate these pulses yourself by bit banging—that is,
turning digital outputs on and off in your code, like you saw in Chapter 8.
To make life easier for us, however, the Arduino software includes a library
called Wire that handles all the timing complexity, so we can just send and
receive bytes of data. The Wire library will buffer incoming I2C data.

To use the Wire library, you first need to include it using the following
command:

#include <Wire.h>

Initializing I2C
In most situations, an Arduino is the “master” in any I2C bus. To initialize
an Arduino as the master, use the begin command in your setup function,
as shown here:

void setup()
{
 Wire.begin();
}

Note that because the Arduino is the master in this arrangement, you
don’t need to specify an address. If the Arduino were being initialized as
a slave, then you would need to specify an address, 0 to 127, as its param-
eter to uniquely identify it on the I2C bus.

Master Sending Data
To send data to an I2C device, start by using the beginTransmission func-
tion and specifying the address of the I2C device on the bus that you wish
to send data to:

Wire.beginTransmission(4);

09_Ch09.indd 157 9/2/18 5:26 PM

158 Programming Arduino Next Steps

You can either send data to an I2C device one byte at a time, or you can
send a char array, as shown in these two examples:

Wire.send(123) // send the byte 123
Wire.send("ABC"); // send the string of chars "ABC"

Finally, at the end of the transmission, use the endTransmission
function:

Wire.endTransmission();

Master Receiving Data
For a master to receive data from a slave, it must first request the number
of bytes it requires using the requestFrom function:

Wire.requestFrom(4, 6); // request 6 bytes from slave address 4

The first argument to this function is the address of the slave from
which the master wants to receive data, and the second argument is the
number of bytes that the master is expecting to receive back. The slave can
return less than this, so the available function is used to determine both if
data has arrived and the number of bytes received. The following example
(taken from the Wire example sketches) shows the master reading all
available data from the slave and echoing it to the Serial Monitor:

#include <Wire.h>

void setup()
{
 Wire.begin(); // join i2c bus (address optional for master)
 Serial.begin(9600); // start serial for output
}

void loop()
{
 Wire.requestFrom(4, 6); // request 6 bytes from slave address 4

 while(Wire.available()) // slave may send less than requested
 {
 char c = Wire.receive(); // receive a byte as character
 Serial.print(c); // print the character
 }

 delay(500);
}

09_Ch09.indd 158 9/2/18 5:26 PM

 Chapter 9: Using I2C 159

I2C Examples
Any I2C device should have an accompanying datasheet that specifies the
messages that it expects to use. Sometimes you will need to use that data-
sheet to build your own messages to send from the Arduino and to inter-
pret the messages that come back. You’ll often find, however, that when an
I2C device is commonly used with an Arduino, then someone has written
a library that wraps the I2C messages in nice easy-to-use functions. In fact,
if there isn’t a library and you work out how to use the device, then the
socially minded thing to do is to release your library to the world and earn
yourself some open source karma.

Even if no fully fledged library is available, you can often find useful
code snippets for the device on the Internet.

TEA5767 FM Radio
The first I2C example does not use a library. It deals with raw messages to
interface an Arduino with a TEA5767 module. These modules are avail-
able at a very low cost on the Internet and are easy to connect to an Ardu-
ino to use as an Arduino-controlled FM receiver.

The tricky part is that the connections on these devices are set at an
extremely fine pitch, so you generally need to make or buy some kind of
adapter that allows you to use them with breadboard or jumper wires.

Figure 9-5 shows how this module can be wired to an Arduino.

Figure 9-5 Wiring a TEA5767 module to an Arduino Uno using I2C.

Arduino

SDA

Vdd

Ant

Left

Right
To ampli�er

GNDGND

5V

SCL

SDA

SCL

TEA5767
module

09_Ch09.indd 159 9/2/18 5:26 PM

160 Programming Arduino Next Steps

Note that the TEA5767 module has built-in pull-up resistors on the SDA
and SCL I2C lines that are convenient, but can cause problems if you are
using more than one module with pull-up resistors on the same I2C bus.

You can find the full datasheet for the TEA5767 here: www.sparkfun
.com/datasheets/Wireless/General/TEA5767.pdf. The datasheet con-
tains a lot of technical information about the chip, but if you scroll through
the document, you’ll find a section detailing the messages that it expects
to receive. The datasheet specifies that the TEA5767 expects to receive
messages of five bytes. The example code shown next is a fully working
example that will tune the frequency once at startup. In practice, you need
some other mechanism, such as push buttons and an LCD display, to set
the frequency.

// sketch_09_01_I2C_TEA5767

#include <Wire.h>

void setup()
{
 Wire.begin();
 setFrequency(93.0); // MHz
}

void loop()
{
}

void setFrequency(float frequency)
{
 unsigned int frequencyB = 4 * (frequency * 1000000 + 225000) / 32768;
 byte frequencyH = frequencyB >> 8;
 byte frequencyL = frequencyB & 0XFF;

 Wire.beginTransmission(0x60);
 Wire.write(frequencyH);
 Wire.write(frequencyL);
 Wire.write(0xB0);
 Wire.write(0x10);
 Wire.write(0x00);
 Wire.endTransmission();
 delay(100);
}

The code we’re interested in is all in the setFrequency function. This
function takes a float as a parameter. This value is the frequency in MHz.
So if you’re going to build this for real, you might want to look up the

09_Ch09.indd 160 9/2/18 5:26 PM

http://www.sparkfun.com/datasheets/Wireless/General/TEA5767.pdf
http://www.sparkfun.com/datasheets/Wireless/General/TEA5767.pdf

 Chapter 9: Using I2C 161

frequency of a good local radio station with a strong signal and put the
value in the call to setFrequency in the setup function.

To convert a float frequency in MHz into a two-byte value that can be
sent as part of the five-byte message, you need to do some math. The math
is contained in the code:

unsigned int frequencyB = 4 * (frequency * 1000000 + 225000) / 32768;

byte frequencyH = frequencyB >> 8;

byte frequencyL = frequencyB & 0XFF;

The >> command shifts bits to the right, so using >> 8 shifts the most
significant 8 bits into the least significant 8 bit positions. The & operator
provides a bitwise and operation, which has the effect of masking off the
top 8 bits so only the bottom 8 bits remain. For more information on this
kind of bit manipulation, see Chapter 8.

The remainder of the setFrequency function begins transmission of the
I2C message to the slave with address 0x60, which is fixed for the TEA5767
chip. It then sends each of the 5 bytes, starting with the 2 frequency bytes.

If you read through the datasheet, you’ll discover many other things
you can accomplish with different messages, such as scanning, muting
one or more channels, and setting the mode to mono or stereo.

In Chapter 17, we’ll revisit this example, creating an Arduino library so
using the TEA5767 can be even simpler.

Arduino-to-Arduino Communication
This second example uses two Arduinos, one acting as the I2C master and
one as the slave. The master will send messages to the slave, which will, in
turn, echo them to the Serial Monitor, so we can see that the communica-
tion is working.

The connections for this setup are shown in Figure 9-6. Note that the
TEA5767 module has built-in I2C pull-up resistors, but this is not the case
when connecting two Arduinos, so you’ll need to provide your own 4.7 kΩ
resistors, as shown in Figure 9-6.

We need to program each of the two Arduinos with a different sketch.
Both sketches are provided as examples in the Wire library. Program the

09_Ch09.indd 161 9/2/18 5:26 PM

162 Programming Arduino Next Steps

master Arduino with File -> Example -> Wire -> master_writer, and the
slave Arduino with File -> Example -> Wire -> slave_receiver.

Once you’ve programmed both Arduinos, leave the slave Arduino con-
nected to your computer; you need to see the output from this Arduino in
the Serial Monitor, and it will also supply power to the master Arduino.

Start with the sketch on the master Arduino:

#include <Wire.h>

void setup()
{
 Wire.begin(); // join i2c bus (address optional for master)
}

byte x = 0;

void loop()
{
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write("x is "); // sends five bytes
 Wire.write(x); // sends one byte
 Wire.endTransmission(); // stop transmitting
 x++;
 delay(500);
}

Figure 9-6 Connecting two Arduinos using I2C.

I2C Master I2C Slave

USB to PC for
Serial Monitor

and power

09_Ch09.indd 162 9/2/18 5:26 PM

 Chapter 9: Using I2C 163

This code generates messages of the form “x is 1” where 1 is a number
that is incremented every half second. This message is then sent to the I2C
slave device with the ID of 4, as specified in beginTransmission.

The slave sketch’s job is to receive the messages coming from the mas-
ter and echo them on the Serial Monitor:

#include <Wire.h>

void setup()
{
 Wire.begin(4); // join i2c bus with address #4
 Wire.onReceive(receiveEvent); // register event
 Serial.begin(9600); // start serial for output
}

void loop()
{
 delay(100);
}

// function that executes whenever data is received from master
// this function is registered as an event, see setup()
void receiveEvent(int howMany)
{
 while(1 < Wire.available()) // loop through all but the last
 {
 char c = Wire.read(); // receive byte as a character
 Serial.print(c); // print the character
 }
 int x = Wire.read(); // receive byte as an integer
 Serial.println(x); // print the integer
}

The first thing to notice is that this time the Wire.begin function has a
parameter of 4. This parameter specifies the I2C address of the slave,
which is 4. It must match the address that the master sends the message to.

TIP You could connect many slave Arduinos to the same two-wire bus as
long as each has a different I2C address.

The sketch for the slave differs from that of the master because it uses
interrupts to respond to the master when a message comes in. This is
accomplished using the onReceive function, which is invoked like an
interrupt service routine (see Chapter 4). Place this in setup so the user-
written function receiveEvent is invoked whenever a message comes in.

09_Ch09.indd 163 9/2/18 5:26 PM

164 Programming Arduino Next Steps

The receiveEvent function is expected to have a single parameter,
which indicates the number of bytes ready to be read. In this case, this
number is ignored. The while loop first reads all the available characters
and echoes each character in turn. It then reads the single byte number on
the end of the message and prints that to the Serial Monitor. Using println
rather than write ensures that the value of the byte is displayed rather
than its character value (Figure 9-7).

LED Backpack Boards
Another common range of I2C devices are those used for displays. Of
these, the range of backpack boards for matrix and seven-segment LED
displays from Adafruit are typical. They contain an LED display mounted
on a circuit board that also has an I2C LED controller chip on it. This setup
reduces the normally large number of Arduino I/O pins required for con-
trolling an LED display with just the two I2C SDA and SCL pins.

These devices (top row of Figure 9-1) are used with a pair of libraries
that provide a comprehensive set of functions for displaying graphics
and text on Adafruit’s range of LED backpacks. You can find out more
about these colorful and interesting devices here: www.adafruit.com/
products/902.

Figure 9-7 Serial Monitor output for Arduino to Arduino over I2C.

09_Ch09.indd 164 9/2/18 5:26 PM

http://www.adafruit.com/products/902
http://www.adafruit.com/products/902

 Chapter 9: Using I2C 165

Once you’ve installed the libraries, all the I2C communication is hidden
away, and you can just use high-level commands as illustrated by the fol-
lowing code taken from the libraries’ example sketches:

#include <Wire.h>
#include "Adafruit_LEDBackpack.h"
#include "Adafruit_GFX.h"
Adafruit_8x8matrix matrix = Adafruit_8x8matrix();

void setup()
{
 matrix.begin(0x70);
 matrix.clear();
 matrix.drawLine(0,0, 7,7, LED_RED);
 matrix.writeDisplay();
}

DS1307 Real-Time Clock
Another common I2C device is the DS1307 RTC chip. This chip also has a
well-used and reliable Arduino library to simplify it and hide the actual
I2C messages. The library is called RTClib and can be downloaded from
here: https://github.com/adafruit/RTClib.

The fragments of code are, again, taken from the examples supplied
with the library.

#include <Wire.h>
#include "RTClib.h"

RTC_DS1307 RTC;

void setup () {
 Serial.begin(9600);
 Wire.begin();
 RTC.begin();

 if (! RTC.isrunning()) {
 Serial.println("RTC is NOT running!");
 // sets the RTC to the date & time this sketch was compiled
 RTC.adjust(DateTime(__DATE__, __TIME__));
 }
}

09_Ch09.indd 165 9/2/18 5:26 PM

https://github.com/adafruit/RTClib

166 Programming Arduino Next Steps

void loop () {
 DateTime now = RTC.now();
 Serial.print(now.year(), DEC);
 Serial.print('/');
 Serial.print(now.month(), DEC);
 Serial.print('/');
 Serial.print(now.day(), DEC);
 Serial.print(' ');
 Serial.print(now.hour(), DEC);
 Serial.print(':');
 Serial.print(now.minute(), DEC);
 Serial.print(':');
 Serial.print(now.second(), DEC);
 Serial.println();
 delay(1000);
}

If you want to see the actual I2C code, then you can open the library
files and look at how they work. For example, you’ll find the RTClib
library in the files RTClib.h and RTClib.cpp. These files are in the folder
libraries/RTClib.

For example, you can find the function definition for now in RTClib
.cpp:

DateTime RTC_DS1307::now() {
 Wire.beginTransmission(DS1307_ADDRESS);
 Wire.write(i);
 Wire.endTransmission();

 Wire.requestFrom(DS1307_ADDRESS, 7);
 uint8_t ss = bcd2bin(Wire.read() & 0x7F);
 uint8_t mm = bcd2bin(Wire.read());
 uint8_t hh = bcd2bin(Wire.read());
 Wire.read();
 uint8_t d = bcd2bin(Wire.read());
 uint8_t m = bcd2bin(Wire.read());
 uint16_t y = bcd2bin(Wire.read()) + 2000;

 return DateTime (y, m, d, hh, mm, ss);
}

The values that are read over I2C are in binary-coded decimal (BCD),
which must be converted into bytes using the bcd2bin function in the
library.

09_Ch09.indd 166 9/2/18 5:26 PM

 Chapter 9: Using I2C 167

BCD splits a byte into two 4-bit nibbles (yes, really). Each nibble repre-
sents one digit of a two-digit decimal number. So the number 37 is repre-
sented in a BCD byte as 0011 0111. The first four bits being decimal 3 and
the second four bits 7.

Summary
In this chapter, you have learned about I2C and how to use it with an
Arduino to communicate with peripherals and other Arduinos.

In the next chapter, we examine another type of serial bus interface
that is used to communicate with peripherals. This interface, called
1-Wire, is not as widely used as I2C, but is used in the popular DS18B20
temperature sensor.

09_Ch09.indd 167 9/2/18 5:26 PM

09_Ch09.indd 168 9/2/18 5:26 PM

169

10
Interfacing with
1-Wire Devices

1-Wire is a bus standard designed to serve a similar purpose to the I2C
bus (see Chapter 9)—that is, to allow microcontrollers to communicate
with peripheral ICs with a minimal number of data lines. The 1-Wire
standard created by Dallas Semiconductor has taken this to its logical
extreme by reducing the data lines used to just one. The bus is slower
than I2C, and it has the interesting feature of parasitic power, which allows
remote devices to be connected to a microcontroller with just two wires,
GND (ground), and combined power and data wire.

The 1-Wire bus standard has a much smaller range of potential devices
than I2C, most manufactured by Dallas Semiconductor or Maxim. They
include printer cartridge identity devices, EEPROM flash memory, and
analog-to-digital converters (ADCs). However, the most commonly used
1-Wire device for hobbyists is the Dallas Semiconductor DS18B20
temperature sensor.

1-Wire Hardware
Figure 10-1 shows how you can connect a DS18B20 to an Arduino using
just two connections and the DS18B20’s parasitic power mode.

1-Wire is a bus, rather than a point-to-point connection, and you can
chain together up to 255 devices using the arrangement shown in Figure 10-1.

10_Ch10.indd 169 9/2/18 5:27 PM

170 Programming Arduino Next Steps

If you wish to use the device in “normal” power mode, then you can omit
the 4.7 kΩ resistor and connect Vdd on the DS18B20 directly to 5V from the
Arduino instead of to GND.

The 1-Wire Protocol
Just as with I2C, 1-Wire uses the master and slave concept for devices. The
microcontroller is the master and the peripherals are the slaves. Each slave
device is given a unique ID known as its “address” during manufacturing,
so it can be identified on the bus when there are multiple slaves. This
address is 64 bits in length, allowing for roughly 1.8×1019 different IDs.

The protocol is similar to I2C in that the bus line is switched from being
an input to being an output by the master to allow two-way communica-
tion. However, rather than have separate clock and data signals, 1-Wire
has just a single data line and uses long and short pulses to signify 1s and
0s. A pulse of 60 µS signifies a 0 and 15 µS indicates a 1.

The data line is normally HIGH, but when the microcontroller (master)
needs to send a command to the device, it sends a special “reset” LOW pulse
of at least 480 microseconds. The stream of 1 and 0 pulses then follow this.

The OneWire Library
The use of 1-Wire is greatly simplified by the OneWire library, which you
can download from http://playground.arduino.cc/Learning/OneWire.

Figure 10-1 Connecting a 1-Wire device to an Arduino.

DS18B20

5V

D10 DQ

Vdd
4.7 k

GND

GND

Arduino

10_Ch10.indd 170 9/2/18 5:27 PM

http://playground.arduino.cc/Learning/OneWire

 Chapter 10: Interfacing with 1-Wire Devices 171

Initializing 1-Wire
The first step in using an Arduino as the master on a 1-Wire bus is to
import the OneWire library using this command:

#include <OneWire.h>

The next step is to create an instance of OneWire and specify the Ardu-
ino pin to be used for the 1-Wire data bus. You can combine these into a
single command, and you can use any Arduino pin for the bus; simply
supply the pin number as the parameter:

OneWire bus(10);

In the example, the bus will be initialized on pin D10 of the Arduino.

Scanning the Bus
Because each slave device on the bus is allocated a unique ID during man-
ufacturing, you need a way to find the devices on the network. It would be
unwise to hard-code device addresses into the Arduino sketch because if
you were to replace one of the slave devices, the new device would have a
different address than the old one and you wouldn’t be able to use it. So the
master (Arduino) can essentially produce a list of the devices on the bus.
What is more, the first 8 bits of the address indicate the “family” of device,
so you can tell if the device is, say, a DS18B20 or some other type of device.

Table 10-1 lists some of the most common family codes for 1-Wire. You
can find a more complete list here: http://owfs.sourceforge.net/family
.html.

Family Code
(Hexadecimal) Device Family Description

06 iButton 1993 Identity button chip

10 DS18S20 Precision temperature sensor (9-bit resolution)

28 DS18B20 Precision temperature sensor (12-bit resolution)

1C DS28E04-100 4 kB EEPROM

Table 10-1 Family Codes for 1-Wire Addresses

10_Ch10.indd 171 9/2/18 5:27 PM

http://owfs.sourceforge.net/family.html
http://owfs.sourceforge.net/family.html

172 Programming Arduino Next Steps

The OneWire library has a search function that you can use to find all
the slave devices on the bus. The following example code lists the addresses
of all the devices on the bus to the Serial Monitor:

// sketch_10_01_OneWire_List

#include <OneWire.h>

OneWire bus(10);

void setup()
{
 Serial.begin(9600);
 byte address[8]; // 64 bits
 while (bus.search(address))
 {
 for(int i = 0; i < 7; i++)
 {
 Serial.print(address[i], HEX);
 Serial.print(" ");
 }
 // checksum OK or Fail
 if (OneWire::crc8(address, 7) == address[7])
 {
 Serial.println(" CRC OK");
 }
 else
 {
 Serial.println(" CRC FAIL");
 }
 }
}

void loop()
{
}

Figure 10-2 shows the result of running this sketch with two DS18B20
temperature sensors attached to an Arduino. Note that for both devices,
the “family” code is contained in the first byte and is 28 (hexadecimal) in
both cases.

10_Ch10.indd 172 9/2/18 5:27 PM

 Chapter 10: Interfacing with 1-Wire Devices 173

The search function requires an array of 8 bytes in which to put the next
address that it finds. If no more devices are to be found, it will return 0. This
allows the while loop in the previous example to keep iterating until all the
addresses have been displayed. The last byte of the address is actually
a cyclic redundancy check (CRC) that ensures the integrity of the address.
The OneWire library includes a CRC checking function.

Using the DS18B20
The following example illustrates the use of OneWire with the DS18B20
temperature sensor. Figure 10-3 shows a DS18B20 chip connected to an
Arduino. Note how the chip itself is just a three pin transistor-like chip.
This sensor is also available as a waterproof probe lead.

The Dallas Semiconductor temperature sensor has its own library that
makes requesting the temperature and decoding the result easier. The
DallasTemperature library can be downloaded from here: https://github
.com/milesburton/Arduino-Temperature-Control-Library.

// sketch_10_02_OneWire_DS18B20

#include <OneWire.h>
#include <DallasTemperature.h>

const int busPin = 10;

OneWire bus(busPin);
DallasTemperature sensors(&bus);

Figure 10-2 Listing 1-Wire slave devices.

10_Ch10.indd 173 9/2/18 5:27 PM

https://github.com/milesburton/Arduino-Temperature-Control-Library
https://github.com/milesburton/Arduino-Temperature-Control-Library

174 Programming Arduino Next Steps

DeviceAddress sensor;

void setup()
{
 Serial.begin(9600);
 sensors.begin();
 if (!sensors.getAddress(sensor, 0))
 {
 Serial.println("NO DS18B20 FOUND!");
 }
}

void loop()
{
 sensors.requestTemperatures();
 float tempC = sensors.getTempC(sensor);
 Serial.println(tempC);
 delay(1000);
}

Figure 10-3 A DS18B20 connected to an Arduino.

10_Ch10.indd 174 9/2/18 5:27 PM

 Chapter 10: Interfacing with 1-Wire Devices 175

This example displays the temperature in Celsius from a single tempera-
ture sensor in the Serial Monitor window (Figure 10-4).

This example uses just one temperature sensor, but you can easily
extend it to use multiple sensors. The DallasTemperature library wraps
the OneWire address discovery process in the getAddress function, the
second parameter of which is the index position of the sensor. To add a
second sensor, you need to add a new variable for its address and then set
that address using getAddress. You can download an example of using
two sensors from the book’s website as sketch_08_03_OneWire_
DS18B20_2. Since every DS18B20 has a unique address, you can also use
it as an identifier for the Arduino that it is connected to.

Summary
In this chapter, you learned a little about the 1-Wire bus and how to use it
with the popular DS18B20 temperature sensor.

In the next chapter, we look at yet another kind of serial data interface
called SPI.

Figure 10-4 Displaying the temperature using a DS18B20.

10_Ch10.indd 175 9/2/18 5:27 PM

10_Ch10.indd 176 9/2/18 5:27 PM

177

11
Interfacing with

SPI Devices

The Serial Peripheral Interface (SPI) bus is yet another serial bus stan-
dard that you can use to connect peripherals to your Arduino. It is fast
but uses four pins compared with the two that I2C uses. SPI is not actu-
ally a true bus, as the fourth pin is a Save Select (SS) pin. One Arduino
pin must be used for SS for each peripheral on the bus. This setup effec-
tively addresses the right peripheral on the bus by turning all the other
peripherals off.

A wide range of SPI devices are available, including many of the same
type of devices available for I2C. It is not uncommon for peripherals to
have both I2C and SPI interfaces.

Bit Manipulation
SPI interfacing tends to involve a lot of bit manipulation to get data on and
off the bus. The first example project (using an MCP3008 ADC IC), in par-
ticular, requires a good understanding of how to shuffle bits along and
mask the ones you don’t want in order to extract an integer value for the
analog reading. For this reason, you may wish to review Chapter 8 before
continuing with this chapter.

11_Ch11.indd 177 9/2/18 5:28 PM

178 Programming Arduino Next Steps

SPI Hardware
Figure 11-1 shows a typical configuration for an Arduino with two slave
devices.

On the Arduino, the System Clock (SCLK), Master Out Slave In (MOSI),
and Master In Slave Out (MISO) are linked to the Arduino pins of the
same name, which map to pins D13, D11, and D12 on an Arduino Uno.
Table 11-1 lists the pin assignments on the most common Arduino boards.

The Slave select pins can be any pins on the Arduino. They are used to
enable a particular slave just before data transmission and then disable it
after communication is complete.

No pull-up resistors are required on any of the lines.
Because some Arduino boards, including the Leonardo, only have SPI

connectors that are accessible from the ICSP header pins, shields that use

Figure 11-1 Arduino and two slave SPI devices.

Slave
1

SCLK

MOSI

MISO

D2

D3

Arduino

Slave
2

SS

SS

Board SCLK MOSI MISO

Uno 13 (ICSP3) 11 (ICSP4) 12 (ICSP1)

Leonardo ICSP3 ICSP4 ICSP1

Mega2560 52 (ICSP3) 51 (ICSP4) 50 (ICSP1)

Due ICSP3 ICSP4 ICSP1

Table 11-1 SPI Connections on Arduino Boards

11_Ch11.indd 178 9/2/18 5:28 PM

 Chapter 11: Interfacing with SPI Devices 179

SPI often have a socket header, which you can use to gain access to the SPI
pin that meets the ICSP male header. Figure 11-2 shows the ICSP header
with the ICSP headers labeled.

Note that the Arduino Uno has a second ICSP header near the reset but-
ton. This is for programming the USB interface and doesn't relate to SPI
use for the main processor.

The SPI Protocol
The SPI protocol is, at first sight, confusing because data is transmitted
and received at the same time by both the master and the currently selected
slave. At the same time that the master (Arduino) sends a bit from its
MOSI pin to the corresponding MOSI pin on the slave, another bit is being
sent back from the Slave’s MISO pin to the Arduino’s MISO pin.

Typically, the Arduino sends a byte’s worth of bits and then sends
eight zeros while, at the same time, reading the results coming back from
the slave.

Figure 11-2 Arduino Uno and ICSP connections.

MISO

SCLK

Reset

5V

MOSI

GND

11_Ch11.indd 179 9/2/18 5:28 PM

180 Programming Arduino Next Steps

The SPI Library
The SPI library is included with Arduino IDE, so you do not need to install
anything to use it. It only supports Arduino-as-master scenarios. The
library also only directly supports transmission of whole bytes. For most
peripherals, this setup is just fine; however, some devices expect 12-bit
messages, which can result in some complicated bit manipulation as you’ll
see in the example in the next section of this chapter.

The first step is to include the SPI library:

#include <SPI.h>

Next, you need to start SPI by issuing the SPI.begin command in your
“startup” function.

void setup()
{
 SPI.begin();
 pinMode(chipSelectPin, OUTPUT);
 digitalWrite(chipSelectPin, HIGH);
}

You also need to set up digital outputs for each of the SS pins to the
slave devices. These outputs can be any Arduino pins. Having set them to
be outputs, you need to set them to HIGH immediately because the slave
select logic is inverted, so a LOW means the slave is selected.

The Due has extended the SPI library so you can specify one pin to be
used for slave selecting, and then the library automatically sets this LOW
before transmission and then HIGH after transmission is complete. You
can use this feature simply by specifying the pin to use as the only argu-
ment to SPI.begin. The disadvantage of doing it this way, however, is that
it breaks compatibility with other Arduino boards. In the examples in this
chapter, all the slave select pins are controlled manually and are, therefore,
suitable for all Arduino boards.

A number of utility functions allow you to configure the SPI connec-
tion. However, the defaults will normally work, so you only need to
change these settings if the datasheet for the slave device leads you to
believe they might need changing. These functions are summarized in
Table 11-2.

11_Ch11.indd 180 9/2/18 5:28 PM

 Chapter 11: Interfacing with SPI Devices 181

The combined data send and receive happens in the transfer function.
This function transfers a byte of data and returns the byte of data that it
received during the send operation.

byte sendByte = 0x23;
byte receiveByte = SPI.transfer(sendByte);

Because a conversation with a peripheral usually takes the form of the
master requesting something from the slave and the slave responding,
you’ll often have two transfers in order: one to request the data and the
other (a send, probably of 0s) to pull back the data from the peripheral.
You’ll see this in the next example.

SPI Example
This example interfaces a MCP3008 eight-channel ADC IC to an Arduino,
adding another eight 10-bit analog inputs to your Arduino. The chip is
low cost and easy to wire.

Figure 11-3 shows the chip wired to the Arduino using breadboard and
jumper wires. The variable resistor (pot) is used to vary the voltage to
analog input 0 between 0 and 5V.

Following is the sketch for this example:

// sketch_11_01_SPI_ADC

#include <SPI.h>

Function Description

SPI.setClockDivider(SPI_CLOCK_DIV64) Divide the default clock frequency of 4 MHz
by 2, 4, 8, 16, 32, 64, or 128.

SPI.setBitOrder(LSBFIRST) Set the bit order to LSBFIRST or
MSBFIRST. The default is MSBFIRST.

SPI.setDataMode(SPI_MODE0) The possible values for this function are
SPI_MODE0 to 3. This determines the
polarity and phase of the clock signal. Un-
der normal circumstances, you do not need
to change this, unless the datasheet indicates
a particular mode for the device.

Table 11-2 Configuration Functions

11_Ch11.indd 181 9/2/18 5:28 PM

182 Programming Arduino Next Steps

const int chipSelectPin = 10;

void setup()
{
 Serial.begin(9600);
 SPI.begin();
 pinMode(chipSelectPin, OUTPUT);
 digitalWrite(chipSelectPin, HIGH);
}

void loop()
{
 int reading = readADC(0);
 Serial.println(reading);
 delay(1000);
}

int readADC(byte channel)
{
 unsigned int configWord = 0b11000 | channel;
 byte configByteA = (configWord >> 1);
 byte configByteB = ((configWord & 1) << 7);
 digitalWrite(chipSelectPin, LOW);
 SPI.transfer(configByteA);
 byte readingH = SPI.transfer(configByteB);
 byte readingL = SPI.transfer(0);
 digitalWrite(chipSelectPin, HIGH);

// printByte(readingH);
// printByte(readingL);

 int reading = ((readingH & 0b00011111) << 5) + ((readingL & 0b11111000) >> 3);

 return reading;
}

void printByte(byte b)
{
 for (int i = 7; i >= 0; i--)
 {
 Serial.print(bitRead(b, i));
 }
 Serial.print(" ");
}

The function printByte was just used during development to display
the binary data. Although Serial.print can display binary values, it does
not include leading zeros, which makes interpreting the data difficult,
whereas the printByte function always prints all 8 bits.

11_Ch11.indd 182 9/2/18 5:28 PM

 Chapter 11: Interfacing with SPI Devices 183

To see the data coming from the MCP3008, you can remove the // before
the two calls to printByte and the binary data you are interested in will be
displayed.

All the interesting code happens in the readADC function, which takes
the ADC channel (0 to 7) as its parameter. The first thing you need to do is to
use some bit manipulation to create the configuration byte that specifies the
kind of analog conversion you want to perform and also the channel you
want to use.

The chip is capable of two ADC operation modes. One mode is to compare
two analog channels, and the second mode (which this example uses) returns
the single-ended reading from the channel specified, just like an Arduino ana-
log input. The datasheet for the MCP3008 (http://ww1.microchip.com/
downloads/en/DeviceDoc/21295d.pdf) specifies that the configuration
command needs to set four bits: the first bit needs to be 1 for single-ended
mode; the next three bits determine the channel (0 to 7) to use.

The MCP3008 is not designed for the byte-at-a-time way in which the
SPI library works. In order for the MCP3008 to recognize these 4 bits, we
have to split them across 2 bytes. Here’s the code for doing this:

Figure 11-3 Wiring diagram for SPI example.

RESET
3V3

PO
W

E
R

5V

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
IT

A
L

A
rd

u
in
o

8
7

6
5

4
3

2
1

0

AREF
GND

PWM

PWRSEL

PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

U
SB

E
X

T

PW
R

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.a
rd

u
in
o.
cc

ABCDEFGHIJ
1

5
10

15
20

25
30

10
15

20
25

30

M
C

P3008

11_Ch11.indd 183 9/2/18 5:28 PM

http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf

184 Programming Arduino Next Steps

unsigned int configWord = 0b11000 | channel;
byte configByteA = (configWord >> 1);
byte configByteB = ((configWord & 1) << 7);

The first byte of the configuration message contains two 1s, the first of
which may not be needed and the second 1 corresponding to the mode bit
(single-ended). The other 2 bits in this byte are the most significant 2 bits
of the analog channel number. The remaining bit of this number is in the
second configuration byte as its most significant bit.

The next line sets the SS line for the chip LOW to enable it.

digitalWrite(chipSelectPin, LOW);

After that, the first configuration byte is sent:

SPI.transfer(configByteA);
 byte readingH = SPI.transfer(configByteB);
 byte readingL = SPI.transfer(0);
 digitalWrite(chipSelectPin, HIGH);

The analog data will not start arriving until the second configuration
byte is sent. The 10 bits of data from the ADC are split across 2 bytes, so to
flush out the remaining data, a call is made to “transfer” sending a byte
load of zeros.

The SS output is now set HIGH as the communication is now complete.
Finally, the actual 10-bit analog reading value is calculated using the

following line:

int reading = ((readingH & 0b00011111) << 5)
 + ((readingL & 0b11111000) >> 3);

Each of the 2 bytes has 5 of the 10 bytes of data in it. The first byte contains
these bits in its least significant 5 bits. All the bits apart from those 5 are
masked out and shifted five positions up in the 16-bit int. The lower byte
contains the remainder of the reading in its most significant five digits.
These must be masked and shifted right by three bit positions before they
can also be added into the 16-bit int.

To test this, open the Serial Monitor. You should see some data appear.
If you sweep the slider of the pot clockwise from 0 to 5V, you should see
something similar to what’s shown in Figure 11-4. The first two binary

11_Ch11.indd 184 9/2/18 5:28 PM

 Chapter 11: Interfacing with SPI Devices 185

numbers are the 2 bytes from the MCP3008 and the final decimal number
is the analog reading between 0 and 1023.

Summary
Interfacing with SPI when no library is available is by no means easy. You
will sometimes need to perform a little trial and error to get things going.
As with any type of debugging, always start by gathering evidence and
examining the data that you are receiving. You will slowly get a picture of
what is happening and then be able to tailor your code to produce the
desired results.

The next chapter examines the final interface standard supported by
the Arduino, that of TTL Serial. This standard is a point-to-point interface
rather than a bus, but nonetheless a much-used and handy mechanism for
sending and receiving data.

Figure 11-4 Viewing the messages in binary.

11_Ch11.indd 185 9/2/18 5:28 PM

11_Ch11.indd 186 9/2/18 5:28 PM

187

12
Serial UART Programming

You should already be fairly familiar with the serial interface. You use it
when you program your Arduino board, and you also use it to communi-
cate with the Serial Monitor to send data back and forth to the Arduino
from your computer. As well as communicating via the USB interface, you
can also communicate directly to the serial interface. The direct interface
that skips the USB connection is often referred to as TTL Serial, or just
Serial. TTL is a reference to Transistor-Transistor Logic, a now redundant
technology that used 5V logic levels.

Serial communication, of this kind, is not a bus. It is point-to-point com-
munication. Only two devices are involved—generally an Arduino and a
peripheral.

Peripherals that use TTL Serial rather than I2C or SPI tend to be larger
devices or devices that have been around for a long time and traditionally
always had a TTL Serial interface. This also includes devices originally
intended to be connected to the serial port of a PC. Examples include GPS
modules, multimeters with data logging features, and barcode and RFID
readers.

Serial Hardware
Figure 12-1 shows the serial hardware for the Arduino Uno.

The ATmega328 on the Arduino Uno has two pins Rx and Tx (Receive
and Transmit, respectively). These also double as pins D0 and D1, but if

12_Ch12.indd 187 9/2/18 5:31 PM

188 Programming Arduino Next Steps

you use them as general I/O pins, you will probably find that you cannot
program your Arduino while they are attached to external electronics.

These Rx and Tx pins are the serial interface of the hardware Universal
Asynchronous Receiver Transmitter (UART) on the ATmega328. This part
of the microcontroller is responsible for sending and receiving bytes of
data from and to the microcontroller.

The Uno has a separate processor that acts as a USB-to-serial interface.
As well as electrical differences in the serial signal, the USB bus also has a
much more complicated protocol than serial and so it does a fair bit of
work behind the scenes so it appears the serial port of the ATmega328 is
communicating directly with your computer.

The Arduino Leonardo does not have a separate chip to act as a USB
interface; rather it uses an ATmega chip that includes two UARTs and a
built-in USB interface (Figure 12-2).

One of the UARTs is dedicated to the USB interface and the other is con-
nected to the Rx and Tx pins (D0 and D1). This gives you the advantage of
connecting the Tx and Rx to other electronics and still being able to pro-
gram the Arduino and send data to the Serial Monitor.

Other Arduino boards have differing quantities and arrangements of
serial ports. These are summarized in Table 12-1. Note that some Arduinos
such as the m0 and Due operate their serial ports at 3.3V rather than 5V.

Arduino Uno

ATmega328 UART

Tx

Rx/D0 Tx/D1

USB
interface

Computer

Rx

Figure 12-1 Arduino Uno serial hardware.

12_Ch12.indd 188 9/2/18 5:31 PM

 Chapter 12: Serial UART Programming 189

Arduino compatible boards such as those based on the ESP32 or
ESP8266 generally have dedicated serial pins labeled TX and RX.

TTL Serial has a relatively short range (a few feet), especially if you use
it at a high baud rate. For communicating over longer distances, an electri-
cal standard called RS232 has been defined. Until perhaps the last decade,
you could commonly find PCs with RS232 serial ports. The RS232 stan-
dard changes the signal levels, making them more suitable for traveling a
greater distance than with TTL Serial.

Board
Number of
Serial Ports Details

Uno 1 Rx is D0 and Tx is D1. These ports are also used by USB.

Leonardo 2 Dedicated USB. Second serial port. Rx is D0 and Tx is D1

Mega2560 4 USB uses D0 and D1. Three other ports: Serial1 on pins
19 (Rx) and 18 (Tx), Serial2 on pins 17 (Rx) and 16 (Tx),
Serial3 on pins 15 (Rx) and 14 (Tx).

Due 4 Dedicated USB. Serial port 0 uses D0 (Rx) and D1 (Tx).
Three other ports: Serial1 on pins 19 (Rx) and 18 (Tx), Se-
rial2 on pins 17 (Rx) and 16 (Tx), Serial3 on pins 15 (Rx)
and 14 (Tx).

NodeMCU/
Wemos
D1 Mini
(ESP8266)

1.5 As well as the usual Serial TX and Rx pins that will be
shared with the USB interface, the ESP8266 also has a
second serial interface (Serial1) available on pin GPIO2
that can only be used for incoming data.

Lolin32
(ESP32)

3 Serial port 0 is connected to the USB interface, but any of
the ESP32's GPIO pins can be mapped to use with two
other hardware serial ports.

Table 12-1 UART Serial Interfaces by Arduino Board

Figure 12-2 Arduino Leonardo serial hardware.

Arduino Leonardo

ATmega32u4

UART 1/USB

UART 0/USB

Rx/D0 Tx/D1

Computer

12_Ch12.indd 189 9/2/18 5:31 PM

190 Programming Arduino Next Steps

Serial Protocol
The Serial protocol and much of the terminology around it dates back to the
early days of computer networking. Both the sender and receiver have to
agree on a speed at which to exchange data. This speed, called the baud
rate, is set at both ends before communication begins. The baud rate is the
number of signal transitions per second, which would be the same as the
number of bits per second, were it not for the fact that a byte of data may
have start, end, and parity bits. So, as a rough approximation, if you divide
the baud rate by 10, you’ll know about how many bytes per second you
can transfer.

Baud rates are selected from a number of standard baud rates. You may
have seen these on the Serial Monitor drop-down list on the Arduino IDE.
The baud rates used by the Arduino software are: 300, 1200, 4800, 9600,
14400, 19200, 28800, 38400, 57600, and 115200 baud.

The most commonly used baud rate for the Arduino is probably 9600,
which tends to be the default baud rate. There is no particularly good rea-
son for this as the Arduino communicates reliably at 115200 baud. For
projects that require really fast data transfer, this rate will be used. Another
common rate is 2400 baud. Some peripherals such as Bluetooth serial
adaptors and GPS hardware use this rate.

Another rather confusing Serial connection parameter that you might
encounter is a string of characters like this: 8N1. This string means 8 bits
per packet, No parity checking, and 1 stop bit. Although other combina-
tions are possible, almost any device that you are likely to encounter will
be 8N1.

The Serial Commands
The Serial commands are not contained in a library, so you do not need an
include command in your sketch.

Start serial communication using the command Serial.begin, which
takes the baud rate parameter:

Serial.begin(9600)

This is called just once in the setup function.

12_Ch12.indd 190 9/2/18 5:31 PM

 Chapter 12: Serial UART Programming 191

If you are using an Arduino board like the Mega or Due that has more
than one serial port, and if you are using the default port (port 0), you just
use the Serial.begin command. If you are using one of the other ports,
however, then put the number after the word Serial. For example, to start
communication on serial port 3 on an Arduino Due, you would write the
following in your sketch:

Serial3.begin(9600);

The ESP32 has a more elegant way of setting up its multiple serial ports,
using a library called HardwareSerial (included with the ESP32 core), as
the example below shows:

include <HardwareSerial.h>
HardwareSerial portOne(1);
void setup()
{
 portOne.begin(9600, SERIAL_8N1, 16, 17);
}

A variable is first created for the serial port specifying the ESP32 hard-
ware port to use (in this case 1). When you call begin on this serial port, as
well as the baud rate and format (8N1) you also specify the RX and TX
pins to be used (in this case 16 and 17 respectively).

Once Serial.begin has been called, the UART will listen for incoming
bytes and automatically store them in a buffer, so even if the processor is
busy doing other things, the bytes will not be lost as long as the buffer
does not overflow. Buffer overflow occurs when bytes are being received
faster than they are being read. The Arduino Uno only reserves 64 bytes of
buffer in each direction.

Your loop function can check for incoming bytes of data using the
Serial.available function. This function returns the number of bytes avail-
able for reading. If no bytes are available, then it returns 0. This equates to
“false” in C, so you will often see code like this that tests for available data:

void loop()
{
 if (Serial.available())
 {
 // read and process the next byte
 }
}

12_Ch12.indd 191 9/2/18 5:31 PM

192 Programming Arduino Next Steps

The “read” function takes no arguments and simply reads the next
available byte from the buffer.

The readBytes function reads available bytes into a buffer within the
sketch, as opposed to the buffer used by the UART. It takes two argu-
ments: the buffer to fill (this should be a reference to an array of bytes) and
the maximum number of bytes to read. This argument can be useful if you
have a project that needs to send variable length strings to the Arduino. In
general, it is better to avoid this, however, and try to make any communi-
cation to an Arduino of a fixed length and as simple as possible.

The parseInt and parseFloat functions can be convenient, as they allow
strings sent to the Arduino to be read as numbers into int and float variables,
respectively.

void loop()
{
 if (Serial.available())
 {
 int x = parseInt();
 }
}

Both functions read characters until they run out or reach a space or other
non-numeric character and then turn the string into a numeric value.

Before using functions like parseInt and parseFloat, make sure you
understand why you are doing this. I have seen code that people have
written converting an int into an array of characters, that sends the array
of characters to a second Arduino, which then turns the array back into an
int. There are a number of reasons why this is not a good idea:

• It is unnecessary. Serial communication sends binary just fine. All
that is required is to send the upper and lower bytes of the int,
putting them into the upper and lower bytes of a new int on receipt.

• Converting numbers into strings and vice versa is slow.

• The serial link may be passing six characters of data (including the
null terminator) rather than the 2 bytes of an int.

If the device you are interfacing with is outside of your control and the
designer’s protocol uses strings to hold numbers, or has variable length
fields of data, then these functions can be useful. Otherwise, if the

12_Ch12.indd 192 9/2/18 5:31 PM

 Chapter 12: Serial UART Programming 193

protocol is completely under your control, make life easy for yourself and
avoid the unnecessary complexity of converting types and variable-
length messages of different formats.

The examples in the “Serial Examples” section, later in this chapter, also
serve as templates for designing your own communication code.

Serial has a lot of functions, many of which you’ll never need to use.
The most handy have been covered here. For the rest, please refer to the
Arduino Serial documentation here: http://arduino.cc/en/Reference/
Serial.

The SoftwareSerial Library
Sometimes, especially when using an Arduino Uno, having just one serial
port is not enough. The SoftwareSerial library allows you to use almost
any pair of pins for serial communication, but with a few limitations:

• You can only receive data from one SoftwareSerial port at a time.

• You may have trouble using it if your sketch uses timer or external
interrupts.

The functions available mirror those of Serial and, in some respects,
are better thought out. SoftwareSerial includes support for serial com-
munication for devices that use inverted signals, such as the MaxSonar
rangefinders. You also create a SoftwareSerial object for each connection,
which is cleaner than the standard Arduino approach of putting a num-
ber after the word Serial.

Table 12-2 shows the pin allocations you can use with SoftwareSerial
for the Uno and Leonardo boards. If you are using a bigger board with
four hard serial ports, you are unlikely to need SoftwareSerial. Unless pre-
fixed with an A, the pin numbers refer to digital pins.

Board Pins for Tx Pins for Rx

Uno Any, except 0 and 1 Any, except 0 and 1

Leonardo Any, except 0 and 1 8, 9, 10, 11, 14 (MISO), 15 (SCK), 16 (MOSI)

Table 12-2 Pin Usage for SoftwareSerial by Arduino Board

12_Ch12.indd 193 9/2/18 5:31 PM

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Reference/Serial

194 Programming Arduino Next Steps

When starting a SoftwareSerial connection, specify the Rx and Tx pins
as the two parameters when creating a SoftwareSerial object. Then use
begin with a baud rate as a parameter to start communication:

#include <SoftwareSerial.h>

SoftwareSerial mySerial(10, 11); // RX, TX

void setup()
{
 mySerial.begin(9600);
 mySerial.println("Hello, world?");
}

You can find full documentation for the SoftwareSerial library here:
http://arduino.cc/en/Reference/SoftwareSerial.

Serial Examples
This section includes a mix of UART and SoftwareSerial usage examples.

Computer to Arduino over USB
This first example uses the Serial Monitor to send commands to an Ardu-
ino. The Arduino will also send analog readings from A0 once per second,
while, at the same time, looking for single-character incoming messages of
g for “go” or s for “stop” to control the flow of readings. Figure 12-3 shows
the Serial Monitor while this sketch is running.

Figure 12-3 The Serial Monitor communicating with Arduino.

12_Ch12.indd 194 9/2/18 5:31 PM

http://arduino.cc/en/Reference/SoftwareSerial

 Chapter 12: Serial UART Programming 195

In this situation, because the readings from the Arduino are going to be
displayed directly in the Serial Monitor window, the readings may as well
be sent as text rather than binary.

Here is the sketch for this example:

// sketch_12_01_PC_to_Arduino

const int readingPin = A0;

boolean sendReadings = true;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 if (Serial.available())
 {
 char ch = Serial.read();
 if (ch == 'g')
 {
 sendReadings = true;
 }
 else if (ch == 's')
 {
 sendReadings = false;
 }
 }
 if (sendReadings)
 {
 int reading = analogRead(readingPin);
 Serial.println(reading);
 delay(1000);
 }
}

The loop tests for incoming serial data, and if there is any, it reads one
byte as a character. This byte is then compared to the ‘s’ and ‘g’ commands
and a status variable, sendReadings, is set accordingly.

The sendReadings variable is then used to determine if the reading
should be made and then printed. If the sendReadings flag is true, then
there is a one second delay before the next reading is sent.

Using delay means that sendReadings can only be changed the next
time around the loop. This is not a problem for this sketch, but in other

12_Ch12.indd 195 9/2/18 5:31 PM

196 Programming Arduino Next Steps

circumstances you might need a better solution that does not block the
loop. See Chapter 16 for more discussion on this kind of thing.

Arduino to Arduino
This second example illustrates the sending of data from one Arduino
Uno to another over a serial connection. In this case, readings from A1 of
one Arduino are transmitted to the second Arduino, which then uses them
to control the flashing rate of the built-in “L” LED.

The Arduinos are wired together as shown in Figure 12-4.
One Arduino’s Tx should be connected to the Rx of the other and vice-

versa. In this example, both the Arduinos are using the SoftwareSerial
library with pin 8 used as Rx and pin 9 as Tx.

The GND connections of the two Arduinos need to be connected, as do
the 5V pins as you want to use the sending Arduino to power the receiv-
ing Arduino. The sending Arduino has a trimpot (small variable resistor)

IOREF
RESET
3V3

PO
W

E
R

5V

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
IT

A
L

A
rd

u
in
o

U
N
O

8
7

6
5

4
3

2
1

0

SCL
SDA

AREF
GND

PWM
PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

O
N

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.a
rd

u
in
o.
cc

IOREF
RESET
3V3

PO
W

E
R

5V

R
X

T
X

L

1
1

1
1

3
2

1
0

9
D

IG
ITA

L

A
rd

u
in
o

U
N
O

8
7

6
5

4
3

2
1

0

SCL
SDA

AREF
GND

PWM
PWM
PWM

PWM
PWM

PWM

TX
RX

A
N

A
L

O
G

 IN

IC
SP

O
N

0
G

nd
V

in
1

2
3

4
5

1

w
w
w
.ard

u
in
o.cc

Sending Arduino
(Powered)

Receiving Arduino

Figure 12-4 Two Arduino Unos communicating over serial.

12_Ch12.indd 196 9/2/18 5:31 PM

 Chapter 12: Serial UART Programming 197

pushed into pins A0 to A2. By setting A0 and A2 to be outputs and then
setting A2 HIGH, you can vary the voltage at A1 between 0 and 5V by
rotating the knob on the trimpot to control the flashing rate of the LED on
the other Arduino.

The sending Arduino’s sketch is shown here:

// sketch_12_02_Adruino_Sender

#include "SoftwareSerial.h"

const int readingPin = A1;
const int plusPin = A2;
const int gndPin = A0;

SoftwareSerial sender(8, 9); // RX, TX

void setup()
{
 pinMode(gndPin, OUTPUT);
 pinMode(plusPin, OUTPUT);
 digitalWrite(plusPin, HIGH);
 sender.begin(9600);
}

void loop()
{
 int reading = analogRead(readingPin);
 byte h = highByte(reading);
 byte l = lowByte(reading);
 sender.write(h);
 sender.write(l);
 delay(1000);
}

To send the 16 bit (int) reading, the reading is split into high and low
bytes and each byte is then sent over the serial link using write. Whereas
print and println convert their argument into a string of characters, write
sends the byte as binary.

Here is the receiving code:

// sketch_12_03_Adruino_Receiver

#include "SoftwareSerial.h"

12_Ch12.indd 197 9/2/18 5:31 PM

198 Programming Arduino Next Steps

const int ledPin = 13;
int reading = 0;
SoftwareSerial receiver(8, 9); // RX, TX

void setup()
{
 pinMode(ledPin, OUTPUT);
 receiver.begin(9600);
}

void loop()
{
 if (receiver.available() > 1)
 {
 byte h = receiver.read();
 byte l = receiver.read();
 reading = (h << 8) + l;
 }
 flash(reading);
}

void flash(int rate)
{
 // 0 slow 1023 very fast
 int period = (50 + (1023 - rate) / 4);
 digitalWrite(ledPin, HIGH);
 delay(period);
 digitalWrite(ledPin, LOW);
 delay(period);
}

The receiving code must wait until at least 2 bytes are available and
then reconstruct the int reading by pushing the high byte up to the top
8 bits of the int and then adding the low byte.

If you are considering sending more complex data from one Arduino to
another, then you might like to look at the EasyTransfer library: www
.billporter.info/2011/05/30/easytransfer-arduino-library/.

Although this example uses wires to connect the Tx for one Arduino to
the Rx of another, you could almost accomplish this as easily with wireless
connections. Many wireless modules operate transparently, in other
words, as if the serial ports were connected by wires.

12_Ch12.indd 198 9/2/18 5:31 PM

http://www.billporter.info/2011/05/30/easytransfer-arduino-library/
http://www.billporter.info/2011/05/30/easytransfer-arduino-library/

 Chapter 12: Serial UART Programming 199

GPS Module
The final serial communication example reads positional information
(latitude and longitude) from a Global Positioning System (GPS) module
using TTL Serial, which then formats the data and sends it to the Serial
Monitor (Figure 12-5).

The communication with the GPS module is one way, so only the Tx
output of the module needs to be connected to an Rx pin on an Arduino.
The module used is a SparkFun Venus GPS module (www.sparkfun.com/
products/11058). Like most GPS modules, it has TTL Serial output and
will send out a burst of messages once a second at 9600 baud.

The messages conform to a standard called National Marine Electronics
Association (NMEA). Each message is a string of text, ending with the
newline character. The fields of the message are separated by commas. A
typical message is shown here:

$GPRMC,081019.548,A,5342.6316,N,00239.8728,W,000.0,079.7,110613,,,A*76

The fields in the example are as follows:

• $GPRMC The sentence type

• 081019.548 The time (very accurate) and in 24-hour format.
8:10:19.548

• 5342.6316, N Latitude × 100, that is, 53.426316 degrees North

• 00239.8728,W Longitude × 100, that is, 0.2398728 degrees West

• 000.0 Speed

• 079.7 Course 79.7 degrees

• 110613 Date 11 June 2013

The remaining fields are not relevant to this example.

NOTE You can find a complete list of the NMEA GPS sentences listed here:
http://aprs.gids.nl/nmea/.

12_Ch12.indd 199 9/2/18 5:31 PM

http://www.sparkfun.com/products/11058
http://www.sparkfun.com/products/11058
http://aprs.gids.nl/nmea/

200 Programming Arduino Next Steps

Here is the code for this example:

#include <SoftwareSerial.h>

SoftwareSerial gpsSerial(10, 11); // RX, TX (TX not used)
const int sentenceSize = 80;

char sentence[sentenceSize];

void setup()
{
 Serial.begin(9600);
 gpsSerial.begin(9600);
}

void loop()
{
 static int i = 0;
 if (gpsSerial.available())
 {
 char ch = gpsSerial.read();
 if (ch != '\n' && i < sentenceSize)
 {
 sentence[i] = ch;
 i++;
 }
 else
 {
 sentence[i] = '\0';

Figure 12-5 GPS readings on an Arduino.

12_Ch12.indd 200 9/2/18 5:31 PM

 Chapter 12: Serial UART Programming 201

 i = 0;
 // Serial.println(sentence);
 displayGPS();
 }
 }
}

void displayGPS()
{
 char field[20];
 getField(field, 0);
 if (strcmp(field, "$GPRMC") == 0)
 {
 Serial.print("Lat: ");
 getField(field, 3); // number
 Serial.print(field);
 getField(field, 4); // N/S
 Serial.print(field);

 Serial.print(" Long: ");
 getField(field, 5); // number
 Serial.print(field);
 getField(field, 6); // E/W
 Serial.println(field);
 }
}

void getField(char* buffer, int index)
{
 int sentencePos = 0;
 int fieldPos = 0;
 int commaCount = 0;
 while (sentencePos < sentenceSize)
 {
 if (sentence[sentencePos] == ',')
 {
 commaCount ++;
 sentencePos ++;
 }
 if (commaCount == index)
 {
 buffer[fieldPos] = sentence[sentencePos];
 fieldPos ++;
 }
 sentencePos ++;

12_Ch12.indd 201 9/2/18 5:31 PM

202 Programming Arduino Next Steps

 }
 buffer[fieldPos] = '\0';
}

The sentences coming from the GPS module are of differing lengths,
but are all less than 80 characters, so the code uses a buffer variable
sentence that is filled with the data until an end-of-line marker is read or
the buffer is full.

The last line of code ”getField” ensures that a null character is placed
on the end of the buffer when the whole sentence has been read. This is
only so that if you wish, you can “print” the sentence to see the raw data
without random characters appearing on the end of the sentence.

The rest of the sketch is concerned with extracting individual fields and
formatting the output to be written to the Serial Monitor. The getField
function helpfully extracts the text from a field at a particular index.

The displayGPS function first ignores any sentences that are not of the
type “$GPRMC” and then extracts the latitude and longitude and hemi-
sphere fields to be displayed.

Summary
In this chapter, we investigated a few ways to program serial communica-
tions between Arduinos, peripherals, and computers.

In the next chapter, we’ll turn our attention to an interesting property
of the Arduino Leonardo that allows it to emulate USB peripherals
such as a keyboard and mouse. We will also look at other aspects of USB
programming.

12_Ch12.indd 202 9/2/18 5:31 PM

203

13
USB Programming

This chapter looks at various aspects of using the Arduino with USB.
This includes the keyboard and mouse emulation features provided by the
Arduino Leonardo and also the reverse process of allowing a USB keyboard
or mouse to be connected to a suitably equipped Arduino.

Keyboard and Mouse Emulation
Three Arduino boards—the Due, the Leonardo, and the Micro, which is
based on the Leonardo—can use their USB port to emulate a keyboard or
mouse. There are also Arduino-compatible boards like the LeoStick from
Freetronics (Figure 13-1) that can perform this trick.

Figure 13-1 The LeoStick.

13_Ch13.indd 203 9/2/18 5:32 PM

204 Programming Arduino Next Steps

This feature is practically used largely for things like music controllers,
giving the Arduino a way to interface with music synthesis and control
programs like Ableton Live. You could, for example, build novel musical
instruments with Arduino that use accelerometer readings, interrupted
beams of light, or pedal boards to control music software.

Some of the sillier applications of these features include pranks where
the computer mouse appears to take on a life of its own or the keyboard
itself types random letters.

The Arduino Due has two USB ports. Keyboard and mouse emulation
takes place on the native USB port, and you normally program the Arduino
Due using the programming USB port (Figure 13-2).

Keyboard Emulation
The keyboard functions are quite easy to use. They are part of the core
language, so there is no library to include. To begin keyboard emulation,
simply put the following command in your startup function:

Keyboard.begin();

To have the Arduino “type” something, you can use print and println
commands and the text will appear wherever the cursor is positioned:

Keyboard.println("It was the best of times.");

Figure 13-2 The Arduino Due’s two USB ports.

Native
USB port

Programming
USB port

13_Ch13.indd 204 9/2/18 5:32 PM

 Chapter 13: USB Programming 205

If you need to use modifier keys, such as typing ctrl-c, then you can
use the press command:

Keyboard.press(KEY_LEFT_CTRL);
Keyboard.press('c');
delay(100);
Keyboard.releaseAll();

The press command takes a single char as its parameter, and in addition
to all the normal characters, a number of constants such as KEY_LEFT_
CTRL are defined for you to use. Once you issue the press command, it is
as if the key is held down until the releaseAll command is given. You can
find a full list of the special keys here: http://arduino.cc/en/Reference/
KeyboardModifiers.

NOTE When using the keyboard and mouse emulation features, you may
encounter difficulty programming the board as it might be trying to type
text while you are trying to program it. The trick is to keep the Reset button
depressed and only release it when the “uploading” message appears in the
status line of the Arduino IDE.

Keyboard Emulation Example
The following example automatically types text of your choice (for
instance, a password) every time the Arduino is reset:

// sketch_13_01_keyboard

char phrase[] = "secretpassword";

void setup()
{
 Keyboard.begin();
 delay(5000);
 Keyboard.println(phrase);
}

void loop()
{
}

13_Ch13.indd 205 9/2/18 5:32 PM

http://arduino.cc/en/Reference/KeyboardModifiers
http://arduino.cc/en/Reference/KeyboardModifiers

206 Programming Arduino Next Steps

This example would be better if an external button triggered the typing;
if you are using a Mac, the operating system thinks a new keyboard has
been attached when you reset the device, which opens a system dialog
that you must dismiss before the text is typed.

Mouse Emulation
Emulating a mouse follows much the same pattern as emulating a keyboard.
Indeed, there is no reason why you cannot use both in the same sketch.

The first step is to begin emulation:

Mouse.begin();

You can then move the mouse using Mouse.move. The three parameters
are the amount to move the x, y, and scroll button in pixels. These numbers
can be positive (right or down) or negative (left and up). They are relative
to the current mouse position, and as there is no way to get the absolute
position of the cursor, this emulation just emulates the mouse that moves
the cursor, not the cursor itself.

You can also click the mouse using the click command. With no param-
eters, this command is a simple left button click. You can also optionally
supply an argument of MOUSE_RIGHT or MOUSE_MIDDLE.

If you want to control the duration of a mouse click, then you can use
the Mouse.press and Mouse.release commands. Mouse.press takes the
same optional arguments as Mouse.click. This can be useful if you are,
say, making your own mouse from an Arduino and want the button click
to be controlled by a switch connected to a digital input on the Arduino.
Doing this would allow you to double- or triple-click.

Mouse Emulation Example
The following example moves the mouse randomly around your screen.
To stop the program so you can regain control of your computer, either
press and hold down the Reset button or just unplug the board.

// sketch_13_02_mouse

void setup()

13_Ch13.indd 206 9/2/18 5:32 PM

 Chapter 13: USB Programming 207

{
 Mouse.begin();
}

void loop()
{
 int x = random(61) - 30;
 int y = random(61) - 30;
 Mouse.move(x, y);
 delay(50);
}

USB Host on the Arduino Due
The Arduino Due has the ability to act as a built-in USB Host. This feature
is, at the time of writing, considered to be “experimental” by the Arduino
team. Check the official Arduino documentation (http://arduino.cc/en/
Reference/USBHost) for changes to the status of this work or any changes
to the way it is used.

The Due does not have a full-size USB socket into which you can
directly plug a USB keyboard or mouse. To use such devices, you must
get a Micro USB OTG Host Cable like the one attached to the Due pic-
tured in Figure 13-3. In the figure, the USB adapter for a wireless key-
board is attached to the Arduino Due, but a regular USB keyboard would
work just fine.

Figure 13-3 Arduino Due with a Micro USB OTG Host Cable and keyboard.

13_Ch13.indd 207 9/2/18 5:32 PM

http://arduino.cc/en/Reference/USBHost
http://arduino.cc/en/Reference/USBHost

208 Programming Arduino Next Steps

The USB libraries on the Arduino Due are actually a great deal easier
to use than the USB Host library and will return the ASCII value of a key
that is pressed and not just the USB key scancode. The following example
illustrates interfacing to a keyboard. It simply echoes each keypress in the
Serial Monitor.

// sketch_13_03_keyboard_due

#include <KeyboardController.h>

USBHost usb;
KeyboardController keyboard(usb);

void setup()
{
 Serial.begin(9600);
 Serial.println("Program started");
 delay(200);
}

void loop()
{
 usb.Task();
}

// This function intercepts key press
void keyPressed()
{
 char key = keyboard.getKey();
 Serial.write(key);
}

The KeyboardController library invokes the keyPressed function in
the sketch every time a key is pressed. You can also intercept key release
using the keyReleased function. To find out which key was pressed, you
must call one of the following functions on the keyboard object:

• getModifiers Returns a bit mask for any modifier key that is
depressed (shift, ctrl, and so on). See http://arduino.cc/en/
Reference/GetModifiers for the codes.

• getKey Gets the current key as an ASCII value.

• getOemKey Returns the key scancode.

13_Ch13.indd 208 9/2/18 5:32 PM

http://arduino.cc/en/Reference/GetModifiers
http://arduino.cc/en/Reference/GetModifiers

 Chapter 13: USB Programming 209

Using a mouse is equally easy and follows a similar pattern to the key-
board controller. The following example writes a letter—L, R, U, or D—
depending on whether the mouse is moved left, right, up, or down:

// sketch_13_04_mouse_due

#include <MouseController.h>

USBHost usb;
MouseController mouse(usb);

void setup()
{
 Serial.begin(9600);
 Serial.println("Program started");
 delay(200);
}

void loop()
{
 usb.Task();
}

// This function intercepts mouse movements
void mouseMoved()
{
 int x = mouse.getXChange();
 int y = mouse.getYChange();
 if (x > 50) Serial.print("R");
 if (x < -50) Serial.print("L");
 if (y > 50) Serial.print("D");
 if (y < -50) Serial.print("U");
}

As well as the mouseMoved function, you can also add the following
functions to intercept other mouse events:

• mouseDragged This event is triggered when moving the mouse
while holding down the left button.

• mousePressed This event is triggered when a mouse button is
pressed and should be followed by a call to mouse.getButton,
which takes a button name of LEFT_BUTTON, RIGHT_BUTTON,
or MIDDLE_BUTTON as an argument and returns true if it has
been pressed.

13_Ch13.indd 209 9/2/18 5:32 PM

210 Programming Arduino Next Steps

• mouseReleased This function is the counterpart to mousePressed
and is used to detect when the mouse has been released.

Summary
In this chapter, you looked at a few ways to use an Arduino with USB
devices.

In the next chapter, we will look at using wired and wireless network
connections with an Arduino and learn how to do some network pro-
gramming as well as make use of the Ethernet and WiFi Arduino shields.

13_Ch13.indd 210 9/2/18 5:32 PM

211

14
Network and Internet of

Things Programming

The Internet, in what has been called the Internet of Things, is starting to
go beyond browsers and web servers to include Internet-enabled hard-
ware. Printers, home automation devices, and even refrigerators are not
only becoming smart, but also being connected to the Internet. And
Arduino is at the forefront of DIY Internet devices using either a wired
connection to an Ethernet Shield or a WiFi connection. In this chapter, we
look at how to program an Arduino (or compatible board such as the
ESP8266 or ESP32) to make use of a network connection.

The official Arduino solutions to WiFi are expensive and not much
used, and so when it comes to WiFi, this chapter mostly focuses on the
ESP8266 and ESP32 devices such as the NodeMCU, Wemos D1 Mini, and
LOLIN32.

Networking Hardware
You have a number of choices for connecting your Arduino to the net-
work. You can use an Ethernet Shield with an Arduino Uno or an Arduino
with built-in Ethernet hardware, or more likely, avail yourself of an
Arduino-compatible board with built-in WiFi.

14_Ch14.indd 211 9/2/18 5:34 PM

212 Programming Arduino Next Steps

Ethernet Shield
As well as providing an Ethernet connection, the Ethernet Shield
(Figure 14-1) also provides a microSD card slot, which you can use to store
data (see “Using SD Card Storage” in Chapter 7).

The W5100 chip is used in the official boards; you can also find much
lower-cost Ethernet Shields that use the ENC28J60 chipset. These less
expensive boards are not compatible with the Ethernet library, however,
and are frankly best avoided unless you have more time than budget.

Arduino Ethernet/EtherTen
An alternative to using a separate shield is to buy an Arduino with built-in
Ethernet capability. The official version is the Arduino Ethernet, but a
worthy and Uno-compatible third-party board is the EtherTen produced
by Freetronics (www.freetronics.com). This board is shown in Figure 14-2.

Combining everything onto one board makes a lot of sense when
building a networked Arduino project. The Arduino Ethernet can also be

Figure 14-1 Ethernet Shield.

14_Ch14.indd 212 9/2/18 5:34 PM

http://www.freetronics.com

 Chapter 14: Network and Internet of Things Programming 213

fitted with a Power over Ethernet (PoE) adapter that, with a separate
PoE injector, allows the board to be powered from an Ethernet lead,
reducing the wires needed for the Arduino to be just a single Ethernet
lead. The EtherTen board comes already configured to use PoE. For more
information on using PoE with an EtherTen, see www.doctormonk
.com/2012/01/power-over-ethernet-poe.html.

The Ethernet Library
The Ethernet library has undergone a major revision since the release of
Arduino 1.0 in 2011. In addition to allowing an Ethernet-equipped Arduino
to act as either a web server or a web client (sending requests like a browser),
the library also handles things like Dynamic Host Configuration Protocol
(DHCP), which automatically assigns an IP address to the Arduino.

NOTE The official Arduino documentation on the Ethernet library is
actually very good: http://arduino.cc/en/reference/ethernet.

Figure 14-2 An EtherTen board.

14_Ch14.indd 213 9/2/18 5:34 PM

http://www.doctormonk.com/2012/01/power-over-ethernet-poe.html
http://www.doctormonk.com/2012/01/power-over-ethernet-poe.html
http://arduino.cc/en/reference/ethernet

214 Programming Arduino Next Steps

Making a Connection
The first step, before any communication can take place, is to establish a
connection from the Arduino to your network. The library function is
called Ethernet.begin(). You can manually specify the connection settings
for the board using the following syntax:

Ethernet.begin(mac, ip, dns, gateway, subnet)

Let’s look at each of these parameters in turn:

• mac The mac address of the network card (I’ll explain this in a
moment.)

• ip The IP address of the board (You have to select one acceptable
to your network.)

• dns The IP address for a Domain Name Server (DNS)

• gateway The IP address for the Internet gateway (your home hub)

• subnet The subnet mask

This syntax looks a little daunting unless you are used to manual net-
work administration. Fortunately, all the parameters except mac are
optional, and 90 percent of the time, you will either specify mac and ip or,
most likely, just the mac on its own. All the other settings are taken care of
automatically.

The MAC, or Media Access Control, address is a unique identifier for
the network interface; in other words, it’s the address for the Ethernet
Shield or for whatever is providing the network interface for the Arduino.
This strange-looking code only has to be unique for your network. You’ll
usually find this number printed on the back of your Arduino Ethernet
Shield or on the box packaging. If you are using an older board that does
not have a MAC address, then you can simply make one up. However, do
not use the same made-up number more than once on your network.

You can also create a network connection using DHCP so the IP address
is allocated dynamically; use this code:

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

14_Ch14.indd 214 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 215

void setup()
{
 Ethernet.begin(mac);
}

If you want to fix the IP address, which would be desirable if you wanted
to run a web server on the Arduino, then you would use code like this:

#include <SPI.h>
#include <Ethernet.h>
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
byte ip[] = { 10, 0, 1, 200 };

void setup()
{
 Ethernet.begin(mac, ip);
}

You need to ensure that the IP address you use is acceptable to your
network and not in use by another device. Your router may also reserve
certain IP addresses for other uses. If you do not specify an IP address
and use DHCP, then Ethernet.begin will return 1 if a connection is made
and an IP address allocated; otherwise, it returns a 0. You can incorporate
a test in which you make the connection and use the localIP function to
retrieve the IP address allocated to the Arduino. The following example
performs this test and reports the status to the Serial Monitor. This is a
full sketch that you can try for yourself. But before you do, remember to
change the MAC address in the code to match that of your interface
board.

// sketch_14_01_dhcp

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };

void setup()
{
 Serial.begin(9600);
 while (!Serial){}; // for Leonardo compatibility

14_Ch14.indd 215 9/2/18 5:34 PM

216 Programming Arduino Next Steps

 if (Ethernet.begin(mac))
 {
 Serial.println(Ethernet.localIP());
 }
 else
 {
 Serial.println("Could not connect to network");
 }
}

void loop()
{
}

Setting Up a Web Server
The project “Physical Web Server,” described later in this chapter, illus-
trates the code structure of a web server sketch. In this section, we’ll look
at the available web server functions.

The EthernetServer class contains most of the functions that you need
for web serving. Having established a connection to the network, starting
a web server requires two further steps. First, you need to create a new
server object, specifying the port that the server should be listening on.
This declaration appears in the sketch before the setup function.

EthernetServer server = EthernetServer(80);

Web pages are usually served on port 80. So if you start the web server on
port 80, you will not need to add a port number to any URL that connects
to the server.

Second, to actually start the server, you use the following command in
your setup function:

server.begin();

This function starts the server, and it will now be waiting for someone
with a browser to request the web page that it is serving. This action is
detected in the loop function of your sketch using the available function.
This function returns either null (if there are no requests to service) or an
EthernetClient object. This object is rather confusingly also used when
making outgoing requests from the Arduino to web servers. In either case,

14_Ch14.indd 216 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 217

EthernetClient represents the connection between a web server and a
browser.

Having retrieved this object, you can then read the incoming request
using read and you can write HTML to it using the write, print, and
println functions. Once you’ve finished writing the HTML to the client,
you need to call stop on the client object to end the session. I explain how
to do this in “Physical Web Server” later in this chapter.

Making Requests
In addition to having the Arduino act as a web server, you can also have it
act like a web browser, issuing HTTP requests to a remote web server,
which may be on your own network or on the Internet.

When making web requests from the Arduino, you first establish a net-
work connection in just the same way that you did in the previous section
for the web server, but instead of creating an EthernetServer object, you
create an EthernetClient object:

EthernetClient client;

You do not need to do anything more with the client object until you want
to send a web request. Then you write something like this:

if (client.connect("api.openweathermap.org", 80))
 {
 client.println("GET /data/2.5/weather?q=Manchester,uk HTTP/1.0");
 client.println();
 while (client.connected())
 {
 while (client.available())
 {
 Serial.write(client.read());
 }
 }
 client.stop();
 }

The connect function returns true if the connection is successful. The
two client.println commands are responsible for requesting the desired
page from the web server. The two nested while loops then read data as
long as the client is connected and data is available.

14_Ch14.indd 217 9/2/18 5:34 PM

http://"api.openweathermap.org"

218 Programming Arduino Next Steps

It may look tempting to combine the two while loops, with a condition
of client.available() && client.connected(), but combining them is not quite
the same as treating them separately, as the data may not be available con-
tinuously from the web server because of connection speed and so on. The
outer while loop keeps the request alive, fetching the data.

This approach is “blocking” (the Arduino will not do anything else
until the request is complete).

Wired Ethernet Examples
The following two examples serve to illustrate the use of the Ethernet
library in practical settings. Between the two of them, the examples cover
most things that you are likely to want to do with a networked Arduino.

Physical Web Server
This first example illustrates perhaps the most likely web-related use of an
Arduino. In it, the Arduino acts as a web server. Browsers connecting to the
Arduino web server not only see readings from the analog inputs, but visi-
tors can also press buttons on the web page to change the digital outputs
(Figure 14-3).

This example is actually a great way to interface an Arduino with a
smartphone or tablet computer, as a device only has to have the most basic
of browsers on it to be able to send requests to the Arduino. The sketch for
this example (sketch_14_02_server—available for download from the
book’s website at http://simonmonk.org/nextsteps2/) is some 172 lines
long, so rather than list it in full here, I encourage you to load it in the
Arduino IDE for reference as I walk you through it.

The first part of the sketch is pretty standard for a network sketch. The
libraries are imported, and both EthernetServer and EthernetClient
objects are defined.

The variables in the next section perform various roles:

const int numPins = 5;
int pins[] = {3, 4, 5, 6, 7};
int pinState[] = {0, 0, 0, 0, 0};

14_Ch14.indd 218 9/2/18 5:34 PM

http://simonmonk.org/nextsteps2/

 Chapter 14: Network and Internet of Things Programming 219

char line1[100];
char buffer[100];

The constant numPins defines the size of the arrays pins and pinState.
The pinState array is used to remember whether the particular output pin
is HIGH or LOW. The setup function declares all the pins in the pins array
to be outputs. It also establishes the network connection in the same way
as in the earlier examples. Finally, the line1 and buffer character arrays
hold the first line of the HTTP request and subsequent lines, respectively.

Here is the loop function:

void loop()
{
 client = server.available();
 if (client)

Figure 14-3 Physical web server interface.

14_Ch14.indd 219 9/2/18 5:34 PM

220 Programming Arduino Next Steps

 {
 if (client.connected())
 {
 readHeader();
 if (! pageNameIs("/"))
 {
 client.stop();
 return;
 }
 client.println(F("HTTP/1.1 200 OK"));
 client.println(F("Content-Type: text/html"));
 client.println();

 sendBody();
 client.stop();
 }
 }
}

The loop function checks to see if there are any requests from browsers
waiting to be processed. If there is a request and there is a connection, then
the readHeader function is called. You’ll find the code for this toward the
end of the sketch. The readHeader function reads the contents of the
request header into a buffer (line1) and then skips over the remaining lines
of the header. This is required so you have access to the page name
(requested by the browser) as well as any request parameters.

Note that because the sketch has a fair amount of text to send to the
Serial Monitor and network, I use the F function to store the character
arrays in flash memory (see Chapter 7).

Having read the header, the pageNameIs function (again near the end
of the file) is called to ensure the page being requested is the root page (/).
If it is not the root page, then the request is ignored. This is important
because many browsers automatically send a request to a server to find an
icon for the website. You don’t want this request being confused with
other requests to the server.

Now you need to generate a response in the form of a header and some
HTML to be returned to the browser for display. The sendBody function,
shown here, gets a little complicated:

14_Ch14.indd 220 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 221

void sendBody()
{
 client.println(F("<html><body>"));
 sendAnalogReadings();
 client.println(F("<h1>Output Pins</h1>"));
 client.println(F("<form method='GET'>"));
 setValuesFromParams();
 setPinStates();
 sendHTMLforPins();
 client.println(F("<input type='submit' value='Update'/>"));
 client.println(F("</form>"));
 client.println(F("</body></html>"));
}

This function prints the basic template of the HTML page, relying on a
number of helper functions to break the code down into more manageable
chunks. The first of these is sendAnalogReadings:

void sendAnalogReadings()
{
 client.println(F("<h1>Analog Inputs</h1>"));
 client.println(F("<table border='1'>"));
 for (int i = 0; i < 5; i++)
 {
 int reading = analogRead(i);
 client.print(F("<tr><td>A")); client.print(i);
 client.print(F("</td><td>"));
 client.print((float) reading / 205.0);
 client.println(F(" V</td></tr>"));
 }
 client.println("</table>");
}

This loops over each of the analog inputs, reading the value and writing
out an HTML table containing all the readings as voltages.

You may have noticed that the sendBody function also calls
setValuesFromParams and setPinStates. The first of these uses the func-
tion valueOfParam to set the pinStates variable containing the states of
the output pins HIGH or LOW depending on the value of the request
parameters that were contained in the request header:

int valueOfParam(char param)
{

14_Ch14.indd 221 9/2/18 5:34 PM

222 Programming Arduino Next Steps

 for (int i = 0; i < strlen(line1); i++)
 {
 if (line1[i] == param && line1[i+1] == '=')
 {
 return (line1[i+2] - '0');
 }
 }
 return 0;
}

The valueOfParam function expects the request parameter to be a sin-
gle digit (1 or 0). You can see what these parameters look like if you run
the example and browse to the page and press Update. The URL string
will then change to include the parameters and look something like this:

192.168.1.10/?0=1&1=0&2=0&3=0&4=0

The parameters start after the ? and take the form X=Y, separated by &.
The part before the = is the parameter name (in this case, a digit from
0 to 4) and the part after the = is its value, which is 1 for on and 0 for off.
To make life easy for yourself, these request parameters must be only a
single character or, in this case, a single digit. The setPinStates function
then transfers the state of the output pins held in the pinStates array to the
actual output pins themselves.

Let’s return to the sendBody function for a moment. The next thing that
you need to send is the HTML for the collection of drop-down lists for
each output. You need the values of True or False in the list to be set to
agree with the current state of the output. You accomplish this by adding
the text “selected” to the value that agrees with the value for that pin in
the pinStates array.

All the HTML generated for the output pins is contained within a form,
so when a visitor presses the Update button, a new request to this page
with the appropriate request parameters to set the outputs is generated.
At this point, let’s look at the HTML code that is generated for the page:

<html><body>
<h1>Analog Inputs</h1>
<table border='1'>
<tr><td>A0</td><td>0.58 V</td></tr>
<tr><td>A1</td><td>0.63 V</td></tr>

14_Ch14.indd 222 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 223

<tr><td>A2</td><td>0.60 V</td></tr>
<tr><td>A3</td><td>0.65 V</td></tr>
<tr><td>A4</td><td>0.60 V</td></tr>
</table>
<h1>Output Pins</h1>

<form method='GET'>
<p>Pin 3<select name='0'>
<option value='0'>Off</option>
<option value='1' selected>On</option>
</select></p>
<p>Pin 4<select name='1'>
<option value='0' selected>Off</option>
<option value='1'>On</option>
</select></p>
<p>Pin 5<select name='2'>
<option value='0' selected>Off</option>
<option value='1'>On</option>
</select></p>
<p>Pin 6<select name='3'>
<option value='0' selected>Off</option>
<option value='1'>On</option>
</select></p>
<p>Pin 7<select name='4'>
<option value='0' selected>Off</option>
<option value='1'>On</option>
</select></p>
<input type='submit' value='Update'/>
</form>
</body></html>

You can see this using your browser’s View Source feature.

Using a JSON Web Service
To illustrate sending a web request from an Arduino to a website, I’ll use
a web service that returns data about the weather in a particular location.
It reports a short description of the weather to the Serial Monitor
(Figure 14-4). The sketch sends the request once during startup, but the
example could easily be changed to check every hour and display the
result on a 16×2 LCD display.

14_Ch14.indd 223 9/2/18 5:34 PM

224 Programming Arduino Next Steps

JavaScript Object Notation (JSON) is a way of structuring data returned
from a web request. You can find out more about the JSON format here:
https://en.wikipedia.org/wiki/JSON.

Before you can use the web service, you will need to apply for an API
key. This is free, so long as you stay under 60 requests per minute. To get
yourself a key, go to https://openweathermap.org/appid and click the
“Sign up” button. Once you have your key (a long string of letters and num-
bers) keep the page open so that you can copy and paste it into the function
doWebRequest in the sketch_14_03_web_request.

This example program uses the ArduinoJson library that you will need to
add using the Library Manager.

The sketch for this example is quite short (sketch_14_03_web_request).
Most of the interesting code is in the functions doWebRequest and
parseAndPrintWeather:

void doWebRequest()
{
 if (client.connect("api.openweathermap.org", 80))
 {
 client.println(F("GET /data/2.5/weather?q=Manchester,
 uk&APPID=your_key_goes_here HTTP/1.0"));
 client.println(F("Connection: close"));
 client.println(); // end of request
 if (client.connected() && statusOK() && skipedHeaders())
 {
 parseAndPrintWeather();
 client.stop();
 }
 }
}

Figure 14-4 Retrieving weather information from a web service.

14_Ch14.indd 224 9/2/18 5:34 PM

https://en.wikipedia.org/wiki/JSON
https://openweathermap.org/appid
http://"api.openweathermap.org"

 Chapter 14: Network and Internet of Things Programming 225

void parseAndPrintWeather()
{
 const size_t capacity = 1024;
 DynamicJsonBuffer jsonBuffer(capacity);
 JsonObject& root = jsonBuffer.parseObject(client);
 if (!root.success())
 {
 Serial.println(F("Parsing failed"));
 return;
 }
 JsonObject& weather = root["weather"][0];
 Serial.println(weather["description"].as<char*>());
}

boolean statusOK()
{
 char status[64] = {0}; // big enough for header
 client.readBytesUntil('\r', status, sizeof(status));
 if (strcmp(status, "HTTP/1.1 200 OK") != 0) {
 Serial.print(F("Unexpected response: "));
 Serial.println(status);
 return false;
 }
 return true;
}

boolean skipedHeaders()
{
 char endOfHeaders[] = "\r\n\r\n";
 return (client.find(endOfHeaders));
}

The first step is to get the client to connect to the server on port 80. If
this is successful, then the page request header is written to the server.

The extra println (after the GET line is sent) is needed to mark the end
of the request header and trigger a response from the server.

The function parseAndPrintWeather is only called if the client is con-
nected and both the functions statusOK (which checks the HTTP response
status) and skippedHeader (skips the headers so that it is not parsed as
JSON) return true.

The code to parse the response in parseAndPrintWeather is partly auto-
matically generated using a web-based tool provided by the developers of

14_Ch14.indd 225 9/2/18 5:34 PM

226 Programming Arduino Next Steps

the ArduinoJson library available at https://arduinojson.org/assistant/
(Figure 14-5). Simply paste an example response from the web service you
need to access into the "Input" panel and the assistant will give you a sug-
gested size of buffer as well as example code at the bottom of the screen.

The data is in JSON format as shown below.

{"coord":{"lon":-2.23743,"lat":53.480949},
"sys":{"country":"GB","sunrise":1371094771,
"sunset":1371155927},"weather":[{"id":520,"main":"Rain",
"description":"light intensity shower rain","icon":"09d"}],
"base":"global stations","main":{"temp":284.87,"pressure":1009,
"humidity":87,"temp_min":283.15,"temp_max":285.93},
"wind":{"speed":5.1,"deg":270},"rain":{"1h":0.83},
"clouds":{"all":40},"dt":1371135000,"id":2643123,
"name":"Manchester","cod":200}

Figure 14-5 The ArduinoJson Assistant.

14_Ch14.indd 226 9/2/18 5:34 PM

https://arduinojson.org/assistant/(Figure
https://arduinojson.org/assistant/(Figure

 Chapter 14: Network and Internet of Things Programming 227

The Official Arduino WiFi Library
As you might expect, the WiFi library is quite similar to the Ethernet
library. If you substitute WiFi for Ethernet, WiFiServer for EthernetServer,
and WiFiClient for EthernetClient, then everything else in your sketch
can pretty much stay the same.

Making a Connection
The main differences between the WiFi and Ethernet libraries are in how a
connection is established.

First, you need to import the WiFi library:

#include <SPI.h>
#include <WiFi.h>

To establish a connection, use the WiFi.begin command, supplying it
with the name of your wireless network and your password.

WiFi.begin("MY-NETWORK-NAME", "mypassword");

The WiFi example that follows in “Arduino WiFi Example” illustrates
the other differences that you need to be aware of.

WiFi-Specific Functions
The WiFi library has some extra WiFi-specific functions that you can use.
These functions are summarized in Table 14-1.

You can find full documentation for the WiFi library here: http://
arduino.cc/en/Reference/WiFi.

14_Ch14.indd 227 9/2/18 5:34 PM

http://arduino.cc/en/Reference/WiFi
http://arduino.cc/en/Reference/WiFi

228 Programming Arduino Next Steps

Function Description

WiFi.config Allows you to set static IP addresses and DNS and gateway
addresses for the WiFi adapter

WiFi.SSID Returns a string containing the SSID (that is, the wireless
network name)

WiFi.BSSID Returns a byte array with the MAC address of the router that
the WiFi Shield is connected to

WiFi.RSSI Returns a long containing the signal strength

WiFi.encryptionType Returns a number code for the encryption type

WiFi.scanNetworks Returns the number of networks found, but no other informa-
tion about them

WiFi.macAddress Places the MAC address of the WiFi adapter into a 6-byte array
passed as its parameter

Table 14-1 WiFi-Specific Features

Arduino WiFi Example
For the example, I modified sketch_14_02_server to work with a WiFi
Shield, should you choose to use one rather than the cheaper ESP8266 and
ESP32 alternative. You can find the code in sketch_14_04_server_wifi.
Rather than repeat the whole example, I will just highlight the changes
from the original version.

First, to make the connection to a wireless access point, you need to
specify the name of the wireless network and its password:

char ssid[] = "My network name"; // your network SSID (name)
char pass[] = "mypassword"; // your network password

You also need to change the names of the classes for the server and client
from EthernetServer and EthernetClient to WiFiServer and WiFiClient:

WiFiServer server(80);
WiFiClient client;

You still need to specify port 80 when defining the server.
The next difference between wired Ethernet and WiFi is at the point

where the connection starts. In this case, you must use

WiFi.begin(ssid, pass);

14_Ch14.indd 228 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 229

The remainder of the code is almost exactly the same as the Ethernet
code. You will find a delay(1) command in loop before the client is stopped,
which gives the client time to finish reading before the communication is
closed. You don’t need this in the Ethernet version. You’ll also notice that
I combined some of the client.print calls into fewer calls of bigger strings.
This speeds up the communication as the WiFi Shield deals with sending
small strings quite inefficiently. However, be aware that the strings in an
individual client.print or client.println cannot be longer than 90 bytes or
they will not be sent.

The WiFi version of this program is considerably slower than the
Ethernet version, taking up to 45 seconds to load. The firmware on the
WiFi Shield can be updated, and if in the future the Arduino team improves
the efficiency of the WiFi Shield, then it may be worth updating the firm-
ware. Look for instructions for this on the WiFi Shield web page: http://
arduino.cc/en/Main/ArduinoWiFiShield.

ESP8266/ESP32 WiFi Example
The ESP community has implemented the Arduino “WiFi” library so, in
principle, standard Arduino examples will (sometimes with a little modi-
fication) work on ESP8266-based devices. However, the greater RAM and
flash storage of the ESP8266 boards means that you can implement net-
work projects in a more modern and elegant way if you diverge from the
standard Arduino WiFi library.

The following example is a little like the Ethernet web server example
we met earlier, but is designed to control a single output pin, perhaps con-
nected to a relay module to switch high current loads (Figure 14-6). A
simple web page (Figure 14-7) will allow the relay to be turned on and off.

The code for this can be found in sketch_14_05_esp8266_server (avail-
able from the book’s web page here: http://simonmonk.org/nextsteps2/).
The important difference between this sketch and sketch_14_02_server is
that this sketch allows you to define “routes”—that is, it allows you to
associate a requested page name with a function to run when a request
comes in. This is done in the setup function:

14_Ch14.indd 229 9/2/18 5:34 PM

http://arduino.cc/en/Main/ArduinoWiFiShield
http://arduino.cc/en/Main/ArduinoWiFiShield
http://simonmonk.org/nextsteps2/

230 Programming Arduino Next Steps

Figure 14-6 Using a relay module with a NodeMCU.

Figure 14-7 A web interface server by NodeMCU.

void setup()
{
 pinMode(relayPin, OUTPUT);
 Serial.begin(9600);
 connectToWiFi();
 server.on("/", handleRoot);
 server.begin();
 Serial.println("HTTP server started");
}

14_Ch14.indd 230 9/2/18 5:34 PM

 Chapter 14: Network and Internet of Things Programming 231

In this case, the page specified is the root page (“/”) and the function to
call when a request comes in for root is called handleRoot.

void handleRoot()
{
 if (server.arg(0)[0] == '1')
 {
 digitalWrite(relayPin, HIGH);
 }
 else
 {
 digitalWrite(relayPin, LOW);
 }
 String msg = "";
 msg += "<html><body>\n";
 msg += "<h1>Relay Remote</h1>";
 msg += "<h2>On</h2>";
 msg += "<h2>Off</h2>";
 msg += "</body></html>”;

 server.send(200, "text/html", msg);
}

The first thing the handler does is use server.arg(0) to get the first
request parameter as a string. The first character of this string is then com-
pared with the character “1” to decide whether or not to turn the relay on.

The handler then formulates the HTML needed for the page in a string
and sends the response.

Using this approach, you can specify as many handlers for different
pages as you like. For example, to handle a request for the page
relay_status to invoke the function handleRelayStatus, you could add the
line:

server.on("/relay_status ", handleRelayStatus);

The call-back mechanism does require you to include a call to the
method handleClient in your loop function.

void loop()
{
 server.handleClient();
}

14_Ch14.indd 231 9/2/18 5:34 PM

232 Programming Arduino Next Steps

The extra resources of an ESP8266-based board make it more suited to
network applications than, say, an Arduino Uno with add-on hardware.
With slight modification, this same example can be used on an even more
powerful ESP32-based board like the LOLIN32. You will find an example
of using the ESP32 in sketch_14_05_esp32_server.

Note that you will need to download the library ESP32WebServer as a
ZIP file from https://github.com/Pedro albuquerque/ESP32WebServer
and then add it as a library in order for this sketch to work.

The code for ESP32 is almost identical to that of the ESP8266, except for
different imports and a change to the pin used for switching to pin 22,
which is connected to the built-in LED on the LOLIN32.

Internet of Things
Many of the examples in this chapter that use Arduino to send web
requests or act as a web server are useful techniques when building
Internet of Things (IoT) projects. In this section you will find a very simple
example that uses a NodeMCU Arduino-compatible to send temperature
readings to the dweet.io IoT service. A separate web page (that can just be
a file on your computer) then displays the temperature readings. Figure
14-8 provides an overview of this project.

Figure 14-8 An Internet of Things project.

14_Ch14.indd 232 9/2/18 5:34 PM

https://github.com/Pedro
http://dweet.io

 Chapter 14: Network and Internet of Things Programming 233

dweet.io
There are many IoT frameworks available (such as ThinkSpeak, OpenHab,
or adafruit.io) that could be used for this project. However, dweet.io has
the following advantages:

• It’s free (for home use).

• You don’t have to create a user account.

• It’s really easy to use.

dweet’s model is a bit like Twitter. In this case, a WiFi-enabled sensor is
tweeting its temperature at regular intervals and then someone watching
their Twitter feed (or dweet feed) sees the temperature remotely. It’s a good
idea to test out dweet from your browser before we start writing code.

Let’s start by pretending to be a NodeMCU with a temperature sensor
attached. Open your browser and paste the following line into your
address bar:

http://dweet.io/dweet/for/next_steps_temp?temp=24

The phrase “next_steps_temp” is a “key” that identifies the type of
message. You can put anything you like here, but you should make it
unique; otherwise, your messages may get mixed up with someone else
using the same key. There is no way of guaranteeing your key is unique
and will stay unique, but making up, say, a long number to include in the
key can make the chances of mix-ups vanishingly small.

When you send the request, you should see a response in your browser
that looks something like this:

{"this":"succeeded","by":"dweeting","the":"dweet",
"with":{"thing":"next_steps_temp",
"created":"2018-04-30T15:05:55.512Z","content":{"temp":24},
"transaction":"c18017a7-6988-4470-990e-9dfcec86bb9d"}}

This is in JSON format and just confirms that the temperature informa-
tion has been received. dweet will keep your last five dweets for any given
day. You can request the last dweet from your browser by entering the
following URL into your browser:

http://dweet.io/get/latest/dweet/for/next_steps_temp

14_Ch14.indd 233 9/2/18 5:34 PM

http://dweet.io
http://adafruit.io
http://dweet.io
http://dweet.io/dweet/for/next_steps_temp?temp=24
http://dweet.io/get/latest/dweet/for/next_steps_temp

234 Programming Arduino Next Steps

This will give you a response something like:

{"this":"succeeded","by":"getting","the":"dweets",
"with":[{"thing":"next_steps_temp",
"created":"2018-04-30T10:17:29.167Z","content":{"temp":24}}]}

The crucial thing to notice is that the temperature of “24” has been
given back to us. So now, you just need to arrange for the NodeMCU to
dweet temperature readings on a regular basis and then arrange a web
page to regularly refresh itself with the latest temperature.

Programming the NodeMCU
or Wemos D1 Mini
You can find the sketch for this example in sketch_14_07_esp8266_iot.

Before using this example, you should edit the sketch, changing the
thingName from next_steps_temp, perhaps adding your name to the end
to make it more likely to be unique.

The connection code is much the same as the earlier examples in this
chapter. The function sendTemp takes care of sending out the HTTP
request containing the temperature.

void sendTemp(float temp)

{

 if (!client.connect("dweet.io", 80))

 {

 Serial.println("Connection failed");

 return;

 }

 client.print("GET /dweet/for/");

 client.print(thingName);

 client.print("?temp=");

 client.print(temp);

 client.print(" HTTP/1.1\r\nHost: dweet.io\r\nConnection: close\r\n\r\n");

 Serial.println("Response:");

 while (client.connected())

 {

 if (client.available())

 {

 String line = client.readStringUntil('\n');

 Serial.println(line);

14_Ch14.indd 234 9/2/18 5:34 PM

http://"dweet.io"
http://dweet.io\r\nConnection:

 Chapter 14: Network and Internet of Things Programming 235

 }

 }

client.stop();

}

The client program first connects to the server at dweet.io and then
sends the GET request to the server containing the temperature. As an aid
to debugging, the response is sent to the serial monitor.

Attaching the TMP36
This example uses a TMP36 temperature. This sensor outputs a voltage
proportional to the temperature. This output voltage is connected to the
A0 analog input of the NodeMCU on solderless breadboard, as shown in
Figure 14-9. This can be easily adapted for use with a Wemos D1 Mini.

Figure 14-9 Connecting a TMP36 to an ESP8266-based board.

14_Ch14.indd 235 9/2/18 5:34 PM

http://dweet.io

236 Programming Arduino Next Steps

A Web Page to Display the Temperature
If everything is connected up, your ESP8266 should now be sending tem-
perature updates to dweet every 30 seconds. We now get to create the web
page shown in Figure 14-10 to display the temperature.

Note that you do not need to host this page on a web server. It will work
in your browser just fine as a file saved locally on your computer. You can
find this file (index.html) inside the folder iot_page with the other down-
loads for this book (see the Introduction section before Chapter 1). The file
index.html is listed below.

<script src="https://ajax.googleapis.com/
 ajax/libs/jquery/3.3.1/jquery.min.js"></script>

<script>

// do a web request to get the latest temp from dweet
function get_temp() {
 $.get("https://dweet.io/get/latest/dweet/for/next_steps_temp",
 show_temp, "json")
}

// callback to set the HTML element to display the temp
function show_temp(response) {
 temp = response.with[0].content.temp
 $('#temp_tag').text(temp)
}

setInterval(get_temp, 5000);
</script>

<html><body>
<h1>Temperature</h1>
<h1 id="temp_tag">--</h1>
</body></html>

This is a book about programming Arduino, not HTML and JavaScript,
so if you are new to web development, you might need to do a bit of
reading-up.

The page is a mixture of JavaScript (contained in the <script> tags at the
top) and HTML (contained in the <html> tag at the bottom of the page).

14_Ch14.indd 236 9/2/18 5:34 PM

http://index.html
http://index.html
https://ajax.googleapis.com/
https://ajax.googleapis.com/
https://dweet.io/get/latest/dweet/for/next_steps_temp"

 Chapter 14: Network and Internet of Things Programming 237

Figure 14-10 Displaying the temperature in a web page.

The first <script> tag imports the JQuery JavaScript library, which
makes it much easier both to send web requests and to control the HTML
displayed in your browser. The rest of the JavaScript consists of two func-
tions. The function get_temp sends the web request to fetch the latest
dweet. Note that this contains the “thing name” key of next_steps_temp.
You will need to change this to match whatever key you decided to use in
your Arduino sketch. This get_temp function sets a callback, so that when
the request receives a response, the second function (show_temp) will
be run. This function changes the text attribute of the <h1> tag called
<temp_tag> in the HTML at the bottom of the page.

To ensure that the page is automatically refreshed, the set_interval
JavaScript command is used to run the get_temp function every five
seconds.

Summary
In this chapter, you looked at a variety of ways to connect your Arduino or
Arduino-compatible board to a network and then make it do something,
using both Ethernet and WiFi Shields. You have also learned how to use
an Arduino as both a web server and a web client.

In the next chapter, you’ll learn about Digital Signal Processing (DSP)
with the Arduino.

14_Ch14.indd 237 9/2/18 5:34 PM

14_Ch14.indd 238 9/2/18 5:34 PM

239

15
Digital Signal Processing

Even the humble Arduino Uno is capable of fairly rudimentary signal
processing. This chapter discusses a variety of techniques, from condi-
tioning a signal from an analog input using software rather than external
electronics to calculating the relative magnitude of various frequencies
in a signal using a Fourier Transform.

Introducing Digital Signal Processing
When you take readings from a sensor, you are measuring a signal. It is com-
mon to visualize that signal as a line (usually wavy) moving from the left of
the page to the right over time. This is how electrical signals are viewed on
an oscilloscope. The y-axis is the amplitude of the signal (its strength) and the
x-axis is time. Figure 15-1 shows some music captured over a period of just
1⁄4 of a second using an oscilloscope.

You can see some repeating patterns in the signal. The frequency at
which these patterns recur is called the frequency. This is measured in Hertz
(abbreviated to Hz). A signal of 1 Hz repeats itself once every second. A
signal of 10 Hz, 10 times per second. Looking at the left of Figure 15-1, you
see a signal that repeats itself roughly every 0.6 of a square. As each square
represents 25 milliseconds, with the settings used on the oscilloscope, the
frequency of that part of the signal is 1/(0.6×0.025) = 67 Hz. If you were to
zoom in using a shorter time span, you would see that many other sound
component frequencies mixed in there as well. Unless a signal is pure sine

15_Ch15.indd 239 9/2/18 5:37 PM

240 Programming Arduino Next Steps

wave (like the one shown later in Figure 15-5), then it will always comprise
a whole load of frequencies.

You could try to capture the signal shown in Figure 15-1 using one of
the Arduino’s analog inputs. This is called digitization because you are
making the analog signal digital. To do this, you have to be able to take
samples fast enough to get a good reproduction of the original signal.

The essence of Digital Signal Processing (DSP) is to digitize a signal
using an analog-to-digital converter (ADC), manipulate it in some way,
and then generate an analog output signal using a digital-to-analog con-
verter (DAC). Most modern audio equipment, MP3 players, and cell
phones use DSP to, among other things, provide equalization settings that
allow you to control the relative power of the high or low frequencies in a
piece of music. Sometimes, however, you don’t need the output to be a
version of the input; you simply need to use DSP techniques to remove
unwanted noise from a signal to get more accurate readings from a sensor.

In general, Arduinos are not the ideal devices for DSP. They cannot cap-
ture analog signals particularly fast, and their digital output is limited to
PWM. The exception to this is the Arduino Due, which, as well as having
lots of ADCs, also has a fast processor and two true DACs. Therefore, the

Figure 15-1 A signal from a musical source.

15_Ch15.indd 240 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 241

Due’s hardware is sufficiently good enough to stand a fighting chance of
digitizing a stereo audio signal and doing something with it. Some
Arduino compatibles such as ESP32-based boards also have true analog
outputs.

Averaging Readings
When reading from sensors, you often find that you can get better results
by taking a number of readings and then averaging them. One way to do
this is to use a circular buffer (Figure 15-2).

Using a circular buffer arrangement, as each new reading is taken, it is
added to the buffer at the current index position. When the last index posi-
tion is filled, the index position is set back to zero and the old readings
start being overwritten. In this way, you always keep the last N readings,
where N is the size of the buffer.

The following example code implements a circular buffer:

// sketch_15_01_averaging

const int samplePin = A1;

const int bufferSize = 10;
int buffer[bufferSize];
int index;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int reading = analogRead(samplePin);
 addReading(reading);
 Serial.println(average());
 delay(1000);
}

void addReading(int reading)
{
 buffer[index] = reading;

15_Ch15.indd 241 9/2/18 5:37 PM

242 Programming Arduino Next Steps

 index++;
 if (index >= bufferSize) index = 0;
}

int average()
{
 long sum = 0;
 for (int i = 0; i < bufferSize; i++)
 {
 sum += buffer[i];
 }
 return (int)(sum / bufferSize);
}

This approach produces invalid averages until the buffer has been
filled. In practice, this need not be a problem as you can just ensure that
you take a buffer full of readings before you start requesting the average.

Notice that the average function uses a long to contain the sum of the
readings. Using a long is essential if the buffer is long enough to exceed
the maximum int value of 32,767. Note that the return value can still be
an int as the average will be within the range of the individual readings.

Figure 15-2 A circular buffer.

9

8

7130 130

130

134132

97

132

129

Index

130

1346

5 4

3

2

1

0

15_Ch15.indd 242 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 243

An Introduction to Filtering
As I discussed in the section “Introducing Digital Signal Processing,” any
signal is usually comprised of a wide range of different component fre-
quencies. At times, you may want to ignore some of these frequencies, in
which case you need to use filtering.

The most common type of filtering with an Arduino is probably low-pass
filtering. Say you have a light sensor and you are trying to detect the overall
light level and how it changes from minute to minute, for instance, to detect
when it is dark enough to turn on a light. But you want to eliminate higher
frequency events such as a hand momentarily passing near the sensor or
the sensor being illuminated by artificial light that actually flickers consid-
erably at the line frequency (60 Hz if you live in the United States). If you
are only interested in the very slow-moving part of the signal, then you
need a low-pass filter.

For the opposite effect, if you want to respond to fast-moving events
but ignore the longer trend, you need a high-pass filter.

Returning to the line frequency interference problem, if, for example,
you are interested in frequencies above and below the 60 Hz noise, then
simply cutting off the low frequencies may not be an option. For that, you
may want to use a band stop filter that just removes the component of the
signal at 60 Hz or, more likely, all frequencies from 59 to 61 Hz.

Creating a Simple Low-Pass Filter
Maintaining a buffer of readings is often unnecessary if all you really want
to do is smooth out the signal. Such filtering can be thought of as low-pass
filtering because you are rejecting high-frequency rapid signal changing
and are interested in the overall trend. You use filters like this in sensors
such as accelerometers that are sensitive to high-frequency changes in the
signal that you may not be interested in if you simply want to know the
angle something is tilted to.

A simple-to-code and useful technique for accomplishing this relies
on retaining a kind of running average between readings. This running

15_Ch15.indd 243 9/2/18 5:37 PM

244 Programming Arduino Next Steps

average comprises a proportion of the current running average and a
proportion of the new reading:

smoothedValuen = (alpha × smoothedValuen–1) + ((1 – alpha) × readingn)

Alpha is a constant between 0 and 1. The higher the value of alpha, the
greater the smoothing effect.

This makes it sound more complicated than it is, however. The following
code shows how easy it is to implement:

// sketch_15_02_simple_smoothing
const int samplePin = A1;
const float alpha = 0.9;

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 static float smoothedValue = 0.0;
 float newReading = (float)analogRead(samplePin);
 smoothedValue = (alpha * smoothedValue) +
 ((1 - alpha) * newReading);
 Serial.print(newReading); Serial.print(",");
 Serial.println(smoothedValue);
 delay(1000);
}

By copying and pasting the output of the Serial Monitor into a spread-
sheet and then charting the result, you can see how well the smoothing is
performing. Figure 15-3 shows the result of the previous code, with a short
wire stuck into the top of A1 to pick up some electrical interference.

You can see how it takes a while for the smoothed value to catch up. If
you were to increase alpha to, say, 0.95, then the smoothing would be even
more pronounced. Plotting the data written to the Serial Monitor is a great
way to make sure the smoothing that you are applying to your signal is
what you need.

15_Ch15.indd 244 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 245

Arduino Uno DSP
Figure 15-4 shows how you can wire up an Arduino so an audio signal is
fed into A0 and a PWM (10 kHz) output signal that tracks the input is
generated. I used an Android Smartphone app called Signal Generator by
RadonSoft as the signal generator, and I connected the headphone output
of the phone to the Arduino, as shown in Figure 15-4. Note that the
Arduino is not changing the signal, it’s just reproducing it.

CAUTION Be warned: connecting your phone in this way probably voids
its warranty and could destroy your phone.

Figure 15-3 Plotting smoothed values.

Figure 15-4 Using an Arduino Uno for DSP.

Signal
generator

C1
220 nF

C2
100 nF

R1
10 kΩ

R3
10 kΩ

R2
10 kΩ

A0

5 V

GND

D9

Arduino
Uno

Oscilloscope

15_Ch15.indd 245 9/2/18 5:37 PM

246 Programming Arduino Next Steps

The input from the signal generator is biased using C1, R1, and R2;
therefore, the oscillation is about the midpoint of 2.5V, so the ADC can
read the whole signal. If these components were not there, the signal
would swing below 0V for half its cycle.

I used a crude filter comprising R3 and C2 to remove most of the PWM
carrier. The PWM frequency of 10 KHz is unfortunately a bit too close to
the signal frequency to remove all the PWM carrier frequency easily.

As well as looking at the signal with an oscilloscope, you could also
listen to it by attaching an audio amplifier, but if you connect an amplifier,
make sure the input is AC coupled.

The following sketch uses the TimerOne library to both generate the
PWM signal and sample the audio at 10 kHz:

// sketch_15_03_null_filter_uno

#include <TimerOne.h>

const int analogInPin = A0;
const int analogOutPin = 9;

void setup()
{
 Timer1.attachInterrupt(sample);
 Timer1.pwm(analogOutPin, 0, 100);
}

void loop()
{
}

void sample()
{
 int raw = analogRead(analogInPin);
 Timer1.setPwmDuty(analogOutPin, raw);
}

Figure 15-5 shows the input to the Arduino (top trace) and the output
from the Arduino (bottom trace) of a 1 kHz signal. The signal is actually
not bad up until you get to 2 to 3 kHz and then it becomes rather triangu-
lar, as you would expect with the small number of samples per waveform.

15_Ch15.indd 246 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 247

You can see some of the carrier is still there as jaggedness, but overall the
shape is not bad. It is certainly good enough for speech frequencies.

Arduino Due DSP
Now we can carry out the same experiment using an Arduino Due at a
much higher sample rate. The code used for the Uno in the previous sec-
tion is of no use with the Due, which cannot use the TimerOne library and
has a different architecture.

The Due analog inputs operate at 3.3V, so be sure to connect the top of
R1 to 3.3V and not 5V. Because the Due has an analog output, you can
dispense with the low-pass R3 and C2 filter and connect the oscilloscope
directly to the DAC0 pin. Figure 15-6 shows the connections for the Due.

The following sketch uses a sample rate of 100 kHz!

// sketch_15_04_null_filter_due

const long samplePeriod = 10L; // micro seconds

const int analogInPin = A0;
const int analogOutPin = DAC0;

Figure 15-5 Arduino Uno signal reproduction with a signal of 1 kHz.

15_Ch15.indd 247 9/2/18 5:37 PM

248 Programming Arduino Next Steps

void setup()
{
 REG_ADC_MR = (REG_ADC_MR & 0xFFF0FFFF) | 0x00020000;
 analogWriteResolution(8);
 analogReadResolution(8);
}

void loop()
{
 static long lastSampleTime = 0;
 long timeNow = micros();
 if (timeNow > lastSampleTime + samplePeriod)
 {
 int raw = analogRead(analogInPin);
 analogWrite(analogOutPin, raw);
 lastSampleTime = timeNow;
 }
}

Unlike the other Arduino boards, the Arduino Due allows the resolu-
tion of both the ADC and DAC to be set. To keep things simple and fast,
these are both set to 8 bits.

The following line speeds up ADC on the Due by manipulating register
values. Follow the link in the code for more information on this trick.

REG_ADC_MR = (REG_ADC_MR & 0xFFF0FFFF) | 0x00020000;

The sketch uses the micros function to control the sample frequency,
only running the sampling code when enough microseconds have elapsed.

Figure 15-7 shows how the setup reproduces a 5 kHz input signal. You
can see the steps in the generated signal corresponding to the 20 samples
per waveform you would expect from a 100 kHz sample rate.

Signal
generator

C1
220 nF

R1
10 kΩ

R2
10 kΩ

A0

3.3 V

GND

DAC0

Arduino
Due

Oscilloscope

Figure 15-6 Using an Arduino Due for DSP.

15_Ch15.indd 248 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 249

Filter Code Generation
If you are looking at more advanced filtering, there is a useful online code
generator that allows you to design a filter and then cut and paste lines of
code that it generates into your Arduino sketch. You will find this code
here: http://www.schwietering.com/jayduino/filtuino/.

Frankly, the alternative is whole lot of painful math!
Figure 15-8 shows the interface to the filter generator. The bottom half

of the screen shows the generated code, and shortly I will show you how
you can incorporate this into an Arduino sketch.

You have a bewildering array of options for the type of filter to be gener-
ated. The example shown in Figure 15-4 is a band stop filter designed to
reduce the amplitude of the signal at frequencies between 1 kHz and 1.5
kHz. Starting at the top row, the settings for this are “Butterworth,” “band
stop,” and “1st order.” Butterworth refers to the filter design, from its origi-
nal analog electronics design (http://en.wikipedia.org/wiki/Butterworth_
filter). The Butterworth is a good all-round design and a good default.

I also selected the option “1st order.” Changing this to a higher number
will increase both the number of previous samples that need to be stored
and also the steepness of the cutoff of the unwanted frequencies. For this

Figure 15-7 Arduino Due signal reproduction with a signal of 5 kHz.

15_Ch15.indd 249 9/2/18 5:37 PM

http://www.schwietering.com/jayduino/filtuino/
http://en.wikipedia.org/wiki/Butterworth_filter
http://en.wikipedia.org/wiki/Butterworth_filter

250 Programming Arduino Next Steps

Figure 15-8 Filter code generator for Arduino.

15_Ch15.indd 250 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 251

example, “1st order” is fine. The higher the order, the more calculations to
perform and you may find that you need to reduce the sample rate for the
Arduino to keep up.

Then you see some disabled fields that relate to other types of filter,
until you come to “samplerate.” Samplerate is the frequency at which the
data will be sampled and also the frequency at which the generated code
will be called to apply the filtering to the signal.

Next, I specified the upper and lower frequencies. You can enter these
as either a frequency in Hz or a MIDI note.

The “more” section provides a couple more options and even tells you
how to set them for best results. The “output” section allows you to spec-
ify the type to use for the array of values that are used to do the filtering. I
set this to “float.” Finally, I clicked Send to generate the code.

To test this, you can modify the “null filter” example that you ran on the
Due. The full sketch can be found in sketch_15_05_band_stop_due (avail-
able for download from the book’s web page at http://simonmonk.org/
nextsteps2).

The first step is to copy and paste the generated code into the basic
“null filter” example just after the constant definitions. It is also a good
idea to paste the URL from the generator as a comment line, so if you want
to go back and modify the filter code, you’ll have the parameters you used
last time preset in the user interface. The generated code encapsulates all
the filter code into a class. You’ll meet classes again in Chapter 17. But, for
now, you can treat it as a black box that will do filtering.

After the pasted code, you need to add the following line:

filter f;

Now you need to modify the loop function, so that instead of simply
outputting the input, the Arduino outputs the filtered value:

void loop()
{
 static long lastSampleTime = 0;
 long timeNow = micros();
 if (timeNow > lastSampleTime + samplePeriod)
 {
 int raw = analogRead(analogInPin);

15_Ch15.indd 251 9/2/18 5:37 PM

http://simonmonk.org/nextsteps2
http://simonmonk.org/nextsteps2

252 Programming Arduino Next Steps

 float filtered = f.step(raw);

 analogWrite(analogOutPin, (int)filtered);
 lastSampleTime = timeNow;
 }
}

Making the filtered signal is as easy as supplying the raw reading from
the analog input as argument to the function f.step. The value returned is
the filtered value, which can be converted to an int before being written
by the DAC.

Looking at the step function, you can see that the filter code keeps a
history of three previous values along with the new value. There is some
shuffling up of values and then scaling of values by factors to produce a
return value. Isn’t math wonderful?

Figure 15-9 shows the result of this filtering. A signal generator was
used to inject different frequency signals and the output amplitude (mea-
sured using the oscilloscope) recorded in a spreadsheet and then plotted
in a chart.

Figure 15-9 Frequency response of an Arduino band stop filter.

15_Ch15.indd 252 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 253

The Fourier Transform
The Fourier Transform is a useful tool for analyzing the frequencies in a
signal. As you recall from the introduction to this chapter, signals can be
thought of as being made up of varying amounts of sine waves at different
frequencies. You have probably seen frequency analyzer displays on musi-
cal equipment or on the visualization utilities in your favorite MP3 play-
ing software. These analyzers display as bar charts. The vertical bars
represent the relative strengths of different bands of frequencies, with the
low-frequency bass notes over on the left and the high-frequency bands
on the right.

Figure 15-10 shows how the same signal can be viewed both as a single
wavy line (called the time domain) and a set of strengths of the signal in a
set of frequency bands (called the frequency domain).

The algorithm for calculating the frequency domain from time domain
signal data is called the Fast Fourier Transform or FFT. The calculations
involved in FFTs use complex numbers and, unless you are really into
math, are not for the faint of heart.

Fortunately for us, clever people are often happy to share their code.
You can download a function that will perform the FFT algorithm for you.
The sample code I used is not organized into a library; it is supplied as a C
header and C++ implementation file (.h and .cpp, respectively). To use it,
you can just place the two files into your sketch folder. These are in the
sketches that accompany the book, so you do not need to download them
separately. The code originally appeared in a post on the Arduino Forum
(http://forum.arduino.cc/index.php/topic,38153.0.html). You can also
find the two files, with other examples of the algorithm here:

https://code.google.com/p/arduino-integer-fft/

The following two examples illustrate how to use code running on an
Arduino Uno to sample an audio signal.

15_Ch15.indd 253 9/2/18 5:37 PM

http://forum.arduino.cc/index.php/topic,38153.0.html
https://code.google.com/p/arduino-integer-fft/The
https://code.google.com/p/arduino-integer-fft/The

254 Programming Arduino Next Steps

Spectrum Analyzer Example
This example uses an Arduino Uno to make a text-based frequency spec-
trum display. You can find the example in sketch_15_06_FFT_Spectrum.
The sketch is a little long to repeat here in full, so I’ve only included snip-
pets. Load the sketch into your Arduino IDE to follow the discussion.

Figure 15-10 A signal in time and frequency domains.

15_Ch15.indd 254 9/2/18 5:37 PM

 Chapter 15: Digital Signal Processing 255

The FFT algorithm uses two arrays of char. This type is used rather
than byte, because in Arduino C, byte is unsigned, and the signal to be
converted is expected to oscillate about a value of 0. Once the FFT algo-
rithm has been applied, the data array will contain the strengths of each
component frequency band from lower to higher. The frequency range
depends on the sample speed. This sketch lets the Uno run as fast as pos-
sible and gives a top frequency of about 15 kHz, since there are 63 slots
giving evenly spaced frequency bands about 240 Hz apart.

To make the analog conversion as fast as possible and get a decent sam-
ple rate, use the trick discussed in Chapter 5 to increase the speed of the
ADC. This accounts for these two lines in setup.

ADCSRA &= ~PS_128; // remove prescale of 128
ADCSRA |= PS_16; // add prescale of 16 (1MHz)

The main loop doesn’t contain much code:

void loop()
{
 sampleWindowFull();
 fix_fft(data, im, 7, 0);
 updateData();

 showSpectrum();
}

The function sampleWindowFull samples a time window of 128 sam-
ples worth of data. I’ll discuss this in a moment. The FFT algorithm is then
applied. The parameter of 7 is the base 2 logarithm of the number of sam-
ples. The parameter of 0 is an inverse flag, which will also always be set to
0 for false. After the FFT algorithm has been applied, there is a further step
to update the values in the arrays. Finally showSpectrum is called to dis-
play the frequency data.

The function sampleWindowFull reads 128 analog values and assumes
that the signal is biased to 2.5V, so that by subtracting 512 from the read-
ing, the signal will swing both positive and negative. This is then scaled
by the constant GAIN to add a little amplification for weak signals. The
10-bit reading is then converted into an 8-bit value to fit into the char array
by dividing it by 4. The im array containing the imaginary component of

15_Ch15.indd 255 9/2/18 5:37 PM

256 Programming Arduino Next Steps

the signal is set to 0. This is part of the inner workings of the algorithm; if
you want to find out more about this, see http://en.wikipedia.org/wiki/
Fast_Fourier_transform.

void sampleWindowFull()
{
 for (int i = 0; i < 128; i++)
 {
 int val = (analogRead(analogPin) - 512) * GAIN;
 data[i] = val / 4;
 im[i] = 0;
 }
}

The updateData function calculates the amplitude of each frequency
slot. The strength of the signal is the hypotenuse of the right-angle triangle
whose other sides are the real and imaginary parts of the signal
(Pythagoras’s Theorem in action!).

void updateData()
{
 for (int i = 0; i < 64; i++)
 {
 data[i] = sqrt(data[i] * data[i] + im[i] * im[i]);
 }
}

To display the data, it is written to the Serial Monitor, which places the
whole data set on one line, with commas between the values. The first
value is ignored, as this contains the DC component of the signal and is
not usually of interest.

You could, for example, use the data array to control the height of
graphical bars on an LCD display. To connect a signal (say, the audio out-
put of an MP3 player), you would need the same type of arrangement as
shown previously in Figure 15-4 so the signal is biased around 2.5V.

Frequency Measurement Example
This second example uses an Arduino Uno to display the approximate
frequency of a signal in the Serial Monitor (sketch_15_07_FFT_Freq).
Most of the code is the same as for the previous example. The main

15_Ch15.indd 256 9/2/18 5:37 PM

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Fast_Fourier_transform

 Chapter 15: Digital Signal Processing 257

difference is that once the data array has been calculated, the index posi-
tion of its highest value is used to calculate an estimate of the frequency.
The loop then displays this value in the Serial Monitor.

int findF()
{
 int maxValue = 0;
 int maxIndex = 0;
 for (int i = 1; i < 64; i++)
 {
 int p = data[i];
 if (p > maxValue)
 {
 maxValue = p;
 maxIndex = i;
 }
 }
 int f = maxIndex * 240;
 return f;
}

Summary
DSP is a complex subject, and there are many books devoted just to this
topic alone. This complexity means that, by necessity, I’ve only touched on
what are hopefully the more useful and possible techniques that you
might try with an Arduino.

DSP is often thought of as something that requires specialized or high
performance processors. Hopefully, this chapter has shown that rudimen-
tary DSP can be achieved using Arduinos and compatibles.

In the next chapter, we turn our attention to dealing with the problem
of wanting to do more than one thing at a time with the Arduino. This is a
particular problem for those of us used to programming larger machines,
where multiple simultaneous threads of execution are the norm.

15_Ch15.indd 257 9/2/18 5:37 PM

15_Ch15.indd 258 9/2/18 5:37 PM

259

16
Managing with
One Process

Programmers coming to Arduino from a background in program-
ming large systems often cite the lack of multithreading and concurrency
in Arduino as a deficiency. In this chapter, I’ll try to set the record straight
and show you how to embrace the single-thread model of embedded
systems.

Making the Transition from
Big Programming
Arduino has attracted many enthusiasts, including me, who have spent
years in the software industry and are used to teams of dozens of people
contributing to a huge software effort, with all the related problems of
managing the ensuing complexity. For us, the ability to write a few lines of
code and have something interesting and physical happen almost imme-
diately, without large amounts of engineering, is the perfect antidote to
big software.

It does, however, mean that we often look for things in Arduino that we
are used to seeing in our day jobs. When moving from the big develop-
ment world to the miniature world of Arduino, one of the first adjust-
ments we need to make is to the very simplicity of writing for Arduino. To
develop a large system without the benefit of Test Driven Development,

16_Ch16.indd 259 9/2/18 5:39 PM

260 Programming Arduino Next Steps

version control, and some kind of agile process to follow is reckless. On
the other hand, a large Arduino project may be only 200 lines of code writ-
ten by one person. If that person is an experienced software developer, he
or she can simply keep the details in mind without needing any of the
usual accoutrements of development.

So stop fretting about version control, design patterns, writing unit
tests, and having a refactoring IDE and just embrace the joyous simplicity
of Arduino.

Why You Don’t Need Threads
If you are old enough to have programmed home computers in BASIC,
then you remember that “doing one thing at a time” is simply how com-
puters operate. In BASIC, if a game required a number of sprites to be
moved apparently simultaneously, then you had to be smart and include
a main loop that moved each sprite a little bit.

This mindset is a good one to have for Arduino programming. Rather
than multiple threads each being responsible for one of the sprites, a single
execution thread does a little bit of everything in turn, without “blocking”
on any one thing.

Aside from multicore computers, essentially a computer only genu-
inely does one thing at once. The rest of the time, the operating system
switches the processor’s attention among the numerous processes run-
ning on the computer. On the Arduino, with a limited need to do more
than one thing at a time, you can code it yourself, as there is no operating
system.

Setup and Loop
It is no accident that the two functions you must write for any sketch are
setup and loop. The fact that loop repeats over and over again, indicates
why you should not really allow loop to block. Your code should wiz
through loop and around again before you know it.

16_Ch16.indd 260 9/2/18 5:39 PM

 Chapter 16: Managing with One Process 261

Sense Then Act
Most Arduino projects contain an element of needing to control some-
thing. Therefore, the contents of a loop often:

• Check if buttons are pressed or a sensor threshold has been exceeded.

• Perform a relevant action.

A simple example of this would be a push switch that, when pressed, tog-
gles LED flashing on and off.

The following example illustrates this. As you shall see later, however,
the limitations imposed by having to wait while the LED flashes are some-
times not acceptable.

// sketch_16_01_flashing_1

const int ledPin = 13;
const int switchPin = 5;
const int period = 1000;

boolean flashing = false;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(switchPin, INPUT_PULLUP);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)
 {
 flashing = ! flashing;
 }
 if (flashing)
 {
 digitalWrite(ledPin, HIGH);
 delay(period);
 digitalWrite(ledPin, LOW);
 delay(period);
 }
}

16_Ch16.indd 261 9/2/18 5:39 PM

262 Programming Arduino Next Steps

The problem with this code is that you can only check that the button
has been pressed once the blinking has finished. If a button is pressed
while the blinking is in progress, it won’t register. This may not be impor-
tant to the operation of the sketch, but if it is important to register every
button press, then you need to make sure the loop does not have any
delays in it. In fact, once the flashing is triggered, the Arduino spends
most of its time blinking and there is only a tiny window in which the but-
ton press can be registered.

The example in the next section solves this problem.

Pause Without Blocking
You can rewrite the previous sketch to avoid using delay:

// sketch_16_02_flashing_2

const int ledPin = 13;
const int switchPin = 5;
const int period = 1000;

boolean flashing = false;
long lastChangeTime = 0;
int ledState = LOW;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(switchPin, INPUT_PULLUP);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)
 {
 flashing = ! flashing;
 // and turn the LED off
 if (! flashing)
 {
 digitalWrite(ledPin, LOW);
 }
 }
 long now = millis();

16_Ch16.indd 262 9/2/18 5:39 PM

 Chapter 16: Managing with One Process 263

 if (flashing && now > lastChangeTime + period)
 {
 ledState = ! ledState;
 digitalWrite(ledPin, ledState);
 lastChangeTime = now;
 }
}

In this sketch, I have added two new variables: lastChangeTime and
ledState. The lastChangeTime variable records the last time the LED was
toggled between on and off, and the ledState variable contains that on/off
state, so when it needs to be toggled, you know what the LED’s current
state is.

The loop now contains no delays. The first part of the loop checks for a
button press, and if a button is pressed, it toggles the flashing state. The extra
if statement, shown next, is simply a nice refinement that turns the LED off
if the button press has caused flashing to be turned off. Otherwise, the LED
might be left on, even though flashing has been canceled.

if (! flashing)
{
 digitalWrite(ledPin, LOW);
}

The second part of the loop finds the current millis() count and then
compares this with the value in lastChangeTime with period added to it.
This means that the code inside the if will only be run if more than period
milliseconds has elapsed.

The ledState variable is then toggled and the digital output set accord-
ingly. The value in now is then copied to lastChangeTime so the code can
wait for the next period to elapse before being activated again.

The Timer Library
The “Pause Without Blocking” approach of the previous section has been
generalized into a library that allows you to schedule repeating events
using millis. Despite its name, the library has nothing to do with the hard-
ware timers on the device and will, therefore, work just fine on most
Arduino and Arduino-compatible boards.

16_Ch16.indd 263 9/2/18 5:39 PM

264 Programming Arduino Next Steps

You can download the library from http://playground.arduino.cc//
Code/Timer.

Using this library simplifies the code, as you can see here:

// sketch_16_03_flashing_3
#include <Timer.h>

const int ledPin = 13;
const int switchPin = 5;
const int period = 1000;

boolean flashing = false;
int ledState = LOW;
Timer t;

void setup()
{
 pinMode(ledPin, OUTPUT);
 pinMode(switchPin, INPUT_PULLUP);
 t.every(period, flashIfRequired);
}

void loop()
{
 if (digitalRead(switchPin) == LOW)
 {
 flashing = ! flashing;
 if (! flashing)
 {
 digitalWrite(ledPin, LOW);
 }
 }
 t.update();
}

void flashIfRequired()
{
 if (flashing)
 {
 ledState = ! ledState;
 digitalWrite(ledPin, ledState);
 }
}

16_Ch16.indd 264 9/2/18 5:39 PM

http://playground.arduino.cc//Code/Timer
http://playground.arduino.cc//Code/Timer

 Chapter 16: Managing with One Process 265

To use this library, you define a timer, in this case called t, and then
within your setup function you specify a function that calls periodically
using:

t.every(period, flashIfRequired);

You then place the following line in your loop function:

t.update();

Every time the update function is called, millis checks if any of the timed
events need to be actioned, and if they do, it calls the linked function (in
this case flashIfRequired).

The Timer library also has a number of other utility functions; for more
information on the library, see the link at the beginning of this section.

State Diagrams
A simple Arduino program can be written without much advanced plan-
ning. But often even the most innocuous of projects can suddenly become
frustratingly complex. Such complexity often arises from the need for the
project to be in different states.

Imagine you are designing an Arduino controller for festive lights. For
now (and because this is a book about software and not hardware) let’s
assume that light is being controlled (the L LED on pin 13 of an Uno) and
that a single push switch is being used to toggle between the different
display modes of “off,” “on,” and “blinking.”

Sounds simple enough, doesn’t it? But if you start writing the code, you
may start to run into problems such as:

• How do I watch out for keypresses while also blinking the LED?

• How do I move from mode to mode?

A really useful technique for writing the code for this type of project is
to start by drawing a diagram (Figure 16-1).

Each “state” is represented as a bubble with a label in it. In this case,
because we need to make the LED blink some of the time, we actually end
up with four states that the program can be in.

16_Ch16.indd 265 9/2/18 5:39 PM

266 Programming Arduino Next Steps

OFF

Start

ON

BLINK_OFF

BLINK_ON

Button pressed

Button pressed

Button pressed

LED on

Button pressed

LED off

Time elapsed

LED off

Time elapsed

LED on

Figure 16-1 A state diagram for a festive lights controller.

• OFF: The LED is off.

• ON: The LED is on.

• BLINK_ON: The LED is set to blink, but it is currently on.

• BLINK_OFF: The LED is set to blink, but it is currently off.

The program moves between states in response to either the button
being pressed or, in the case of the BLINK states, after a period of time has
elapsed. Each possible “transition” between states is indicated as an arrow
from one state to another. Each of these arrows has a label that has a top
and sometimes a bottom separated by a line. The top part is the condition
for changing state (e.g., button pressed) and the bottom (if there is one) is
a list of actions that should take place during the transition before the pro-
gram goes into the next state.

State Machines in Arduino
A state diagram like Figure 16-1 is said to describe a “state machine,”
which is a good phrase to drop into conversations with other techies if you
want to appear clever. However, a diagram isn’t a program and we need a
way of converting the diagram into an Arduino C. There are many ways
to do this, but here is the style I prefer.

16_Ch16.indd 266 9/2/18 5:39 PM

 Chapter 16: Managing with One Process 267

First of all, we need a way of representing the different states that the
program can be in. This can be done by simply assigning a number to each
possible state and keeping it in a variable. To make this more readable, the
C language has a useful data type for this called enum. The code below
defines a variable called mode that can only be assigned to one of the
uppercase names in the list.

enum {OFF, ON, BLINK_ON, BLINK_OFF} mode;

Behind the scenes, each of the names in the list will be assigned a num-
ber, so OFF will be 0, ON will be 1, etc. However, we never need to refer to
these numbers; we can always just use the name.

Now we need a way of representing the mechanism of moving between
the states. We do this in the loop function, as the following example illus-
trates:

void loop()
{
 if (mode == OFF)
 {
 handleOFF();
 }
 else if (mode == ON)
 {
 handleON();
 }
 else if (mode == BLINK_ON)
 {
 handleBLINK_ON();
 }
 else if (mode == BLINK_OFF)
 {
 handleBLINK_OFF();
 }
}

All we do is have a series of “if” clauses that check the mode and then
call the appropriate handler function for that mode. Each time around the
loop, just the handler for the mode we are in will be called.

16_Ch16.indd 267 9/2/18 5:39 PM

268 Programming Arduino Next Steps

Thinking about the handler for the mode OFF, the only transition pos-
sible is to the mode ON if the button is pressed, which will also require an
action of turning on the LED. Here it is in C.

void handleOFF()
{
 if (switchPressed())
 {
 digitalWrite(ledPin, HIGH);
 mode = ON;
 }
}

The function switchPressed is a utility function that checks for a key
press, but also “debounces” the switch ensuring that each press of button
is registered just once, even if the switches contacts “bounce” before mak-
ing a good connection. So, just by setting the mode variable to ON, the
next time around the loop, the handler handleONwill be run.

void handleON()
{
 if (switchPressed())
 {
 lastTime = millis();
 mode = BLINK_ON;
 }
}

The function handleON also only has one possible transition. That is, if
the button is pressed the mode is set to BLINK_ON. Notice that we don’t
need to set the LED on, because it is already on.

The handler for BLINK_ON is more complex because there are two
possible transitions (referring to Figure 16-1). A button press will take us
back to the OFF state, whereas a timeout will take us to BLINK_OFF.

void handleBLINK_ON()
{
 if (switchPressed())
 {
 digitalWrite(ledPin, LOW);
 mode = OFF;
 }
 long now = millis();

16_Ch16.indd 268 9/2/18 5:39 PM

 Chapter 16: Managing with One Process 269

 if (now > lastTime + blinkDelay)
 {
 digitalWrite(ledPin, LOW);
 lastTime = now;
 mode = BLINK_OFF;
 }
}

The timeout is achieved by using a variable (lastTime) to record the
time in milliseconds from reset that the LED last changed from on to off or
vice-versa.

The code for handleBLINK_OFF is very similar to handleBLINK_ON
and you can find this along with the rest of the working sketch for this
example in sketch_16_04_state_example.

Summary
In this chapter, you learned how to allow multiple things to appear to hap-
pen at the same time on an Arduino, without using multiple threads. This
is simply a matter of adjusting your mindset to the constraints imposed by
your favorite little microcontroller board.

In the final chapter of this book, you will learn how to share your code
creations with the Arduino community by creating and publishing
Arduino libraries.

16_Ch16.indd 269 9/2/18 5:39 PM

16_Ch16.indd 270 9/2/18 5:39 PM

271

17
Writing Libraries

Sooner or later you will create something really good that you think
other people could make use of. This is the time to wrap up the code in
a library and release it to the world. This chapter shows you how.

The Arduino’s success is in no small part due to its community who
release libraries to make difficult things easy. This is further amplified by
the ease with which libraries can be added and managed from the Arduino
IDE.

When to Make a Library
Creating an Arduino library is not an activity restricted to Arduino devel-
opers; any Arduino user can create a library. If it’s useful, then much praise
will flow in the developer’s direction. No one sells libraries—that would
be counter to the values of the Arduino community. Libraries should be
released as open source as a way to help your fellow Arduino enthusiasts.

Perhaps the most useful Arduino libraries are those that are developed
to provide an interface to a specific piece of hardware. They often greatly
simplify the process of using the hardware and, in particular, unraveling
some complex protocol. There is no reason why more than one person
should have to go through the pain of working out how some obscure bit
of hardware works, and thanks to the Internet, if you publish a helpful
library, people will generally find it.

TIP The application programmer interface (API) is the set of functions that
the library user will include in his or her sketch. When designing the API,

17_Ch17.indd 271 9/2/18 5:40 PM

272 Programming Arduino Next Steps

always ask yourself this question: “What does the user actually care about?”
The low-level implementation details should be hidden as much as possible.
In the example developed in “Library Example (TEA5767 Radio),” I’ll
discuss this further.

Using Classes and Methods
Although the sketch writer generally has the impression that he or she is
writing in C and using a fairly conservative set of C features, in actual fact,
the sketch writer is using C++. Arduino sketches are based on C++, the
object-oriented extension to the C language. This language uses the con-
cepts of classes of objects that group together information about the object
(its data) and also functions that apply to the data. These functions look
like regular functions but when associated with a particular class are
referred to as methods. What is more, methods can be declared to be public,
in which case anyone can use them, or private, in which case they are only
accessible to other methods inside the class.

The reason I am telling you all this is that library writing is one of the few
Arduino activities in which using classes is the norm. The class is a great way
to wrap up everything into a kind of module. The “private”/“public” dis-
tinction is also a good way to ensure that when you are designing the library,
you are always thinking of how the sketch writer will want to interact with
the library (the public) rather than how it works (the private).

As you work through the example that follows, you’ll see the role that
classes play in libraries.

Library Example (TEA5767 Radio)
To illustrate how to write an Arduino Library, I’ll wrap up some code that
you first met back in Chapter 9 for the TEA5767 FM radio receiver. The
sketch is simple and barely justifies a library, but nonetheless, it serves as
a good example.

The following are the stages in the process:

1. Define the library’s interface.

17_Ch17.indd 272 9/2/18 5:40 PM

 Chapter 17: Writing Libraries 273

2. Write the header file.

3. Write the implementation file.

4. Write the keywords file.

5. Make some examples.

In terms of files and folders, a library comprises a folder, whose name
should match the name of the library class. In this case, I’ll call the library
and class TEA5767Radio. Within that folder, there should be another folder
called “src” containing two files: TEA5767Radio.h and TEA5767Radio.cpp.

Optionally, you may also have a file named keywords.txt and a folder
called examples (at the same level as “src”), containing example sketches
that use the library. The folder structure for this example library is shown
in Figure 17-1.

Probably the easiest way to work on the library is directly in your
Arduino libraries folder, where you have been installing other third-party
libraries. You can edit the files directly in this folder. The Arduino IDE will
only register that the library exists once you restart it, but after that any
changes to the contents of the files will be picked up automatically when
you compile the project.

You can see the original sketch on which this library is based in
sketch_09_01_I2C_TEA5767, and you can install the finished library using
the Library Manager; just search for “TEA5767.”

Figure 17-1 Folder structure of the example project.

17_Ch17.indd 273 9/2/18 5:40 PM

274 Programming Arduino Next Steps

Define the Library’s Interface
The first step is to define the interface that people will use.

If you have used a few libraries, you’ve probably noticed that they gener-
ally follow one of two patterns. The simplest is exemplified by the Narcoleptic
library. To use this library, you simply include the library and then access its
methods by prefixing the method name with Narcoleptic, as shown here:

#include <Narcoleptic.h>
// then somewhere in your code
Narcoleptic.delay(500);

This pattern is also used in the Serial library. If there will only ever be
one of the things that the library represents (for example, Narcoleptic),
then this pattern is the right one to use. However, if it is possible that there
will be more than one thing (for example, a number of sensors or dis-
plays), then you want to use a different approach. Because you might
want to have more than one radio receiver attached to an Arduino at a
time, this particular example falls into this second category.

For these situations, the pattern is similar to that used in the
SoftwareSerial library. Because you might have lots of soft-serial ports at
the same time, you create named instances of the SoftwareSerial library
using a syntax like this:

#include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11); // RX, TX

When you want to use that particular serial port (the one using pins 10
and 11), you create a name for it—in this instance, “mySerial”—and then
you can then write things like the following:

mySerial.begin(9600);
mySerial.println("Hello World");

Without worrying about how you will write the code, let’s define how
you would like to be able to use the code in a sketch.

After importing the library, you want to be able to create a new “radio,”
name it, and specify which I2C address it runs on. To make life really easy,
you have two options: one where it defaults to the address of 0x60 and a
second where you specify the address explicitly (usually because you
need to use an address other than the default address), as shown below:

17_Ch17.indd 274 9/2/18 5:40 PM

 Chapter 17: Writing Libraries 275

#include <TEA5767Radio>
TEA5767Radio radio = TEA5767Radio();
// or TEA5767Radio radio = TEA5767Radio(0x60);

Because this is an FM radio, what you really need to do is set the fre-
quency, so you need to write something like this in your code.

radio.setFrequency(93.0);

The number here is the frequency in MHz. It is in the form that the sketch
writer would like it in, not in the strange unsigned int format that is sent to
the module. You want to hide the hard work and wrap it up in the library.

That’s all there is to the design in this case. Now we’ll write some code.

Write the Header File
The code for a library is split across more than one file—generally just two
files. One file is called the “header” file and has the extension “.h.” This
file is the one you reference from your sketch using #include. The header
file does not contain any actual program code; it simply defines the names
of the classes and methods in the library. Here is the header file for the
example library:

#include <Wire.h>

#ifndef TEA5767Radio_h
#define TEA5767Radio_h

class TEA5767Radio
{
private:
 int _address;
public:
 TEA5767Radio();
 TEA5767Radio(int address);
 void setFrequency(float frequency);
};

#endif

The #ifndef command prevents the library from being imported more
than once and is standard practice for header files. Everything between
#ifndef and #endif (i.e., the whole header definition) will only be included

17_Ch17.indd 275 9/2/18 5:40 PM

276 Programming Arduino Next Steps

during compilation if the symbol TEA5767Radio_h is undefined. If the
symbol is undefined then the first thing that the code inside #ifndef does
is define it to stop the header definition being read more than once.

You then include the class definition, which has a private section just
containing a variable called _address. This variable contains the I2C
address for the device.

The public section contains the two functions for creating a radio object—
one that allows an address to be specified and one that does not and will,
therefore, use the default. The setFrequncy function is also listed as public.

Write the Implementation File
The code that actually implements the functions defined in the header file
is contained in the file TEA5767Radio.cpp:

#include <Arduino.h>
#include <TEA5767Radio.h>

TEA5767Radio::TEA5767Radio(int address)
{
 _address = address;
}

TEA5767Radio::TEA5767Radio()
{
 _address = 0x60;
}

void TEA5767Radio::setFrequency(float frequency)
{
 unsigned int frequencyB = 4 * (frequency *
 1000000 + 225000) / 32768;
 byte frequencyH = frequencyB >> 8;
 byte frequencyL = frequencyB & 0XFF;
 Wire.beginTransmission(_address);
 Wire.write(frequencyH);
 Wire.write(frequencyL);
 Wire.write(0xB0);
 Wire.write(0x10);
 Wire.write(0x00);
 Wire.endTransmission();
 delay(100);
}

17_Ch17.indd 276 9/2/18 5:40 PM

 Chapter 17: Writing Libraries 277

The two methods responsible for creating a new radio both simply set
the value of _address to either the default I2C address of 0x60 or the
“address” parameter supplied. The setFrequency method is almost iden-
tical to the original sketch (sketch_09_01_I2C_TEA5767), except that the
following line uses the value of the _address variable to make the I2C
connection:

Wire.beginTransmission(_address);

Write the Keywords File
The folder containing the library should also contain a file called
keywords.txt. This file is not essential; the library will still work if you do
not create this file. The file allows the Arduino IDE to color-code any
keywords for the library. Our example library only has two keywords: the
name of the library itself (TEA5767Radio) and setFrequency. The key-
word file for the library can contain comments on lines that start with a #.
The keyword file for this library is shown here:

#######################################
Syntax Coloring Map for TEA5767Radio
#######################################
#######################################
Datatypes (KEYWORD1)
#######################################
TEA5767Radio KEYWORD1
#######################################
Methods and Functions (KEYWORD2)
#######################################
setFrequency KEYWORD2

The keywords should be specified as KEYWORD1 or KEYWORD2,
where KEYWORD1 should be used for class names and KEYWORD2
for methods. There are other options too which you can find out more
about here: https://github.com/arduino/Arduino/wiki/Arduino-IDE
-1.5:-Library-specification.

17_Ch17.indd 277 9/2/18 5:40 PM

https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification

278 Programming Arduino Next Steps

Make the Examples Folder
If you create a folder named examples within the folder for the library,
then any sketches in the folder will automatically be registered by the
Arduino IDE so you can access them from the Examples menu under the
name of the library. The examples sketch can just be a regular sketch, but
one that is saved in the folder for the library. The example using this
library is listed here:

#include <Wire.h>
#include <TEA5767Radio.h>

TEA5767Radio radio = TEA5767Radio();

void setup()
{
 Wire.begin();
 radio.setFrequency(93.0); // pick your own frequency
}

void loop()
{}

Testing the Library
To test the library, you can just run the example sketch that uses the library.
Unless you are very lucky (or careful), the library will not work the first
time you compile it, so read the error messages that appear in the informa-
tion area at the bottom of the Arduino IDE.

Releasing the Library
Having created a library, you need to release it to the community. One way
to make sure that people find it is to create an entry on the publicly editable
wiki at http://playground.arduino.cc//Main/LibraryList. You can also host
a zip file of the library here, although with the advent of the Arduino
Library Manager in the IDE, it is better to host the library code on GitHub,
where the Library Manager can be made aware of your library for all
Arduino users to make use of.

17_Ch17.indd 278 9/2/18 5:40 PM

http://playground.arduino.cc//Main/LibraryList

 Chapter 17: Writing Libraries 279

Publishing Your Library on GitHub
If you want to take the next step and have your library accessible from the
Arduino IDE’s Library Manager, you need to first make a library.properties
file. This file provides information for the Library Manager to use. Here is
the “library.properties” file for this library:

name=ArduinoTEA5767

version=1.0

author=Simon Monk <evilgeniusauthor@gmail.com>

maintainer=Simon Monk <evilgeniusauthor@gmail.com>

sentence=A simple to use library for the TEA5767 I2C FM receiver IC.

paragraph=It supports multiple devices and just wraps the I2C command

 to set the frequency.

category=Device Control

url=https://github.com/simonmonk/arduino_TEA5767

architectures=*

includes=ArduinoTEA5767.h

Most of the fields are fairly obvious, but for more detail, see
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library
-specification.

This file needs to go at the top level of your library directory structure.

GitHub
GitHub is a rather wonderful place where more than a million people all
share code that they have written. Most of this code is for things other
than Arduino, but you will find loads of useful libraries and code exam-
ples for Arduino there.

I use GitHub for libraries that I write, but also for all the example pro-
grams that I use in this and other books that I write. As well as providing
a safe place in the “cloud” to keep my code, it also provides a convenient
place from which readers such as you can download the code. Just as a
reminder, the code for this book is all kept in this “repository”: https://
github.com/simonmonk/nextsteps2.

It’s beyond the scope of this book to cover using “git,” the version con-
trol software on which GitHub is built, but we can cover what you need to
know as far as making libraries goes.

17_Ch17.indd 279 9/2/18 5:40 PM

mailto:<evilgeniusauthor@gmail.com
mailto:<evilgeniusauthor@gmail.com
https://github.com/simonmonk/arduino_TEA5767
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification
https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification
https://github.com/simonmonk/nextsteps2
https://github.com/simonmonk/nextsteps2

280 Programming Arduino Next Steps

Normally, when developing code, I would start by creating a new
repository and then writing new code directly into it. However, in this
case, we will create a new repository and then copy over our ready and
tested library.

If you are not a GitHub user, then head over to https://github.com and
register as a new user. You will also need to install the “git” software on
your computer to allow you to transfer code between your computer and
GitHub. You can find instructions for doing this here: https://git-scm
.com/book/en/v2/Getting-Started-Installing-Git.

Creating a Repository
After registering on GitHub, you will essentially get your own home page
from which you and others can access repositories that you have created.
You will also see an option to create a new repository if you click on the
“Repositories” link. This will open the form shown in Figure 17-2.

Figure 17-2 Creating a new repository.

17_Ch17.indd 280 9/2/18 5:40 PM

https://github.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

 Chapter 17: Writing Libraries 281

You need to provide a name and description for the repository. It’s also
a good idea to select the checkboxes for “public” and “Initialize with a
README” as well as selecting a license so that people know just how free
they are to use your code.

Once the repository has been created, you need to get your library code
into it. This isn’t as simple as uploading it. Instead you need to follow
these steps:

1. On the GitHub page for your new repository, click on the “Clone
or Download” button and then copy the URL for your repository
(see Figure 17-3).

2. On your computer’s command line, with a new empty directory,
as its current directory, run the following command:

git clone https://github.com/simonmonk/arduino_TEA5767.git

using your repository URL. This will create a new directory with
the same name as the directory.

3. Move all the files that your library (e.g., “arduino_TEA5767”)
contains into the directory created in step 2.

Figure 17-3 Copying the repository URL from GitHub.

17_Ch17.indd 281 9/2/18 5:40 PM

https://github.com/simonmonk/arduino_TEA5767.git

282 Programming Arduino Next Steps

4. Send the files you have added to the repository to GitHub by
entering the following commands:

git add .
git commit -m "first commit"
git push

You can, if you like, stop there. You have put all your library files onto
the Internet where they can be found and downloaded as a ZIP file by oth-
ers. But if you want it to appear in the Library Manager, you have to tell
the Arduino team where your library is by following the instructions here:
https://github.com/arduino/Arduino/wiki/Library-Manager-FAQ.

Summary
Creating a library can be very rewarding. Before creating one, however,
always search in case someone else has already created the library for you.

The nature of a book like this is that, inevitably, it cannot cover every-
thing that the reader wants to know. But I do hope it has helped you with
some of the more common advanced Arduino programming topics.

You can follow me on Twitter as @simonmonk2, and you will find
more information about this book and my other books on my website at
www.simonmonk.org.

17_Ch17.indd 282 9/2/18 5:40 PM

https://github.com/arduino/Arduino/wiki/Library-Manager-FAQ
http://www.simonmonk.org

283

A
Parts

As this is a book essentially about programming, not many parts are
referenced. This appendix lists the parts that were used and some pos-
sible suppliers.

Arduino Boards
Such is the popularity of Arduino that the common boards like the Uno
and Leonardo are readily available. For the less common boards, take a
look at Adafruit and SparkFun in the United States as well as CPC in the
United Kingdom. Their websites are listed in the “Suppliers” section at
the end of this appendix.

Adafruit and SparkFun both produce great ranges of Arduino-
compatible boards. When it comes to low-cost ESP8266 and ESP32 boards,
then eBay and Amazon are the places to go, although if they are coming
from China you may have to wait a few weeks.

18_Appendix.indd 283 9/2/18 5:41 PM

284 Programming Arduino Next Steps

Components and Modules
Specific components and modules used as examples in the book are listed
here. Product codes are in parentheses after the supplier names.

Module Chapter Sources

TEA5767 FM receiver module 9 eBay

LED Backpack Matrix display 9 Adafruit (902)

DS1307 RTC module 9 Adafruit (264)

DS18B20 temperature sensor 10 Adafruit (374), SparkFun (SEN-00245)

MCP3008 8-channel ADC 11 Adafruit (856)

Venus GPS module 12 SparkFun (GPS-11058)

TMP36 temperature sensor 14 Adafruit (63), SparkFun (SEN-10988)

ATTiny44 microcontroller 3 Mouser (556-ATTINY44A-PU)

Suppliers
There are many suppliers of electronics and Arduino-related parts. A few
are listed here.

Supplier URL Notes

Adafruit www.adafruit.com Adafruit products also stocked
worldwide by local suppliers

SparkFun www.sparkfun.com SparkFun products also stocked
worldwide by local suppliers

Seeed Studio www.seeedstudio.com Unusual modules and Arduino clones

Mouser Electronics www.mouser.com Offers a vast range of all types of
electronic parts

Digi-Key www.digikey.com A vast range of all types of
electronic parts

CPC cpc.farnell.com UK supplier with a large range of parts

Pimoroni www.pimoroni.com Sells a wide range of Arduino and
Adafruit products in the UK

RobotShop www.robotshop.com Sells Arduino products as well as a
wide range of kits and add-ons

MonkMakes www.monkmakes.com Electronics kits and modules

FreeTronics www.freetronics.com.au Interesting Arduino-compatibles and
add-ons

18_Appendix.indd 284 9/2/18 5:41 PM

http://www.adafruit.comAdafruit
http://www.sparkfun.comSparkFun
http://www.seeedstudio.comUnusual
http://www.mouser.comOffers
http://www.digikey.comA
http://www.pimoroni.comSells
http://www.robotshop.comSells
http://www.monkmakes.comElectronics
http://www.freetronics.com.auInteresting

 Appendix: Parts 285

Arduino Starter Kits
This book is unashamedly about the software. When it comes to the elec-
tronics side of things, then it is a good idea to get hold of a starter kit to
give you a basic set of components to go with your Arduino. You should
be able to find a supplier for most of these kits with an Internet search.

Kit Notes Manufacturer

Arduino Starter Kit Branded with the Arduino logo,
this is the official kit, based on the
Arduino Uno.

Arduino

SparkFun Inventors Kit A useful set of components in a
nice box.

SparkFun

MonkMakesDuino LCD Kit A low-cost kit based on the
MonkMakesDuino Arduino Uno
compatible board.

MonkMakes

18_Appendix.indd 285 9/2/18 5:41 PM

18_Appendix.indd 286 9/2/18 5:41 PM

287

INDEX

Page numbers in italics refer to figures.

1-Wire bus standard, 169
family codes, 171
hardware, 169–170
initializing 1-Wire, 171
OneWire library, 170–173
protocol, 170
scanning the bus, 171–173

A
Adafruit Circuit Playground,

61–64
ADCs, 99, 107, 240
amplitude, 239
analog inputs, 9, 28–30

speeding up, 98–100
analog outputs, 30–32
analog-to-digital converters.

See ADCs
and (&), 146
API, 271–272

defining, 274–275
application programmer interface.

See API

Arduino
history of development,

39–40
overview, 1–4

Arduino Due, 12–13
digital signal processing

(DSP), 247–249
as a USB host, 207–210
USB ports, 204

Arduino Ethernet, 212–213
Arduino Leonardo, 10–11

hardware interrupts, 74
power light, 8

Arduino m0, 11
Arduino Mega 2560, 12

hardware interrupts, 74
Arduino Mega ADK, 12
Arduino Pro Mini, 13
Arduino programming,

259–260
state diagrams, 265–266

Arduino String Object library,
130–131

19_Index.indd 287 9/4/18 7:02 PM

288 Index

Arduino Uno, 10–11
analog outputs, 30, 31
anatomy of, 7, 8, 40
connecting to an ATtiny for

programming, 68–70
digital signal processing

(DSP), 245–247
hardware interrupts, 74
vs. Mac laptop, 85–86
power light, 8

Arduino.h, 44–48
ArduinoISP sketch, 57, 69
ArduinoJson library, 224–226
Arduino-to-Arduino communi-

cation, 161–164, 196–198
arrays, 26–27
ASCII, 143
AT91SAM3X8E microprocessors,

43–44
ATmega-based Arduinos

ATmega168 microprocessors,
10

ATmega2560
microprocessors, 43

ATmega328 microprocessors,
10, 41–43, 94–95, 104–106,
187–189

ATmega32u4
microprocessors, 10–11, 43

power management
functions, 108

sleeping, 108–113
ATtiny microcontrollers, 67

ATtiny44, 67–68
configuring, 70–72
connecting an Arduino Uno

to an ATtiny for
programming, 68–70

ATtinyCore, installing into the
IDE, 70

Audio library, 33
AVR Dragon programmer, 52, 53
AVR processors, 41–44
AVR Studio, 51–53
avrdude, 50
avr/eeprom.h library, 135–137

B
band stop filtering, 243
base 10, 142
base 2, 142
BASIC, 260
batteries, 103–104

See also power management
baud rate, 190
bidirectional level converter

modules, 155
binary, 141–142

and Arduino types, 142–143
bit banging, 157
bit manipulation, 177, 180
bits, 94, 141–142

least significant bit (LSB), 145
masking, 145–146
most significant bit (MSB), 145
shifting, 146–147

Blink sketch, 5–7
fast/slow blink, 20–22
modifying, 15–17

BLINK states, 266
boards

Adafruit Circuit Playground,
61–64

big Arduino boards, 12–13
ESP32-based boards, 66–67
I2C connections on, 156

19_Index.indd 288 9/4/18 7:02 PM

 Index 289

NodeMCU, 64–66
non-Arduino boards, 59
overview, 10
power consumption, 101–103
small Arduino boards, 13
speed comparison, 86–87
suppliers, 283
Uno and similar boards, 10–11
unofficial, 14
Wemos D1 Mini, 64–66

Boards Manager, 60–61
bootloaders, 50–51

burning with AVR Studio and
a programmer, 54–55

burning with the Arduino
IDE and a second Arduino,
55–57

bypassing, 124
installing, 54

bumpy case, 17
bytes, 94, 142

C
C char arrays, 127–128
C language, 15
C precompiler directives, 45
camel case, 17
Capacitive Sensing library, 33
central processing unit (CPU), 41
char, 27, 142–143
character arrays, 26–27
circular buffers, 241–242
classes, 272
clocks, 70–71

reducing the clock speed,
104–106

See also real-time clock (RTC)
module

code optimization, 123
commands, 36–37, 190–193

See also functions
comments, 15, 122–123
compiling, 50
constants, 124
cores, 44, 45

installing ATtinyCore into
the IDE, 70

crystal oscillator, 71, 72
curly braces, 18, 19, 20, 32
current, 103–104

and clock speed, 106
See also power management

D
DACs, 240
Dallas Semiconductor. See 1-Wire

bus standard
data direction register D (DDRD),

94–95, 98
data structures, 121–122
data types, 34–36
DDRB register. See data direction

register D (DDRD)
delay, 16–17, 21–22, 262–263
DHCP, 213, 214, 215
Diecimila. See Arduino Uno
digital connections, 9–10
digital inputs, 22–24

fast digital input, 97–98
digital outputs, 24

basic code optimization,
92–93

controlling power with,
116–118

very fast digital output,
95–97

19_Index.indd 289 9/4/18 7:02 PM

290 Index

digital signal processing (DSP)
Arduino Due, 247–249
Arduino Uno, 245–247
averaging readings using

circular buffers, 241–242
overview, 239–241

digital-to-analog converters. See
DACs

digitization, 240
DS1307 real-time clock, 165–167
DS18B20 temperature sensor, 169,

173–175
See also 1-Wire bus standard

DSP. See digital signal processing
(DSP)

Due. See Arduino Due
Duemilanove. See Arduino Uno
dweet.io, 233–234

See also Internet of Things
(IoT)

Dynamic Host Configuration
Protocol. See DHCP

dynamic memory, vs. static
memory, 125–126

E
EEPROM, 41

avr/eeprom.h library, 135–137
example, 132–134
limitations, 137
overview, 131–132

EEPROM library, 33, 135
See also avr/eeprom.h library

Electrically Erasable
Programmable Read Only
Memory. See EEPROM

ENC28J60 chipset, 212
ESP32-based boards, 66–67

sleeping, 114–115
and WiFi, 229–232

ESP8266 WiFi microcontroller,
64–66

hardware interrupts, 74
sleeping, 113–114
WiFi example, 229–232

Ethernet
Arduino Ethernet, 212–213
Power over Ethernet (PoE),

213
wired Ethernet examples,

218–226
Ethernet library, 213

making a connection,
214–217

making requests, 217–218
setting up a web server,

216–217
Ethernet Shield, 212
EtherTen, 212–213
examples folder, 278
external interrupts, 111–113

F
Fast Fourier Transform (FFT),

253, 255–256
FFT algorithm, 253, 255–256
FFT library, 33
file extensions, 48–50
filtering, 243–245

filter code generation, 249–252
Firmata library, 33
flash memory, 137–139

minimizing usage, 123–124
storing string constants in,

122
floats, 87–89

19_Index.indd 290 9/4/18 7:02 PM

http://dweet.io

 Index 291

for command, 20
Fourier Transform, 253–254

frequency measurement
example, 256–257

spectrum analyzer example,
254–256

freeMemory function, 123
frequency, 239
frequency domain, 253, 254
frequency measurement example,

256–257
functions, 16, 20–22, 36–37

serial commands, 190–193
string functions, 131
WiFi-specific functions,

227–228
See also libraries

fuses, 71

G
GCC compiler, 50
getKey function, 208
getModifiers function, 208
getOemKey function, 208
GFX library, 33
gibberish sketch, 27
GitHub, 278, 279–282
GND connectors, 9
GPIOs, 9–10, 148–149
GPS module example, 199–202

H
hardware

1-Wire bus standard, 169–170
I2C, 155–156
networking, 211–213
serial communication, 187–189
SPI, 178–179

hardware interrupts, 73–76
header file, 275–276
hexadecimal, 45, 144
high-pass filtering, 243

I
I2C

connections on Arduino
boards, 156

examples, 159–167
hardware, 155–156
initializing, 157
overview, 153–154
protocol, 156–157
receiving data, 158
sending data, 157–158

IDE
Boards Manager, 60–61
burning a bootloader with

the IDE and a second
Arduino, 55–57

installing, 4
installing ATtinyCore into the

IDE, 70
libraries, 32–33
Library Manager, 33–34
loading Blink sketch, 5–7
preprocessor, 50
Serial Monitor, 24–26

if, 18–19
implementation file, 276–277
include statements, 32, 44
installation

of bootloader, 54–57
of IDE, 4

int, 17, 34, 46
Integrated Development

Environment. See IDE

19_Index.indd 291 9/4/18 7:02 PM

292 Index

Interaction Design Institute, 39
Internet of Things (IoT), 211, 232

attaching the TMP36
temperature sensor, 235

displaying the temperature
on a web page, 236–237

dweet.io, 233–234
programming the NodeMCU

or Wemos D1 Mini, 234–235
See also WiFi

interrupt modes, 77
interrupt pins, 77
Interrupt Service Routines (ISRs),

76, 78–79, 80
interrupts, 73

enabling and disabling, 80
external interrupts, 111–113
hardware interrupts, 73–76
timer interrupts, 80–84

IOREF pin, 9
IoT. See Internet of Things (IoT)
ISRs. See Interrupt Service

Routines (ISRs)

J
JavaScript Object Notation. See

JSON web service
JSON web service, 223–226

K
keyboard emulation, 203–206
Keyboard library, 33
KeyboardController library, 208
keywords file, 277
Knight, Peter, 108

L
“L” LED, 5–7

language, 15
least significant bit (LSB), 145
LED backpack boards, 164–165
Leonardo. See Arduino Leonardo
LeoStick, 203
libraries, 32–34

adding from a ZIP file, 34
examples folder, 278
header file, 275–276
implementation file, 276–277
keywords file, 277
publishing on GitHub,

279–282
releasing, 278
TEA5767 radio example,

272–278
testing, 278
when to make a library,

271–272
See also specific libraries

Library Manager, 33–34, 278,
282

LiquidCrystal library, 33
loop function, 16–17, 19–20,

260–263
low-pass filtering, 243–245

M
MAC addresses, 214–215
main function, 47–48
main.cpp, 47–48
malloc command, 125, 126
masking bits, 145–146
master and slave concept, 170
Master In Slave Out (MISO), 178
Master Out Slave In (MOSI), 178
MaxSonar rangefinders, 193
MCP3008, 181–185

19_Index.indd 292 9/4/18 7:02 PM

http://dweet.io

 Index 293

memory
capacities of Arduinos and

Arduino compatibles, 121
EEPROM, 131–137
flash memory, 122, 123–124,

137–139
measuring free memory, 123
minimizing RAM usage,

121–123
overview, 119–121
SD card storage, 139–140
static vs. dynamic memory

allocation, 125–126
strings, 127–131

MemoryFree library, 123
methods, 272
Micro, 13
microcontrollers, 41–44
microSD card slot, 139–140, 212
millis function, 263, 265
modifier keys, 205
most significant bit (MSB), 145
mouse emulation, 203–204,

206–207
Mouse library, 33
mouseDragged function, 209
mousePressed function, 209
mouseReleased function, 210
music controllers, 204

N
Nano, 13
Narcoleptic library, 108–111, 274
National Marine Electronics

Association (NMEA), 199, 200
networking, hardware, 211–213
NG. See Arduino Uno
NodeMCU, 64–66

programming for Internet of
Things, 234–235

nonvolatile flash memory, 8

O
OneWire library, 33, 170–173

See also 1-Wire bus standard
open-collector outputs, 155
oscillator, 72

P
paperclip sketch, 22–24
parasitic power, 169
pausing without blocking,

262–263
photoresistors, 116–118
pins, IOREF, 9
pins_arduino.h, 50
port input D (PIND), 94–95
PORTD register, 94–95
ports, ATmega328, 94–95
power connections, 9
power management

current and batteries,
103–104

power consumption of
Arduino boards, 101–103

reducing the clock speed,
104–106

sleeping, 108–115
turning off features, 107–108
using digital outputs,

116–118
Power over Ethernet (PoE), 213
Power Supervision, 41–43
power supplies, 8, 72
private, vs. public, 272
Processing, 39

19_Index.indd 293 9/4/18 7:02 PM

294 Index

Program Memory (PROGMEM)
directive, 138

programming for Arduino,
259–260

state diagrams, 265–266
programming language, 15
public, vs. private, 272
pull-up resistors, 78, 155
pulse-width modulation (PWM),

30–32, 82–84
PWM. See pulse-width

modulation (PWM)

R
RAM, 119–121

measuring free memory, 123
minimizing usage, 121–123

random access memory (RAM),
41

real-time clock (RTC) module,
153, 154, 165–167

registers, 94–95
repositories, creating, 280–282
Reset connector, 9
Reset switch, 7
RTC. See real-time clock (RTC)

module
RTClib library, 165–167
Rx pin, 187–188

S
SD card storage, 139–140
SD library, 33
semicolon (;), 16
Serial Clock Line (SCL), 156
serial communication

Arduino-to-Arduino
example, 196–198

commands, 190–193
computer to Arduino over

USB example, 194–196
GPS module example,

199–202
hardware, 187–189
overview, 187
protocol, 190
SoftwareSerial library,

193–194
UART, 188–189

serial data, 148–152
Serial Data Line (SDA), 156–157
Serial Monitor, 24–26
Serial Peripheral Interface. See

SPI
Serial.println commands, 124
Servo library, 33
setup function, 16, 260
shifting bits, 146–147
Signal Generator, 245

See also digital signal
processing (DSP)

sin function, 89–91
sine waves, 89–91
sizeof function, 126
sketches

ArduinoISP, 57, 69
Blink, 5–7, 15–17, 20–22
defined, 5
gibberish, 27
paperclip, 22–24
uploading, 17, 48–51

sleeping
ESP32-based boards, 114–115
ESP8266 WiFi

microcontroller, 113–114
Narcoleptic library, 108–111

19_Index.indd 294 9/4/18 7:02 PM

 Index 295

waking ATmega-based
Arduinos on external
interrupts, 111–113

SoftwareSerial library, 33,
193–194, 274

spectrum analyzer example,
254–256

speed
analog inputs, 98–100
Arduino Uno vs. Mac laptop,

85–86
ATmega328 ports, 94–95
basic code optimization,

92–93
comparing Arduino boards,

86–87
fast digital input, 97–98
sine waves, 89–91
using floats vs. longs, 87–88
very fast digital output,

95–97
SPI

configuration function, 181
connections on Arduino

boards, 178
example, 181–185
hardware, 178–179
ICSP headers, 178–179
overview, 177
protocol, 179

SPI library, 33, 180–181
sprintf function, 128–129
starter kits, 285
state diagrams, 265–266
state machines, 266–269
static memory, vs. dynamic

memory, 125–126
static RAM (SRAM), 41

Stepper library, 33
string constants, storing in flash

memory, 122
strings, 27

Arduino String Object library,
130–131

C char arrays, 127–128
concatenating, 130–131
creating, 130
finding the length of,

129–130
formatting with multiple

prints, 128
formatting with sprintf,

128–129
functions, 131
overview, 127

successive approximation ADCs,
99–100

suppliers, 284
boards, 283
components and modules,

284
starter kits, 285

System Clock (SCLK), 178

T
TEA5767 FM radio, 159–161,

272–278
receiver module, 153, 154

temperature sensors, 169, 173–175,
235

threads, 260
time domain, 253, 254
timer interrupts, 80–84
Timer library, 263–265
TimerOne library, 80–84
TMP36 temperature sensor, 235

19_Index.indd 295 9/4/18 7:02 PM

296 Index

toolchain, 48, 49
Transistor-Transistor Logic, 187
tri-state mode, 155
TTL Serial, 187, 189

See also serial communication
Two Wire Interface (TWI). See I2C
Tx pin, 187–188

U
UART, 188–189

See also serial communication
uint_8, 46
Universal Asynchronous Receiver

Transmitter. See UART
Uno. See Arduino Uno
uploading sketches, 17, 48–51
USB ports, 204
USB programming

keyboard emulation, 203–206
mouse emulation, 203–204,

206–207
using the Arduino Due as a

USB host, 207–210

V
variables, 17–18, 124

short variable names, 122
volatile, 79–80

voltage, 28–30

W
W5100 chip, 212

Watchdog Timer, 41–43
web servers

physical web server example,
218–223

setting up, 216–217
web service, JSON, 223–226
Wemos D1 Mini, 64–66

programming for Internet of
Things, 234–235

WiFi, 211
Arduino WiFi example,

228–229
ESP8266/ESP32 WiFi

example, 229–232
See also Internet of Things

(IoT)
WiFi library, 227–228
WiFi Shield, 213
WiFi-specific functions, 227–228
Wire library, 33, 157–158
wired Ethernet

JSON web service example,
223–226

physical web server example,
218–223

Wiring, 39, 44–48
wiring.c, 48
WProgram.h (Wiring Program),

44

X
Xbee library, 33

19_Index.indd 296 9/4/18 7:02 PM

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	Introduction
	1 Programming Arduino
	What Is Arduino?
	Installation and the IDE
	Installing the IDE
	Blink

	A Tour of Arduino
	Power Supply
	Power Connections
	Analog Inputs
	Digital Connections

	Arduino Boards
	Uno and Similar
	Big Arduino Boards
	Small Arduino Boards
	Unofficial Arduinos

	Programming Language
	Modifying the Blink Sketch
	Variables
	If
	Loops
	Functions
	Digital Inputs
	Digital Outputs
	The Serial Monitor
	Arrays and Strings
	Analog Inputs
	Analog Outputs
	Using Libraries
	Arduino Data Types
	Arduino Commands
	Summary

	2 Under the Hood
	A Brief History of Arduino
	Anatomy of an Arduino
	AVR Processors
	ATmega328
	ATmega32u4
	ATmega2560
	AT91SAM3X8E

	Arduino and Wiring
	From Sketch to Arduino
	AVR Studio
	Installing a Bootloader
	Burning a Bootloader with AVR Studio and a Programmer
	Burning a Bootloader with the Arduino IDE and a Second Arduino

	Summary

	3 When Is an Arduino Not an Arduino?
	The Arduino IDE’s Extensible Architecture
	Adafruit Circuit Playground Express
	NodeMCU
	ESP32
	ATtiny Microcontrollers
	ATtiny44
	Using an Arduino as a Programmer
	Installing ATtinyCore into the IDE
	Clocks, Crystals, and Fuses
	Minimal Arduino

	Summary

	4 Interrupts and Timers
	Hardware Interrupts
	Interrupt Pins
	Interrupt Modes
	Enabling Internal Pull-Up
	Interrupt Service Routines
	Volatile Variables
	ISR Summary

	Enabling and Disabling Interrupts
	Timer Interrupts
	Summary

	5 Making Arduino Faster
	How Fast Is an Arduino?
	Comparing Arduino Boards
	Speeding Up Arithmetic
	Do You Really Need to Use a Float?

	Lookup vs. Calculate
	Fast I/O
	Basic Code Optimization
	Bytes and Bits
	ATmega328 Ports
	Very Fast Digital Output
	Fast Digital Input

	Speeding Up Analog Inputs
	Summary

	6 Low-Power Arduino
	Power Consumption of Arduino Boards
	Current and Batteries
	Reducing the Clock Speed
	Turning Things Off
	Sleeping ATmega-Based Arduinos
	Narcoleptic
	Waking ATmega-Based Arduinos on External Interrupts

	ESP8266 Sleeping
	ESP32 Sleeping
	Use Digital Outputs to Control Power
	Summary

	7 Memory
	Arduino Memory
	Minimizing RAM Usage
	Use the Right Data Structures
	Store String Constants in Flash Memory
	Common Misconceptions
	Measure Free Memory

	Minimizing Flash Usage
	Use Constants
	Remove Unwanted Trace
	Bypass the Bootloader

	Static vs. Dynamic Memory Allocation
	Strings
	C char Arrays
	The Arduino String Object Library

	Using EEPROM
	EEPROM Example
	Using the avr/eeprom.h Library
	EEPROM Limitations

	Using Flash
	Using SD Card Storage
	Summary

	8 Interfacing with Arduino
	Binary
	Arduino Types and Binary
	Hexadecimal
	Masking Bits
	Shifting Bits
	Serial Data
	Summary

	9 Using I2C
	I2C Hardware
	The I2C Protocol
	The Wire Library
	Initializing I2C
	Master Sending Data
	Master Receiving Data

	I2C Examples
	TEA5767 FM Radio
	Arduino-to-Arduino Communication
	LED Backpack Boards
	DS1307 Real-Time Clock

	Summary

	10 Interfacing with 1-Wire Devices
	1-Wire Hardware
	The 1-Wire Protocol
	The OneWire Library
	Initializing 1-Wire
	Scanning the Bus

	Using the DS18B20
	Summary

	11 Interfacing with SPI Devices
	Bit Manipulation
	SPI Hardware
	The SPI Protocol
	The SPI Library
	SPI Example
	Summary

	12 Serial UART Programming
	Serial Hardware
	Serial Protocol
	The Serial Commands
	The SoftwareSerial Library
	Serial Examples
	Computer to Arduino over USB
	Arduino to Arduino
	GPS Module

	Summary

	13 USB Programming
	Keyboard and Mouse Emulation
	Keyboard Emulation
	Keyboard Emulation Example
	Mouse Emulation
	Mouse Emulation Example
	USB Host on the Arduino Due

	Summary

	14 Network and Internet of Things Programming
	Networking Hardware
	Ethernet Shield
	Arduino Ethernet/EtherTen

	The Ethernet Library
	Making a Connection
	Setting Up a Web Server
	Making Requests

	Wired Ethernet Examples
	Physical Web Server
	Using a JSON Web Service

	The Official Arduino WiFi Library
	Making a Connection
	WiFi-Specific Functions

	Arduino WiFi Example
	ESP8266/ESP32 WiFi Example
	Internet of Things
	dweet.io
	Programming the NodeMCU or Wemos D1 Mini
	Attaching the TMP36
	A Web Page to Display the Temperature

	Summary

	15 Digital Signal Processing
	Introducing Digital Signal Processing
	Averaging Readings
	An Introduction to Filtering
	Creating a Simple Low-Pass Filter
	Arduino Uno DSP
	Arduino Due DSP
	Filter Code Generation
	The Fourier Transform
	Spectrum Analyzer Example
	Frequency Measurement Example

	Summary

	16 Managing with One Process
	Making the Transition from Big Programming
	Why You Don’t Need Threads
	Setup and Loop
	Sense Then Act
	Pause Without Blocking

	The Timer Library
	State Diagrams
	State Machines in Arduino
	Summary

	17 Writing Libraries
	When to Make a Library
	Using Classes and Methods
	Library Example (TEA5767 Radio)
	Define the Library’s Interface
	Write the Header File
	Write the Implementation File
	Write the Keywords File
	Make the Examples Folder

	Testing the Library
	Releasing the Library
	Publishing Your Library on GitHub
	GitHub
	Creating a Repository

	Summary

	A Parts
	Arduino Boards
	Components and Modules
	Suppliers
	Arduino Starter Kits

	Index

